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Abstract—We consider the problem of learning a policy for a
Markov decision process consistent with data captured on the
state-actions pairs followed by the policy. We parameterize the
policy using features associated with the state-action pairs. The
features can be handcrafted or defined using kernel functions
in a reproducing kernel Hilbert space. In either case, the set
of features can be large and only a small, unknown subset
may need to be used to fit a specific policy to the data. The
parameters of such a policy are recovered using `1-regularized
logistic regression. We establish bounds on the difference between
the average reward of the estimated and the unknown original
policy (regret) in terms of the generalization error and the ergodic
coefficient of the underlying Markov chain. To that end, we
combine sample complexity theory and sensitivity analysis of the
stationary distribution of Markov chains. Our analysis suggests
that to achieve regret within order O(

√
ε), it suffices to use

training sample size on the order of Ω(logn ·poly(1/ε)), where n
is the number of the features. We demonstrate the effectiveness
of our method on a synthetic robot navigation example.

Index Terms—Machine learning, Markov Decision Processes,
reinforcement learning, regression.

I. INTRODUCTION

MARKOV Decision Processes (MDPs) offer a framework
for many dynamic optimization problems under uncer-

tainty [1], [2]. When the state-action space is not large and
transition probabilities for all state-action pairs are known,
standard techniques such as policy iteration and value iteration
can compute an optimal policy. More often than not, however,
problem instances of realistic size have very large state-action
spaces and it becomes impractical to know the transition
probabilities everywhere and compute an optimal policy using
these off-line methods.

For such large problems, one resorts to approximate meth-
ods, collectively referred to as Approximate Dynamic Pro-
gramming (ADP) [3], [4]. ADP methods approximate either
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the value function and/or the policy and optimize with respect
to the parameters, as for instance is done in actor-critic
methods [5], [6], [7]. The optimization of approximation
parameters requires the learner to have access to the system
and be able to observe the effect of applied control actions.

In this paper, we adopt a different perspective and assume
that the learner has no direct access to the system but only
has samples of the actions applied in various states of the
system. These actions are generated according to a policy that
is fixed but unknown. We will call such a policy the target
policy because it is the policy we wish to estimate. As an
example, the actions could be followed by an expert player
who plays an optimal policy. Our goal is to learn a policy
consistent with the observed states-actions, which we will call
demonstrations.

Learning from an expert is a problem that has been studied
in the literature and referred to as apprenticeship learning [8],
[9], imitation learning [10], learning from demonstrations [11],
or learning parameterized skills [12]. While there are many
settings where it could be useful, the main application driver
has been robotics [13], [14], [15]. Additional interesting appli-
cation examples include: learning from an experienced human
pilot/driver to navigate vehicles autonomously, learning from
animals to develop bio-inspired policies [16], and learning
from expert players of a game to train a computer player.
In all these examples, and given the size of the state-action
space, we will not observe the actions of the expert in all
states, or more broadly “scenarios” corresponding to parts of
the state space leading to similar actions. Still, our goal is to
learn a policy that generalizes well beyond the scenarios that
have been observed and is able to select appropriate actions
even at unobserved parts of the state space.

A plausible way to obtain such a policy is to learn a mapping
of the states-actions to a lower dimensional space. Borrow-
ing from ADP methods, we can obtain a lower-dimensional
representation of the state-action space through the use of
features that are functions of the state and the action taken
at that state. In particular, we will consider policies that
combine various features using a weight vector and reduce
the problem of learning the target policy to learning this
weight/parameter vector. Essentially, we will be learning a
parsimonious parametrization of the target policy used by the
expert.

The related work in the literature on learning through
demonstrations can be broadly classified into direct and indi-
rect methods [14]. In the direct methods, supervised learning
techniques are used to obtain a best estimate of the expert’s
behavior; specifically, a best fit to the expert’s behavior is
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obtained by minimizing an appropriately defined loss function.
A key limitation of this method is that the estimated policy
is not well adapted to the parts of the state space not visited
often by the expert, thus resulting in poor action selection if
the system enters these states. Furthermore, the loss function
can be non-convex in the policy, rendering the corresponding
problem hard to solve.

Indirect methods, on the other hand, evaluate a policy by
learning the full description of the MDP. In particular, one
solves a so called inverse reinforcement learning problem
which assumes that the dynamics of the environment are
known but the one-step reward function is unknown. Then,
one estimates the reward function that the expert is aiming to
maximize through the demonstrations, and obtains the policy
simply by solving the MDP. A policy obtained in this fashion
tends to generalize better to the states visited infrequently by
the expert, compared to policies obtained by direct methods.
The main drawback of inverse reinforcement learning is that
at each iteration it requires solving an MDP which is com-
putationally expensive. In addition, the assumption that the
dynamics of the environment are known for all states and
actions is unrealistic for problems with very large state-action
spaces.

In this work, we exploit the benefits of both direct and
indirect methods by assuming that the expert is using a
Randomized Stationary Policy (RSP). As we alluded to earlier,
an RSP is characterized in terms of a vector of features
associated with state-action pairs and a parameter θ weighing
the various elements of the feature vector. We consider the
case where we have many features, but only relatively few
of them are sufficient to approximate the target policy well.
However, we do not know in advance which features are
relevant; learning them and the associated weights (elements
of θ) is part of the learning problem.

We will use supervised learning to obtain the best estimate
of the expert’s policy. As in actor-critic methods, we use an
RSP which is a parameterized “Boltzmann” policy and rely
on an `1-regularized maximum likelihood estimator of the
policy parameter vector. An `1-norm regularization induces
sparse estimates and this is useful in obtaining an RSP which
uses only the relevant features. In [17], it is shown that the
sample complexity of `1-penalized logistic regression grows
as O(log n), where n is the number of features. As a result,
we can learn the parameter vector θ of the target RSP with
relatively few samples, and the RSP we learn generalizes well
across states that are not included in the demonstrations of the
expert. Furthermore, `1-regularized logistic regression induces
a convex optimization problem which can be solved efficiently.

The approach we presented requires that one specifies in
advance the features used in defining an RSP, which gives rise
to the question of how to select the appropriate features. This
question of feature engineering is one that applies to all ADP
methods. Many times, and depending on the specific applica-
tion, one may have intuition on the type of functions that could
be used as appropriate features, which allows for handcrafting
specific features functions. Motivated by ideas in machine
learning, also used in learning user behavior [18] and in earlier
but different work on representing MDP policies [19], [20], we

will also use kernel functions in a Reproducing Kernel Hilbert
Space (RKHS) to define features. In the latter case, one only
has to specify a kernel function and the logistic regression will
determine an appropriate parameterization of the policy using
feature functions in the RKHS.

A. Related Work

There is substantial work in the literature on learning MDP
policies by observing experts; see [14] for a survey. We next
discuss papers that are more closely related to our work.

