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Abstract—Assessing trust in online social networks (OSNs) is critical for many applications such as online marketing and network
security. It is a challenging problem, however, due to the difficulties of handling complex social network topologies and conducting
accurate assessment in these topologies. To address these challenges, we model trust by proposing the three-valued subjective logic
(3VSL) model. 3VSL properly models the uncertainties that exist in trust, thus is able to compute trust in arbitrary graphs. We
theoretically prove the capability of 3VSL based on the Dirichlet-Categorical (DC) distribution and its correctness in arbitrary OSN
topologies. Based on the 3VSL model, we further design the AssessTrust (AT) algorithm to accurately compute the trust between any
two users connected in an OSN. We validate 3VSL against two real-world OSN datasets: Advogato and Pretty Good Privacy (PGP).
Experimental results indicate that 3VSL can accurately model the trust between any pair of indirectly connected users in the Advogato
and PGP.
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1 INTRODUCTION

ONline social networks (OSNs) are among the most
frequently visited places on the Internet. OSNs help

people not only to strengthen their social connections with
known friends but also to expand their social circles to
friends of friends who they may not know previously. Trust
is the enabling factor behind user interactions in OSNs and
is crucial to almost all OSN applications. For example, in
recommendation and crowdsourcing systems, trust helps
to identify trustworthy opinions and/or users [5], [59]. In
online marketing applications [48], trust is used to iden-
tify trustworthy sellers. In a proactive friendship construc-
tion system [61], trust enables the discovery of potential
friendships. In wireless network domain, trust can help a
cellular device to discover trustworthy peers to relay its
data [7], [60]. In security domain, trust is considered an
important metric to detect malicious users or websites [37],
[40], [41], [46], [50], [62], [63]. Given the above-mentioned
applications, one confounding issue is to what degree a
user can trust another user in an OSN. This paper concerns
the fundamental issue of trust assessment in OSNs: given an
OSN, how to model and compute trust among users?

Trust is traditionally considered as reputation or the
probability of a user being benign. In online marketing,
users rate each other based on their interactions, so the
trust of a user can be derived from aggregated ratings. In
the network security domain, however, the trust of a given
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user is defined as the probability that this user will behave
normally in the future. Based on results from previous
studies [14], [15], [45], [49], we define trust as the probability
that a trustee will behave as expected, from the perspective of a
trustor. Here, both trustor and trustee are regular users in
an OSN where the trustor is interested in knowing how
trustworthy the trustee is. This general definition of trust
makes it applicable for a wide range of applications. We
also assume that trust in OSNs is determined by objective
evidence, i.e., cognition based trust [3], [12], [23], [24], is not
considered in this paper.

1.1 Problem Statements

We model a social network as a directed graph G = (V,E)
where a vertex u ∈ V represents a user, and an edge
e(u, v) ∈ E denotes a trust relation from u to v. The
weight of e(u, v) denotes how much u trusts v, which is
commonly referred to as direct trust. A trustor may leverage
the recommendations from other users to derive a trustee’s
trust, which is called indirect trust. We are interested in
computing the indirect trust between two users who have
not established a direct trust previously. To solve this
problem, we first need to design a trust model that works
with both direct and indirect trust. Based on the assumption
that trust is determined by objective evidence, designing a
trust model can be stated as follows.

• P1: Given the interactions between a trustor and a trustee,
how to model the trust of the trustee, from the trustor’s
perspective?

The second problem is to compute/infer indirect trust
between users in an OSN. Solving this problem means the
trust between two users, without previous interactions,
can be computed. Because the indirect trust inference
is available, a trustor can conduct a trust assessment of
a trustee in an OSN. As such, the second problem is
formulated as follows.
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• P2: Given a social network G = (V,E), ∀ u and v, s.t.
e(u, v) 6∈ E and ∃ at least one path from u to v, how
does one compute u’s trust in v, i.e., how should u trust
a stranger v?

1.2 Proposed Approach
To address problem P1, we propose the three-valued sub-
jective logic (3VSL) model that accurately models the trust
between a trustor and a trustee, based on their interactions.
3VSL is inspired by the subjective logic (SL) model [34],
however, it is significantly different from SL.

The major difference between SL and 3VSL lies in the
definitions of uncertainty in trust. SL believes the uncer-
tainty in the trust of a trustee never changes, however,
3VSL considers the uncertainty increases as trust propagates
among users in an OSN. Therefore, an extra state, called
uncertainty state, is introduced in 3VSL to cope with the
changing of uncertainty in trust.

The trust of a trustee, i.e., the probability that it will
behave as expected, can be represented by a Dirichlet-
Categorical (DC) distribution that is characterized by three
parameters α, β and γ. Here, α is the number of positive
interactions occurred, i.e., a trustor observed that the trustor
behaved as expected for α times. β denotes the amount of
negative interactions, indicating the trustee did not behave
as expected. It is also quite possible that the behavior of
the trust is ambiguous, i.e., it is impossible to determine
whether it behaved as expected or not. In this case, we
consider uncertain observations are made and use γ to
record them. Uncertainty is generated not only when am-
biguous behaviors are observed but also when trust prop-
agates within an OSN, which will be elaborated in details
in Section 3. The observations kept in α, β and γ are also
called evidence, as they are used to judge whether the trustee
is trustworthy or not. The major reason of introducing the
uncertain state in 3VSL is to accurately capture the trust
propagation process. When trust propagates from a user to
another, certain evidence in α and β are “distorted” and
“converted” into uncertain evidence. Given a DC distribu-
tion, it can be represented by a vector 〈α, β, γ〉, which is
also called opinion. On the other hand, the trustee’s trust
can be derived from a DC distribution; therefore, trust can
be represented by an opinion. In the rest of this paper, we
treat trust and opinion as interchangeable concepts, unless
otherwise specified.

To address problem P2, we propose a trust assessment al-
gorithm, called AssessTrust (AT), based on the 3VSL model.
The AT algorithm decomposes the network between the
trustor and trustee as a parsing tree that provides the correct
order of applying trust operations to computer the indirect
trust between the two users. Here, the trust operations
available in trust computation are the discounting operation
and combining operation. Leveraging these two operations,
AT is proven to be able to accurately compute the trust
between any two users connected in an OSN. Because 3VSL
appropriately treats the uncertainty in trust, AT offers more
accurate trust assessments, compared to the topology- and
graph-based solutions. On the other hand, as AT aims at
computing indirect trust between users, it outperforms the
probability based models that focus only on direct trust.
Experiment results demonstrate that AT achieves the most

accurate trust assessment results. Specifically, AT achieves
the F1 scores of 0.7 and 0.75, using the Advogato and Pretty
Good Privacy (PGP) datasets, respectively. AT can rank
users based on their trust values. We measure the accuracy
of the ranking results, using the Kendall’s tau coefficients.
Experiment results show that, on average, AT offers 0.73
and 0.77 kendall’s tau coefficients, in Advogato and PGP,
respectively.

1.3 Technical Challenges and Solutions

The first technical challenge is that 3VSL needs to accurately
model the trust propagation and fusion in OSNs. This is
a challenge because trust propagation in OSNs is not well
understood, although it is widely adopted by the research
community. We address this challenge by using an opinion
to represent trust and modeling trust propagation based on
DC distribution and several commonly-accepted assump-
tions.

