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Abstract: Multivariate spatial modeling is a rapidly growing field; however, most

extant models are infeasible for use with massive spatial processes. In this work, we

introduce a highly flexible, interpretable, and scalable multiresolution approach to

multivariate spatial modeling. Compactly supported basis functions and Gaussian

Markov random field specifications for the coefficients yield efficient and scalable

calculation routines for likelihood evaluations and co-kriging. We analytically show

that special parameterizations approximate popular existing models. Moreover, the

multiresolution approach allows for an arbitrary specification of scale dependence

between processes. We use Monte Carlo studies to illustrate the implied stochastic

behavior of our approach and to test our ability to recover scale dependence. More-

over, we examine a complex large bivariate observational minimum and maximum

temperature data set for the western United States.
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Wendland.

1. Introduction

The past decade has witnessed increasing interest and effort in building mul-

tivariate spatial models. Such efforts are a reaction to the increasing prevalence

of space-time data sets that incorporate multiple variables. For instance, in at-

mospheric science, weather forecast and climate models include dozens of state

variables, the interprocess relationships of which are complicated and nontriv-

ial. Remote sensing data sets can incorporate multiple types of variables, such

as sea surface temperature and height, at extremely high spatial resolutions.

Spatial econometric and healthcare-related data sets involve many types of mea-

surements, often restricted to census tract levels. Thus, we are faced with at

least two major issues in multivariate spatial modeling. First, we require suffi-

ciently flexible models that can capture complex dependencies between distinct

processes. Second, we need models that adapt well to estimation for massive

spatial processes.
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Specifying valid (i.e., nonnegative definite) multivariate covariance struc-

tures is a difficult task. Indeed, nearly all extant approaches formulate such

cross-covariances by construction (Genton and Kleiber (2015)). However, the

majority of attention has focused on building sufficiently flexible models, with-

out much regard to estimation and prediction difficulties, especially in the face

of even moderately sized spatial data sets. One notable departure is the work

of Sang, Jun and Huang (2011), who use the full-scale approximation (Sang

and Huang (2012)), which essentially breaks a process into two scales, large and

small. Another recent idea extends the stochastic partial differential equation

approach of Lindgren, Rue and Lindström (2011) to a multivariate setting (Hu

et al. (2013); Bolin and Wallin (2016)). These approaches can approximate mul-

tivariate Matérn-type models (Gneiting, Kleiber and Schlather (2010)), but tend

to be restricted to fixed values of smoothness parameters. However, allowing for

flexibility in the value of the smoothness parameters is important for modern

spatial statistical applications (Stein (1999)). Finally, compactly supported mul-

tivariate covariance models have been proposed (Kleiber and Porcu (2015)), but

empirical studies on their use have not been explored.

In this work, we address the spatial analysis of massive multivariate spatial

processes with multiple scales of variation. Our idea relies on basis function rep-

resentations, with a careful choice of stochastic coefficients. We show theoretical

links between the proposed model and well-established models in the literature,

which are inappropriate for large data sets. Moreover, we illustrate how our ap-

proach accounts for scales of dependence, an issue that has been almost entirely

overlooked in the literature. We illustrate estimation, interpretation and predic-

tion using the proposed model on a difficult bivariate observational temperature

data set for the western United States.

Observational model and notation

Our interest focuses on modeling a vector of p observed spatial processes,

Y(s) = (Y1(s), . . . , Yp(s))T on s ∈ R2. The observational model is

Yi(sj) = µi(sj) + Zi(sj) + εi(sj),

for i = 1, . . . , p, at spatial locations sj for j = 1, . . . , n, where µi(s) is a non-

random mean function, Zi(s) is a zero-mean Gaussian process that represents the

spatially correlated variation from the mean, and εi(s) is a zero-mean Gaussian

white noise process, with variance τ2i . The geostatistical terminology for εi(s) is

a nugget effect, representing either a measurement error or small-scale variation



A MULTIVARITE MULTIRESOLUTION MODEL 3

at a shorter spatial scale than can be resolved by the statistical model, given the

minimal inter-site distance in the observation network.

The mean functions µi(s) are usually linear functions for a small number of

covariates. In a typical spatial analysis, the structure of the multivariate random

effect process Z(s) is the focus of a substantial portion of the modeling. What

makes constructing valid models for Z(s) difficult? For Gaussian processes, Z(s)

is completely specified by its matrix-valued covariance,

C(s1, s2) =
(
Cij(s1, s2)

)p
i,j=1

,

where Cij(s1, s2) = Cov(Zi(s1), Zj(s2)) are the covariance functions (i = j) and

the cross-covariance functions (i 6= j). The primary difficulty is that C(·, ·) must

be a nonnegative definite matrix-valued function (Genton and Kleiber (2015)).