In the context of indirect methods, [21] develops tech-
niques for estimating a reward function from demonstrations
under varying degrees of generality on the availability of
an explicit model. [8] introduces an inverse reinforcement
learning algorithm that obtains a policy from observed MDP
trajectories followed by an expert. The policy is guaranteed
to perform as well as that of the expert’s policy, even though
the algorithm does not necessarily recover the expert’s reward
function. In [9], the authors combine supervised learning and
inverse reinforcement learning by fitting a policy to empirical
estimates of the expert demonstrations over a space of policies
that are optimal for a set of parameterized reward functions.
[9] shows that the policy obtained generalizes well over the
entire state space. [11] uses a supervised learning method to
learn an optimal policy by leveraging the structure of the
MDP, utilizing a kernel-based approach. A kernel-based policy
representation is also used in [19], [20] but in a different way
than in our setting. [12] proposes a way to learn policies
corresponding to different tasks, where each task is being
modeled as an MDP. Finally, [10] develops the DAGGER
(Dataset Aggregation) algorithm that trains a deterministic
policy which achieves good performance guarantees under its
induced distribution of states.

Our work focuses on a parameterized set of policies rather
than parameterized rewards. In this regard, our work is similar
to approximate DP methods which parameterize the policy,
e.g., expressing the policy as a linear functional in a lower
dimensional parameter space. This lower-dimensional repre-
sentation is critical in overcoming the well known “curse of
dimensionality.” Moreover, we establish explicit bounds on re-
gret not available in earlier work that considers parameterizing
policies, e.g., [12].

B. Contributions

We adopt the `1-regularized logistic regression to estimate
a target RSP that generates a given collection of state-action
samples. We evaluate the performance of the estimated policy
and derive a bound on the difference between the average
reward of the estimated RSP and the target RSP, typically
referred to as regret. We show that a good estimate of the
parameter of the target RSP implies an associated bound on
the regret. To that end, we generalize a sample complexity
result on the log-loss of the maximum likelihood estimates
[17] from the case of two actions available at each state to
the multi-action case. Using this result, we establish a sample
complexity result on the regret.
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Our analysis is based on the novel idea of separating the loss
in average reward into two parts. The first part is due to the
error in the policy estimation (training error) and the second
part is due to the perturbation in the stationary distribution of
the Markov chain caused by using the estimated policy instead
of the true target policy (perturbation error). We bound the
first part by relating the result on the log-loss error to the
Kullback-Leibler divergence [22] between the estimated and
the target RSPs. The second part is bounded using the ergodic
coefficient of the induced Markov chain. Finally, we evaluate
the performance of our method on a synthetic example.

A preliminary, conference version of the work in this paper
has appeared in [23]. Compared to that paper which only
considered the case where only two actions are available at
each state, the present paper handles the general case with
multiple potential actions at each state. Further, the present
paper contains several proofs missing from [23], the kernel-
based feature selection approach, and a larger case study.

The paper is organized as follows. In Section II, we intro-
duce some of our notation and state the problem. In Section IV,
we discuss how to define policy features. In Section III, we
describe the supervised learning algorithm used to train the
policy. In Section V, we establish a result on the (log-loss)
error in policy estimation. In Section VI, we establish our main
result, which is a bound on the regret of the estimated policy.
In Section VIII, we introduce a robot navigation example and
present our numerical results. We end with concluding remarks
in Section IX.

Notational conventions. Bold letters are used to denote vec-
tors and matrices; typically vectors are lower case and matrices
upper case. Vectors are column vectors, unless explicitly stated
otherwise. Prime denotes transpose. For the column vector
x ∈ Rn we write x = (x1, . . . , xn) for economy of space,
while ‖x‖p = (

∑n
i=1 |xi|p)1/p denotes its p-norm. Vectors or

matrices with all zeroes are written as 0, the identity matrix
as I, and e is the vector with all entries set to 1. For any set
S , |S| denotes its cardinality. We use log to denote the natural
logarithm and a subscript to denote different bases, e.g., log2

denotes logarithm with base 2.

II. PROBLEM FORMULATION

Let (X ,A,P , R) denote a Markov Decision Process (MDP)
with a finite set of states X and a finite set of actions A. For
a state-action pair (x, a) ∈ X × A, let P (y|x, a) denote the
probability of transitioning to state y ∈ X after taking action a
in state x. The function R : X ×A → R denotes the one-step
reward function.

A Randomized Stationary Policy (RSP) is a mapping from
states to a discrete probability distribution; it specifies a
probability distribution over the actions for each state. We
consider a set of RSPs parameterized by vectors θ ∈ Rn and
denote it as {µθ : θ ∈ Rn}. For a given parameter θ and a
state x ∈ X , µθ(a|x) denotes the probability of taking action a
at state x. Specifically, we consider the Boltzmann-type RSPs
of the form

µθ(a|x) =
exp{θ′φ(x, a)}∑
b∈A exp{θ′φ(x, b)}

, (1)

where φ : X ×A → [0, 1]n is a vector of features associated
with each state-action pair (x, a). The features are normalized
to take values in [0, 1]. We can interpret the vector −φ(x, a)
as an energy function associated with action a in state x and
view µθ(a|x) as assigning higher probability to low energy
actions. Such policies are widely used to analyze MDPs with
a large state-action space and where the transition probabilities
are possibly unknown [24]. Henceforth, we identify an RSP
by its parameter θ. We assume that the policy is sparse, that
is, the vector θ has only r < n non-zero components and each
is bounded by K, i.e., |θi| < K for all i. Given an RSP θ, the
resulting transition probability matrix of the induced Markov
chain is denoted by P θ, whose (x, y) element is Pθ(y|x) =∑

a∈A µθ(a|x)P (y|x, a) for all state pairs (x, y).
Notice that for any RSP θ, the sequence of states {Xk} and

the sequence of state-action pairs {Xk, Ak} form a Markov
chain with state space X and X ×A, respectively. We assume
that for every θ, the Markov chains {Xk} and {Xk, Ak} are
irreducible and aperiodic with stationary probabilities πθ(x)
and ηθ(x, a) = πθ(x)µθ(a|x), respectively.

The average reward function associated with an RSP θ is a
function R : Rn → R defined as

R(θ) =
∑
(a,x)

ηθ(x, a)R(x, a). (2)

Let now fix a target RSP θ∗. As we assumed above, θ∗

is sparse having at most r non-zero components θ∗i , each
satisfying |θ∗i | ≤ K. This is simply the policy used by an
expert (not necessarily optimal) which we wish to learn. We
let S(θ∗) = {(xi, ai) : i = 1, 2, . . . ,m} denote a set of
state-action samples generated by playing policy θ∗. The state
samples {xi : i = 1, 2, . . . ,m} are independent and identically
distributed (i.i.d.) drawn from the stationary distribution πθ∗
and ai is the action taken in state xi according to the policy
µθ∗ . It follows that the samples in S(θ∗) are i.i.d. according
to the distribution D ∼ ηθ∗(x, a).