The second technical challenge is that 3VSL must be
able to work on OSNs with non-series-parallel network
topologies. This is a challenge because the only allowed
operations in trust assessment are trust propagation and
trust fusion. However, these two operations require that a
network’s topology must be either series and/or parallel.
This requirement cannot be satisfied in real-world online
social networks. We address this challenge by differentiating
distorting opinions from original opinions. For example, if
Alice trusts Bob and Bob trusts Charlie, then Alice’s opinion
on Bob is called the distorting opinion, and Bob’s opinion
on Charlie is the original opinion. We find that original
opinions can be fused only once but distorting opinions
can be combined any number of times. This discovery
lays the foundation for the proposed recursive AssessTrust
algorithm.

The third technical challenge is that 3VSL needs to
handle social networks with arbitrary topologies, even with
cycles. This is a challenge because it is impossible to test
3VSL in all possible network topologies. We address this
challenge by mathematically proving 3VSL works in arbi-
trary networks. The proof is based upon the characteris-
tics of Dirichlet distribution and the properties of different
opinions in the trust computation process. In the end, the
AssessTrust algorithm is designed to compute the trust
between any two users in an OSN.

The rest of this paper is organized as follows. In Sec-
tion 2, the background and terminologies of trust are in-
troduced. In Section 3, we introduce the 3VSL model and
define the trust propagation and fusion operations. We then
differentiate discounting opinions from original opinions in
Section 4, and prove 3VSL can handle arbitrary network
topologies. In the same section, we detail the proposed
AssessTrust algorithm. In Section 5, we validate the 3VSL
model and the AssessTrust algorithm, using two real-world
datasets. The related work is given in Section 6. We conclude
the paper in Section 7.

2 BACKGROUND

In this section, we briefly introduce some terminologies
frequently referred in this paper. Trust assessment is defined
as the process that a trustor assesses a trustee on whether
it will perform a certain task as expected. As such, trust can
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be either direct or indirect [42]. Direct trust is formed from
a trustor’s direct interactions with a trustee while indirect
trust is inferred from others’ recommendations. Typically,
trust is represented as an opinion, indicating how much a
trustor trusts a trustee.

To model trust propagation and trust fusion, two opin-
ion operations, i.e., the discounting operation and com-
bining operation, are design to facilitate trust computa-
tion/assessment [42]. Trust fusion refers to combining dif-
ferent trust opinions to form a consensus trust opinion. Trust
propagation refers to a trust opinion being transferred from
a user to another. For example, if A trusts B, and B trusts C,
then B’s opinion on C will be discounted by A to derive an
indirect opinion of C’s trust. 3VSL is proposed based upon
the subjective logic (SL) [34]. A brief introduction can be
found from Section 2.2 in [2].

3 THREE-VALUED SUBJECTIVE LOGIC

The major limitation of the SL model is that the uncertainty
in trust is considered a constant, however, the uncertainty in
a trust opinion will be increased when it propagates from a
user to another. To address this issue, we propose the three-
valued subjective logic (3VSL) to model trust between users
in an OSN, by redefining the uncertainty in trust. Designing
the 3VSL model is a challenging task as trust propagation in
OSNs is not well understood, although it is widely used in
many applications. We address this challenge by modeling
trust as an opinion, a representation of a probabilistic distri-
bution over three different states, i.e., trustworthy, untrust-
worthy, and uncertain. By investigating how these states of
an opinion change during trust propagation, we redesign
the trust discounting operation. Leveraging the Dirichlet
distribution, we also redesign the combining operation.
Moreover, we discover the mechanism of how to correctly
apply these opinion operations on trust assessment within
an OSN, leading to the design of the AssessTrust algorithm.

3.1 A Probabilistic Interpretation of Trust

Trust in 3VSL is defined as the probability that a trustee will
behave as expected in the future. The probability is deter-
mined by the amounts of evidence that a trustor observed
about a trustee’s historical behaviors. A trustee may be
observed behaving as expected, not expected, or in an am-
biguous way. As a result, a trustor obtains positive, negative,
and uncertain evidence accordingly. Based on the observed
evidence, Bayesian inference is used to infer the probability
of a trustee being trustworthy, or the probability that a
trustee will behave as expected in the future. In summary,
given more positive observed evidence, the probability of a
trustee being trustworthy is larger.

The uncertainty state in 3VSL not only contains the
observed uncertain evidence but also the distorted evidence
when trust propagates in the network. Knowing how much
evidence is distorted will give us an idea of how much pos-
itive (and negative) evidence left, which must be accurate
so that the probability inference (of trust) could be precise.
Without keeping track of uncertainty evidence, the amount
of certain evidence in an opinion becomes incorrect, leading
to erroneous trust assessments.

A trustee’s future behavior can be modeled as a random
variable x that takes on one of three possible outcomes

{1, 2, 3}, i.e., x = 1, x = 2 and x = 3 indicating the trustee
will behave as expected, not as expected, or in an ambiguous
way, respectively. As such, we are interested in the probabil-
ity that x = 1, which is determined by the positive observed
behaviors of the trustee. Therefore, the probability density
function (pdf) of x follows the Categorical distribution.

f(x|p) =
3∏
i=1

p
[x=i]
i ,

where p = (p1, p2, p3) and p1+p2+p3 = 1, pi represents the
probability of observing event i. The Iverson bracket [x = i]
evaluates to 1 if x = i, and 0 otherwise.

If the value of p is available, the pdf of x will be
known and the probability of x = i can be computed.
Unfortunately, p is an unknown parameter and needs to be
estimated based on the observations of x. We treat p as three
random variables that follow the Dirichlet distribution.

p ∼ Dir(α, β, γ),

where α, β, γ are hyper-parameters that control the shape
of the Dirichlet distribution. We assume p follows Dirichlet
distribution mainly because it is a conjugate prior of categor-
ical distribution. In addition, because Dirichlet distribution
belongs to a family of continuous multivariate probability
distributions, we have various pdfs for p by changing the
values of α, β, γ.

f(p) = Cp1
α−1p2

β−1p3
γ−1, (3.1)

where C is a normalizing factor ensuring p1+p2+p3 = 1. In
this way, we use p ∼ Dir(α, β, γ) to model the uncertainty
in estimating p.

With the mathematical model in place, p can be esti-
mated based on the observations of x, according to the
Bayesian inference. Given a set of independent observations
of x, denoted by D = {x1, x2, · · · , xn} where xj ∈ {1, 2, 3}
and j = 1, 2, · · · , n, we want to know how likely D is
observed. This probability can be computed as

P (D|p) =
n∏
j=1

p
[xj=1]
1 p

[xj=2]
2 p

[xj=3]
3 .

Let ci denote the number of observations where x = i, then
the above equation becomes pc11 p

c2
2 p

c3
3 . Based on Bayesian

inference, given observed data D, the posterior pdf of p can
be estimated from

f(p|D) =
P (D|p)f(p)

P (D)
,

where P (D|p) = pc11 p
c2
2 p

c3
3 is the likelihood function, and

f(p) the prior pdf of p. P (D) is the probability that D is
observed, which is independent of p. Therefore, we have

f(p|D) ∝ pc11 p
c2
2 p

c3
3 × p

α−1
1 pβ−12 pγ−13 .

That means the posterior pdf f(p|D) can be modeled by
another Dirichlet distributionDir(α+c1, β+c2, γ+c3). With
the posterior pdf of p, we have the following predicative
model for x.

f(x|D) =

∫
f(x|p)f(p|D)dp. (3.2)
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ThisfunctionisinfactacompositionofCategorical(f(x|p))
andDirichlet(f(p|D))distributions,soitiscalledDirichlet-
Categorical(DC)distribution[52].

