Statistica Sinica 29 (2019), 1-20
doi:https://doi.org/10.5705/ss.202017.0365

A MODEL FOR LARGE MULTIVARIATE
SPATIAL DATA SETS

William Kleiber!, Douglas Nychka? and Soutir Bandyopadhyay?

L University of Colorado and % Colorado School of Mines

Abstract: Multivariate spatial modeling is a rapidly growing field; however, most
extant models are infeasible for use with massive spatial processes. In this work, we
introduce a highly flexible, interpretable, and scalable multiresolution approach to
multivariate spatial modeling. Compactly supported basis functions and Gaussian
Markov random field specifications for the coefficients yield efficient and scalable
calculation routines for likelihood evaluations and co-kriging. We analytically show
that special parameterizations approximate popular existing models. Moreover, the
multiresolution approach allows for an arbitrary specification of scale dependence
between processes. We use Monte Carlo studies to illustrate the implied stochastic
behavior of our approach and to test our ability to recover scale dependence. More-
over, we examine a complex large bivariate observational minimum and maximum
temperature data set for the western United States.
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1. Introduction

The past decade has witnessed increasing interest and effort in building mul-
tivariate spatial models. Such efforts are a reaction to the increasing prevalence
of space-time data sets that incorporate multiple variables. For instance, in at-
mospheric science, weather forecast and climate models include dozens of state
variables, the interprocess relationships of which are complicated and nontriv-
ial. Remote sensing data sets can incorporate multiple types of variables, such
as sea surface temperature and height, at extremely high spatial resolutions.
Spatial econometric and healthcare-related data sets involve many types of mea-
surements, often restricted to census tract levels. Thus, we are faced with at
least two major issues in multivariate spatial modeling. First, we require suffi-
ciently flexible models that can capture complex dependencies between distinct
processes. Second, we need models that adapt well to estimation for massive
spatial processes.
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Specifying valid (i.e., nonnegative definite) multivariate covariance struc-
tures is a difficult task. Indeed, nearly all extant approaches formulate such
cross-covariances by construction (Genton and Kleiber (2015)). However, the
majority of attention has focused on building sufficiently flexible models, with-
out much regard to estimation and prediction difficulties, especially in the face
of even moderately sized spatial data sets. One notable departure is the work
of Sang, Jun and Huang (2011), who use the full-scale approximation (Sang
and Huang (2012)), which essentially breaks a process into two scales, large and
small. Another recent idea extends the stochastic partial differential equation
approach of Lindgren, Rue and Lindstrém (2011) to a multivariate setting (Hu
et al. (2013); Bolin and Wallin (2016)). These approaches can approximate mul-
tivariate Matérn-type models (Gneiting, Kleiber and Schlather (2010)), but tend
to be restricted to fixed values of smoothness parameters. However, allowing for
flexibility in the value of the smoothness parameters is important for modern
spatial statistical applications (Stein (1999)). Finally, compactly supported mul-
tivariate covariance models have been proposed (Kleiber and Porcu (2015)), but
empirical studies on their use have not been explored.

In this work, we address the spatial analysis of massive multivariate spatial
processes with multiple scales of variation. Our idea relies on basis function rep-
resentations, with a careful choice of stochastic coefficients. We show theoretical
links between the proposed model and well-established models in the literature,
which are inappropriate for large data sets. Moreover, we illustrate how our ap-
proach accounts for scales of dependence, an issue that has been almost entirely
overlooked in the literature. We illustrate estimation, interpretation and predic-
tion using the proposed model on a difficult bivariate observational temperature
data set for the western United States.

Observational model and notation

Our interest focuses on modeling a vector of p observed spatial processes,
Y(s) = (Yi(s),...,Y,(s))T on s € R2. The observational model is

Yi(sj) = pals;) + Zi(sj) + €ilsy),
for i = 1,...,p, at spatial locations s; for j = 1,...,n, where p;(s) is a non-
random mean function, Z;(s) is a zero-mean Gaussian process that represents the
spatially correlated variation from the mean, and ¢;(s) is a zero-mean Gaussian

white noise process, with variance 7'22. The geostatistical terminology for ¢;(s) is
a nugget effect, representing either a measurement error or small-scale variation
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at a shorter spatial scale than can be resolved by the statistical model, given the
minimal inter-site distance in the observation network.