The i.i.d. assumption is needed to characterize the number
of samples required to learn the target policy (cf. Sec. V) and is
pervasive in the related machine learning literature, e.g., [17].
If under the RSP θ∗ the induced Markov chain converges fast
to its stationary probability distribution (fast mixing), one can
simply obtain nearly i.i.d. samples from the same trajectory by
allowing some lag between consecutive samples. Alternatively,
it is possible to sample from different trajectories starting from
a different initial state.

We assume we have access only to the demonstrations
S(θ∗) while the transition probability matrix P θ∗ and the
target RSP θ∗ are unknown. The goal is to learn the target
policy θ∗ and characterize the average reward obtained when
the learned RSP is applied to the Markov process. In particular,
we are interested in estimating the target parameter θ∗ from
the samples efficiently and evaluate the performance of the
estimated RSP with respect to the target RSP, i.e., bound the
regret defined as

Reg(S(θ∗)) = R(θ∗)−R(θ̂),

where θ̂ is the estimated RSP from the samples S(θ∗).
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III. ESTIMATING THE POLICY

Next we discuss how to estimate the target RSP θ∗ from
the m i.i.d. state-action training samples in S(θ∗). Given the
Boltzmann structure of the RSP we have assumed, we fit
a logistic regression function using a regularized maximum
likelihood estimator as follows:

maxθ∈Rn

∑m
i=1 logµθ(ai|xi)

s.t. ‖θ‖1 ≤ B,
(3)

where B is a parameter that adjusts the trade-off between
fitting the training data “well” and obtaining a sparse RSP
that generalizes well on a test sample.

We can evaluate how well the maximum likelihood function
fits the samples in the logistic function using a log-loss metric,
defined as the expected negative of the log-likelihood over the
(random) test data. Formally, for any parameter θ, log-loss is
given by

ε(θ) = E(x,a)∼D[− logµθ(a|x)], (4)

where the expectation is taken over state-action pairs (x, y)
drawn from the distribution D; recall that we defined D to be
the stationary distribution ηθ∗(x, a) of the state-action pairs
induced by the policy θ∗. Since the expectation is taken with
respect to new data not included in the training set S(θ∗), we
can think of ε(θ) as an out-of-sample metric of how well the
RSP θ approximates the actions taken by the target RSP θ∗.

We also define a sample-average version of log-loss: given
any set S = {(xi, ai) : i = 1, 2, . . . ,m} of state-action pairs,
define

ε̂S(θ) =
1

m

m∑
i=1

(− logµθ(ai|xi)). (5)

We will use the term empirical log-loss to refer to log-loss
over the training set S(θ∗) and use the notation

ε̂(θ)
4
= ε̂S(θ∗)(θ). (6)

To estimate an RSP, say θ̂, from the training set, we adopt
the logistic regression with an `1-norm regularization intro-
duced in [17]. The specific steps are shown in Algorithm 1.

Algorithm 1 Training algorithm to estimate the target RSP θ∗

from the samples S(θ∗).
Initialization: Fix 0 < γ < 1 and C ≥ rK.
Split the training set S(θ∗) into two sets S1 and S2 of size
(1− γ)m and γm respectively. S1 is used for training and
S2 for cross-validation.
Training:
for B = 0, 1, 2, 4, . . . , C do

Solve the optimization problem (3) for each B on the set
S1, and let θB denote the optimal solution.

end for
Validation: Among the θB’s from the training step, select
the one with the lowest “hold-out” error on S2, i.e, B̂ =
arg minB∈{0,1,2,4...,C} ε̂S2(θB) and set θ̂ = θB̂ .

IV. SELECTING FEATURES

As we noted in the Introduction, [24] and most of the related
literature take the feature function φ as given. Features are
typically set on a case-by-case basis, depending on the specific
MDP setting and representing aspects of the state and action
that are considered important in selecting an appropriate action
for each state.

The potential obvious drawback of a fixed φ is that it may
introduce a large approximation error in representing the target
policy. One possibility to address this issue is to use techniques
as in [25] to jointly tune the features and the parameter vector
θ after we obtain an initial estimated RSP θ̂.

An appealing alternative is to use feature functions defined
in a Reproducing Kernel Hilbert Space (RKHS). A similar
strategy was used in [20], where features of just the state were
represented in an RKHS. Here, we use features of both the
state and the action. Let y(x, a) ∈ F ⊆ RN be some represen-
tation (or encoding) of a state-action pair (x, a) ∈ X ×A. As
an example, if we represent the state x with some real vector
x ∈ RN , we could define y(x, a) = arg maxy P (y|x, a).
(This is in fact the encoding we will use in the example we
present in Section VIII.) Consider now a symmetric positive
semidefinite kernel function K : F×F → R, that is, satisfying

n∑
i=1

n∑
j=1

cicjK(yi,yj) ≥ 0,

for any choice of n, c = (c1, . . . , cn) ∈ Rn, and yi ∈
F . Examples of kernels over RN include the linear kernel
K(x,y) ≡ x′y, the polynomial kernel K(x,y) ≡ (c+ x′y)d

for some choice of c ≥ 0 and d ∈ N, and the Gaussian kernel
K(x,y) ≡ exp(−c‖x− y‖22) for some choice of c > 0.

Let now Kx(·) ≡ K(x, ·) denote the function of one
variable obtained by fixing the first argument of K to x for
any x ∈ F . Define H0 to be the vector space of scalar valued
functions that can be written as finite linear combinations of
elements Kx for some x ∈ F , i.e.,

H0 =


n∑

j=1

αjKxj : xj ∈ F , n ∈ N, αj ∈ R, j = 1, . . . , n

 .

For any f, g ∈ H0 such that f =
∑n

j=1 αjKxj and g =∑n
i=1 βiKxi

, we can define an inner product 〈f, g〉H0
≡∑n

i=1

∑n
j=1 αiβjK(xi,xj) and a norm ‖f‖H0

≡
√
〈f, f〉H0

.
The closure H of H0 is called an RKHS and any f ∈ H
that admits a finite representation in terms of kernel functions
satisfies the reproducing property

〈Kx, f〉H =
n∑

j=1

αjK(x,xj) = f(x).

Using some kernel function K(·, ·), for some representative
collection of state-action pairs (xi, ai) encoded as y(xi, ai),
i = 1, . . . , n, we can now define corresponding feature func-
tions φi(x, a) = K(y(xi, ai),y(x, a)) and a feature vector
φ(x, a) = (φ1(x, a), . . . , φn(x, a)). This approach offers a
way of generating a large number of features simply by
selecting a kernel function and a collection of state-action
pairs.
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V. LOG-LOSS PERFORMANCE

In this section we establish a sample complexity result
indicating that relatively few training samples (logarithmic
in the dimension n of the RSP parameter θ) are needed to
guarantee that the estimated RSP θ̂ has out-of-sample log-loss
close to the target RSP θ∗. We will use the line of analysis
in [17] but generalize the result from the case where only two
actions are available for every state to the general multi-action
setting.