3.2 Opinion

Intheprevioussection, weintroducehowto modela
trustee’sfurturebehaviorbyaDCdistribution.FromaDC
distribution,theprobabilitythatthetrusteeistrustworthy
canbederivedfromEq.3.2.BecausetheshapeofaDC
distributionisdeterminedbythreeparameters,weusethese
parameterstoformavectortorepresentit.Thisvector
iscalledopinionthatexpressesatrustor’sopinionabouta
trustee’strust.
Foragiven DCdistribution,theonlyundetermined

parametersareα,β,γ.Wesetα=β=γ=1,ifthereisno
observeddata,i.e.,D=∅.Inthiscase,theDCdistribution
yieldsauniformdistribution,i.e.,p1=p2=p3=1/3.As-
sumingpinitiallyfollowsuniformdistributionisreasonable
becausewemakenoobservationofx,andthebestchoiceis
tobelievethatxcouldbe1,2,or3withequalprobability.
Asmoreobservationsofxaremade,thepdfofpbecomes
moreaccruate.
FromEq.3.2,wecancomputetheprobabilityofx=

1,i.e.,whetheratrusteewillbehaveasexpected.Inother
words,wecanuseEq.3.2toinferthetrustofthetrustee.
Specifically,wecanobtaintheexpectationoftheprobability
thatthetrusteewillbehaveasexpectedasfollows.

P(x=1|D)

= P(x=1|p1,p2,p3)P(p1,p2,p3|c1,c2,c3)d(p1,p2,p3)

=
Γ(c1+c2+c3)

Γ(c1)Γ(c2)Γ(c3)
pc1−11 pc2−12 pc3−13

=
Γ(c1+c2+c3)Γ(c1+1)Γ(c2)Γ(c3)

Γ(c1)Γ(c2)Γ(c3)Γ(c1+c2+c3+1)

=
c1

c1+c2+c3
, (3.3)

whereΓ(n)=(n−1)!istheGammafunction.Inthesame
way,theprobabilitiesthatthetrusteewillbehavenotas
expected,orinanambiguousway,canbecomputedfrom

P(x=2|D)=
c2

c1+c2+c3
,

and
P(x=3|D)=

c3
c1+c2+c3

.

Ifthehyper-parametersα,β,γequalto1,thefuture
behaviorofthetrusteeisonlydeterminedbyc1,c2,c3,
i.e.,thenumbersofobservationscollectedwhenthetrustee
behavedasexpected,notasexpected,orinanambiguous
way.Wenametheseobservationsaspositive,negative,and
uncertainevidence.FromatrustorA’sperspective,atrustee
X’sfuturebehaviorcanbemodeledaDCdistrubtionthat
isrepresentedasanopinion.

ωAX= αAX,βAX,γAX |aAX.

Here, ωAX denotesA’sopiniononX’sfuturebehavior,
orA’strustinX behavingasexpected.Theparameters
αAX,βAX,γAX refertotheamountsofobservedpositive,
negativeanduncertainevidence,respectively. Wefurther
namethemasthebelief,distrustanduncertainty

⋅⋅⋅⋅⋅⋅ C1iA−
1i iA Aω
−

1A iA 1iA+
1iiAA

ω
+

parameters,

A
ABω

B C
BCω

(a)Ageneralillustrationofseriestopology.

(b)Asimpleexampleofseriestopol-
ogy.

Fig.1:Examplesofseriestopologies

intherestofthepaper.ThesubscriptsofαAX,βAX,γAX
differentiatethemfromthepriorα,β,γ,i.e.,theformer
representsobservedevidence whilethelatterisalways
(1,1,1).

3.3 DiscountingOperation

TrustpropagationinOSNswaswell-known,however,there
isalackofunderstandingabouthowtocomputationally
modeltheprocessinpractice.Trustpropagationcanbe
illustratedbyaseriestopology,asshowninFig.1(a).Inthe
figure,twoedgesareconnectedinseriesiftheyareincident
toavertexofdegree2.Trustpropagationmeansthatifuser
Ai−1trustsAiandAitrustsAi+1,thenAi−1canderive
anindirecttrustofAi+1,evenifAi−1didnotinteractwith
Ai+1before.
Basedonexistingliteratureontrustpropagation[6],

[18],[19],[64],itiscommonlyagreedthatthefollowing
assumptionshold.

• A1:IfAtrustsB,BtrustsC,thenAtrustsC.
• A2:IfAtrustsB,BdoesnottrustC,thenAdoes
nottrustC.

• A3:IfAtrustsB,BisuncertainaboutthetrustofC,
thenAisuncertainaboutC’strust.

• A4:IfAdoesnottrustB,orAisuncertainaboutB,
thenAisuncertainaboutthetrustofC.

ItisworthmentioningthatifAdoesnottrustorisuncertain
aboutB,thenAisuncertainaboutC,andB’sopiniononC
cannotpropagatetoA.Basedontheabove-mentionedfour
assumptions,thetrustpropagationprocesscanbemodelled
bythelogicoperationontwotrustopinions.

Let’sdenoteA’sopiniononBas

ωAB= αAB,βAB,γAB ,

andB’sopiniononCas

ωBC= αBC,βBC,γBC ,

where{αAB,βAB,γAB}=DAB and{αBC,βBC,γBC}=
DBC representtheobservationsmadebyAandB,about
BandC,respectively. Weformallydefinethediscounting
operationin3VSLasfollows.

Definition1(DiscountingOperation).GiventhreeusersA,
BandC,ifωAB = αAB,βAB,γAB isA’sopinionon
B’strust,andωBC = αBC,βBC,γBC isB’sopinion
onC’strust,thediscountingoperation∆(ωAB,ωBC)
computesA’sopiniononCas

∆(ωAB,ωBC)=αAC,βAC,γAC ,
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where

αAC =
αABαBC

(αAB+βAB+γAB)
,

βAC =
αABβBC

(αAB+βAB+γAB)
,

γAC =
(βAB+γAB)(αBC+βBC+γBC)+αABγBC

(αAB+βAB+γAB)
.

(3.4)

Adetailedderivationofthediscountingoperationcanbe
foundfromSection3.3in[2].Intuitively,opinionωBCbeing
discountedcanbeviewedasthecertainevidenceinωBC
aredistortedbyopinionωAB,andthentransferredinto
theuncertaintyspaceofωAC.Becausethetotalamount
ofevidenceinopinionωAC =∆(ωAB,ωBC)isthesame
asωBC’s, weconcludetheresultingopinionofdiscounting
operationsharesexactlythesameevidencespaceastheoriginal
opinion.
Basedonthedefinitionofdiscountingoperation,itoffers

twointerestingproperties:decayandassociativeproperties.

Corollary3.1.DecayProperty:GiventwoopinionsωABand
ωBC,∆(ωAB,ωBC)yieldsanewopinionωAC,where
αAC≤αBC,βAC≤βBCandγAC>γBC.

Proof1.SeeSection3.3in[2].

Inotherwords,byapplyingthediscountingoperation,the
uncertaintyintrust(orintheresultingopinion)increases.
Thispropertyimpliesthatthemoretrustpropagatesamong
usersinanOSN,themoreuncertaintheresultingopinion.

Corollary3.2. AssociativeProperty: Giventhreeopin-
ionsωAB,ωBC andωCD,∆(∆(ωAB,ωBC),ωCD)≡
∆(ωAB,∆(ωBC,ωCD)).