The review by Genton and Kleiber (2015) outlines the basic approaches to

building matrix-valued covariances, with major contributions involving convo-

lution, latent spatially correlated processes, and explicit restrictions on Matérn

cross-covariances. Recently, Kleiber (2017) explored the notion of coherence for

multivariate processes, arguing that multivariate constructions should focus on

the scale dependence between processes. Indeed, such scale dependence naturally

arises in optimal prediction for multivariate processes. Moreover, some existing

models are inflexible in terms of limiting coherence to be constant, making them

inappropriate for real data sets. Our approach explicitly incorporates scale de-

pendence in a generic framework that adapts well to computations for large,

multivariate spatial data sets. Moreover, we show analytically that the proposed

model approximates some of the most popular existing constructions.

2. Multivariate Multiresolution Model

The basic multiresolution decomposition of the ith component of Z(s) is

Zi(s) =

L∑
`=1

m∑̀
j=1

c`ijφ`j(s), (2.1)

for a set of stochastic coefficients {c`ij} and predefined basis functions {φ`j(s)}.
The outer sum (over `) indexes the level of resolution, while the inner sum (over

j) indexes a stencil of basis functions, with random coefficients for a particular

resolution. Qualitatively, low values of ` correspond to low-frequency, large-

scale features, whereas high resolutions correspond to high-frequency, small-scale

features. Thus, the indices refer to the ith process at the `th level of resolution

at node j.
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Note that the component basis functions φ`j are the same across processes.

We will later see that, at least when approximating standard covariance models,

the covariance structure of the coefficients is more important than the choice of

basis functions.

Basis structure

The basis functions φ`j(s) are chosen to be scaled translations of a parent

basis function,

φ`j(s) =
1

θ2`
φ

(
s− x`j
θ`

)
.

The set of nodes {x`j}m`

j=1 form a grid over a rectangular domain in Rd. We set

the grid to have equal spacing of δ` = δ2−(`−1) in any axial direction. Briefly,

for a given number of nodes on the coarsest level, ` = 1, the spacing between

nodes on the next level, ` = 2, is halved, and so forth, for each remaining

level. Finally, set θ` = θ/2−(`−1), which enforces the same overlap between

basis functions (controlled by θ) at each level. For the examples below, we

adopt the two-dimensional Wendland covariance of order two (Wendland (1995)).

In addition, we set θ` to 2.5 times the grid spacing, allowing for some overlap

between adjacent basis functions, while still maintaining disjoint support for most

pairs of basis functions. Although other default choices for the basis construction

can be adopted, this setup has been found to be stable and limits artifacts from

the nodal grids. It is also the default choice in the LatticeKrig R package for

univariate spatial models (Nychka et al. (2016)).

There is a trade-off between the grid resolution at the lowest level and the

number of levels that can be accommodated for computation on a typical laptop

computer. Ideally, having a higher number of levels of resolutions is preferable,

because the statistical approximation theory (described below) requires infinite

levels. However, in practice, unless otherwise noted, we follow the default Lat-

ticeKrig heuristic of four levels of resolution, with five extra lattice points on

each edge to mitigate boundary effects, with a goal of about four times as many

total basis functions as observations.

Coefficient structure

The stochastic coefficients c`ij are the point of entry for specifying the de-

pendence between fields. Before we discuss the technical setup, it is worthwhile

to describe the heuristics and motivations for our choices. In the univariate

multiresolution case, the rate of decay of the variability over the levels of reso-

wkleiber
Sticky Note
Change \real^d to \real^2



A MULTIVARITE MULTIRESOLUTION MODEL 5

lution is closely connected to the implied smoothness of the process. That is, if

a substantial amount of the total variability can be attributed to high levels of

resolution, the process will behave as a “rough” field. In contrast, if most of the

variability can be attributed to low resolutions, it will be “smooth.” Such heuris-

tics echo the intuitive reasoning behind a spectral decomposition (Stein (1999)).

In any multivariate representation, it is fundamental to allow each process to

have full flexibility of variability across levels. This is analogous to allowing dis-

tinct Matérn smoothnesses per process in a multivariate Matérn setup (Gneiting,

Kleiber and Schlather (2010)). Cross-process dependence will then be endowed

at each level of resolution, but in such a way that allows for model-based scale

dependence between processes.