We start by relating the difference of the log-loss func-
tion associated with RSP θ and its estimate θ̂ to the
relative entropy, or Kullback-Leibler (KL) divergence, be-
tween the corresponding RSPs. For a given x ∈ X , we
denote the KL-divergence between RSPs, θ1 and θ2 as
D(µθ1

(·|x)‖µθ2
(·|x)), where µθ(·|x) denotes the probability

distribution induced by RSP θ on A in state x, and is given
as follows:

D(µθ1
(·|x)‖µθ2

(·|x)) =
∑
a∈A

µθ1
(a|x) log

µθ1
(a|x)

µθ2
(a|x)

.

We also define the average KL-divergence, denoted by
Dθ(µθ1

‖µθ2
), as the average of D(µθ1

(·|x)‖µθ2
(·|x)) over

states visited according to the stationary distribution πθ of the
Markov chain induced by policy θ. Specifically, we define

Dθ(µθ1
‖µθ2

) =
∑
x∈X

πθ(x)D(µθ1
(·|x)‖µθ2

(·|x)). (7)

Lemma V.1 Let θ̂ be an estimate of RSP θ. Then,

ε(θ̂)− ε(θ) = Dθ(µθ‖µθ̂).

Proof:

ε(θ̂)− ε(θ)

=
∑

x∈X ,a∈A
ηθ(x, a)[logµθ(a|x)− logµθ̂(a|x)]

=
∑
x∈X

πθ(x)
∑
a∈A

µθ(a|x) log
µθ(a|x)

µθ̂(a|x)

=
∑
x∈X

πθ(x)D(µθ(·|x)‖µθ̂(·|x))

= Dθ(µθ‖µθ̂).

For the case of a binary action at every state, [17] showed
the following result. To state the theorem, let poly(·) denote a
function which is polynomial in its arguments and recall that
m is the number of state-action pairs in the training set S(θ∗)
used to learn θ̂.

Theorem V.2 ([17], Thm. 3.1) Suppose action set A con-
tains only two actions, i.e., A = {0, 1}. Let ε > 0 and δ > 0.
In order to guarantee that, with probability at least 1 − δ, θ̂
produced by the algorithm performs as well as θ∗, i.e.,

Dθ∗(µθ∗‖µθ̂) ≤ ε,

it suffices that m = Ω((log n) · poly(r,K,C, log(1/δ), 1/ε)).

We will generalize the result to the case when more than
two actions are available at each state. We assume that |A| =
H , that is, at most H actions are available at each state. By
introducing in (1) features that get activated at specific states, it
is possible to accommodate MDPs where some of the actions
are not available at these states. We establish the following
key theorem, whose proof is provided in the Appendix.

Theorem V.3 Let ε > 0 and δ > 0. In order to guarantee
that, with probability at least 1−δ, θ̂ produced by Algorithm 1
performs as well as θ∗, i.e.,

|ε(θ̂)− ε(θ∗)| < ε, (8)

it suffices that

m = Ω
(

(log n) · poly(r, K, C, H, log(1/δ), 1/ε)
)
.

Furthermore, in terms of only H , m = Ω(H3).

VI. BOUNDS ON REGRET

Theorem V.3 provides a sufficient condition on the number
of samples required to learn a policy whose log-loss perfor-
mance is close to the target policy. In this section we study
the regret of the estimated policy, defined in Sec. II as the
difference between the average reward of the target policy and
the estimated policy. Given that we use a number of samples
in the training set proportional to the expression provided in
Theorem V.3, we establish explicit bounds on the regret.

We will bound the regret of the estimated policy by
separating the effect of the error in estimating the policy
function (which is characterized by Theorem V.3) and the
effect the estimated policy function introduces in the stationary
distribution of the Markov chain governing how states are
visited. To bound the regret due to the perturbation of the
stationary distribution, we will use results from the sensitivity
analysis of Markov chains. In Section VI-A we provide some
standard definitions for Markov chains and state our result on
the regret, while in Section VII we provide a proof of this
result.

A. Main Result

We start by defining the fundamental matrix of a Markov
chain.

Definition 1
The fundamental matrix of a Markov chain with state transi-
tion probability matrix P θ induced by RSP θ is

Zθ = (Aθ + eπ′
θ)−1,

where e denotes the vector of all 1’s, Aθ = I − P θ and πθ
denotes the stationary distribution associated with P θ. Also,
the group inverse of Aθ denoted as A#

θ is the unique matrix
satisfying

AθA
#
θ Aθ = Aθ, A

#
θ AθA

#
θ = Aθ, AθA

#
θ = A#

θ Aθ.

Most of the properties of a Markov chain can be expressed
in terms of the fundamental matrixZ. For example, if π1 is the
stationary probability distribution associated with a Markov



6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

chain whose transition probability matrix is P 1 and if P 2 =
P 1 −E for some perturbation matrix E, then the stationary
probability distribution π2 of the Markov chain with transition
probability matrix P 2 satisfies the relation

π′1 − π′2 = π′2EZ1, (9)

where Z1 is the fundamental matrix associated with P 1.

Definition 2
The ergodic coefficient of a matrix B with equal row sums is

τ(B) = sup
v′e=0;‖v‖1=1

‖v′B‖1 =
1

2
max
i,j

∑
s

|bis − bjs|. (10)

The ergodic coefficient of a Markov chain indicates sensitivity
of its stationary distribution. For any stochastic matrix P , 0 ≤
τ(P ) ≤ 1.

We now have all the ingredients to state our main result
bounding regret.

Theorem VI.1 Given ε > 0 and δ > 0, suppose m =
Ω((log n) · poly(r,K,C,H, log(1/δ), 1/ε)) i.i.d. samples are
used by Algorithm 1 to produce an estimate θ̂ the unknown
target RSP policy parameter θ∗. Then with probability at least
1− δ, we have

|R(θ∗)−R(θ̂)| ≤
√

2ε log 2Rmax(1 + κ).

where

Rmax = max
(x,a)∈X×A

|R(x, a)|

and κ is a constant that depends on the RSP θ̂ and can be
any of the following:

• κ = ‖Z θ̂‖∞,
• κ = ‖A#

θ̂
‖∞,

• κ = 1/(1− τ(P θ̂)),
• κ = τ(Z θ̂) = τ(A#

θ̂
).

The constant κ is referred to as condition number. The regret
is thus governed by the condition number of the estimated
RSP; the smaller the condition number of the trained policy,
the smaller is the regret.