Proof2.Section3.3in[2].

However,the discounting operationis not com-
mutative, i.e.,∆(ωAB,ωBC) = ∆(ωBC,ωAB). Given
a series topology where opinions are ordered as
ωA1A2,ωA2,A3,···,ωAn 1An,thefinalopinioncanbecal-
culatedas∆(∆(∆(ωA1A2,ωA2A3),···),ωAn 1An). Asthe
discountingoperationisassociative,itcanbesimplifiedas
∆(ωA1A2,ωA2A3,···ωAn 1An).

3.4 CombiningOperation

Accordingtopreviousworks[6],[18],[64],trustopinions
canbefusedintoaconsensusonebyaggregatingtheevi-
dencefromeachopinion. Wewillusetheparalleltopology
showninFig.2(b)toexplainhowthecombiningoperation
works.
LetωA1B1 = αA1B1,βA1B1,γA1B1 andωA2B2 =

αA2B2,βA2B2,γA2B2 beA’stwoindirect/directopin-
ionsonB. Weuse{αA1B1,βA1B1,γA1B1}= DA1B1 and

{αA2B2,βA2B2,γA2B2}=DA2B2 torepresentthetwosets
ofobservationsAmadeonB.Assuch,weformallydefine
thecombiningoperationasfollows.

Definition 2 (Combining Operation). Let
ωA1B1 = αA1B1,βA1B1,γA1B1 and ωA2B2 =
αA2B2,βA2B2,γA2B2 bethetwo opinions A has
onB,thecombiningoperationΘ(ωA1B1,ωA2B2)is
carriedoutasfollows.

Θ(ωA1B1,ωA2B2)=αAB,βAB,γAB , (3.5)

where 




αAB=αA1B1+αA2B2
βAB=βA1B1+βA2B2
γAB=γA1B1+γA2B2

. (3.6)

Adetailedderivationofthecombiningoperationcanbe
foundfromSection3.4in[2].
Itis worth mentioningthatthecombiningoperation

yieldstwoproperties:commutativeandassociativepropri-
eties.

Corollary3.3.CommutativeProperty:Giventwoindepen-
dentopinionsωA1B1 andωA2B2,Θ(ωA1B1,ωA2B2)≡
Θ(ωA2B2,ωA1B1).

Proof3.Seeproof3,Section3.4in[2].

Corollary 3.4. Associative Property: Given three
independent opinions ωA1B1, ωA2B2 and
ωA3B3, then Θ(ωA1B1,Θ(ωA2B2,ωA3B3)) ≡
Θ(Θ(ωA1B1,ωA2B2),ωA3B3).

Proof4.Seeproof4,Section3.4in[2].

IfA has morethantwo opinions on B, e.g.,
ωA1B1,ωA2B2···ωAnBn,theseopinioncanbecombinedby
Θ(Θ(Θ(ωA1B1,ωA2B2),···),ωAnBn).Ascombiningopera-
tioniscommutativeandassociative,itcanberewrittneas
Θ(ωA1B1,ωA2B2,···ωAnBn).

3.5 ExpectedBeliefofAnOpinion

Withtheproposeddiscountingandcombiningoperations,
thetrustbetweentwousersinanOSNcanbecomputed,
whichwillbeelaboratedindetailsinSection4.Notethatthe
computedtrustisintheformofanopinion.Totransform
anopinionintoatrustvalue,i.e.,theprobabilitythatauser
istrustworthy,weneedtodesignamappingmechanism.
GivenanopinionωAX = αAX,βAX,γAX ,itisof

interesttoknowhowlikelyX willperformthedesired
action(s)requestedbyA. Wecallthisprobabilityasthe
expectedbeliefofωAX.AlthoughαAX denotesthebelief
ofopinionωAX,componentsβAX,γAX alsoneedtobe
consideredincomputingtheexpectedbelief.
Weknowthat αAX andβAX arethenumbersof(nega-

tiveandpositive)certainevidence,sothey mustbeused
incomputingtheexpectedbelief.γAX onlyrecordsthe
uncertainevidence,soitshouldbeomittedinthecompu-
tationofexpectedbelief.Ignoringuncertainevidence,DC
distributionofωAX iscollapsedintoaBeta-Categorical(BC)
distribution.

f(p1,p2|αAX,βAX)

=
Γ(αAX+βAX)

Γ(αAX)·Γ(βAX)
·(1−p1)

αAX−1pβAX−12 .
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Consequently,theoriginalopinioniscollapsedinto

ωAX= αAX,βAX .

Withthecollapsedopinion,weapplytheapproachpro-
posedin[56]tocomputetheexpectedbeliefasfollows.

EωAX =
αAX

αAX+βAX
+

βAX
αAX+βAX

aAX

× (1−cAX)+
αAX

αAX+βAX
·cAX

=
αAX

αAX+βAX
·cAX+aAX·(1−cAX),

(3.7)

wherecAXisthecertaintyfactor[56]ofaBetadistribution,
andaAX isthebaserate.ThecertaintyfactorcAX,ranging
from0to1,isdeterminedbythetotalamountofcertainevi-
denceandtheratiobetweenpositiveandnegativeevidence.

cAX=
1

2

1

0

1

B(αAX,βAX)
xαAX(1−xβAX)−1dx.

(3.8)
Basically,cAX approachesto1whentheamountofcertain
evidenceorthedisparitybetweenpositiveandnegative
evidenceislarge.

4 ASSESSTRUSTALGORITHM

Basedon3VSLandthediscountingandcombiningopera-
tions,wedesigntheAssessTrust(AT)algorithmtoconduct
trustassessmentinsocialnetworkswitharbitrarytopolo-
gies. Here, wetreatasocialnetworkasatwo-terminal
directedgraph(TTDG),in whichthetwoterminalsrep-
resentthetrustorandtrustee,respectively.Obviously,the
trustorandtrusteemustbedifferentusersbecauseatrustor
willneverevaluatethetrustofitself.AsaTTDGisnot
necessarilyadirectedacyclicgraph,theremaybecyclesin
thenetwork.
ToensureAT worksinarbitrarytopologies, weneed

tofirstproveATcanhandlenon-series-parallelnetwork
topologies.Thisisachallengebecausetheonlyoperations
availablefortrustcomputationarethediscountingand
combiningoperations.Thediscounting/combiningoper-
ationrequiresthatthenetworktopologies mustbese-
ries/parallel. Weaddressthischallengebydifferentiating
distortingopinionsfromoriginalopinionsintrustpropa-
gation.Forexample,ifAtrustsBandBtrustsC,then
A’sopiniononBiscalledthedistortingopinion,andB’s
opiniononCistheoriginalopinion. Wediscoverthat,in
trustfusion,theoriginalopinionscanbeusedonlyoncebut
thedistortingopinionscanbeusedanynumberoftimes.
Thisisbecausethedistortingopiniononlydepreciates
certainevidenceintouncertainevidence,i.e.

2ω

3ω

1ω
A B C

,itdoesnot
changethetotalamountofevidence.Ontheotherhand,
whentwo(discounted)originalopinionsarecombined,the
totalnumberofevidenceintheresultingopinionwillbe
increased.
Inaddition,wehavetofurthershowthatATworksin

arbitraryTTDGs.Thisisachallengebecauseitisimpossible
totestATinallpossiblenetworktopologies.Weaddressthis
challengebymathematicallyprovingthatATworksinarbi-
trarynetworks.Afteraddressingthesetwochallenges,we
presenttheATalgorithmanduseanexampletoillustrate
howisworks.