It is worth motivating the univariate approach based on an existing con-

struction: for a fixed process i and level of resolution `, Nychka et al. (2015)

modeled the stochastic coefficients as a Gaussian Markov random field (GMRF).

In particular, if c`i = (c`i1, c`i2, . . . , c`im`
)T, they set c`i = B−T` e`i, where e`i is

a Gaussian white noise vector of length m`. The matrix B` is a spatial autore-

gression (SAR), which is nonzero only on a set of nearest neighbors to a given

interior node point (and fewer for boundary nodes). Following Lindgren, Rue

and Lindström (2011), we set (B`)jj = 4 + κ2 and the first major and minor

diagonals to −1. The precision matrix for c`i is then B`B
T
` . Past work has con-

firmed that c`i approximates a Gaussian random field with Matérn covariance

with smoothness of unity and scale of κ (Lindgren, Rue and Lindström (2011);

Nychka et al. (2015)). To extend this to a multivariate setting, as mentioned

above, it is important to maintain this specification marginally.

The coefficients {c`ij} are registered to a regular lattice, owing to the place-

ment of nodes x`j . This is done so that we can adopt a multivariate lattice model

(Kelejian and Prucha (2004); Sain and Cressie (2007)). Indeed, our proposal is

to model the coefficients c` = (cT`1, c
T
`2, . . . , c

T
`p)

T as a multivariate lattice process

within a level of resolution. In particular, we begin with a separable structure,

such that Var c` = Σ` ⊗ (B`B
T
` )−1, where Σ` is a p × p covariance matrix with

ith diagonal entry σ2i α`i and (i, j)th entry r`ijσiσj
√
α`iα`j . The parameter σ2i

controls the marginal variance of c`i, r`ij is the correlation coefficient between

c`i and c`j , and α`i is the relative contribution of variance to process i at level `.

This setup generalizes the univariate SAR to include cross-process dependence;

for any given coefficient c`ij , the dependence neighborhood is p times as large due

to the conditioning on its own neighbors, and those co-located neighbors from

the p − 1 remaining processes. Setting r`ij to zero reduces the neighborhood.
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This bivariate GMRF is a special case of that in Bolin and Wallin (2016). In

either case, the marginal process Zi(s) has the same structure as that favored

by Nychka et al. (2015). Although the continuous processes at each level of res-

olution have a separable covariance, the implied processes Z(s) do not have a

separable covariance.

Relaxing the assumption that each process share the same SAR structure

(i.e., that B` does not depend on the process) is more difficult. For a bivariate

process (p = 2), suppose B` → B`i, for i = 1, 2, has the same SAR structure as

that discussed previously, but with B`1 having diagonal 4 + κ21 and B`2 having

diagonal 4+κ22. Note that such a specification makes the SAR matrices invertible.

For clarity, we set r`12 = r`. Then, we propose the following precision matrix

specification for c` = (cT`1, c
T
`2)

T:

1

(1− r2` )


1

σ21α`1
B`1B

T
`1

−r`
σ1σ2

√
α`1α`2

B`1B
T
`2

−r`
σ1σ2

√
α`1α`2

B`2B
T
`1

1

σ22α`2
B`2B

T
`2

 .

If |r`| < 1, this matrix is positive definite, by Proposition 1 of Kleiber and Genton

(2013). Because κi is analogous to a scale parameter, this allows for distinct

scale parameters for each process, but still reduces to the original LatticeKrig

formulation of Nychka et al. (2015) marginally. In particular, the covariance

matrix is (
σ21α`1(B`1B

T
`1)
−1 r`σ1σ2

√
α`1α`2(B`2B

T
`1)
−1

r`σ1σ2
√
α`1α`2(B`1B

T
`2)
−1 σ22α`2(B`2B

T
`2)
−1

)
,

which shows that, marginally, we retain the interpretation of α`i controlling the

smoothness and κi controlling the correlation length scale. Note that the coeffi-

cient r` can still be interpreted as a cross-correlation coefficient that controls the

strength of correlation between the two processes, but is modulated by the level

of disagreement between B`1 and B`2.

The likelihood and computation techniques

Suppose p processes have been observed at spatial locations s1, . . . , sn. Orga-

nize the underlying processes as a vector Z = (ZT
1 , . . . ,Z

T
p )T of length np, where

Zi = (Zi(s1), . . . , Zi(sn))T. Then, Z has covariance matrix Var Z = ΦTQ−1Φ.

