Neural Circuits for Learning Context-Dependent
Associations of Stimuli

Henghui Zhu?, Toannis Ch. Paschalidis?, Michael E. Hasselmo®

@ Division of Systems Engineering, Boston University, 15 Saint Mary’s Street, Brookline,
MA 02446.

b Department of Electrical and Computer Engineering, Division of Systems Engineering,
and Department of Biomedical Engineering, Boston University, 8 Saint Mary’s Street,
Boston, MA 02215.
¢Center for Systems Neuroscience, Boston University, 2 Cummington Mall, Boston, MA
02215.

Abstract

The use of reinforcement learning combined with neural networks provides
a powerful framework for solving certain tasks in engineering and cogni-

tive science. Previous research shows that neural networks have the power
to automatically extract features and learn hierarchical decision rules. In
this work, we investigate reinforcement learning methods for performing a
context-dependent association task using two kinds of neural network mod-
els (using continuous firing rate neurons), as well as a neural circuit gating
model. The task allows examination of the ability of different models to
extract hierarchical decision rules and generalize beyond the examples pre-
sented to the models in the training phase. We find that the simple neural
circuit gating model, trained using response-based regulation of Hebbian as-
sociations, performs almost at the same level as a reinforcement learning
algorithm combined with neural networks trained with more sophisticated
back-propagation of error methods. A potential explanation is that hierar-
chical reasoning is the key to performance and the specific learning method
is less important.

Keywords: Neural Circuit Model, Neural Networks, Reinforcement
Learning.

Email addresses: henghuiz@bu.edu (Henghui Zhu), yannisp@bu.edu (Ioannis Ch.
Paschalidis), hasselmo@bu. edu (Michael E. Hasselmo)

URL: http://sites.bu.edu/paschalidis/ (Ioannis Ch. Paschalidis),
http://www.bu.edu/hasselmo (Michael E. Hasselmo)

Preprint submitted to Neural Networks August 4, 2018

1. Introduction

The understanding of mechanisms for flexible cognition in a range of dif-
ferent tasks will benefit from the understanding of the mechanisms by which
neural circuits can perform symbolic processing. One aspect of symbolic pro-
cessing is the application of rules to a range of different combinations of task
stimuli in different contexts. In this work, we examine how different neural
network models can learn the application of specific rules involving the effect
of repeated exposure to different spatial contexts on the associations between
different stimuli and responses.

We compare traditional reinforcement learning algorithms using neural
network function approximators to a framework using gating of neural activ-
ity. These models contain simplified representations of neuronal input-output
functions that use standard but relatively abstract models of neuronal ac-
tivity. They can be seen as general models of the interaction of populations
of neurons in neocortical structures. Extensive evidence indicates a role of
neural circuit activity in the prefrontal cortex (PFC) in the learning of task
rules (Miller and Cohen, 2001; Wallis et al., 2001). Similarly, activity in the
prefrontal cortex has been implicated in learning and implementation of hier-
archical rules (Badre et al., 2010; Badre and Frank, 2012). Thus, the neural
representations of context-dependent structure used in the models presented
here are relevant to the mechanisms of neural circuits mediating rule-based
function in the prefrontal cortex.

Considerable recent research has focused on the strength of deep rein-
forcement learning. This recent work returns to the use of neural networks
as function approximators in the context of reinforcement learning first con-
sidered by Tesauro (1994), but introduces deep architectures instead of the
earlier multilayer perceptron with one hidden layer used in Tesauro (1994).
Arguably, this represents a break from a body of work considering func-
tion approximators as linear combinations of hard-to-engineer nonlinear fea-
ture functions (Bertsekas and Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1997;
Konda and Tsitsiklis, 2003; Pennesi and Paschalidis, 2010; Estanjini et al.,
2012; Wang and Paschalidis, 2017a; Wang et al., 2015).

We study whether traditional reinforcement learning methods, such as
Q-learning (Watkins and Dayan, 1992; Tsitsiklis, 1994) and @-learning using
linear function approximation, can learn to generalize beyond what they have
seen during training for context-dependent association tasks. We prove that
this is not possible, thus revealing significant limitations of these methods.

