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Modeling and Simulation of High-Frequency
Solar Irradiance

Wenqi Zhang, William Kleiber, Anthony R. Florita, Bri-Mathias Hodge, and Barry Mather

Abstract—As the use of solar power as a source of electric-
ity is increasing, so is the interest in modeling radiation at high
temporal resolutions. High-dimensional remote sensing data prod-
ucts depend on cloud cover variability, atmosphere aerosol levels,
and other atmospheric parameters. Because of weather fronts and
aerosols, it is difficult to quantify solar power variability based on
distributed solar networks. The global horizontal irradiance (GHI)
component in the National Solar Radiation Database (NSRDB)
is available at a 30-min time resolution. The algorithm proposed
in this paper produces 1-min-resolution GHI samples at locations
where NSRDB data are available. The synthetic irradiance datasets
are produced using log-additive non-Gaussian mixture models and
resampling techniques. The model is trained over historical data,
and predicted values are compared with in situ data. This approach
allows for estimating the solar irradiance at subhourly temporal
resolutions, while featuring variability for locations where mea-
surements are otherwise not available.

Index Terms—Downscaling, irradiance generation, mixture
distribution, stochastic modeling.

I. INTRODUCTION

HE design of new energy systems must account for the
Tincreasing use of renewable energy sources and their
associated variability. The Renewable Global Status Report
[1] shows that in 2015, more than 15% of total electricity was
generated from renewable energy in 2015. Solar photovoltaic
(PV) capacity was relatively small among all the renewables;
however, solar power was cited as the most installed power
source based on capacity in the United States during 2016 [1].
PV power is intermittent and variable, which, in turn, affects
the stability of the system and the balance of electric power,
increasing power compensation [2].
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As higher levels of PV are integrated into the distribution
system, the need for more accurate interconnection study
methods (i.e., studies that determine the technical impacts of
additional PV integration) is becoming increasingly important.
Studies using quasi-static time-series analysis are becoming
more prevalent and useful [3]. To gain the full benefit of these
studies, accurate models of high-frequency solar irradiance
at a temporal and spatial scale appropriate for distribution
systems are required. Past work shows that the variability of
integrated PV is more critical to understanding distribution
system operations than the variability in loads [4]. Additionally,
previous work on distribution-scale solar irradiance modeling
used cloud-motion vector approaches [5] that showed signifi-
cant improvement requires considerable input data and heavy
computation.

Accurate PV power modeling not only plays an important role
to ensure that the integrated power on smart grid is economi-
cally feasible, but also contributes to improvements in electric
power quality and thus reduces price volatility [6]. Because PV
power output is directly related to solar irradiance at the ground
level, solar irradiance modeling is vital to the smart grid [7];
however, solar irradiance modeling is complicated by weather
fronts and atmospheric conditions, such as wind speed, tem-
perature, and relative humidity. Uncertainty related to natural
weather conditions at the site level is inherent [8].

During the past few years, many solar irradiance forecasting
models have been developed. These approaches can be broadly
classified into three categories: statistical, machine learning,
and physical. Statistical models such as autoregressive moving
average and autoregressive integrated moving average have
been widely applied on several occasions [9]-[11]. Another
popular statistical approach is to use spatiotemporal models.
Compared to others, spatiotemporal models have tremendous
capability to approximate solar irradiance variability across
time and space. Glasbey et al. [12] proposed a separable spa-
tiotemporal model for solar data at 22 locations in Edinburgh,
U.K. The semiparametric spatiotemporal model proposed in
[12] is a functional coefficient autoregressive model. Machine-
learning approaches such as artificial neural networks and
support vector machines have been well established in recent
years [13]-[16]. Physical models such as numerical weather
prediction (NWP) models in conjunction with a sky imager are
popular [17]. Lorenz et al. [18] showed that NWP is the most
accurate technique for solar irradiance forecasts at a day-ahead
prediction horizon. Techniques such as Kalman filters [19]
and Bayesian model averaging [20] have been implemented
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TABLE I
DATA USED TO TRAIN THE MODEL

Locations with available series Time span

Eugene, OR 01/01/2013 to 12/31/2013
Portland, OR 01/01/2013 to 12/31/2013
Salem, OR 01/01/2013 to 12/31/2013

All radiation measurements are in W/m?.
Source: National Renewable Energy Laboratory.

to improve NWP irradiance predictions; however, cloud cover
solar forecasting remains unresolved using NWP.