The mean functions pu;(s) are usually linear functions for a small number of
covariates. In a typical spatial analysis, the structure of the multivariate random
effect process Z(s) is the focus of a substantial portion of the modeling. What
makes constructing valid models for Z(s) difficult? For Gaussian processes, Z(s)
is completely specified by its matrix-valued covariance,

C(s1,82) = (Cij(s1,82))] 4,

where Cj;(s1,82) = Cov(Z;(s1), Z;(s2)) are the covariance functions (i = j) and
the cross-covariance functions (i # j). The primary difficulty is that C(-,-) must
be a nonnegative definite matrix-valued function (Genton and Kleiber (2015)).

The review by Genton and Kleiber (2015) outlines the basic approaches to
building matrix-valued covariances, with major contributions involving convo-
lution, latent spatially correlated processes, and explicit restrictions on Matérn
cross-covariances. Recently, Kleiber (2017) explored the notion of coherence for
multivariate processes, arguing that multivariate constructions should focus on
the scale dependence between processes. Indeed, such scale dependence naturally
arises in optimal prediction for multivariate processes. Moreover, some existing
models are inflexible in terms of limiting coherence to be constant, making them
inappropriate for real data sets. Our approach explicitly incorporates scale de-
pendence in a generic framework that adapts well to computations for large,
multivariate spatial data sets. Moreover, we show analytically that the proposed
model approximates some of the most popular existing constructions.

2. Multivariate Multiresolution Model

The basic multiresolution decomposition of the ith component of Z(s) is

L mMye

Zi(s) = Z Z Coij®e;(s), (2.1)

=1 j=1

for a set of stochastic coefficients {cy;;} and predefined basis functions {¢y;(s)}.
The outer sum (over ¢) indexes the level of resolution, while the inner sum (over
j) indexes a stencil of basis functions, with random coefficients for a particular
resolution. Qualitatively, low values of ¢ correspond to low-frequency, large-
scale features, whereas high resolutions correspond to high-frequency, small-scale
features. Thus, the indices refer to the ith process at the ¢th level of resolution
at node j.
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Note that the component basis functions ¢y; are the same across processes.
We will later see that, at least when approximating standard covariance models,
the covariance structure of the coefficients is more important than the choice of
basis functions.

Basis structure

The basis functions ¢y;(s) are chosen to be scaled translations of a parent

1 — .
<Z5éj(s) = @ﬁb (S 0;%> .

The set of nodes {x;;}"; form a grid over a rectangular domain in k. We set
(£=1)

basis function,

the grid to have equal spacing of dp = §2~ in any axial direction. Briefly,
for a given number of nodes on the coarsest level, £ = 1, the spacing between
nodes on the next level, { = 2, is halved, and so forth, for each remaining
level. Finally, set 6, = 9/2_(5_1), which enforces the same overlap between
basis functions (controlled by @) at each level. For the examples below, we
adopt the two-dimensional Wendland covariance of order two (Wendland (1995)).
In addition, we set 6, to 2.5 times the grid spacing, allowing for some overlap
between adjacent basis functions, while still maintaining disjoint support for most
pairs of basis functions. Although other default choices for the basis construction
can be adopted, this setup has been found to be stable and limits artifacts from
the nodal grids. It is also the default choice in the LatticeKrig R package for
univariate spatial models (Nychka et al. (2016)).

There is a trade-off between the grid resolution at the lowest level and the
number of levels that can be accommodated for computation on a typical laptop
computer. Ideally, having a higher number of levels of resolutions is preferable,
because the statistical approximation theory (described below) requires infinite
levels. However, in practice, unless otherwise noted, we follow the default Lat-
ticeKrig heuristic of four levels of resolution, with five extra lattice points on
each edge to mitigate boundary effects, with a goal of about four times as many
total basis functions as observations.