It is therefore worthwhile to consider the mechanisms by which deep re-
inforcement learning could be used to perform context-dependent rules for
associations between stimuli and responses. Recent work has shown that
deep learning techniques coupled with reinforcement learning algorithms can
learn decision making strategies over a high-dimensional state space such as
images in a video game (Mnih et al., 2015; Hausknecht and Stone, 2015;
Mnih et al., 2016). In Mnih et al. (2015), the deep @-network is used to
train a reinforcement learning agent playing Atari games using game images.
Mnih et al. (2016) further develops this idea into actor-critic learning and
also proposes a parallel computing scheme for reinforcement learning. Be-
sides the deep @)-network, deep neural networks have been used to directly
approximate the policy, which can be optimized using either a policy gradient
method (Peters and Schaal, 2008), a Newton-like method (Wang and Pascha-
lidis, 2017b), or trust region policy optimization (Schulman et al., 2015; Liu
et al., 2018). Finally, neural networks have been shown to exhibit good per-
formance in some general control tasks, see, e.g., (Watter et al., 2015; Levine
et al., 2016).

The neural networks in the models outlined above enable the learning
agent to make decisions hierarchically. All these models use the traditional
neural network elements with continuous values representing the mean firing
rate across a population of neurons that increases when the input crosses
a threshold (Rumelhart et al., 1986b). These papers also use multi-layer
networks to code the relevant features of the sensory input images, train-
ing the synaptic connections between the layers with the traditional back-
propagation of error algorithm (Rumelhart et al., 1986a). The multi-layer
networks are then combined with the Q)-learning algorithm to learn the value
of different actions for a given state (Dayan and Watkins, 1992; Sutton and
Barto, 1998), resulting in sophisticated game-playing of the simulated agent.

In this paper, we test a similar framework to determine how well it can
perform in the specific learning task we consider, which involves detecting the
hierarchical structure of the correct response to stimuli in different contexts.
In addition, we test how this framework can generalize to produce correct
responses when encountering novel combinations of context and stimuli. Dif-
ferent than the existing work, we examine the use of recurrent neural network
architectures (Xu et al., 2015) in the reinforcement learning algorithms. As
we will see, these networks perform significantly better than the feedforward
networks in our learning task.

The neural network-based reinforcement learning methods discussed abo-

ve are compared to another neural circuit approach using the generation and
selection of gating elements that regulate the spread of activity between dif-
ferent populations of neurons. This framework for modeling effects of gating
has precursors in a number of previous models. In particular, the use of neu-
ronal interactions to gate the spread of activity within a network was used
in previous models of the prefrontal cortex that focused on modeling goal-
directed action selection using interacting populations of neurons (Hasselmo,
2005; Koene and Hasselmo, 2005). This resembles features of a general the-
ory of prefrontal function focused on routing of activity (Miller and Cohen,
2001). The use of cortical gating units is related but different in implemen-
tation from the use of basal ganglia to gate activity into working memory
(O’Reilly and Frank, 2006). In addition, the selective learning of internal
memory actions that manipulate memory buffers was used in previous mod-
els in which reinforcement learning algorithms were employed to regulate the
use of working memory or episodic memory for solving simple behavioral
tasks in the form of non-Markov decision processes (Hasselmo, 2005; Has-
selmo and Eichenbaum, 2005; Zilli and Hasselmo, 2008c). Different types of
memory buffers can be used in different ways to solve different behavioral
problems (Zilli and Hasselmo, 2008a,b). In this paper, we compare previous
neural network models with the framework of using simple models of gating
in neural circuits to learn the context-dependent stimulus-output map. Since
the decision rule for the task is hierarchical, we use a sequential input for
this model based on sequential attention to different input components. The
learning rule for the gated weights in this neural circuit model is Hebbian,
with plasticity of the synapses regulated by correct responses. We compare
the performance of neural network models with the performance of the neu-
ral circuit gating model in both learning the hierarchical decision rules and
in making successful generalizations in order to generate correct responses to
novel combinations of context and stimuli.

The remainder of this paper is organized as follows. Section 2 presents
the learning task, the negative results on traditional reinforcement learning
algorithms, the neural network-based reinforcement learning algorithms, and
the neural circuit gating model. Section 3 presents results from training these
models and applying the trained models to test examples. In Section 4, we
examine the way the various models make decisions and seek to qualitatively
understand the performance results. Conclusions are in Section 5.