Among different values of κ, setting κ = τ(Z θ̂) gives the
tightest upper bound [26][Lemma 4.1]. Further, when the state
space is finite, the value of τ(Z θ̂) can be bounded as follows

1

mini |1− λi|
≤ τ(Z θ̂) ≤ card(X )

mini |1− λi|
,

where card(X ) denotes the cardinality of the set X and λi,
i = 1, . . . , card(X ), are the eigenvalues of the transition
probability matrix induced by the RSP θ̂. Thus, when the
eigenvalues of the transition probability matrix of the esti-
mated RSP are not close to 1, the Markov chain is well-
conditioned and the regret is small.

VII. PROOF OF THE MAIN RESULT

In this section we analyze the average reward obtained by
the MDP when we apply the estimated RSP θ̂, and prove the
regret bound in Theorem VI.1. First, we bound the regret as
the sum of two parts.

Reg(S(θ∗)) = R(θ∗)−R(θ̂)

=
∑
x

∑
a

[ηθ∗(x, a)− ηθ̂(x, a)]R(x, a)

=
∑
x

πθ∗(x)
∑
a

µθ∗(a|x)R(x, a)

−
∑
x

πθ̂(x)
∑
a

µθ̂(a|x)R(x, a)

=
∑
x

πθ∗(x)
∑
a

[µθ∗(a|x)− µθ̂(a|x)]R(x, a)

−
∑
x

[πθ̂(x)− πθ∗(x)]
∑
a

µθ̂(a|x)R(x, a)

≤

∣∣∣∣∣∑
x

πθ∗(x)
∑
a

[µθ∗(a|x)− µθ̂(a|x)]R(x, a)

∣∣∣∣∣
+

∣∣∣∣∣∑
x

[πθ̂(x)− πθ∗(x)]
∑
a

µθ̂(a|x)R(x, a)

∣∣∣∣∣ . (11)

Note that the first absolute sum above has terms∑
a[µθ∗(a|x) − µθ̂(a|x)] for all x that are related to

the estimation error from fitting the RSP policy θ̂ to θ∗. The
second part has terms

∑
x |πθ̂(x)−πθ∗(x)| that are related to

the perturbation of the stationary distribution of the Markov
chain by applying the fitted RSP θ̂ instead of the original θ∗.
In the following, we bound each term separately. We begin
with the first term.

We have:∣∣∣∣∣∑
x

πθ∗(x)
∑
a

[µθ∗(a|x)− µθ̂(a|x)]R(x, a)

∣∣∣∣∣
≤

∑
x

πθ∗(x)
∑
a

|µθ∗(a|x)− µθ̂(a|x)| · |R(x, a)|

≤ Rmax

∑
x

πθ∗(x)‖µθ∗(·|x)− µθ̂(·|x)‖1, (12)

where µθ(·|x) denotes the probability distribution (a vector)
on the action space A induced by the RSP θ at state x.

The bound in (12) is related to the difference in the log-
loss between the RSPs θ∗ and θ̂. To see this, we need the
following result that connects the `1 distance between two
distributions with their KL-divergence. Let p1 and p2 denote
two probability vectors on A. From the variation distance
characterization of p1 and p2 we have the following lemma.

Lemma VII.1 ([22, Lemma 11.6.1])

D(p1‖p2) ≥ 1

2 log 2
‖p1 − p2‖21. (13)
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Continuing the chain of inequalities from (12), we obtain∣∣∣∣∣∑
x

πθ∗(x)
∑
a

[µθ∗(a|x)− µθ̂(a|x)]R(x, a)

∣∣∣∣∣
≤ Rmax

∑
x

πθ∗(x)
√

2 log 2D
(
µθ∗(·|x)‖µθ̂(·|x)

)
≤

√
2 log 2Rmax ·√∑
x

πθ∗(x)D
(
µθ∗(·|x)‖µθ̂(·|x)

)
=

√
2 log 2Rmax

√
Dθ∗(µθ∗‖µθ̂). (14)

In the first inequality, we applied Lemma VII.1 by setting p1 =
µθ∗(·|x) and p2 = µθ̂(·|x) for each x. In second inequality,
we applied Jensen’s inequality. We can now use Theorem V.3
to bound (14).

We next bound the second term in (11) using techniques
from perturbation analysis of eigenvalues of a matrix. We have∣∣∣∣∣∑

x

(πθ̂(x)− πθ∗(x))
∑
a

µθ̂(a|x)R(x, a)

∣∣∣∣∣
≤

∑
x

|πθ̂(x)− πθ∗(x)|
∑
a

|µθ̂(a|x)R(x, a)|

≤ Rmax

∑
x

|πθ̂(x)− πθ∗(x)|
∑
a

µθ̂(a|x)

= Rmax

∑
x

|πθ̂(x)− πθ∗(x)|, (15)

where we used the definition of Rmax in the second inequality
and the last equality follows by noting that

∑
a µθ̂(a|x) = 1

for all x. To further bound the difference in stationary distribu-
tions in (15), we use a relation between the perturbation of the
stationary distribution and the condition number of the Markov
chain. We recall the following result that is useful to bound
the difference between the stationary distribution induced by
the optimal RSP and that induced by the estimated RSP in
terms of the condition number of the Markov chain.

Lemma VII.2 ([27], [26]) Let πθ1 and πθ2 be the unique
stationary distributions of the stochastic matrices P θ1

and
P θ2

, respectively. Let E = P θ1
− P θ2

. Then,

‖πθ1
− πθ2

‖1 ≤ κ‖π′θ1
E‖1, (16)

where κ is a constant that can take the following values

• κ = ‖Zθ2
‖∞,

• κ = ‖A#
θ2
‖∞,

• κ = 1/(1− τ(P θ2)),
• κ = τ(Zθ2

) = τ(A#
θ2

).

Proof: The proof follows by setting π1 = πθ2 and π2 =
πθ1 in (9) and using the relation

‖πθ1
− πθ2

‖1 = ‖π′θ1
EZθ2

‖1 ≤ ‖π′θ1
E‖1‖Zθ2

‖1.

The other relations follow similarly from Sec. 3 of [26].

Continuing the chain of inequalities in (15) and applying
Lemma VII.2 by setting πθ1 = πθ∗ and πθ2 = πθ̂, we obtain∣∣∣∣∣∑

x

(πθ̂(x)− πθ∗(x))
∑
a

µθ̂(a|x)R(x, a)

∣∣∣∣∣
≤ Rmaxκ‖π′θ∗(P θ∗ − P θ̂)‖1, (17)

where, with some overloading of notation, κ is now as
specified in the expressions provided in the statement of
Theorem VI.1.

The ith component of the vector π′θ∗(P θ∗ − P θ̂) is given
by

[π′θ∗(P θ∗ − P θ̂)]i

=
∑
x

πθ∗(x)[P θ∗(i|x)− P θ̂(i|x)]

=
∑
x

πθ∗(x)
∑
a

[P (i|x, a)(µθ∗(a|x)− µθ̂(a|x))],

where, in the last equality, we applied the definition of the
transition probability P θ associated with RSP θ.