The focus of this work is on solar resource assessment and
solar irradiance variability estimation. Several approaches to
synthetically generate irradiance time series for an individ-
ual site have been proposed in recent years. Hummon et al.
[21] converted all irradiance values to the clearness index and
synthesized them based on five classifications of cloud cover.
A wavelet-based model was used in [22]. In [23], a Markov
model was introduced to generate 1-min global solar radiation
data based on mean hourly meteorological observations. Spatial
variation was added in [24], improving the model’s geographical
flexibility. Other authors have examined spatial variation of irra-
diance [25]-[27]. Perez and Fthenakis [27] used cloud motion to
study the spatial anisotropic nature of solar irradiance. There are
other methods in the literature [28]—[30]. In this proposed work,
a jump process allows for additional spikes based on the pres-
ence of different cloud types to capture scattering events. The
first part of the model is a decision rule to distinguish between
clear and non-clear days. Furthermore, the method depends only
on the National Solar Radiation Database (NSRDB) [31].

The proposed method is trained on a set of sample loca-
tions in Oregon and then validated at seven locations across the
United States. Overall, the downscaled ensembles capture vari-
ability properly. The rest of this paper is structured as follows.
Section II introduces the database used in this work. Section III
describes the methodology proposed for generating stochas-
tic 1-min global horizontal irradiance (GHI) data based on the
NSRDB. Section IV shows various validation metrics. Section V
includes conclusions and future work.

II. DATA

The model is trained based on three locations from the Pa-
cific Northwest (see Table I). The satellite data used in this
work are from the NSRDB, which contain gridded satellite es-
timates of solar radiation at a 30-min time resolution and at
an approximate spatial resolution of 4 km by 4 km [31]. The
database spans the entire United States, but only Oregon data
are used to train the model. These series run from January 1,
2013, to December 31, 2013, and comprise 17 520 observa-
tions for each location. The measure of irradiance is the global
horizontal component, in W/m?. The ground measurement is
at a resolution of 1 min from the Solar Radiation Monitoring
Laboratory, University of Oregon [33]. The ground measure-
ments are within a 16-km? grid of the laboratory site. Fig. 1
illustrates the relationship between linear interpolated NSRDB
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Fig. 1. Linearly interpolated NSRDB data at 1-min resolution (red) and in

situ data (black) for Eugene, OR, USA, January 1-4, 2013.

TABLE II
MODEL VALIDATION LOCATIONS

Site Climate
Bondville, IL Humid continental
Boulder, CO Semi-arid
Desert Rock, NV Desert

Fort Peck, MT Semi-arid

Goodwin Creek, MS
Penn State University, PA
Sioux Falls, SD

Humid subtropical
Humid subtropical
Humid subtropical

All radiation measurements are in W/m?.
Source: National Oceanic and Atmospheric Administration.

data and in situ measurements at Eugene, OR, USA, for January
1-4, 2013. Even though the satellite data follow the general
trend of the in situ measurements, there is substantial high-
frequency variability in the in sifu measurements that is not cap-
tured in the satellite-based product, e.g., January 2, as shown
in Fig. 1.

The NSRDB data include cloud cover type, and GHI is di-
vided into two indices: estimates of actual GHI and clear-sky
GHI. The latter is an estimate of maximal possible GHI given
clear atmospheric conditions. Clear-sky indices are derived from
the Reference Evaluation of Solar Transmittance 2 model [32].
Values represent theoretical maximum GHI at any site where
sun photometric data are available.

The validation locations shown in Table II are from the
Surface Radiation Budget Network (SURFRAD), which is a
network of observation stations across the United States with
high-quality in situ data at a 1-min resolution [34].
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III. STOCHASTIC DOWNSCALING

The first part of the chosen approach is an initial decision
tree to determine what type of day to simulate. Intuitively, there
should be little deviation from the clear-sky index on a clear day.
Thus, clear days are modeled separately using linear interpolated
clear-sky GHI. Instead of the complicated algorithm proposed
in [35] to identify clear periods for each day, a simple clear-day
decision rule is proposed to determine if the given day is clear,
discussed next.