Coefficient structure

The stochastic coefficients ¢y;; are the point of entry for specifying the de-
pendence between fields. Before we discuss the technical setup, it is worthwhile
to describe the heuristics and motivations for our choices. In the univariate
multiresolution case, the rate of decay of the variability over the levels of reso-
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lution is closely connected to the implied smoothness of the process. That is, if
a substantial amount of the total variability can be attributed to high levels of
resolution, the process will behave as a “rough” field. In contrast, if most of the
variability can be attributed to low resolutions, it will be “smooth.” Such heuris-
tics echo the intuitive reasoning behind a spectral decomposition (Stein (1999)).
In any multivariate representation, it is fundamental to allow each process to
have full flexibility of variability across levels. This is analogous to allowing dis-
tinct Matérn smoothnesses per process in a multivariate Matérn setup (Gneiting,
Kleiber and Schlather (2010)). Cross-process dependence will then be endowed
at each level of resolution, but in such a way that allows for model-based scale
dependence between processes.

It is worth motivating the univariate approach based on an existing con-
struction: for a fixed process ¢ and level of resolution ¢, Nychka et al. (2015)
modeled the stochastic coefficients as a Gaussian Markov random field (GMRF).
In particular, if cg; = (cei1, Coizy - - - 5 Crim, ), they set ¢y = B[Tegi, where ey; is
a Gaussian white noise vector of length my. The matrix By is a spatial autore-
gression (SAR), which is nonzero only on a set of nearest neighbors to a given
interior node point (and fewer for boundary nodes). Following Lindgren, Rue
and Lindstrém (2011), we set (By);; = 4 + % and the first major and minor
diagonals to —1. The precision matrix for cy; is then BZBE- Past work has con-
firmed that cy; approximates a Gaussian random field with Matérn covariance
with smoothness of unity and scale of x (Lindgren, Rue and Lindstréom (2011);
Nychka et al. (2015)). To extend this to a multivariate setting, as mentioned
above, it is important to maintain this specification marginally.

The coefficients {cg;;} are registered to a regular lattice, owing to the place-
ment of nodes xy;. This is done so that we can adopt a multivariate lattice model
(Kelejian and Prucha (2004); Sain and Cressie (2007)). Indeed, our proposal is
to model the coefficients ¢y = (c}l, CEQ, .. ,czfp)T as a multivariate lattice process
within a level of resolution. In particular, we begin with a separable structure,

such that Varc, = ¥; ® (BgBZT)_l, where Y, is a p X p covariance matrix with
2

ith diagonal entry a?aei and (7, 7)th entry T4ij0i0j/0i0qj. The parameter o;
controls the marginal variance of cy;, 74;; is the correlation coefficient between
cy; and cyj;, and ay; is the relative contribution of variance to process i at level /.
This setup generalizes the univariate SAR to include cross-process dependence;
for any given coefficient cy;;, the dependence neighborhood is p times as large due
to the conditioning on its own neighbors, and those co-located neighbors from

the p — 1 remaining processes. Setting 74;; to zero reduces the neighborhood.
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This bivariate GMRF is a special case of that in Bolin and Wallin (2016). In
either case, the marginal process Z;(s) has the same structure as that favored
by Nychka et al. (2015). Although the continuous processes at each level of res-
olution have a separable covariance, the implied processes Z(s) do not have a
separable covariance.

Relaxing the assumption that each process share the same SAR structure
(i.e., that By does not depend on the process) is more difficult. For a bivariate
process (p = 2), suppose By — By;, for ¢ = 1,2, has the same SAR structure as
that discussed previously, but with By having diagonal 4 + 3 and Byy having
diagonal 4+r3. Note that such a specification makes the SAR matrices invertible.
For clarity, we set 1419 = ry. Then, we propose the following precision matrix
specification for ¢, = (cj;, cjy)T:

1 -7y

B, B} ——— B,BL

1 o?ap o 01024/Qp1Qp2 2
1—1r2 —Ty T 1 T
( t) BpBy; ——BprBj,

0102/Qp1 Qg2 05009
If |rg| < 1, this matrix is positive definite, by Proposition 1 of Kleiber and Genton
(2013). Because k; is analogous to a scale parameter, this allows for distinct
scale parameters for each process, but still reduces to the original LatticeKrig
formulation of Nychka et al. (2015) marginally. In particular, the covariance
matrix is
( ofan(BnBj) ™! TzUN%/W(BmB%)l)
reo102y/agap(BaBh) ™! o30p2(BpBjy) ’

which shows that, marginally, we retain the interpretation of ay; controlling the
smoothness and «; controlling the correlation length scale. Note that the coeffi-
cient 7y can still be interpreted as a cross-correlation coefficient that controls the
strength of correlation between the two processes, but is modulated by the level
of disagreement between By, and Bys.