The matrix Q is structured as in the previous section, grouped by process. ΦT

is a block diagonal matrix of p repeated blocks, because we use the same basis

functions for all processes. Moreover, any one of the blocks is [Φ1|Φ2| . . . |ΦL],
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with the `th component a n×m` matrix Φ` = (φ`j(si))
n,m`

i=1,j=1.

The observational covariance matrix is thus

Var Y = ΦTQ−1Φ + D,

where D = diag(τ21 , . . . , τ
2
p )⊗ In. Given the observations y, the log-likelihood is

f(y) = −np
2

log(2π)− 1

2
log |ΦTQ−1Φ + D|

− 1

2

(
(y − µ)T(ΦTQ−1Φ + D)−1(y − µ)

)
,

where, naturally, µ = (µ1(s1), µ1(s2), . . . , µp(sn))T. The covariance matrix is

dense and high-dimensional, but our assumed structure results in some compu-

tational simplifications.

The quadratic form involves a matrix solve. The Sherman-Morrison-

Woodbury formula can be used,

(ΦTQ−1Φ + D)−1 = D−1 −D−1ΦT(Q + ΦD−1ΦT)−1ΦD−1.

This is a key calculation in low rank models in which the matrix solve on the

right hand side is of a lower dimensionality, easing the computational burden.

In our case, this matrix is still of high dimension, but is sparse; thus sparse

matrix methods are used to solve the system (Q + ΦD−1ΦT)−1Φ efficiently.

The determinant calculation relies on a special case of Sylvester’s Theorem; in

particular

|ΦTQ−1Φ + D| = |Q + ΦD−1ΦT| |D|
|Q|

.

Each matrix on the right is positive definite and sparse, and again sparse Cholesky

decompositions are used to efficiently calculate the determinants.

The co-kriging predictor, the multivariate analogue of kriging, can also be

calculated efficiently. To estimate the continuous variation from the mean at the

observation locations, for example, reduces to

ẑ = ΦTQ−1Φ(ΦTQ−1Φ + D)−1(y − µ̂),

where µ̂ is the generalized least squares estimator of µ, and can be calculated

using the same computational techniques as the likelihood. Finally, simulation is

straightforward using (2.1) and sparse matrix methods to calculate the Cholesky

decomposition of Q−1.

3. Model Properties

In this section, we analyze how the multivariate multiresolution model can
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approximate existing models. Before doing so, however, it is useful to explore the

notion of scale dependence afforded by the multivariate multiresolution approach.

Scale dependence

A natural way to think about the relationship between multivariate processes

is in terms of scale dependence. If Z(s) is a stationary process, it admits a spectral

representation. Suppose such a representation has an associated spectral density

matrix f(ω) = {fij(ω)}pi,j=1, for ω ∈ Rd, with the squared coherence function

γij(ω)2 =
|fij(ω)|2

fii(ω)fjj(ω)
.

This can be interpreted as a correlation between Zi(s) and Zj(s) at frequency ω

(Kleiber (2017)).

The level of resolution ` indexes a range of spatial frequencies, with a low `

corresponding to low frequencies, and a high ` corresponding to a fine-scale, high

frequency behavior. It is then convenient to assume the special structure

Cor(c`ik, c`jk) = r`ij = ρij(`),

where ρij(`) is analogous to the “coherence” between processes i and j at level

(“frequency”) `. To approximate a particular coherence (either implied by a

standard multivariate covariance model, or what we might expect for a particular

physical process), we can impose a certain structure on ρij(1), ρij(2), . . . , ρij(L).

Kleiber (2017) cautions against using coherences that do not decay to zero

at high frequencies, and illustrates that such scale dependence arises naturally in

optimal predictions for multivariate processes. Thus, it is crucial to afford some

flexibility in coherence, while parameterizing it in such a way that retains statis-

tical convenience. In the examples below, we use the following parameterization:

ρij(`) = r0 exp(−r1(`− 1)) (3.1)

which decays to zero at high resolutions, but also includes constant coherence

when r1 = 0. Such a specification approximates a cross-covariance structure

analogous to a Matérn cross-covariance.

Approximating standard multivariate models

In this section, we discuss the implied spectral tail behavior of the covariance

family resulting from our multivariate multiresolution setup. For simplicity, we

consider the case p = 2 throughout this section; the results can be generalized for

any p > 2 in a similar fashion. Following Bolin and Wallin (2016), the coefficient

wkleiber
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vector at any given level (cT`1, c
T
`2)

T is approximately the solution to the following

bivariate system of stochastic partial differential equations:L`1 −
√

ρ`
1− ρ2`

L`2

0 L`2

(y`1(s)

y`2(s)

)
=

(
W`1(s)

W`2(s)

)
.