Notational conventions. Bold lower case letters are used to denote
vectors and bold upper case letters are used for matrices. Vectors are column

4

vectors, unless explicitly stated otherwise. Prime denotes transpose. For the
column vector x € R" we write x = (xy,...,2,) for economy of space.
Vectors or matrices with all zeroes are written as 0, the identity matrix as
I, and e is the vector with all entries set to 1. We will use script letters to
denote sets.

2. Methods

In this section, we present a number of different neural network-based
models for learning context-dependent behavior. We start by presenting
a specific learning task where one has to associate responses with inputs
consisting of a stimulus and a context. We describe how to train the proposed
models and test how effective they are in generalizing based on context, that
is, whether they can use context information to generate correct responses
to previously unseen inputs.

2.1. The learning task

Figure 1: Mapping between individual stimuli (A, B, C, D) and the spatial context (quad-
rants 1, 2, 3, 4) onto correct actions X or Y, providing 16 state-action pairs. The under-
lined (red) state-action pairs are not seen during training but presented during testing.

The basic learning task was considered in our previous work in Raudies
et al. (2014). The task aims to evaluate the ability of a learning agent
to associate specific stimuli with appropriate responses in particular spatial
contexts. Figure 1 shows the mapping between input and responses. The
input consists of stimuli, denoted by letters A, B, C, and D, and a spatial
context corresponding to four quadrants and denoted by numbers 1, 2, 3,
and 4. We will use the term state to refer to the stimulus-context pairs.
The two legal responses (or actions) are X and Y. To test the ability of

the algorithms to handle more complex tasks, we also consider a similar task
with 16 contexts shown in Figure 2. In this task, we have the same two rules
for mapping stimuli to responses but a larger number of contexts than the
task in Figure 1.

A
—
1 2 | 3| & -
C'-—____*
5 | 6| 7 | 8 R
9 (10 | 11 | 12 A
B —

[+
S
13 | 14 | 15 | 16 i

Figure 2: A larger context association task with 16 contexts. Different contexts map to
one out of two different stimulus-response association rules. Specifically, contexts 1, 3, 6,
8, 9, 11, 14, and 16 (blue) correspond to the top right rule and the remaining contexts
(green) to the lower right rule. Mapping between individual stimuli and the spatial context
onto correct actions X or Y yields 64 state-action pairs.

Notice that for both tasks the mapping from states to actions exhibits
symmetry, in the sense that the association rule learned in one spatial context
is shared with another context. To test the generalization ability of the
various models, we hide some context-stimulus pairs during training. For
the basic task, the hidden states are underlined and in red in Figure 1. For
the larger task, we hide pairs involving a specific stimulus in every context but
in a way so that for each hidden context-stimulus pair there exists another
pair with the same stimulus and response in another context which is not
hidden. This is done so that sufficient information to infer responses for every
context-stimulus pair is presented during training.

We are interested in learning these association rules from past examples,
that is, in a reinforcement learning framework. We are particularly interested
in the ability of methods to learn the symmetry in the state-action map and
produce correct actions for previously unseen states, effectively generalizing
from past examples. In Raudies et al. (2014) we proposed a classification ap-
proach using a deep belief network model to learn the correct actions (labels)
to given states (data points). One can also develop alternative supervised
learning approaches including different classification methods and regression.

Our objective in this work, however, is not necessarily to learn the best pos-
sible decision function but rather to investigate the power of neural circuit
models and evaluate the effectiveness of different learning methods. We will
work in a reinforcement learning framework.

We will use two different representations (codings) for the state, shown
in Figure 3. The first method is a vector presentation, introduced in Raudies
et al. (2014). It uses an (x + [)-dimensional binary vector to code the state,
where [is the number of contexts and s the number of stimuli. We will use
n = k+I(to denote the dimension of the entire vector encoding the state. For
the task in Figure 1, we have n = 8, while for the task in Figure 2, n = 20.
The first x bits correspond to the stimuli. Specifically, for both tasks we
consider K = 4 and the first four bits correspond to the stimuli A, B, C, and
D, respectively, as shown in Figure 3(a). The last [bits correspond to the
contexts 1,...,[. In the basic task of Figure 1 for example, [= 4 and the
last four bits of the vector correspond to contexts 1, 2, 3, and 4, respectively.
Figure 3(b) provides an example of this type of encoding for the task of
Figure 1.