The likelihood and computation techniques

Suppose p processes have been observed at spatial locations sy, . ..,s,. Orga-
nize the underlying processes as a vector Z = (Z7, ..., Zg)T of length np, where
Z; = (Zi(s1),...,Zi(sp))". Then, Z has covariance matrix VarZ = ®TQ~1®.
The matrix Q is structured as in the previous section, grouped by process. ®T
is a block diagonal matrix of p repeated blocks, because we use the same basis
functions for all processes. Moreover, any one of the blocks is [®1|®2]...|®],
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n,my

with the fth component a n x m, matrix ®, = (d)gj(si))i:l’j:l.

The observational covariance matrix is thus
VarY = ®TQ & + D,

where D = diag(7Z,.. ., Tg) ®I,. Given the observations y, the log-likelihood is

1
Fv) = —Plog(2r) — 5 log 2"'Q '@ + D|

2
1 _ _
—5 (y-w'(@'Q'e+ D)y — ),
where, naturally, g = (u1(s1), p1(s2), .., fp(sn))T. The covariance matrix is

dense and high-dimensional, but our assumed structure results in some compu-
tational simplifications.

The quadratic form involves a matrix solve. The Sherman-Morrison-
Woodbury formula can be used,

(®'Q'®+D)'=D'-D '’ (Q+ @D '®")'eD".
This is a key calculation in low rank models in which the matrix solve on the
right hand side is of a lower dimensionality, easing the computational burden.
In our case, this matrix is still of high dimension, but is sparse; thus sparse
matrix methods are used to solve the system (Q + ®D'®T)~1® efficiently.

The determinant calculation relies on a special case of Sylvester’s Theorem; in
particular

IQ + @D '®7||D|
Q| '

Each matrix on the right is positive definite and sparse, and again sparse Cholesky

®'Q'® +D| =

decompositions are used to efficiently calculate the determinants.

The co-kriging predictor, the multivariate analogue of kriging, can also be
calculated efficiently. To estimate the continuous variation from the mean at the
observation locations, for example, reduces to

z=2'Q '®(@'Q'®+ D) (y — ),
where [ is the generalized least squares estimator of u, and can be calculated
using the same computational techniques as the likelihood. Finally, simulation is

straightforward using (2.1) and sparse matrix methods to calculate the Cholesky
decomposition of Q1.

3. Model Properties

In this section, we analyze how the multivariate multiresolution model can
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approximate existing models. Before doing so, however, it is useful to explore the
notion of scale dependence afforded by the multivariate multiresolution approach.

Scale dependence

A natural way to think about the relationship between multivariate processes
is in terms of scale dependence. If Z(s) is a stationary process, it admits a spectral
representation. Suppose such a represertation has an associated spectral density
matrix f(w) = {f;j(w)}? for w € k. with the squared coherence function

ij=1
%j(w)Z _ ’fij(w)P )
fii(w) fij(w)
This can be interpreted as a correlation between Z;(s) and Z;(s) at frequency w
(Kleiber (2017)).

The level of resolution ¢ indexes a range of spatial frequencies, with a low /¢
corresponding to low frequencies, and a high ¢ corresponding to a fine-scale, high
frequency behavior. It is then convenient to assume the special structure

Cor(crik, cejr) = reij = pij(£),
where p;;(¢) is analogous to the “coherence” between processes i and j at level
(“frequency”) ¢. To approximate a particular coherence (either implied by a
standard multivariate covariance model, or what we might expect for a particular
physical process), we can impose a certain structure on p;;(1), pi;(2), ..., pi;(L).

Kleiber (2017) cautions against using coherences that do not decay to zero
at high frequencies, and illustrates that such scale dependence arises naturally in
optimal predictions for multivariate processes. Thus, it is crucial to afford some
flexibility in coherence, while parameterizing it in such a way that retains statis-
tical convenience. In the examples below, we use the following parameterization:

pij(£) = roexp(—ri(¢ — 1)) (3.1)
which decays to zero at high resolutions, but also includes constant coherence

when r1 = 0. Such a specification approximates a cross-covariance structure
analogous to a Matérn cross-covariance.