1ω

2ω

3ω
A B C

(a) (b)

Fig.3:Differencebetweendistortingandoriginalopinions

4.1 PropertiesofDifferentOpinions

Forthetwoopinionsinvolvedinadiscountingoperation,
theirfunctionalityaredifferent,regardingtotrustcomputa-
tioninanOSN.

Definition3(DistortingandOriginalOpinions).Givena
discountingoperation∆(ωAB,ωBC),wedefineωAB as
thedistortingopinion,andωBCtheoriginalopinion.

Tounderstandthedifferencebetweenthedistortingand
originalopinions,westudytwospecialcases,asshownin
Fig.3.Thedetailedstudyrevealsthatadistortingopinion
canbeusedseveraltimesintrustcomputationbutan
originalopinioncanbeusedonlyonce.

Theorem4.1.LetωB1C1 = αB1C1,βB1C1,γB1C1 and
ωB2C2 = αB2C2,βB2C2,γB2C2 betwoopinionsBhas
onC.LetωAB=(αAB,βAB,γAB)beA’sopiniononB,
thenwealwayshave

Θ(∆(ωAB,ωB1C1),∆(ωAB,ωB2C2))

≡ ∆(ωAB,Θ(ωB1C1,ωB2C2)). (4.1)

Proof5.SeeProof5,Section4.1in[2].

Theorem4.2.LetωA1B1 =(αA1B1,βA1B1,γA1B1)and
ωA2B2=(αA2B2,βA2B2,γA2B2)beA’stwoopinionson
B.LetωBC =(αBC,βBC,γBC)beB’sopiniononC,
thenthefollowingequationdoesnothold.

Θ(∆(ωA1B1,ωBC),∆(ωA2B2,ωBC))

≡ ∆(Θ(ωA1B1,ωA2B2),ωBC). (4.2)

Proof6.SeeProof6,Section4.1in[2].

FromTheorems4.1and4.2,wenotethatreusingωAB in
case(a)isallowedbutreusingωBC incase(b)isnot.The
differencebetweenωABandωBCisthatωABisadistorting
opinion whileωBC isanoriginalopinion.Therefore, we
concludethatintrustcomputation,anoriginalopinioncan
becombinedonlyonce,whileadistortingopinioncanbe
usedanynumberoftimes,becauseitdoesnotchangethe
totalamountofevidenceintheresultingopinion.

4.2 ArbitraryNetworkTopology

Asthedistortingandoriginalopinionsaredistinguished,
wewillprovethat3VSLiscapableofhandlingnon-series-
parallelnetworktopologies,asshowninFig.4.

Theorem4.3.Givenanarbitrarytwo-terminaldirectedgraph
G =(V,E)where A,C arethefirstandsecond
terminals,orthetrustorandtrustee.Inthegraph,a
vertexurepresentsauser,theedgee(u,v)denotesu’s
opinionaboutv’strust,denotedasωuv.Byapplying
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Fig. 4: Illustration of an arbitrary network topology

the discounting and combining operations, the resulting
opinion ωAC is solvable and unique.

Proof 7. See Proof 7, Section 4.2 in [2].

4.3 Differences between 3VSL and SL
The major difference between SL and 3VSL lies in the
definition of uncertainty in the trust models. In 3VSL, the
uncertainty in a trust opinion is measured by the number
of uncertain evidence. However, the amount of uncertain
evidence in a SL opinion is always 2. Because uncertain
evidence is obtained if an ambiguous behavior of a trustee
is observed, it could not be a constant number.

We take an example to explain the different definitions of
uncertainty in SL and 3VSL models. Let’s consider a series
topology composed of A, B and C, as shown in Fig 1(b). We
assume opinions ωAB 〈5, 3, 2〉 and ωBC = 〈4, 4, 2〉. Then,
A’s opinion of C’s trust can be computed by applying the
discounting operation, defined in SL or 3VSL, on opinions
ωAB and ωBC , i.e., ωAC = ∆(ωAB , ωBC). With the SL
model, we have ωAC = 〈2/3, 2/3, 2〉. Apparently, 10/3 posi-
tive evidence and 10/3 negative evidence are removed from
the original evidence space. In other words, the amount
of certain evidence shrinks for 83%, i.e., 83% of evidence
are distorted and disappear. Based on the SL model, we
know the belief component bAB in opinion ωAB equals to
5/(5+3+2) = 0.5, i.e., with 50% of chance,A could trustB’s
recommendation. That also implies only 50% of evidence
should be distorted from B’s opinion of C, which is not the
case in the example.

In contrast, 3VSL model introduces an uncertainty state
to keep tracking of the uncertain evidence generated when
trust propagates within an OSN. In 3VSL, we have ωAC =
〈2, 2, 6〉. The total number of evidence in the resulting
opinion ωAC is the same as ωBC , i.e., αAC + βAC + γAC =
αBC+βBC+γBC = 10. In fact, only 50% of certain evidence
from αBC and βBC are transferred into γAC . Clearly, 3VSL
leverages the uncertainty state to store the “distorted” pos-
itive and negative evidence in trust propagation and hence
achieves better accuracy. This hypothesis will be validated
in Section 5.

Another difference is that 3VSL is capable to handle a
social network with arbitrary topologies while SL cannot.
It is well-known that SL can only handle series-parallel
network topologies. A series-parallel graph can be decom-
posed into many series (see Fig. 1) or parallel (see Fig. 2)
sub-graphs so that every edge in the original graph will
appear only once in the sub-graphs [25]. In real-world social
networks, however, the connection between two users could
be too complicated to be decomposed into series-parallel

graphs. To apply the SL model, a complex topology has to
be simplified into a series-parallel topology by removing or
selecting edges [22]. However, it is not clear which edges
need to be removed in a large-scale OSN. As a result, the
solutions proposed in [21], [22] cannot be implemented.
In 3VSL, the difference between distorting and original
opinions is first identified, and then a recursive algorithm
is designed accordingly. The algorithm is able to process
social networks with complex topologies, even with cycles.

Algorithm 1: AssessTrust(G, A, C, H)
Require: G, A, C, and H .
Ensure: ΩAC .

1: n← 0
2: if H > 0 then
3: for all incoming edges e(ci, C) ∈ G do
4: if ci = A then
5: Ωi ← ωciC
6: else
7: G′ ← G− e(ci, C)
8: ΩAci ← AssessTrust(G′, A, ci, H − 1)
9: Ωi ← ∆(ΩAci , ωciC)

10: end if
11: n← n+ 1
12: end for
13: if n > 1 then
14: ΩAC = Θ(Ω1 · · ·Ωn)
15: else
16: ΩAC = Ωn
17: end if
18: else
19: ΩAC = 〈0, 0, 0〉
20: end if

4.4 AssessTrust Algorithm
Based on Theorem 4.3, we design the AssessTrust algo-
rithm, as shown in Algorithm 1. The algorithm is based
on the 3VSL model and is able to handle any arbitrary
network topologies. The inputs of AT algorithm include
a social network graph G, a trustor A, a trustee C, and
the maximum searching depth H , measured by number of
hops. Specifically, H determines the longest distance the
algorithm will search between the trustor and trustee. H
controls the searching depth of the AT algorithm, which is
necessary because G could be potentially very large.