The operator is defined as L`i = τ`i(κ`i − ∆), where ∆ is the Laplacian op-

erator (given our choice of GMRF structure, the usual exponent in the Lapla-

cian of Bolin and Wallin (2016) becomes unity). Then, {y`i(·)}`i are unit vari-

ance, isotropic, two-dimensional Gaussian processes with spatial scale parameter

κ`i and smoothness one. In order to imply a marginal unit variance, we set

τ2`1 = (1 + ρ2` )/(4πκ
2
`1) and τ2`2 = (4πκ2`2)

−1. The key approximation is that our

chosen GMRF structure is a discrete approximation to the differential operators.

Furthermore, applying these operators on the correlated coefficients yields the

noise processes W`i(·); see Lindgren, Rue and Lindström (2011) for details.

Note that a multiresolution decomposition at any level is just a discrete ap-

proximation of the infinite mixture of the basis convolved with the correlated

random field. Call C`ii(·) the Matérn correlation function, with unit smoothness

for i = 1, 2. Denote the cross-correlation Cov(y`i(s1), y`j(s2)) = C`ij(s1− s2), for

i 6= j; note that this function is usually not available in closed form, but is deter-

mined by a Fourier inversion of an explicit spectral density (see Bolin and Wallin

(2016) for details). Following Nychka et al. (2015), we use this approximation

to extract theoretical properties of the infinite mixture version. In particular,

define the convolution process as

Z`i(s) =

∫
1

θ2`i
φ

(
s− u

θ`i

)
y`i(u)du, (3.2)

for i = 1, 2. As written, this process is Gaussian, has mean zero, and has an

isotropic covariance function given by

K`ii(s1, s2) = Cov(Z`i(s1), Z`i(s2))

=

∫∫
1

θ4`i
φ

(
s1 − u1

θ`i

)
φ

(
s2 − u2

θ`i

)
C`ii

(
s1 − s2
κ`i

)
du1du2, (3.3)

for i = 1, 2. Then, the cross-covariance function is

K`12(s1, s2) = Cov(Z`1(s1), Z`2(s2))

=

∫∫
ρ`

θ2`1θ
2
`2

φ

(
s1 − u1

θ`1

)
φ

(
s2 − u2

θ`2

)
C`ij (s1 − s2) du1du2,

which follows from standard convolution arguments.
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Our bivariate multiresolution construction can then be viewed as a sum of

convolution processes,

Z(s) =

∞∑
`=1

(√
α`1Z`1(s)
√
α`2Z`2(s)

)
,

with the matrix-valued covariance function

C(s, s′) =

∞∑
`=1

(
α`1K`11(s, s

′) ρ`
√
α`1α`2K`12(s, s

′)

ρ`
√
α`1α`2K`21(s, s

′) α`2K`22(s, s
′)

)
.

Next, we summarize the tail behavior of the spectral density matrix of the re-

sulting multivariate process. Assume the following:

(A.1) φ is a two-dimensional Wendland covariance function of order k.

(A.2) For i = 1, 2, κ`i = exp(κi`), α`i = exp (−(νi − 2κi + 1)`), θ`i = exp (−`/2),

and ρ(`) = ρ0 exp(−ρ1`), with κi−1 < νi < 2+2k, ρ1+(ν1+ν2)/2 < 3+2k,

and 1 < 2κi.

These assumptions are specialized to approximate multivariate Matérn-like be-

havior (Gneiting, Kleiber and Schlather (2010); Apanasovich, Genton and Sun

(2012)), but can readily be generalized to other decay rates of the multiresolution

parameters with straightforward adjustments to the proof. Note that the expo-

nential growth assumption on κ`i in (A.2) is consistent with the SAR structure

assumed in Section 2, because the resolution of the lattice on each level increases

exponentially, which is equivalent to κ`i having exponential growth.

Theorem 1. Suppose assumptions (A.1) and (A.2) hold. Let fij(ω), i, j = 1, 2

denote the spectral and cross-spectral densities of Z(s) with respect to frequency

ω ∈ R2. There are constants independent of ω, 0 < ci1, ci2, c1, c2 <∞, such that

(i) ci1 < fii(ω)(‖ω‖2)νi+1 < ci2,

(ii) c1 < f12(ω)(‖ω‖2)ρ1+(ν1+ν2)/2+1 < c2,

for i = 1, 2.