Approximating standard multivariate models

In this section, we discuss the implied spectral tail behavior of the covariance
family resulting from our multivariate multiresolution setup. For simplicity, we
consider the case p = 2 throughout this section; the results can be generalized for
any p > 2 in a similar fashion. Following Bolin and Wallin (2016), the coefficient
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vector at any given level (c}q17 c};)T is approximately the solution to the following
bivariate system of stochastic partial differential equations:

Ln — 1_p€’i£52 (yﬂ(S)) _ (ng(s)> '
0 Lo Yea(s) Wia(s)

The operator is defined as Ly = 74(ke; — A), where A is the Laplacian op-
erator (given our choice of GMRF structure, the usual exponent in the Lapla-
cian of Bolin and Wallin (2016) becomes unity). Then, {y(-)}e are unit vari-
ance, isotropic, two-dimensional Gaussian processes with spatial scale parameter
ke; and smoothness one. In order to imply a marginal unit variance, we set
5 = (1+ p7)/(4mk},) and 77 = (4nk3,) 1. The key approximation is that our
chosen GMRF structure is a discrete approximation to the differential operators.
Furthermore, applying these operators on the correlated coefficients yields the
noise processes Wy;(+); see Lindgren, Rue and Lindstrom (2011) for details.

Note that a multiresolution decomposition at any level is just a discrete ap-
proximation of the infinite mixture of the basis convolved with the correlated
random field. Call Cy;(+) the Matérn correlation function, with unit smoothness
for i = 1,2. Denote the cross-correlation Cov(ysi(s1),yej(s2)) = Ceij(s1 —s2), for
1 # j; note that this function is usually not available in closed form, but is deter-
mined by a Fourier inversion of an explicit spectral density (see Bolin and Wallin
(2016) for details). Following Nychka et al. (2015), we use this approximation
to extract theoretical properties of the infinite mixture version. In particular,
define the convolution process as

Zmazi/m¢(5&“>wmnmn (3.2)

for i = 1,2. As written, this process is Gaussian, has mean zero, and has an
isotropic covariance function given by

Kyii(s1,82) = Cov(Zyi(s1), Zu(s2))

—u So — U2 S1 — S2
//0 ( ; )¢( - )cm( wi)dmmm (3.3)

for i = 1,2. Then, the cross-covariance function is

Kna(s1,82) = Cov(Zp(s1), Zea(s2))

— U S2 — U2
i (s1 — sg) duyd
// 9@19?2 < 0 >¢< Op >Céz3 (s1 — s2) dujduy,

which follows from standard convolution arguments.
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Our bivariate multiresolution construction can then be viewed as a sum of

Z(s) i V1 Zpi(s)
— \VanZp(s))
with the matrix-valued covariance function
C(s,¢) = i anKei(s,s')  pey/oanonKn(s,s')
’ —\pev/anoeKep(s,s')  anpKeas(ss')

Next, we summarize the tail behavior of the spectral density matrix of the re-

convolution processes,

sulting multivariate process. Assume the following:
(A.1) ¢ is a two-dimensional Wendland covariance function of order k.

(A.2) Fori=1,2, ky; = exp(ril), ag; = exp (—(v; — 2k; + 1)0), 0y = exp (—£/2),
and p(¢) = po exp(—p1f), with k;—1 < v; < 242k, p1+(v1+12)/2 < 342k,
and 1 < 2k;.

These assumptions are specialized to approximate multivariate Matérn-like be-
havior (Gneiting, Kleiber and Schlather (2010); Apanasovich, Genton and Sun
(2012)), but can readily be generalized to other decay rates of the multiresolution
parameters with straightforward adjustments to the proof. Note that the expo-
nential growth assumption on ky; in (A.2) is consistent with the SAR structure
assumed in Section 2, because the resolution of the lattice on each level increases
exponentially, which is equivalent to ky; having exponential growth.

Theorem 1. Suppose assumptions (A.1) and (A.2) hold. Let fij(w),i,5 = 1,2
denote the spectral and cross-spectral densities of Z(s) with respect to frequency
w € R2. There are constants independent of w, 0 < ¢;1, Cia, €1, ¢ < 00, such that

(i) e < fu(w)(Jw]*)"+ < cia,
(if) &1 < frz()(||w || AT <oy,

fori=12.