To compute A’s individual opinion on C, AT applies
a recursive depth first search (DFS) on graph G, with a
maximum searching depth of H . AT starts from the trustee
C and visits all C’s incoming neighbors ci’s, as shown in
lines 1 to 12. For each node ci, we denote A’s opinion on
C’s trust obtained through ci as Ωi. At this moment, the
opinion Ωi is unknown unless ci is the trustor node A. In
this case, we have Ωi = ωciC = ΩAC . Otherwise, the value
ofΩi needs to be computed recursively by the AT algorithm.
To do so, AT recalls itself on the new graph G′ that keeps
all the edges in the current graph except edge e(ci, C) and
node C, as shown in line 7. The output of the AT algorithm,
with G′ as the input graph, will be A’s opinion on ci’s trust,
as shown in line 9. When all the incoming neighbors ci’s are
processed, all the edges connecting to C will be removed
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Fig. 5: An illustration of 3VSL based on the bridge topology

from the graph as well. After that, if AT visits C again in the
future, i.e., C is involved in a cycle in G, the algorithm will
stop as there is no incoming neighbor for C. In other words,
cycles in graph G will be eliminated when AT searches the
graph. A cycle involving a node essentially means the node
holds a trust opinion about itself, which does not make
sense as a node must absolutely trust itself. Therefore, it is
meaningless to let a node to compute its own trust, levering
others’ opinions upon itself.

When the input graph becomes G′, the trustee will
be ci and the maximum searching depth is decreased to
H − 1, as shown in line 8. If there are more than one ci,
all the resulting opinions Ωi’s will be combined to yield
the opinion ΩAC , as shown in line 14. Otherwise, the only
obtained opinion Ωi will be assigned to ΩAC , as shown in
line 16. In the end, if the searching depth reaches H , AT
return an empty opinion, as shown in line 19.

4.5 Illustration of the AssessTrust Algorithm

In this section, we will use the bridge topology shown in
Fig. 5(a) to illustrate how the AT algorithm computes A’s
indirect opinion on C, denoted as ΩAD . To differentiate
from the direct opinion, we use Ω to denote the indirect
opinion. As shown in Fig. 5(a), to compute ΩAD , dis-
counting and combining operations are applied on opinions
ωAB , ωAD, ωBD, ωCD , and ωBC . AT starts from the trustee
D and searches the network backwards, and recursively
computes the trust of every node. As a result, we obtain a
parsing tree, shown in Fig. 5(b), to indicate the correct order
that discounting and combining operations are applied in
computing A’s opinion on D. By traversing the parsing tree
in a bottom-up manner, A’s indirect opinion about D can be
computed as

Θ (∆(ωAB , ωBD), ∆(Θ(∆(ωAB , ωBC), ωAC), ωCD)) . (4.3)

To understand how exactly AT searches the bridge net-
work, we use AT (k)(i, j) to denote it is for the kth time that
AT is called, to compute the i’s opinion on j. At the first
time when AT is called, A’s opinion on D is computed from

Θ (∆(ΩAB , ωBD), ∆(ΩAC , ωCD)) ,

where ΩAB and ΩAC are A’s indirect opinions on B and C,
respectively. These two opinions will then be computed by

AT (2)(A,B) and AT (3)(A,C), respectively. In AT (3)(A,C),
AT computes A’s opinion about C as

Θ (∆(ΩAB , ωBC), ωAC) ,

where ΩAB is computed by AT (4)(A,B). Finally, A’s
opinion on D can be computed from Eq. 4.3. In the
bridge-topology network, the AT algorithm is called four
times in total: AT (1)(A,D), AT (2)(A,B), AT (3)(A,C) and
AT (4)(A,B). Note that the opinion output from AT (A,B)
is used twice, i.e., in sub-graphs A → B → C and
A→ B → D → C, which is allowed in 3VSL.

The AT algorithm still works if a cycle is introduced in
the graph, e.g., the edge from B to D is reversed. With the
reversed edge DB, a loop D → B → C → D is formed.
In the following, we will show how AT works on the graph
with a cycle D → B → C → D. The algorithm starts from
D and visits C, and then recalls itself on graph G′ in which
D and edge CD are removed. The algorithm then reaches
A and B. When it processes B, AT cannot visit D as D
was already removed, so the algorithm quits. As such, the
cycle D → B → C → D is eliminated while computing the
indirect trust opinion ΩAD.

4.6 Time Complexity Analysis
In this section, we present the time complexity of the As-
sessTrust algorithm. Because AT is a recursive algorithm,
the recurrence equation of its time complexity is

T (n) = (n− 1) · (T (n− 1) + C1) + C2 +O(n− 1)

= (n− 1) · T (n− 1) +O(n− 1) + C,

where (n − 1) is the maximum number of incoming edges
to the trustee (line 3), assuming there are n nodes in the
network. T (n − 1) is the time complexity of recursively
running AT on each branch (line 8), C1 is the time for lines
4−7 and 9−11.O(n−1) is the time for combining operations
(line 14). C2 is the time used outside the “for” loop (line
13− 20). Therefore, the time complexity of AT is

O

(
H∑
i=1

(n− 1)!

(n− 1− i)!

)
= O(nH),

where H is the maximum searching depth, and n is the
number of nodes in the network.

5 EVALUATIONS

In this section, we evaluate the properties and performances
of the 3VSL model and AT algorithm. We conduct compre-
hensive experiments to evaluate the accuracy of 3VSL model
and compare its performance to that of subjective logic, in
two real-world datasets: Advogato and PGP.

For the AT algorithm, we evaluate its accuracy and com-
pare its performance to another trust assessment algorithm,
called TidalTrust, in Advogato and PGP. We investigate the
reasons why AT outperforms TidalTrust by analyzing the
results obtained from these experiments.

To understand how accurate various models are in as-
sessing trust within OSNs, we adopt F1 score [1] as the
evaluating metric. The F1 score is chosen because it is a
comprehensive measure for different models in predicting
or inferring trust [1].
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After evaluating the accuracy of different trust models,
we evaluate the performance of the AT algorithm and
compare it to these benchmark solutions: TrustRank and
EigenTrust.

5.1 Dataset
The first dataset, Advogato, is obtained from an online
software development community where an edge from user
A to B represents A’s trust on B, regarding B’s ability in
software development. The trust value between two users
is divided into four levels, indicating different trust levels.
The second dataset, Pretty Good Privacy (PGP), is collected
from a public key certification network where an edge from
user A to B indicates that A issues a certificate to B, i.e., A
trusts B. Similar to Advogato, the trust value is also divided
into four levels.

According to the document provided by Advogato, a
user determines the trust level of another user, based on
only certain evidence. Therefore, a low-trust edge in Ad-
vogato indicates an opinion that contains negative evidence.
On the other hand, in PGP, a user tends to give a low
trust certification if he is not sure whether the other user
is trustworthy or not. A user in PGP will never give a
certification to anyone who has malicious behavior. There-
fore, a low trust level in PGP indicates an opinion that
contains uncertain evidence. We select these two datasets
because they are obtained from real world OSNs where trust
relations between users are quantified as non-binary values.
In addition, the different definitions of trust in these two
datasets allow us to evaluate the performance of 3VSL in
different trust social networks. Statistics of these datasets
are summarized in Table 1.

TABLE 1: Statistics of the Advogato and PGP datasets.
Dataset # Vertices # Edges Avg Deg Diameter

Advogato 6,541 51,127 19.2 4.82
PGP 38,546 31,7979 16.5 7.7

5.2 Dataset Preparation
In Advogato, trust is classified into four ordinal levels:
observer, apprentice, journeyer and master. Similarly, in PGP,
trust is classified into four levels: 0, 1, 2 and 3. Both Ad-
vogato and PGP provide directed graphs where users are
nodes and edges are the trust relations among users. Be-
cause the trust levels are in ordinal scales, a transformation
is needed to convert a trust level into a trust value, ranging
from 0 to 1.