Our second representation of the state, uses a sequence of two n-dimensio-
nal binary vectors. The first vector in the sequence represents the stimulus;
for our tasks, bits 1 through s (= 4) being 1 correspond to stimuli A through
D, respectively, while the last [bits are set to zero. The second vector in the
sequence has its first x bits set to zero and the last [bits, x through s + [,
being set to 1 to represent contexts 1 through [, respectively. Figure 3(c)
shows an example of representing state B3 in the task of Figure 1 using a
two vector sequence s1,ss. This type of representation is similar to attention
mechanisms used in Recurrent Neural Network (RNN) models (Xu et al.,
2015), in which the agent is assumed to first pay attention to a stimulus and
then to the context.

To introduce some of our various learning methods, it would be convenient
to assume a learning agent who is continuously being presented with states
(the stimuli-context pairs) and produces an action (response) that can be
either X or Y. Given a state and the selected action, the agent transitions to
a next state which simply corresponds to the next state at which the agent
is asked to produce a response. We will use a discrete-time Markov Decision
Process (MDP) (Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996) to represent
this learning process.

The MDP has a finite state space S, consisting of the states and an action
space U, consisting of the actions X and Y. Let sy € S and u; € U be the

7

(a) The encoding of different stimuli and contexts in the task of Figure 1.

Stimuli and contexts Encoding
A (1,0,0,0,0,0,0,0)
. B (0,1,0,0,0,0,0,0
Stimulus C (0,0, 1,0,0,0,0.,0)
D (0,0,0,1,0,0,0,0
1 (0,0,0,0,1,0,0,0)
) (0,0,0,0,0,1, 0,0
Context 3 (0,0,0,0,0,0,1,0)
1 (0,0,0,0,0,0,0,1)

(b) An example of vector encoding
for stimulus-context pairs.

Stimulus-context pair: B3,
Stimulus B — (0,1,0,0,0,0,0,0),
Context 3 — (0,0,0,0,0,0,1,0),

Encoded vector:
s =(0,1,0,0,0,0,1,0).

(¢) An example of sequential enco-
ding for stimulus-context pairs.

Stimulus-context pair: B3,
Stimulus B — (0, 1,0,0,0,0,0,0),
Context 3 — (0,0,0,0,0,0,1,0),
Encoded time series:

s; =(0,1,0,0,0,0,0,0),

sy = (0,0,0,0,0,0,1,0).

Figure 3: The vector encoding and the sequential encoding for the stimulus-context pairs.

state and the action taken at time k respectively, and let sy be an initial state
of the MDP. Let p(sj41|sk,u) denote the probability that the next state is
Sk+1, given the current state is s, and action w is taken. We assume, without
loss of generality in our setting, that these transition probabilities are uniform
in all non-hidden states for all states and actions.

When the agent selects a correct action, it receives a reward; otherwise,
it gets penalized. Let g(sg,uy) be the one-step reward at time & when action
uy, is selected at state s,. We define the one-step reward to be 1 if wuy is
the correct response at state sy and —4 otherwise. We seek a policy, which
is a mapping from states to actions, to maximize the long-term discounted
reward

R= Zrykg(slﬁuk)a (1>

where we will use a discount rate of v = 0.9.

We next introduce some basic concepts from reinforcement learning; see
Bertsekas (1995) for a more comprehensive treatment. The value function
V (s) for a state s is the maximum long-term reward obtained starting from
s. The value function satisfies the following intuitive recursive equation

V(s) = max (Q(Sﬂt) + VZp(qls,U)V(q)> ; (2)

qeS

which is known as Bellman’s equation. Solving the MDP amounts to finding
a value function, say V*(), which is a solution to (2). Given such a func-
tion V*(-), one can easily find the optimal action u* at each state s as the
maximizing u in (2) and that «* will necessarily be the correct action.

Define now the so-called Q-value function which is a function Q(s,u) of
state-action pairs and is equal to the maximum long-term reward obtained
starting from s and selecting as first action u. The ()-value function also
satisfies a recursive equation, namely

Q(s,u) = g(s,u) +7 Y plals, u) max Q(a, v). (3)

q€eS

From a solution, say Q*(+,-), of (3) one can also obtain the optimal action at
each state s as u*(s) = arg max,cy Q(s, u).

2.2. Traditional Reinforcement Learning and Linear Function Approxima-
tion

The traditional reinforcement learning methods we consider in this work
are the reinforcement learning algorithms that use a look-up table to store the
value or ()-value function during training. Some typical examples are value
iteration, TD-learning and @Q-learning Bertsekas (1995). We will show that
these methods are not suitable for the context association tasks we consider.
For simplicity, we will establish this result for)-learning; it can be easily
extended to the other methods.