In particular, part (i) implies that, marginally, the multiresolution processes

can approximate marginal Matérn-like behavior at high frequencies (with both

processes having distinct smoothnesses, ν1 and ν2 in (A.2)). Part (ii) is exactly

the “coherence” analogy from the previous subsection. In particular, if ρ1 = 0,

then the cross-covariance smoothness is the average of the marginal smoothnesses,

that is, the parsimonious Matérn of Gneiting, Kleiber and Schlather (2010). If

ρ1 > 0, then the squared cross-spectrum decays faster than the product of the
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Figure 1. Bivariate simulations, varying the strength of correlation across levels of res-
olution. The first process has ν1 = 1 and the second has ν2 = 0.5. The correlations
across levels are: constant (a/b), decaying with resolution (c/d), only at coarsest reso-
lution (e/f), and growing with resolution (g/h); see the text for details of the functional
relationship.

marginals does, implying that the coherence decays to zero at high frequencies,

as other nontrivial multivariate Matérn structures behave.

4. Illustrations

In this section, we illustrate some of the properties of the multivariate mul-

tiresolution approach through simulations. Then, we apply it as a possible model

for a daily temperature data set.

Simulation studies

It is instructive to show realizations of the implied process, that highlight the

flexibility afforded by the control over the scale relationships between processes.

We set up a simulation study on the domain [0, 10]2, with 256 × 256 equally

spaced points. The first process has ν1 = 1, and the second has ν2 = 0.5 (which

is equivalent to α`i = 2−2νi`). Thus, we expect the simulated fields to marginally

approximate Matérn processes with corresponding smoothnesses; both processes

have κ2 = 0.5. We use seven levels of resolution, with the first having 15 marginal

nodal-axis values of −12.5,−10, . . . , 22.5; this yields a total of 99,399 basis func-

tions over all levels.

Figure 1 shows four simulations of a bivariate random field, varying the
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Figure 2. Functional box plots for the maximum likelihood estimates of ρ12(`) in (3.1)
based on 100 simulations, with the true function shown as a dotted line. Cases include
(a) r0 = 0.9, r1 = 0.5, (b) r0 = 0.9, r1 = 2, and (c) r0 = 0.3, r1 = 0.

coherence relationship according to:

• Constant (a/b): ρ12(`) = 0.9.

• Decaying with resolution (c/d): ρ12(`) = 0.9 exp(−0.5(`− 1)).

• Only at coarsest resolution (e/f): ρ12(`) = 0.91[`=1](`).

• Growing with resolution (g/h): ρ12(`) = 0.9 exp(−0.5(L− `)).

Part of the motivation of showing such simulations is to emphasize that it is

difficult to detect the correlation relationship at different levels of resolution by

inspection. Indeed, the final simulation (g/h) does not necessarily appear to

exhibit particularly strong correlations, whereas for ` = 7, the coefficients are

correlated with coefficient 0.9. On the other hand, the simple measure of the

empirical correlation coefficients between the latter three pairs of simulations

cannot capture the types of relationships between the processes.

Can level-dependent relationships be estimated given some data? We per-

form a small simulation study and attempt to estimate r0 and r1 in (3.1) for

three different cases:

• Slow decay (r0 = 0.9, r1 = 0.5).

• Fast decay (r0 = 0.9, r1 = 2).

• Constant (r0 = 0.3, r1 = 0).

In particular, we simulate 100 bivariate fields in [0, 10]2 on a 50× 50 grid, using

the same spacing for the coarsest level’s nodes as that in the previous simulation
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study. We use five levels of resolution, with the first process having smoothness

ν1 = 2, and the second having ν2 = 0.5 (which is equivalent to α`i = 2−2νi`).

Both processes have κ2 = 0.05. For each of the 100 bivariate simulations, we

estimate r0 and r1 by maximum likelihood. Figure 2 shows the functional box

plots for ρ12(`), with the true function shown as a dotted line. In general, the

estimated curves follow the same trend as the truth, with the functional median

showing fair accuracy. The constant dependence case of panel (c) is within the

standard functional box plot bounds, although some estimates still suggest de-

caying dependence. Note that this is a particularly difficult test setup because

the first process attributes 98% of its variability to only the first two levels of

resolution, owing to its smooth nature. Moreover, the basis functions between

levels are not restricted to being orthogonalized. Thus, it is not immediately

possible to identify the scale of variability for a chosen level.