In particular, part () implies that, marginally, the multiresolution processes
can approximate marginal Matérn-like behavior at high frequencies (with both
processes having distinct smoothnesses, 11 and o in (A.2)). Part (i7) is exactly
the “coherence” analogy from the previous subsection. In particular, if p; = 0,
then the cross-covariance smoothness is the average of the marginal smoothnesses,
that is, the parsimonious Matérn of Gneiting, Kleiber and Schlather (2010). If
p1 > 0, then the squared cross-spectrum decays faster than the product of the
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Figure 1. Bivariate simulations, varying the strength of correlation across levels of res-
olution. The first process has v; = 1 and the second has v = 0.5. The correlations
across levels are: constant (a/b), decaying with resolution (c/d), only at coarsest reso-
lution (e/f), and growing with resolution (g/h); see the text for details of the functional
relationship.

marginals does, implying that the coherence decays to zero at high frequencies,
as other nontrivial multivariate Matérn structures behave.

4. Illustrations

In this section, we illustrate some of the properties of the multivariate mul-
tiresolution approach through simulations. Then, we apply it as a possible model
for a daily temperature data set.

Simulation studies

It is instructive to show realizations of the implied process, that highlight the
flexibility afforded by the control over the scale relationships between processes.
We set up a simulation study on the domain [0, 10]?, with 256 x 256 equally
spaced points. The first process has 11 = 1, and the second has v = 0.5 (which
is equivalent to ay; = 2_2’”[). Thus, we expect the simulated fields to marginally
approximate Matérn processes with corresponding smoothnesses; both processes
have k2 = 0.5. We use seven levels of resolution, with the first having 15 marginal
nodal-axis values of —12.5, —10,...,22.5; this yields a total of 99,399 basis func-
tions over all levels.

Figure 1 shows four simulations of a bivariate random field, varying the
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Figure 2. Functional box plots for the maximum likelihood estimates of p12(¢) in (3.1)
based on 100 simulations, with the true function shown as a dotted line. Cases include
(a) r9 = 0.9, = 0.5, (b) r9 =0.9,7, =2, and (c¢) 1o = 0.3,r1 = 0.

coherence relationship according to:
e Constant (a/b): pi2(¢) =0.9.
e Decaying with resolution (c/d): p12(¢) = 0.9exp(—0.5(¢ — 1)).
e Only at coarsest resolution (e/f): p12(£) = 0.91;p—1;(£).
e Growing with resolution (g/h): pi2(¢) = 0.9 exp(—0.5(L — £)).

Part of the motivation of showing such simulations is to emphasize that it is
difficult to detect the correlation relationship at different levels of resolution by
inspection. Indeed, the final simulation (g/h) does not necessarily appear to
exhibit particularly strong correlations, whereas for £ = 7, the coefficients are
correlated with coefficient 0.9. On the other hand, the simple measure of the
empirical correlation coefficients between the latter three pairs of simulations
cannot capture the types of relationships between the processes.

Can level-dependent relationships be estimated given some data? We per-
form a small simulation study and attempt to estimate 79 and r; in (3.1) for
three different cases:

e Slow decay (rg = 0.9,71 = 0.5).
e Fast decay (ro = 0.9,r; = 2).
e Constant (rg = 0.3, = 0).

In particular, we simulate 100 bivariate fields in [0, 10]? on a 50 x 50 grid, using
the same spacing for the coarsest level’s nodes as that in the previous simulation
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study. We use five levels of resolution, with the first process having smoothness
v; = 2, and the second having v, = 0.5 (which is equivalent to ay = 272%%).
Both processes have x? = 0.05. For each of the 100 bivariate simulations, we
estimate rp and r; by maximum likelihood. Figure 2 shows the functional box
plots for p12(¢), with the true function shown as a dotted line. In general, the
estimated curves follow the same trend as the truth, with the functional median
showing fair accuracy. The constant dependence case of panel (c) is within the
standard functional box plot bounds, although some estimates still suggest de-
caying dependence. Note that this is a particularly difficult test setup because
the first process attributes 98% of its variability to only the first two levels of
resolution, owing to its smooth nature. Moreover, the basis functions between
levels are not restricted to being orthogonalized. Thus, it is not immediately
possible to identify the scale of variability for a chosen level.