A. Clear-Day Rule

For any given day, GHI and clear-sky GHI at a 30-min resolu-
tion are available from the NSRDB. The following rule is based
on the heuristic that for clear days, variability of GHI and clear-
sky GHI should be similar, whereas on other days, raw GHI will
be more variable. Let X (¢) denote linearly interpolated NSRDB
at time point ¢ and X (¢) denote the clear-sky GHI. To quantify
variability, we compute first-order differences as

AX({#)=X({t)—X(t—-1) (1)
AXe(t) = Xe(t) = Xe(t—1) 2
and consider the quantity

7 = max [AX(t) — AXc(t)] €)

where the maximum is taken over a particular day. If this value
is smaller than a given tolerance, we classify that day as a clear
day; otherwise, it is non-clear. Fig. 2 shows histograms of ~y
values for each of the SURFRAD stations based on the year of
2013. For each station, the empirical distribution is concentrated
at zero with a few values greater than 0.1; thus, we use v = 0.1
as the cutoff for the decision rule. The high frequency of values
near zero is indicative of clear days with other values indicating
days of more complicated atmospheric conditions.

B. Non-Gaussian Mixture Model

Because the in situ GHI is theoretically consistent with ground
measurements, the downscaling model is log-additive with an
intercept of zero and a slope of one. The log-additive model
contributes to reducing errors at the transition points between
sunrise and sunset. Let Y'(¢) be the in situ measurements from
ground data, and X (¢) be the linear interpolation of GHI from
the NRSDB on ¢ € R. The model is of the form

log(Y (1)) = log(X (t)) + €(t)- ©)

The log data are potentially subject to noise €(t), representing
small-scale variability and measurement error. We model this
variation using the non-Gaussian mixture.

In general, we simulate the noise using

G(t) = Lw = Zétiwi (5)

i=1

where L = (¢;;) is the Cholesky factor of the covariance matrix
of e = (e(1),...,e(n))T, £;; stands for the (¢, i)th entry of L, and
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Fig.2. Empirical distribution of -y for SURFRAD (7 is indexed on the x-axis).
w = (wi,...,wy)7T is a vector of n independent random vari-

ables whose distribution will be specified later in this section.
Note that w = L~ '€ are uncorrelated, which is referred to as the
decorrelated residuals. Fig. 3 shows the empirical distribution
of w at Eugene, OR, USA, for four sampled days in 2013. Note
that w is concentrated at 0 with approximate support [—2,2]. In
this case, a mixture of a Beta distribution and a heavier tailed
distribution is used to model w. In particular, we propose

wi = Ou(t) + (1= 0)v(t) (©)

where 1(t) and v(t) are random variables with a centered and
scaled Beta distribution and a ¢ distribution, respectively. The
value of 6 € [0, 1] is the weight parameter of the Beta distribu-
tion component.

After testing on days of 2013 at Oregon locations, we estimate
the centered and scaled Beta distribution as Beta(3.8,4) and
¢ distribution as #(10). The expectation-maximization iterative
algorithm is implemented to find 6 for every single day.

C. Jump Process for Excursions Because of Scattering Events

Because of scattering events, we include jump processes for
excursions. For example, the excursions beyond the theoretical
clear-sky max can occur on days with clouds, e.g., January 1,
as plotted in Fig. 1. On days with scattering events, each site
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Fig. 3. Empirical distribution of & for Eugene, OR, USA, 2013.

experiences most excursions during the middle of the day, and
each excursion is within a period of no more than 5 min. A
jump process in which the timing and magnitudes are realistic
based on the historical data not only allows us to interpolate the
excursions at nearby unobserved sites, but provides a way to
model the uncertainty of the interpolated excursions as well.

1) Noisy 30-min Time Interval: Let X (t) denote the linearly
interpolated NSRDB at time point ¢ and X¢ (¢) denote the lin-
early interpolated clear-sky GHI. To identify the timing for the
jump process based only on the NSRDB, the first-order differ-
ences are computed as follows:

Z(t) =) Var(X(t)) (7)

= ) Var(Xc(t)) (8)

where ¢’ is a 30-min time interval.

If Z(t') > (1.2)> x Z¢(t'), then t' is considered a noisy
30-min time interval. Here, 1.2 is the maximum of the clear-
ness index observed from the data used to train the model.

2) Cloud Cover Scenarios: Because clouds have remarkable
implications for GHI, cloud cover scenarios are assumed to give
more variability when certain cloud types occur at specific times
of the day. There are 13 types of clouds in the NSRDB. The
satellite images are taken from the University of Wisconsin, and
cloud classification is performed using the PATMOS-X model,
which divided the images into 12 classes [31]. Table III shows
the cloud classifications.