In the experiments, we set the total evidence values λ as
10, 20, 30, 40, and 50. Given a certain λ, we can represent an
opinion as

〈
α
λ ,

β
λ ,

γ
λ

〉
. As aforementioned, the meanings of

trust in Advogato and PGP are different, so we use different
methods to construct opinions in Advogato and PGP. We
assume the opinions in Advogato only contain positive and
negative evidence, i.e., γ = 0. Therefore, an opinion of
3VSL in Advogato can be expressed as

〈
α, λ

(
1− α

λ

)
, 0
〉
.

Given the total number of evidence value λ, an opinion in
Advogato is in fact determined by α

λ , i.e., the proportion of
positive evidence. To properly set the value of α

λ , we use
the normal score transformation technique [47] to convert
ordinal trust values into real numbers, ranging from 0 to
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Fig. 6: F1 scores of 3VSL and SL using the A) Advogato and
B) PGP dataset. Parameters are the combinations between
base trust levels (0.1, 0.2, 0.3, 0.4 and 0.5) and total evidence
values (10, 20, 30, 40, and 50)

1. Specifically, trust levels are first converted into z-scores
by the normal score transformation method, based on their
distributions in the datasets. Then, we map the z-scores
to different α

λ ’s, according to the differences among the z-
scores. For example, the master level trust is converted into
(αλ )3 = 0.9. For the observer level trust, we use different
values of (αλ )0 as 0.1, 0.2, 0.3, 0.4 and 0.5 to indicate the
possible lowest trust levels. With the highest and lowest
values of α

λ , we interpolate the values of (αλ )1 and (αλ )2 for
apprentice and journeyer level trusts, based on the intervals
between the corresponding z-scores. Because there are five
different λ’s and five different (αλ )0’s, we have a total of 25
combinations of parameters.

For the PGP dataset, we assume there is only positive
and uncertain evidence, so we set β = 0. Therefore, an opin-
ion of 3VSL in PGP can be expressed as

〈
α, 0, λ(1− α

λ )
〉
.

Similar to Advogato, an opinion in PGP is determined by λ
and α

λ . We use the same transformation method to convert
the trust relations in PGP into opinions.

5.3 Accuracy of 3VSL Model

With the above-mentioned two datasets, we evaluate the
accuracy of the 3VSL model. We also compare the accuracy
of the 3VSL model to the SL model. As we know, SL does
not model the trust propagation process correctly and its
performance will degrade drastically in real-world OSNs.
Due to this issue, SL cannot handle social networks with
complex network topologies. Although some approxima-
tion solutions are proposed, e.g., removing edges in a social
network to reduce it into a simplified graph, there is no
existing algorithm that implements any of these solutions.
To make a fair comparison, we design an algorithm called
SL*, based on the AT algorithm. The structure of the SL* al-
gorithm is exactly the same as AT’s, however, the discount-
ing and combining operations used in the AT algorithm are
replaced with those defined in SL. As such, SL* implements
the SL model and is able to work on OSNs with arbitrary
topologies.

The experiments are conducted as follows. First, we
randomly select a trustor u from the datasets and find one
of its 1-hop neighbors v. We take the opinion from u to v
as the ground truth, i.e.., how u trusts v. Then, we remove
the edge (u, v) from the datasets, if there is a path from u
to v. We run the above-mentioned algorithms to compute
u’s opinion of v’s trustworthiness. Finally, we compare the
computed results to the ground truth. We select 200 pairs
of u and v to get statistically significant results. To compare
the computed results to the ground truth, we first use the
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Advogato PGP
AT (0.3, 30) (0.1, 30)
SL* (0.3, 30) (0.1, 30)
TT (0.2,−) (0.1,−)

TABLE 2: Selected parameters (base trust level, total evi-
dence value) for AT, SL* and TT. Note that TT employs a
number to represent trust, so its evidence value is empty.

expected beliefs of computed opinions as the trust values
in 3VSL and SL. Then, we round the expected beliefs to the
closest trust levels based on the ground truths. Finally, we
use F1 score to evaluate the accuracy of different models.
Because we do not know the correct parameter settings, we
test the above-mentioned 25 combinations of parameters to
conduct a comprehensive evaluation.

As shown in Fig. 6(a) and 6(b), 3VSL achieves higher
F1 scores than SL, with all different parameter settings, in
both datasets. Specifically, 3VSL achieves F1 scores ranging
from 0.6 to 0.7 in Advogato, and 0.55 to 0.75 in PGP. On
the other hand, the F1 scores of SL range from 0.35 to
0.6 in Advogato and 0.55 to 0.67 in PGP. Considering F1
score is within the range of [0, 1], we conclude that 3VSL
significantly outperforms SL.

More importantly, we observe that the F1 scores of
3VSL are relatively stable, with different parameter settings.
However, the F1 scores of SL fluctuate, indicating SL is
significantly affected by the parameter settings. Overall, we
conclude that 3VSL is not only more accurate than SL but
also more robust to different parameter settings.

We further investigate the reason why 3VSL outperforms
SL by looking at the evidence values in the resulting opin-
ions, computed by 3VSL and SL. We choose the results from
experiments with the parameter setting (0.3, 30), wherein
3VSL performs the best. We are only interested in the cases
where 3VSL obtains more accurate results than SL. We mea-
sure the values of certain evidence (α + β) in the resulting
opinions computed by 3VSL and SL. The CDFs of the values
of certain evidence are then plotted in Fig. 7. As shown in
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Fig. 7: CDFs of α + β in opinions computed by 3VSL and
subjective logic using the Advogato dataset.
Fig. 7, the values of (α + β) in the opinions computed by
SL are much lower than that of 3VSL. It results in a lack
of evidence in computing the expected beliefs of opinions
by SL. This observation matches the example introduced
in Section 4.3. Because 3VSL employs a third state to store
the uncertainty generated in trust propagation, it is more
accurate in modeling and computing trust in OSNs.

5.4 Performance of the AssessTrust Algorithm
After validating the 3VSL model, we study the performance
of the AT algorithm and compare it to other benchmark al-
gorithms, including TidalTrust (TT) [17], TrustRank (TR) [20]
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Fig. 8: F1 scores of the trust assessment results generated by
TT, SL* and AT using the a) Advogato and b) PGP datasets.

(a) Error histogram of TT using
the Advogato dataset

(b) Error histogram of TT using
the PGP dataset

(c) Error histogram of SL* using
the Advogato dataset

(d) Error histogram of SL* using
the PGP dataset

(e) Error histogram of AT using the
Advogato dataset

(f) Error histogram of AT using the
PGP dataset

Fig. 9: Histogram of the errors generated by TT, SL* and AT
using the Advogato and PGP dataset.

and EigenTrust (ET) [35]. TidalTrust is designed to compute
the absolute trust of any user in an OSN. However, TR and
ET are used to rank users in an OSN based on their relative
trustworthiness, i.e., it does not compute the absolute trust.