It follows

‖π′θ∗(P θ∗ − P θ̂)‖1

=
∑
y

∣∣∣∣∣∑
x

πθ∗(x)
∑
a

[P (y|x, a)(µθ∗(a|x)− µθ̂(a|x))]

∣∣∣∣∣
≤
∑
x

πθ∗(x)
∑
y

∑
a

∣∣[P (y|x, a)(µθ∗(a|x)− µθ̂(a|x))]
∣∣

≤
∑
x

πθ∗(x)
∑
a

∣∣µθ∗(a|x)− µθ̂(a|x)
∣∣ , (18)

where the last inequality follows by noting that∑
y P (y|x, a) = 1 for all (x, a).
Now, using (18), (15), similar steps as in (14), and Theo-

rem V.3, we can bound the second term in (11) as∣∣∣∣∣∑
x

(πθ̂(x)− πθ∗(x))
∑
a

µθ̂(a|x)R(x, a)

∣∣∣∣∣
≤
√

2ε log 2 κ Rmax. (19)

Finally, combining (14) and (19) and applying Theorem V.3,
the result in Theorem VI.1 follows.

VIII. A ROBOT NAVIGATION EXAMPLE

In this section, we discuss the experimental setup to simulate
an MDP and validate the effectiveness of our proposed learn-
ing algorithm. We consider the problem of learning the policy
used by an agent (a robot) as it moves on a 2-dimensional grid.
After simulating the movement of the robot and recording its
actions in various states, we use these states-action samples to
learn the policy of the robot and evaluate its performance.

A. Environment and Agent Settings

Consider an agent moving in a 21×21 grid, shown in Fig. 1.
The agent’s position is specified by a two-tuple state x =
(x1, x2), representing its coordinates in the grid. We assume
(0, 0) is at the southwest corner of the grid and we make the
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convention that coordinates x = (x1, x2) on the grid identify
the square defined by the four points (x1, x2), (x1 + 1, x2),
(x1, x2 + 1), and (x1 + 1, x2 + 1). For example, when we say
that the agent is at x = (x1, x2) we mean that the agent can
be anywhere in the above square.

Fig. 1. The environment of the MDP is a 21× 21 grid. Colored (or shaded)
grid squares correspond to waypoints (identified by the southwest vertex of
the square) for defining features that are used by the estimated policy. The four
squares colored green correspond to waypoints on the grid with an associated
reward. The one step reward function of the MDP is a weighted sum of
Gaussian functions specified by these reward points on the grid.

At each time instance, the agent can take 4 actions: North,
East, West, and South. Without loss of generality, we
assume that the agent can only move to a neighboring grid
point. The destination of the agent is based on its current
position and the action. We assume that the agent movements
are subject to uncertainty, which can cause the agent’s intended
next position to shift to a point adjacent to that position. For
example, the agent in state (x1, x2) taking action North will
enter state (x1, x2 + 1) with probability 0.8 (the intended
next position), but can enter either of the states (x1 − 1, x2),
(x1 + 1, x2), (x1, x2 − 1) and (x1, x2) with probability 0.05,
respectively. At the boundary points of the grid, the agent
bounces against the “wall” in the opposite direction with its
position unchanged.

The environment contains points with associated rewards.
Specifically, as shown in Fig. 1, squares (waypoints) colored
dark green at northeast and southwest have associated reward
equal to 1 and squares (waypoints) colored light green at
northwest and southeast have associated reward equal to 20.
The reward rx of a waypoint x “spreads” on the grid according
to a Gaussian function. Specifically, the immediate reward at
point y due to the reward associated with waypoint x is given
by

rx
1√
2π
e−
‖x−y‖22

2

and is constant for all actions. Summing over all reward
waypoints x, the immediate reward at some point y is given
by

f(y) =
∑
x

rx
1√
2π
e−
‖x−y‖22

2 , (20)

where we assume that a point x with no associated reward
satisfies rx = 0. The one step reward function induced by the
four reward waypoints of Fig. 1 is shown in Fig. 2.

Fig. 2. The one step reward function induced by the reward waypoints shown
in Fig. 1.

The agent (robot) entering some state (position) y collects
reward equal to the immediate reward f(y). The objective of
the agent is to navigate on the grid so as to maximize the
long-term average reward collected.

The key step of efficient learning is to define appropriate
features we will use to represent the agent’s policy. The
way of selecting features in this paper is inspired by spline
interpolation [28]. We define 36 waypoints on the grid, shown
in Fig. 1 (blue and green grid squares). For a state-action pair
(x, a), we set y to be the intended next state and define the
features

φi(x, a) = fi(y), i = 1, . . . , 36,

where fi(·) is defined as

fi(y) = rxi

1√
2π
e−
‖xi−y‖22

6.215 , (21)

and xi is the location of the ith waypoint.
Notice that we are using the kernel-based feature selec-

tion method discussed in Sec. IV. Specifically, for each
state-action pair (x, a) we use the encoding y(x, a) =
arg maxz P (z|x, a), that is, the most likely next state. We
select a collection of state-action pairs (xi, ai), where xi are
our waypoints. We use a different encoding for these state-
action pairs, namely, ŷ(xi, ai) = xi, thus slightly generalizing
the feature selection scheme presented in Sec. IV. We then
define feature functions φi(x, a) = Ki(ŷ(xi, ai),y(x, a))
using a radial basis function kernel given by the expression in
(21), where we allow the magnitude to depend on i (equal to
rxi

).

B. Simulation and Learning Performance

For the MDP we have introduced, we use value iteration [2]
to find the best policy. We generate independent state-action
samples according to this policy. Then, we estimate the policy
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using the above samples according to the logistic regression
algorithm discussed in Section III. We largely follow the
style of [17] in presenting our numerical results. We compare
average rewards from 3 different policies with respect to the
number of features and the number of samples as follows:

1) Target policy: We choose the policy obtained by the
value iteration algorithm [2] as the target policy. It is
used to generate samples for learning.

2) �1-regularized policy: The RSP trained using the Algo-
rithm in Section III.

3) Unregularized policy: The RSP trained using logistic
regression in Section III, but without the �1 constraint
on the parameter vector θ (cf. problem (3)).

4) Greedy policy: The agent takes the action with the
largest expected next step reward, i.e., the local reward
feature is the only consideration. This policy is used as
a baseline.

Fig. 3. Average rewards (over 100 runs) of different policies as a function
of the number of samples. The shaded regions of the plot are the upper and
lower 10% percentile regions.

We randomly sample the state-action pairs generated by the
optimal policy and use these samples to form a training set to
be used in learning an RSP (as in Section III). This process
is repeated 100 times. The average rewards of all policies we
considered as a function of the number of samples used for
training are displayed in Fig. 3. As shown in Fig. 3, both
the �1-regularized and the unregularized policy benefit from
learning and monotonically increase their performance as the
number of training samples grows large. In fact, the regular-
ized policy approaches the performance of the target policy for
sufficiently large training samples. For most runs, the policies
we learn (both regularized and unregularized) perform better
than the greedy policy. Furthermore, the regularized policy
performs better than the unregularized, demonstrating that the
former generalizes better out-of-sample.