To model realistic GHIs with respect to different noisy
30-min time intervals, the empirical distribution of excursions
used in this work is conditioned both on cloud type and time of
day. For any 30-min time interval between 9 A.M. and 3 P.M.,
days are selected with solar irradiance. For each cloud type and

TABLE III
CLOUD CLASSIFICATION

Cloud type number Cloud type Cloud grouping
0 Clear Clear
1 Probably Clear Cear
2 Fog Water
3 Water Water
4 Supercooled water Water
5 Mixed Water
6 Opaque ice Ice
7 Cirrus Ice
8 Overlapping Ice
9 Overshooting Ice
10 Unknown Water
11 Dust Clear
12 Smoke Clear

interval, the proportion of those 30 samples greater than clear-
sky GHI on these selected days is calculated separately. Thus,
for each 30-min interval and each cloud type, the expected prob-
ability of excursions is calculated. The empirical distribution of
excursions is shown in Table V, and the corresponding number
of excursions for a given 30-min time interval and cloud type is
shown in Table IV.

For the simulation, samples are taken as a random number
of minutes that correspond to the empirical distribution of ex-
cursions for any noisy 30-min time interval with corresponding
cloud type. At each excursion’s sampled time point s, we have

Y (s) ~ Unif(X (s), 1.2X (s)). )

Overall, at an arbitrary time point £, if Y'(t) > 1.2X¢(t), then

Y (t) ~ Unif(Xc (1), 1.2Xc (1) (10)

Note that 1.2 comes from the data but could be tuned if other
data suggested other maxima.

IV. RESULTS AND DISCUSSION
A. Initial Results

In the initial comparison, days were separated into clear, non-
clear without excursions, and non-clear with excursions to be
analyzed. Based on previous experience with vy values, v < 0.1
are typically clear days. Thus, days with v < 0.1 are classified
as clear, and days with v > 0.1 are classified as non-clear.

1) Non-Clear Days Without Excursions: On non-clear days
without excursions, the model was found to slightly underes-
timate high-frequency irradiance variability. Fig. 4 shows a
reliability plot with error bounds based on all validation lo-
cations for non-clear days without excursions during the year
2013. The x-axis represents the nominal coverage, whereas the
y-axis is the corresponding empirical coverage for the stochas-
tically downscaled estimates. The reliability plot compares em-
pirical coverage against nominal coverage based on 1000 inde-
pendent downscaled simulations. Good coverage properties at
all nominal levels indicate a calibrated downscaling ensemble.
As shown, the median of each boxplot is close to the identity
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NUMBER OF EXCURSIONS TRAINED BASED ON 2013 DATA

TABLE IV

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 9, NO. 1, JANUARY 2019

Cloud type \ 09:00-09:30 \ 09:30-10:00 \ 10:00-10:30 \ 10:30-11:00 \ 11:00-11:30 \ 11:30-12:00

Clear 21 20 20 20 19 16
Water 3 3 4 4 4 4

Ice 1 1 1 0 2 1
Cloud type | 12:00-12:30 | 12:30-13:00 | 13:00-13:30 | 13:30-14:00 | 14:00-14:30 | 14:30-15:00
Clear 10 6 4 3 3 2
Water 5 4 3 4 3 3

Ice 2 2 1 2 2 1

TABLE V

EMPIRICAL PROBABILITIES OF EXCURSIONS TRAINED BASED ON 2013 DATA

Cloud type \ 09:00-09:30 \ 09:30-10:00 \ 10:00-10:30 \ 10:30-11:00 \ 11:00-11:30 \ 11:30-12:00

Clear
Water
Ice

Cloud type

0.698
0.108
0.026

12:00-12:30

0.672
0.112
0.021

12:30-13:00

0.659
0.118
0.020

13:00-13:30

0.653
0.125
0.011

13:30-14:00

0.626
0.148
0.058

14:00-14:30

0.541
0.132
0.035

14:30-15:00

Clear
Water
Ice

0.326
0.164
0.073

0.202
0.134
0.071

0.136
0.116
0.040

0.114
0.138
0.058

0.107
0.116
0.055

0.075
0.097
0.051
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Fig. 4. Reliability plot based on all validation locations for non-clear days
without excursions during the year 2013.

line, indicating accurate coverage; however, the median value
is systematically under the identity line, which yields under-
dispersion. The variability indicated by the boxplot suggests
that individual realizations tend to exhibit empirical coverage
within +20% of nominal in the worst case. On this type of
day, although the model captures the underlying trends from the
NSRDB data, it underestimates some of the high-frequency up
and down ramps seen in the ground data. Overall, the model

for non-clear days without excursions exhibit good coverage
probabilities.