Q-learning (Watkins and Dayan, 1992) is a method for solving (3) and can
be used even in the absence of an explicit model for the MDP. Essentially, -
learning solves (3) using a value iteration (successive approximation) method
but with the expectation with respect to the next state being approximated
by sampling. The original ()-learning algorithm iterates over the ()-values at
all states and actions, which is computationally intractable for large MDPs.
Approximate versions of the method have been introduced (see Bertsekas
(1995); Bertsekas and Tsitsiklis (1996)), where the Q-value function is ap-
proximated using a set of features of the state-action pairs. This makes it
possible to derive good policies for MDPs with a large state-action space.
Traditionally, linear function approximation is used, since it is simple and
leads to convergence results (Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996;
Xu et al., 2014). However, the effectiveness of the policy depends greatly on
the selection of appropriate features and the latter is more of an art and very
much problem specific.

The original @)-learning algorithm updates the Q)-factors as follows:

Qrt1(sk, ug) = Qr(Sk, ur) — A\ TDy,
TDy, = Qr(sk, ug) — 7y max Qr (s, u) — g(sk, ur), (4)

where \; is a Square Summable but Not Summable (SSNS) step-size se-
quence, which means A\, > 0, > 2 A = oo, and Y ;- A7 < oco. The
actions u; can be chosen according to an e-random policy, i.e., with proba-
bility €, choose a random action and with probability 1 — ¢, choose an action
maximizing Q(sg,). The algorithm maintains all Q-factor estimates for all
state-action pairs during the training processes. Hence, it requires a large
amount of memory and a long training time if the number of the state-action
pairs is excessive (Bertsekas, 1995).

10

Although convergence proofs for the original @)-learning algorithm under
some conditions can be found in Bertsekas and Tsitsiklis (1996); Tsitsiklis
(1994), the @Q-factors obtained by this algorithm do not work perfectly for
the learning tasks we are considering. A negative result is shown in the next
theorem.

Theorem 2.1. The Q-factors obtained by the Algorithm in (4) do not con-
verge to the optimal Q-factor Q(s,u) for the MDP of the learning task in
Subsection 2.1 if the initial Qo(s,u) # Q(s,u) for any s included in the hid-
den states.

Proof: According to the Q-learning updating rule, the Q-factor for state-
action pair (s, u) can be updated if s, = s and u, = u for some k. However,
hidden states are not shown during training. Hence, Q-factors for state-
action pairs (s,u), where s is a hidden state are never updated from their
initial states. Thus, if their initial values are not optimal, the Q-factors
obtained by the Algorithm in (4) do not converge to their optimal values for
all state-action pairs. [}

The traditional reinforcement learning algorithms fail in the context asso-
ciation tasks since they use a look-up table presentation and lack the ability
to make a generalization. Therefore, using some function approximation for
Q-factors is necessary.)-learning using a linear function approximation is
one of the simplest choices and leads to convergence results Bertsekas (1995);
Bertsekas and Tsitsiklis (1996). The algorithm approximates the @-factors
as

Q(s,u) = ¢(s,u)'0 ()
where ¢(s,u) is a feature vector of the state-action pair of the MDP and 6
is a parameter vector obtained iteratively. The performance of this method
depends heavily on the selection of the features. As we show later, even when
using a set of features that contain sufficient information regarding the future
rewards associated with a state-action pair, the linear architecture fails to
find an optimal policy.

For ease of exposition, we consider the task in Figure 1; however, the
discussion below and Theorem 2.2 can be readily extended to the larger task.
We use the vector encoding of the state, shown in Figure 3, to construct
features. Since this is only a feature for the state, it needs augmentation
to account for actions as well. To that end, we use the following (Q)-factor

11

estimate:

) = ©

where ©® € R**® is a parameter matrix and x(s) € R® is the vector encoding
of the state s. Notice that this approximation is a special case of (5).

Theorem 2.2. The Q-factors obtained by the Q-learning algorithm under
the linear function approximation in (6) are not optimal for the MDP of the
learning task in Figure 1. Moreover, the policy obtained by this algorithm is
not the optimal.