To better compare the regularized with the unregularized
policy, we also consider the average (Kullback-Leibler) KL-
divergence of each of these policies with the target policy

Fig. 4. Left-side y-axis: average (over 100 runs) negative log-likelihood
(NLL) of the two regressed policies as a function of the number of samples.
Right-side y-axis: percentage of the target policy reward achieved by the two
regressed policies as a function of the number of samples.

(cf. the quantity defined in (7)). Since the target policy is
deterministic, the average KL-divergence becomes the negative
log-likelihood. Fig. 4 (left-side y-axis) shows the average
negative log-likelihood of the two regressed policies. The
same figure also plots (right-side y-axis) the percentage of
the target policy reward achieved by each of the two policies
as we vary the number of samples. It can be seen that the
regularized policy is closer to the target policy compared with
the unregularized one.

We can also observe that, as expected, the regularized policy
increases the sparsity of the estimated parameter vector θ̂. In
particular, let us define a sparsity metric for θ̂ as

ρ(θ̂) =
|{θ̂i|θ̂i < 0.1maxj(θ̂j)}|

n
.

Then, taking the average of the above metric over 1400
different runs consisting of different training sets and number
of samples used from each training set, we obtain that average
ρ(θ̂) = 0.64 for the regularized policy compared to average
ρ(θ̂) = 0.28 for the unregularized policy. However, this larger
than a factor of two decrease in the average sparsity metric
comes at some computation cost. The average running time to
compute the regularized policy is 78.68 seconds, which is not
excessive but much larger than the 1.07 seconds, on average,
needed to compute the unregularized policy. 1

IX. CONCLUSIONS

We considered the problem of learning a policy in a Markov
decision process using the state-action samples associated with
the policy. We focused on a Boltzmann-type policy that is
characterized by feature vectors associated with each state-
action pair and a parameter that is sparse.

To learn the policy, we used �1-regularized logistic re-
gression and showed that a good generalization error bound
also guarantees a good bound on the regret, defined as the
difference between the average reward of the estimated policy
and the target policy. Our results suggest that one can estimate
an effective policy using a training set of size proportional to

1The code was run on a 2×8-core 2.7 GHz Intel Xeon E5-2680 CPU with
64Gb of RAM and used only 4 threads and 8Gb of RAM.
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the logarithm of the number of features used to represent the
policy.

APPENDIX A
PROOF OF THEOREM V.3

The proof is similar to the proof of Theorem V.2 (Theorem
3.1 in [17]) but with key differences to accommodate the
multiple actions per state. We start by introducing some
notations and stating necessary lemmata.

Denote by F a class of functions over some domain
DF and range [−M,M ] ⊂ R. Let F|z(1),...,z(m) =

{(f(z(1)), . . . , f(z(m))) | f ∈ F} ⊂ [−M,M ]m, which is
the valuation of the class of functions at a certain collection
of points z(1), . . . , z(m) ∈ DF . It is said that a set of vectors
{v(1), . . . ,v(k)} in Rm ε-covers F|z(1),...,z(m) in the p-norm,
if for every point v ∈ F|z(1),...,z(m) there exists some v(i),
i = 1, . . . , k, such that ‖v − v(i)‖p ≤ m1/pε. Let also
denote Np(F , ε, (z(1), . . . , z(m))) the size of the smallest
set that ε-covers F|z(1),...,z(m) in the p-norm. Finally, let
Np(F , ε,m) = supz(1),...,z(m) Np(F , ε, (z(1), . . . , z(m))).

To simplify the representation of log-loss of the gen-
eral logistic function in (1), we use the following nota-
tions. For each x ∈ X , φ(x) = (φ1(x), . . . ,φH(x)) =
(φ(x, 1), . . . ,φ(x,H)) ∈ [0, 1]nH denotes feature vectors
associated with each action. For any θ ∈ Rn, define the log-
likelihood function l : [0, 1]nH × {1, . . . ,H} → R as

l(φ(x), i) = − log

(
exp(θ′φi(x))∑H
j=1 exp(θ′φj(x))

)
.

Note µθ(a|x) = exp{−l(φ(x), a)}. Further, let g : [0, 1]n →
R be the class of functions g(x) = θ′x. We can then rewrite
l using g as l(φ(x), y) = l(g(φ1(x)), . . . , g(φH(x)), y).

Lemma A.1 ([17], [29]) Let there be some distribution D
over DF and suppose z(1), . . . , z(m) are drawn from D i.i.d.
Then,

P

[
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

f(z(i))− Ez∼D[f(z)]

∣∣∣∣∣ ≥ ε
]

≤ 8E
[
N1(F , ε/8, (z(1), . . . , z(m)))

]
exp

(
−mε2

512M2

)
.

Lemma A.2 ([30]) Suppose G = {g : g(x) = θ′x, x ∈
Rn, ‖θ‖q ≤ B} and the input x ∈ Rn has a norm-bound
such that ‖x‖p ≤ ζ, where 1/p+ 1/q = 1. Then

log2N2(G, ε,m) ≤ B2ζ2

ε2
log2(2n+ 1). (22)

Lemma A.3 ([17], [31]) If |f(θ)− f̂(θ)| ≤ ε for all θ ∈ Θ,
then

f
(

arg min
θ∈Θ

f̂(θ)
)
≤ min
θ∈Θ

f(θ) + 2ε.

Lemma A.4 Let G be a class of functions from Rn to some
bounded set in R. Consider F as a class of functions from
RH ×A to some bounded set in R, with the following form:

F =
{
fg(φ(x), y) = l(g(φ1(x)), . . . , g(φH(x)), y),

g ∈ G, y ∈ A
}
. (23)

If l(·, y) is Lipschitz with Lipschitz constant L in the `1-norm
for every y ∈ A, then we have

N1(F , ε,m) ≤
[
N1(G, ε/(LH),m)

]H
.

Proof: Let Γ = N1(G, ε/(LH),m). It is sufficient to
show for every m inputs

z(1) = (φ(x(1)), y(1)), . . . , z(m) = (φ(x(m)), y(m))

we can find ΓH points in Rm that ε-cover F|z(1),...,z(m) .
Fix some set of points z(1), . . . , z(m) ⊂ RnH+1. From the
definition of N1(G, ε/(LH),m), for each j ∈ {1, . . . ,H},

N1(G, ε/(LH), (φj(x
(1)), . . . ,φj(x

(m)))) ≤ Γ.