2) Non-Clear Days With Excursions: Excursions occur
when a scattering event happens. On non-clear days with excur-
sions, GHI tends to have high-frequency irradiance variability.
Besides maintaining the basic trends, a jump process is a pivotal
factor to capture the spikes based on the cloud type and noisy
30-min time intervals. Fig. 5 contains the reliability plot with
error bounds based on all validation locations for non-clear days
with excursions during the year 2013. In Fig. 5, the median for
each boxplot is very close to the identity line, indicating that
the algorithm works well for non-clear days with excursions.
The variability indicated by the boxplot suggests that individual
realizations tend to exhibit empirical coverage within +15% of
nominal values.

To visualize how the model works for days with scattering
events, Fig. 6 shows simulations along with clear-sky GHI and
in situ measurements. In Fig. 6, the simulations are relatively
reasonable compared to the ground measurements. There will
still be excursions the algorithm will not capture—for example,
the spikes on January 15. However, the proposed stochastic
model is not expected to capture every scattering event, but
rather the distribution of the downscaled ensembles should be
accurate in both the magnitude and frequency of excursions.

B. Variability Analysis

Because of the method used to create the NSRDB, the
satellite-derived high-frequency irradiance samples are not
expected to match the ground-measured irradiances exactly.
Specifically, the timing of clouds could not match between
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satellite-downscaled and ground-measured irradiance variabil-
ity. Instead, it is vital that the algorithm captures the overall irra-
diance variability statistics. Because the variability samples are
most useful to understand the relative impact of solar variabil-
ity on electric grid operations, comparison metrics that evaluate
variability during different periods, such as 5 min, are necessary.

Fig. 7 shows the frequency distribution for 5-min average
irradiance across all validation locations. The average irradiance
is an aggregate statistic among all times and locations. The
correlation between the simulated and measured averages is
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2013. The z-axis is the ramp magnitude, and the y-axis is the ramp probability.

R? = 0.925, indicating that our method adequately captures
first-moment statistics of actual 5-min aggregated irradiance.

Another critical aspect to accurately capture is the ramp rate,
i.e., the change in output compared to the clear-sky estimation
over a given timescale. Fig. 8 compares the 1-min ramp rate
distribution between the synthetic data in all validation loca-
tions with the in situ ones. Our model estimates a higher than
measured probability of a ramp between —50 and 50 W/min.
Compared with the measured data, the modeled ramp rate dis-
tribution during 1-min time steps shows a strong correlation
(R? = 0.991). Overall, the proposed approach does an adequate
job of capturing ramps at different magnitudes.
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Fig. 9 illustrates 30-minute variance estimates in January
2013 for the Oregon locations along with the corresponding
observed variability. The uncertainty bounds for these 30-min
variance estimates are based on 1000 simulations. The obser-
vations are mostly within the interquartile range, which are the
25% and 75% quantiles over the 1000 ensembles of empiri-
cal variances, which indicates that the model captures changing
variability during short time frames.

V. CONCLUSION AND FUTURE WORK

The proposed stochastic model aims to downscale data prod-
ucts such as the NSRDB to a higher temporal frequency. The
statistical model varies with the time of day and cloud type to
capture excursions during daylight hours. We have validated
the model at various locations based on a comprehensive set
of statistical metrics on both non-clear days with excursions
and without excursions. Our validation results suggest that the
downscaled ensembles exhibit good coverage properties at most
nominal levels, indicating a calibrated model. Moreover, crucial
variability properties are maintained, and difficult statistics such
as ramp rate distributions and frequency distribution of short pe-
riod averages are well replicated by the model.
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Future work might focus on temporally downscaling to an
even finer time resolution, which requires high-frequency ob-
servational data for training as well. Because our method is still
point level, another direction is to generalize this framework
to allow for spatially correlated simulations and especially co-
herence between neighboring locations. Along this line, another
future route is to determine how, without direct in sifu data, high-
frequency variability characteristics change throughout space
and time.
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