Daily minimum and maximum temperatures

Creating historical data products that are complete over space and time is
a crucial endeavor in the climate sciences due to the need to initialize and verify
climate model runs. These products are also widely used to supply boundary
conditions for process models (e.g., hydrologic or ecologic models). Moreover,
historical products must usually be gridded to be useful in practice. Figure 3
shows the geographical locations of 6,178 observation stations from the TopoWx
data set (Oyler et al. (2014)). At each location, a set of meteorological variables is
measured on varying time scales; here, we focus on daily minimum and maximum
temperatures.

We consider the joint relationship between minimum and maximum temper-
ature residuals on July 1 for the period 1948-2014. The residuals are those based
on an ordinary least squares regression on the latitude, longitude, elevation, heat-
load index and topographic dissimilarity index. The latter two are measures of
the capacity of the surface to retain heat and of the influence of topography
on cold air drainage, respectively. Basing a set of historical temperature fields
on observations that communicate uncertainty requires conditionally simulating
plausible bivariate fields that are consistent with the observational data, up to a
measurement error.

Jointly modeling minimum and maximum temperatures requires matrix cal-
culations using a 12,356 x 12,356 covariance matrix, which is infeasible using
a serial algorithm, especially if maximum likelihood or Bayesian inference is to
be employed. It is common in the multivariate spatial literature to estimate
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Figure 3. Locations of 6,178 observation stations in the western United States and lower
Canada.

each individual process marginally, and then to estimate the parameters gov-
erning the bivariate relationship. In particular, we set the marginal smoothness
to v = 0.5, corresponding to marginal exponential covariance functions (such
behavior is seen empirically in exploratory analyses, and is expected, based on
previous works (Gneiting, Kleiber and Schlather (2010); North, Wang and Gen-
ton (2011))).

Note that in choosing the marginal smoothness, we employ Theorem 1. How-
ever, for any applied problem, we must truncate the infinite sum approximation.
The number of levels we choose will depend on the problem and the available
computing resources; our approach is to use as many levels as is feasible for a
given likelihood evaluation timing. In this applied problem, we restrict a single
likelihood evaluation timing to be less than 30 seconds. On a standard MacBook
Pro laptop, using the R programming language, five levels of resolution with a
total of 31,109 basis functions per process yields approximately 23 seconds per
likelihood evaluation. Note that the actual covariance matrix calculations have
a dimension of around 60,000, because of the multivariate nature of the data.

Given the possibly different climatic conditions for each year in the data set,
it is preferable to allow for statistical parameters that may vary per year. In
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Figure 4. Functional box plot of correlation decay across levels of resolution for the
temperature data set based on 67 separate curves for each year of data.

particular, for each year, we separately estimate (by maximum likelihood) the
marginal variance, nugget effect, and scale parameter ;. Then, the parameters
po and p; of (3.1) are estimated jointly using maximum likelihood at profiled
values of the marginal parameters using the full bivariate process.

Figure 4 shows functional box plots of the estimated correlation across levels
of resolution (Sun and Genton (2011)). There appears to be a substantial positive
correlation at all levels of resolution, with a slight decay of approximately 20%
between the coarsest and finest levels. All years of data indicate similar shapes,
suggesting that this form of relationship does not necessarily change over time.

It is relatively well established in the multivariate spatial literature that co-
kriging tends to perform about as well as univariate kriging for hold-one-out
cross-validation (Genton and Kleiber (2015); Zhang and Cai (2015)). We expect
(bivariate) co-kriging to perform better as a result of exploiting the cross-process
correlation when one variable has better spatial sampling than the second does.
However, in the latter case, the relative improvement as a function of spatial
sampling is not clear.

To explore the effect of preferential spatial sampling empirically, we con-
duct a cross-validation experiment. For each separate year and each of mini-
mum/maximum temperature, we withhold data from a randomly chosen rectan-
gle in the domain in which the marginal lengths are sampled as uniform random
variables (over the maximal dimension of the domain). For stability, we require
at least 20 data points in both the sampled and withheld subsets. For each of

the minimum and maximum temperature residuals, we perform univariate krig-
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Figure 5. Percentage improvement in mean squared prediction error as a function of the
percentage of the total area withheld for minimum and maximum temperature residuals.
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Figure 6. Percentage improvement in average continuous ranked probability score as
a function of the percentage of the total area withheld for minimum and maximum
temperature residuals.

ing using LatticeKrig (Nychka et al. (2015)), and co-kriging using the proposed
model for all data in the withheld sample. We then calculate the average mean
squared prediction error (MSPE) and the average continuous ranked probability
score (CRPS) based on the predictions for each day.