Daily minimum and maximum temperatures

Creating historical data products that are complete over space and time is

a crucial endeavor in the climate sciences due to the need to initialize and verify

climate model runs. These products are also widely used to supply boundary

conditions for process models (e.g., hydrologic or ecologic models). Moreover,

historical products must usually be gridded to be useful in practice. Figure 3

shows the geographical locations of 6,178 observation stations from the TopoWx

data set (Oyler et al. (2014)). At each location, a set of meteorological variables is

measured on varying time scales; here, we focus on daily minimum and maximum

temperatures.

We consider the joint relationship between minimum and maximum temper-

ature residuals on July 1 for the period 1948–2014. The residuals are those based

on an ordinary least squares regression on the latitude, longitude, elevation, heat-

load index and topographic dissimilarity index. The latter two are measures of

the capacity of the surface to retain heat and of the influence of topography

on cold air drainage, respectively. Basing a set of historical temperature fields

on observations that communicate uncertainty requires conditionally simulating

plausible bivariate fields that are consistent with the observational data, up to a

measurement error.

Jointly modeling minimum and maximum temperatures requires matrix cal-

culations using a 12, 356 × 12, 356 covariance matrix, which is infeasible using

a serial algorithm, especially if maximum likelihood or Bayesian inference is to

be employed. It is common in the multivariate spatial literature to estimate
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Figure 3. Locations of 6,178 observation stations in the western United States and lower
Canada.

each individual process marginally, and then to estimate the parameters gov-

erning the bivariate relationship. In particular, we set the marginal smoothness

to ν = 0.5, corresponding to marginal exponential covariance functions (such

behavior is seen empirically in exploratory analyses, and is expected, based on

previous works (Gneiting, Kleiber and Schlather (2010); North, Wang and Gen-

ton (2011))).

Note that in choosing the marginal smoothness, we employ Theorem 1. How-

ever, for any applied problem, we must truncate the infinite sum approximation.

The number of levels we choose will depend on the problem and the available

computing resources; our approach is to use as many levels as is feasible for a

given likelihood evaluation timing. In this applied problem, we restrict a single

likelihood evaluation timing to be less than 30 seconds. On a standard MacBook

Pro laptop, using the R programming language, five levels of resolution with a

total of 31,109 basis functions per process yields approximately 23 seconds per

likelihood evaluation. Note that the actual covariance matrix calculations have

a dimension of around 60,000, because of the multivariate nature of the data.

Given the possibly different climatic conditions for each year in the data set,

it is preferable to allow for statistical parameters that may vary per year. In
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Figure 4. Functional box plot of correlation decay across levels of resolution for the
temperature data set based on 67 separate curves for each year of data.

particular, for each year, we separately estimate (by maximum likelihood) the

marginal variance, nugget effect, and scale parameter κi. Then, the parameters

ρ0 and ρ1 of (3.1) are estimated jointly using maximum likelihood at profiled

values of the marginal parameters using the full bivariate process.

Figure 4 shows functional box plots of the estimated correlation across levels

of resolution (Sun and Genton (2011)). There appears to be a substantial positive

correlation at all levels of resolution, with a slight decay of approximately 20%

between the coarsest and finest levels. All years of data indicate similar shapes,

suggesting that this form of relationship does not necessarily change over time.

It is relatively well established in the multivariate spatial literature that co-

kriging tends to perform about as well as univariate kriging for hold-one-out

cross-validation (Genton and Kleiber (2015); Zhang and Cai (2015)). We expect

(bivariate) co-kriging to perform better as a result of exploiting the cross-process

correlation when one variable has better spatial sampling than the second does.

However, in the latter case, the relative improvement as a function of spatial

sampling is not clear.

To explore the effect of preferential spatial sampling empirically, we con-

duct a cross-validation experiment. For each separate year and each of mini-

mum/maximum temperature, we withhold data from a randomly chosen rectan-

gle in the domain in which the marginal lengths are sampled as uniform random

variables (over the maximal dimension of the domain). For stability, we require

at least 20 data points in both the sampled and withheld subsets. For each of

the minimum and maximum temperature residuals, we perform univariate krig-



16 KLEIBER, NYCHKA AND BANDYOPADHYAY

− −

Figure 5. Percentage improvement in mean squared prediction error as a function of the
percentage of the total area withheld for minimum and maximum temperature residuals.

−

−

−

−

Figure 6. Percentage improvement in average continuous ranked probability score as
a function of the percentage of the total area withheld for minimum and maximum
temperature residuals.

ing using LatticeKrig (Nychka et al. (2015)), and co-kriging using the proposed

model for all data in the withheld sample. We then calculate the average mean

squared prediction error (MSPE) and the average continuous ranked probability

score (CRPS) based on the predictions for each day.