Proof: We will show that the policy obtained from the @-factors derived
by this algorithm is not optimal. Suppose we find a)-factor function in the
form (6) that selects the optimal actions for all states. From Figure 1, it
follows:

Q(A1,X) > Q(AL,Y), (7)
Q(A2,X) < Q(A2,Y), (8)
Q(C1,X) < Q(CL,Y), (9)
Q(C2,X) > Q(C2.Y), (10)
From Figure 3, we obtain
x(A2) — x(A1) + x(C1) = x(C2). (11)

Using (11), the linearity of the @-factor estimates (cf. (6)) and (7)-(9), it
follows Q(C2,X) < Q(C2,Y). This contradicts (10). |

So, even if one uses a meaningful feature mapping that contains all rele-
vant information regarding a state, ()-learning may not always produce the
correct answer. This is because the linear function approximation does not
have the ability to make decisions hierarchically. This result can be easily
generalized to affine functions as well. Hence, -learning relies heavily on
the feature selection, with the latter being more of an art and very much
problem specific.

2.3. Q-Learning Using Neural Networks

Neural networks offer an alternative to feature engineering and learning
approximations of the value function, or the ()-value function, or even the

12

policy directly. Deep learning is making major advances in solving problems
that have resisted the best attempts of the artificial intelligence community
for many years (LeCun et al., 2015). The advance of deep learning makes
it possible to use deep neural networks to approximately solve the MDP
efficiently. One such method is the deep @-network (DQN), proposed in Mnih
et al. (2015). The main idea is to use a deep neural network to approximate
the @Q-value function and obtain the neural network weights using @)-learning.
Following this line of work, Mnih et al. (2016) proposed an asynchronous
method for ()-learning and actor-critic learning, on which the ()-learning
method we use for our learning task is based. Though the neural networks
used for our tasks are not deep, they provide some insight on the ability of
neural networks to generalize as is needed in the tasks we consider.

The algorithm for deep @-learning is shown in Algorithm 1 in Mnih et al.
(2016). It uses a deep neural network to approximate the @-value function
of the MDP. The neural network takes as input the state and outputs the
estimated ()-value function of the state and each possible action. Optimiz-
ing the neural network parameters is not an easy task, since reinforcement
learning using a nonlinear approximator is known to be unstable (Tsitsiklis
and Van Roy, 1997). Mnih et al. (2015) uses a biologically inspired mecha-
nism, termed experience replay, and maintains two neural networks with the
parameters of one of them being updated in a slower time-scale to mitigate
the instability. Further work (Mnih et al., 2016) simplifies the reinforcement
learning algorithm, replacing the replay mechanism with multiple agents.
For the tasks in the current paper, the instability of the algorithm can be
overcome by the periodical updating rule of Mnih et al. (2015). We only use
the algorithm in Mnih et al. (2016) with a single agent.

In particular, in this paper we compare two kinds of neural networks
(Goodfellow et al., 2016), both of which use units with continuous firing
rates, to approximate the)-value function. The first one is a feedforward
neural network, which consists only of fully-connected layers and inputs in
the vector encoding form (cf. Figure 3(b)). The second neural network is
a so-called Recurrent Neural Network (RNN), which accepts inputs in the
sequential encoding (cf. Figure 3(c)) and produces an estimate of the Q-
value function. The structure of these neural networks is shown in Figure 4.

In the feedforward network (Fig. 4(a)), the input is the vector encoded

state s; an n = k + [-dimensional vector as we indicated earlier. The out-
put is the @-value function at each possible action in that state, that is,

13

e EBEE3
v v v
: FC layer : : S:{m\:e H Serl\me :
r ‘ \ r / \
FC layer FC layer
N 7 y N 7 y
: Q-value est. j : Q-value est. j

(a) An illustration of the neural net- (b) An illustration of the neural net-
work for @Q-learning using vector en- work for (Q-learning using sequentially
coded input. encoded input.