Figures 5 and 6 show the relative percentage improvements in MSPE and
CRPS, respectively, comparing univariate kriging to co-kriging, as a function of
the total area withheld for cross-validation. Each plot includes a simple regres-
sion of best fit, with 95% confidence bounds (spline smoothers suggest a simple
regression is sufficient). As expected, co-kriging tends to outperform kriging at all
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Figure 7. Conditional expectations (co-kriging predictors) for minimum and maximum
temperatures on June 1, 2014, over the western United States. Color bars are in units

Celsius.

levels, but the relative improvement increases as the variable of interest becomes
less densely observed over the whole domain. In particular, the improvements in
MSPE appear to range between 5% and 20%, whereas improvements in CRPS
range between about 5% and 15%, both depending on the area and the variable.

The multiresolution model provides superior predictions to those of a single-
level model. We perform the same experiment and find a 21% and 34% relative
improvement in CRPS for minimum and maximum temperatures, respectively,
using the multiresolution approach over the single-level model that includes only
the first level of resolution.

We close this section with an example of the final product generated by our
approach. Figure 7 shows the conditional expectation (co-kriging predictor) of
minimum and maximum temperatures for June 1, 2014, on a 1,084 x 1,000 grid.
Locations with missing values have no available covariates with which to inform

the mean function.

5. Discussion

Multivariate spatial modeling is a rapidly growing field, but nearly all previ-
ous works have focused on developing flexible parametric models, without much
sensitivity to estimation issues and computation. In this work, we introduced
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a flexible, interpretable, and scalable multiresolution approach for multivariate
spatial modeling. Relying on compactly supported basis functions and Gaussian
Markov random field specifications for coefficients results in feasible calculation
routines for likelihood evaluations and co-kriging.

Special parameterizations of the model approximate the popular multivariate
Matérn construction. Moreover, the multiresolution approach allows for flexible
specification of scale dependence between processes. We illustrated our approach
using simple simulation studies, which suggest that the parameters are indeed
identifiable, and a complex large bivariate temperature data set over the western
United States. The estimated parameters suggest that the two fields are highly
correlated at low frequencies, while exhibiting a lower correlation at finer scales
of spatial variation. Although this work narrows the gap between methodological
developments in multivariate modeling and feasible frameworks for modern data
sets, several issues still remain. In particular, interpretable and flexible models
for highly multivariate processes, such as those seen in atmospheric science, seem

to be currently unavailable.
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Appendix

This appendix contains the proof of the main theorem.

Proof of Theorem 1. Denoting Fourier transforms with hats, we have the marginal
spectral densities fi;(w),w € R? of (Z1(s), Z2(s))T are (up to multiplicative con-
stants)

N aini o (Ouw)?
falw) =2 (2
The Wendland spectral densities have similar polynomial decay in that there are
constants ¢, and ¢, depending only on the order k such that for any w € R?,
cor < w)(1 + ||w]|?)3/2* < ¢y (Wendland (1998)). Thus fi;(w) is bounded

by
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up to constant ¢,; or ¢p2. Apply Lemma A.1 of Nychka et al. (2015) to approxi-
mate the sum by an integral, and using assumption (A.2) we get f;;(w) bounded

by

oo e—(at2k)u
/1 (1—|—e—2’“‘HwH2)2(1+e—29“\\wH2)3+2kdu'
The rest of the proof follows from straightforward change-of-variables, the mono-
tone convergence theorem and applications of Lemma A.1 and Lemma A.2 of
Nychka et al. (2015).
For the cross-spectrum, use Proposition 2.2 of Bolin and Wallin (2016) to
get (up to a multiplicative factor)

fislw) = i pev/OiiO i Kpd(Bw)?
(1, + lwl?) (w7, + llwll?)

/=1
The proof follows analogously to the proof for the marginal spectrum.
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