Let 2 {v(1)
j , . . . ,v

(Γ)
j } be a set of Γ points in Rm that ε/(LH)-

covers G|φj(x(1)),...,φj(x(m)). We use notation vkj,i to denote
the ith element of vector vk

j . Then, for any g ∈ G and j ∈
{1, . . . ,H}, there exists a k(j) ∈ {1, . . . ,Γ} such that

‖(g(φj(x
(1))), . . . , g(φj(x

(m)))− v
k(j)
j ‖1

=
m∑
i=1

|g(φj(x
(i)))− vk(j)

j,i |

≤m ε

LH
. (24)

Now consider ΓH points with the following form

l(v
(j1)
1,1 , v

(j2)
2,1 , . . . , v

(jH)
H,1 , y

(1)), . . . ,

l(v
(j1)
1,m , v

(j2)
2,m , . . . , v

(jH)
H,m, y

(m)),

where j1, . . . , jH ∈ {1, . . . ,Γ}.
Given a g ∈ G and fg(·) ∈ F , let k(1), . . . k(H) ∈

{1, . . . ,Γ} be as defined above and consider∥∥∥∥(fg(z(1)), . . . , fg(z(m))
)
−(

l(v
k(1)
1,1 , v

k(2)
2,1 , . . . , v

k(H)
H,1 , y(1)), . . . ,

l(v
k(1)
1,m , v

k(2)
2,m , . . . , v

k(H)
H,m , y(m))

)∥∥∥∥
1

≤ L
∥∥∥∥( H∑

h=1

|vk(h)
h,1 − g(φh(x(1)))|, . . . ,

H∑
h=1

|vk(h)
h,m − g(φh(x(m)))|

)∥∥∥∥
1

= L
H∑

h=1

m∑
i=1

|g(φh(x(i)))− vk(h)
h,i | ≤ mε,

where we used the Lipschitz property of the l(·) function in
the first inequality and the last inequality follows from (24).

2One may find less than Γ points, but we consider the worst case scenario.
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Thus, the ΓH points ε-cover F|z(1),...,z(m) in `1-norm. Finally,
notice that the set of m points {z(1), . . . , z(m)} is arbitrary,
which concludes the proof.

We now continue with the proof of Theorem V.3. Recall
Algorithm 1 and let B̂ be the smallest integer in {0, 1, 2, 4, . . .}
that is greater or equal to rK. Notice that in Algorithm 1 one
can use a larger C but we select the smallest possible to obtain
a tighter bound. For such a B̂, it follows that rK ≤ B̂ ≤ 2rK.
Define a class of functions G with domain [0, 1]n as

G =
{
g : [0, 1]n → R

∣∣∣ g(x) = θ′x, ‖θ‖1 ≤ B̂
}
.

By Lemma A.2 and Eq. (22),

log2N2(G, ε/H,m) ≤ B̂2H2

ε2
log2(2n+ 1).

The partial derivatives of the log-loss function are

∂

∂xi
l(x1, . . . , xH , k) =

−1 + exp(xi)∑H
j=1 exp(xj)

, k = i,

exp(xi)∑H
j=1 exp(xj)

, k 6= i,

and it can be seen that∣∣∣∣ ∂∂xi l(x1, . . . , xH , k)

∣∣∣∣ ≤ 1.

Hence, the Lipschitz constant for l(·, y) is 1 for any y =
1, . . . ,H .

By Lemma A.4, we have

log2N1(F , ε,m) ≤ H log2N1(G, ε/H,m).

Using the relation N1 ≤ N2 ([17], [30], [31]), we obtain

log2N1(F , ε,m) ≤ B̂2H3

ε2
log2(2n+ 1). (25)

We next find the range of class F . To begin with, the range
of class G is

|g(x)| = |θ′x| ≤ ‖θ‖1‖x‖∞ ≤ B̂.

Since l(·, i) is Lipschitz in `1-norm with Lipschitz constant 1
and |f(0, . . . , 0, y)| = log(H) < H (by the fact H ≥ 2), then

|fg(φ(x), y)− f(0, y)| ≤
H∑

h=1

|θ′φh(x)| ≤ HB̂,

which implies

|fg(φ(x), y)| ≤ HB̂ +H. (26)

Finally, let m1 = (1−γ)m, which is the size of the training
set in Algorithm 1. From Lemma A.1, Eq. (26) and Eq. (25),
we have

P
[
∃f ∈ F :

∣∣∣∣ 1

m1

m1∑
i=1

f(φ(x(i)), y(i))− Ez∼D[f(z)]

∣∣∣∣ ≥ ε]

≤ 8 · 2
256r2K2H3

ε2 (2n+ 1) exp

(
−m1ε

2

512(2rK + 1)2H2

)
. (27)

Treat (1− γ) as a constant. To upper bound the right hand
side of the above equation by δ, it suffices to have

m = Ω
(

(log n) · poly(r, K, H, log(1/δ), 1/ε)
)
. (28)

The rest of the proof follows closely the proof of Theo-
rem 3.1 in [17]. We outline the key steps for the sake of
completeness. Suppose m satisfies (28); then, with probability
at least 1− δ, for all f ∈ F∣∣∣∣ 1

m1

m1∑
i=1

f(φ(x(i)), y(i))− Ez∼D[f(z)]

∣∣∣∣ ≤ ε.
Thus, using our definition of F in (23), for any θ with ‖θ‖1 ≤
B̂ and with probability at least 1− δ, we have∣∣∣∣ 1

m1

m1∑
i=1

(
− logµθ(y(i)|x(i))

)
−E(x,y)∼D

[
− logµθ(y|x)

]∣∣∣∣
≤ ε.

Therefore, for all θ with ‖θ‖1 ≤ B̂ and with probability at
least 1− δ, it holds

|ε̂S1(θ)− ε(θ)| ≤ ε,

where S1 is the training set from Algorithm 1.
Essentially, we have shown that for m large enough the

empirical log-loss function ε̂S1(·) is a good estimate of the
log-loss function ε(·). According to Step 2 of Algorithm 1,
θ̂ = arg minθ:‖θ‖1≤B̂ ε̂S1(θ). By Lemma A.3, we have

ε(θ̂) ≤ min
θ:‖θ‖1≤B̂

ε(θ) + 2ε

≤ε(θ∗) + 2ε, (29)

where θ∗ is the target policy and the last inequality follows
simply from the fact that ‖θ∗‖1 ≤ rK ≤ B̂.

Eq. (29) indicates that the training step of Algorithm 1,
finds at least one parameter vector θ̂ whose performance is
nearly as good as that of θ∗. At the validation step, we select
one of the θB found during training. It can be shown ([31])
that with a validation set of the same order of magnitude as
the training set (and independent of n), we can ensure that
with probability at least 1 − δ, the selected parameter vector
will have performance at most 2ε worse than that of the best
performing vector discovered in the training step. Hence, with
probability at least 1 − 2δ, the output θ̂ of our algorithm
satisfies

ε(θ̂) ≤ ε(θ∗) + 4ε. (30)

Finally, replacing δ with δ/2 and ε with ε/4 everywhere in
the proof, establishes Theorem V.3.
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