Because different benchmark algorithms solve the trust
assessment problem differently, we conduct two groups of
experiments. In the first group of experiments, we compare
the performance of AT, SL* and TT in computing the abso-
lute trustworthiness of users in an OSN. In the experiments,
we randomly select a trustor u from the datasets and choose
one of its 1-hop neighbors v. We take the opinion from u
to v as the ground truth. Then, we remove the edge (u, v)
from the datasets, if there exist paths from u to v in the
network. We run the AT, SL* and TT algorithms to compute
the trustworthiness of v, from u’s perspective. Finally, we
compare the computed trustworthiness to the ground truth.

Different parameters will affect the performances of var-
ious algorithms, so we choose different parameters for AT
and TT so that they can perform well in the experiments.
Because we already validated that 3VSL outperforms SL,
regardless of the parameter settings, we choose the same pa-
rameter setting used by AT for SL*. The parameter settings
for different algorithms in different datasets are shown in
Table 2.

We first look at the F1 scores of the trust assessment
results generated by the three algorithms. The F1 scores are
plotted in Figs. 8(a) and 8(b). As shown in Figs. 8(a) and 8(b),
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Fig. 10: Fitted curves of the error distributions of TT, SL*
and AT using the a) Advogato and b) PGP dataset.
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Fig. 11: The CDFs of Kendall’s tau ranking correlation
coefficients of different algorithms using the a) Advogato
and b) PGP dataset.

AT outperforms TT in both datasets, i.e., TT achieves 0.617
and 0.605 F1 scores, and AT offers 0.7 and 0.75 F1 scores
in Advogato and PGP. It is worth mentioning that SL*
gives the worst F1 scores, indicating that the problem of
subjective logic in modeling uncertainty seriously impacts
its performance.

Besides F1 scores, we also study the distribution of errors
in trust assessment results. The error here is defined as
the difference between the computed trust value and the
ground truth. The error distributions of different algorithms
are shown in Figs. 9.

From Fig. 9(a), we can see that the errors of TT algorithm
is either very small or very large when it is used to assess
trust using the Advogato dataset. For the SL* and AT algo-
rithms, however, the errors are more concentrated around 0,
as shown in Figs. 9(c) and 9(e). If the PGP dataset is used, we
observe the same phenomena, as shown in Figs. 9(b), 9(d)
and 9(f).

We further fit this histogram data using the Normal Dis-
tribution. As shown in Figs 10(a) and 10(b), the fitted curves
of the error distributions of different algorithms clearly
indicate that AT gives the best trust assessment results. In
these figures, we can see that the error distribution of TT
has a close-to-zero mean, i.e., 0.005 for both datasets, but a
large variance. On the contrary, the fitted curves of the error
distributions of SL* show that SL* has a smaller variance but
a large mean, i.e., 0.067 in Advogato and 0.016 in PGP. The
fitted curves of the error distributions of AT give the best
results, i.e., with a mean of 0.015 in Advogato and 0.016 in
PGP, and a smaller variance in both datasets.

In the second group of experiments, we evaluate the
performance of AT, ET and TR, in terms of ranking users
based on their trustworthiness. We first randomly select
a seed node u, and find all its 1-hop neighbors, denoted
as V . Then, we rank the nodes in V based on u’s direct
opinions on these nodes, i.e., nodes with higher trust values
are ranked in higher positions than those with lower trust
values. We take this ranking as the ground truth.

For each node v ∈ V , we remove edge (u, v) from the
datasets if there exist paths from u to v. We run the AT,
ET and TR algorithms to compute the trustworthiness of

node v, from the perspective of u. Then, we rank the nodes
in V based on the expected beliefs of ωuv’s for all possible
v’s. We compare the ranking results obtained by the three
algorithms to the ground truth. Here, ranking errors are
measured by Kendall’s tau ranking correlation coefficients
between the computed ranking results and the ground truth.
We repeat each experiment 100 times in Advogato and PGP
to get statistically significant results.

In Figs. 11(a) and 11(b), AT gives more accurate rank-
ing results, compared to other algorithms. In Advogato,
the Kendall’s tau correlation coefficients of AT are always
greater than 0. Nearly 20% of the ranking results are exactly
the same (with a coefficient of 1) as the ground truth. In
PGP, AT generates > 0.1 Kendall’s tau ranking correlation
coefficients, and about 40% of the ranking results are the
same as the ground truth. On the other hand, for ET and TR
algorithms, only 20% (Advogato) and 10% (PGP) of their
rankings are moderately correct, with coefficients > 0.5. In
other words, ET and TR do not work well in ranking users
in an OSN, based on their trustworthiness.

6 RELATED WORK

How to model the trust between users in OSNs has attracted
much attention in recent years. Existing trust models can
be categorized as topology (or graph) based models [8],
[10], [16], [44], [58], [62], [63], [65], PageRank based models
[4], [20], [35], probability based models [11], [43], [53], and
subjective logic based models [21], [22], [27], [30], [33], [34],
[39], [54], [55], [57]. None of them, however, are able to
accurately model and compute trust in OSNs. In this section,
we present a brief introduction on these works. An extended
version of this section can be seen in Section 6 of [2].

Topology based models [8], [10], [58], [62], [63], [65] treat
trust assessment as a community detection problem and
employ a random-walk method to identify users within the
same community. These users are considered trustworthy
to each other. The key limitation of these models is that
the trust values of users within a community are indistin-
guishable [42], restricting their applications to only coarse
trust assessments. Graph based models [16], [26], [38], [44]
assign a different real number, ranging from 0 to 1, to
every edge in a social network, and employ various graph
searching algorithms to evaluate the trust of users. The
major limitation of these models is that trust is represented
as a single real number, ignoring the uncertainty in trust.

Unlike graph based models, PageRank based models,
e.g., TrustRank and EigenTrust [4], [20], [35], [36], apply the
idea of PageRank to rank users based on their trust values.
A user’s trust is obtained by calculating how likely it will
be reached by a trustor in the network. In these models,
the probability of a user being reached is determined by
the connections between itself and the trustor. The key
issue of these models is that they mistakenly treat the trust
propagation process as a random walk process.

Probability based models [9], [11], [13], [43], [51], [53]
consider trust to be a probability distribution, i.e., a trustor
uses its historical interactions with a trustee to construct a
probabilistic model, to predict the trustee’s future behavior.
The major limitation of these models is that they only focus
on modeling direct trust and do not explicitly consider the
indirect trust assessment problem. Although the subjective
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logic based models [27], [28], [29], [31], [32], [33], [34] make
an attempt to jointly consider both direct trust and indirect
trust inference, it can only handle series-parallel network
topologies. Their performance degrades drastically in com-
plex social networks.

7 CONCLUSIONS

In this paper, the three-valued subjective logic is proposed
to model and compute trust between any two users con-
nected within OSNs. 3VSL introduces the uncertainty space
to store evidence distorted from certain spaces as trust
propagates through a social network, and keeps track of
evidence as multiple trusts combine. We discover that there
are differences between distorting and original opinions, i.e.,
distorting opinions are so unique that they can be reused
in trust computation while original opinions are not. This
property enables 3VSL to handle complex topologies, which
is not feasible in the subjective logic model.

Based on 3VSL, we design the AT algorithm to compute
the trust between any pair of users in a given OSN. By re-
cursively decomposing an arbitrary topology into a parsing
tree, we prove AT is able to compute the tree and get the
correct results.

We validate 3VSL both in experimental evaluations. The
evaluation results indicate that 3VSL is accurate in modeling
computing trust within complex OSNs. We further compare
the AT algorithm to other benchmark trust assessment algo-
rithms. Experiments in two real-world OSNs show that AT
is a better algorithm in both absolute trust computation and
relative trust ranking.
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