Figures 5 and 6 show the relative percentage improvements in MSPE and

CRPS, respectively, comparing univariate kriging to co-kriging, as a function of

the total area withheld for cross-validation. Each plot includes a simple regres-

sion of best fit, with 95% confidence bounds (spline smoothers suggest a simple

regression is sufficient). As expected, co-kriging tends to outperform kriging at all



A MULTIVARITE MULTIRESOLUTION MODEL 17

Figure 7. Conditional expectations (co-kriging predictors) for minimum and maximum
temperatures on June 1, 2014, over the western United States. Color bars are in units
Celsius.

levels, but the relative improvement increases as the variable of interest becomes

less densely observed over the whole domain. In particular, the improvements in

MSPE appear to range between 5% and 20%, whereas improvements in CRPS

range between about 5% and 15%, both depending on the area and the variable.

The multiresolution model provides superior predictions to those of a single-

level model. We perform the same experiment and find a 21% and 34% relative

improvement in CRPS for minimum and maximum temperatures, respectively,

using the multiresolution approach over the single-level model that includes only

the first level of resolution.

We close this section with an example of the final product generated by our

approach. Figure 7 shows the conditional expectation (co-kriging predictor) of

minimum and maximum temperatures for June 1, 2014, on a 1, 084×1, 000 grid.

Locations with missing values have no available covariates with which to inform

the mean function.

5. Discussion

Multivariate spatial modeling is a rapidly growing field, but nearly all previ-

ous works have focused on developing flexible parametric models, without much

sensitivity to estimation issues and computation. In this work, we introduced
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a flexible, interpretable, and scalable multiresolution approach for multivariate

spatial modeling. Relying on compactly supported basis functions and Gaussian

Markov random field specifications for coefficients results in feasible calculation

routines for likelihood evaluations and co-kriging.

Special parameterizations of the model approximate the popular multivariate

Matérn construction. Moreover, the multiresolution approach allows for flexible

specification of scale dependence between processes. We illustrated our approach

using simple simulation studies, which suggest that the parameters are indeed

identifiable, and a complex large bivariate temperature data set over the western

United States. The estimated parameters suggest that the two fields are highly

correlated at low frequencies, while exhibiting a lower correlation at finer scales

of spatial variation. Although this work narrows the gap between methodological

developments in multivariate modeling and feasible frameworks for modern data

sets, several issues still remain. In particular, interpretable and flexible models

for highly multivariate processes, such as those seen in atmospheric science, seem

to be currently unavailable.
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Appendix

This appendix contains the proof of the main theorem.

Proof of Theorem 1. Denoting Fourier transforms with hats, we have the marginal

spectral densities fii(ω),ω ∈ R2 of (Z1(s), Z2(s))T are (up to multiplicative con-

stants)

fii(ω) =

∞∑
`=1

α`iκ
2
`iφ̂(θ`ω)2

(κ2`i + ‖ω‖2)2
.

The Wendland spectral densities have similar polynomial decay in that there are

constants cw1 and cw2 depending only on the order k such that for any ω ∈ R2,

cw1 ≤ φ̂(ω)(1 + ‖ω‖2)3/2+k ≤ cw2 (Wendland (1998)). Thus fii(ω) is bounded

by
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∞∑
`=1

α`iκ
2
`i

(κ2`i + ‖ω‖2)2(1 + θ2`‖ω‖2)3+2k

up to constant cw1 or cw2. Apply Lemma A.1 of Nychka et al. (2015) to approxi-

mate the sum by an integral, and using assumption (A.2) we get fii(ω) bounded

by ∫ ∞
1

e−(α+2k)u

(1 + e−2ku‖ω‖2)2(1 + e−2θu‖ω‖2)3+2k
du.

The rest of the proof follows from straightforward change-of-variables, the mono-

tone convergence theorem and applications of Lemma A.1 and Lemma A.2 of

Nychka et al. (2015).

For the cross-spectrum, use Proposition 2.2 of Bolin and Wallin (2016) to

get (up to a multiplicative factor)

fii(ω) =

∞∑
`=1

ρ`
√
α`1α`2κ`1κ`2φ̂(θ`ω)2(

κ2`2 + ‖ω‖2
)(
κ2`1 + ‖ω‖2

) .
The proof follows analogously to the proof for the marginal spectrum.
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