Figure 4: An illustration of the neural networks used in @-learning. The FC layer in
the diagram represents a Fully-Connected feedforward layer. RNN indicates a Recurrent
Neural Network. @Q-value est. in the diagram denotes the estimate of the Q-value at the
input state for all possible actions.

the 2-dimensional vector (Q(s, X), Q(s,Y)). The activation functions of the
neurons are all Rectified Linear Units (ReLU), except the output layer (Nair
and Hinton, 2010). In particular, ReLU(x) = max(x, 0), for some vector x,
where the maximum is taken element-wise. There is no activation function in
the output layer, since the ()-value function should not be restricted. Letting
s be the input state, and h, q the outputs of the two FC layers in Fig. 4(a),
we have

h = ReLU(W;s + by), (12)
q= W2h + b27

where W; € R™*" is the weight matrix of the first FC layer, W, € R?*™
is the weight matrix of the second FC layer, and b; € R™, by, € R?, are
additional parameters of the first and second layers we need to learn. Here,
m is the number of hidden neurons in the first FC layer and q is the estimate
of (Q(s. X),Q(s,Y)).

Next, we turn to the RNN architecture in Fig. 4(b). Recall that the input,
in this case, uses the sequential encoding and is a sequence of two vectors

14

s1,82 € R™ (cf. Fig. 3(c)). The output, similar as above, is the Q-value
function at each possible action in that state, i.e., (Q(s, X),Q(s,Y)). For
simplicity, we use a neural network with a simple RNN layer and a fully-
connected layer to approximate the @Q-value function. We let si,s, be the
sequential encoding of the input state s. We denote by hy, hy the outputs of
the first and the second RNN layers, and by q the output of the FC layer.
We have

h! = ReLU(Wy;s; + W5h"), (13)
h? = ReLU(W;s; + Wioh'),
Yy = W2h2 + bg,

where the initial state of the RNN is h® = 0, W;; € R™*" W, € R™*™
W, € R?*™ and b, € R? are parameters we wish to learn, m is the number
of the hidden states in the simple RNN layers, and y is the estimate of

(Q(s, X),Q(s,Y)).

2.4. Actor-Critic Learning Using Neural Networks

The actor-critic algorithm is also a type of reinforcement learning al-
gorithm. It posits a parametric Randomized Stationary Policy (RSP) and
rather than seeking an optimal policy, it seeks an optimal parameter vector
for the RSP. Traditionally, actor-critic learning uses a logistic function for
the policy which leads to a linear function approximation for the @-value
function (Konda and Tsitsiklis, 2003; Estanjini et al., 2012; Wang et al.,
2015; Grondman et al., 2012; Wang and Paschalidis, 2017a). In particular,
the policy is specified through a probability for selecting action u at state s

given by
exp{6'¢(s, u)}
poluls) = e
2 exp{@e(s,v)}
where 0 is a parameter vector and ¢ (s, u) is a vector of features of the state
and the action. The operation on the right hand side of (14) which assigns
the highest probability to the action that maximizes the exponent 8'¢(s, u) is
often referred to as Softmax. Specifically, for some vector x = (z1,...,x) €
R*, Softmax(x) € R* and the ith element is given by

(14)

exp(x;)

Softmax(x)i = m
j=1 J

Y

15

i =1,...,k. It can be shown (Konda and Tsitsiklis, 2003; Estanjini et al.,
2012; Wang et al., 2015; Wang and Paschalidis, 2017a), that given an RSP
as in (14), a good linear approximation of the Q-value function is Qg(s, u) =
r'1pg(s, u) where ¥g(s,u) = V1n ug(uls).

The actor critic method alternates between an actor step which is a gra-
dient update of the parameter vector @ using the gradient of the long-term
reward, and a critic step which, given the current 0, uses Temporal-Difference
(TD) learning (Pennesi and Paschalidis, 2010) to learn the appropriate pa-
rameter r in the Q-value function approximation in addition to the long-term
reward and its gradient with respect to 8. As we commented earlier when
discussing ()-learning, these methods have been shown to converge (Konda
and Tsitsiklis, 2003; Estanjini et al., 2012) but depend on proper selection
of feature functions in order to be effective.

If instead one uses a neural network to approximate the value function and
the policy, the actor-critic updating steps should be modified. For example,
Hausknecht and Stone (2015) proposed a deep actor-critic learning similar
to the DQN. Mnih et al. (2016) used a simpler way, updating a loss function
that combines the policy advantage and a temporal-difference term for the
value function.

In this paper, we use the actor-critic learning algorithm of Mnih et al.
(2016) to handle the learning tasks we introduced in Sec. 2.1. The neural
network takes as input the state s of the MDP, and outputs both a policy
and a value function estimate. As we did with @-learning, we will use both
a feed-forward neural network and an RNN version of the algorithm. Again,
we only use the actor-critic learning algorithm in Mnih et al. (2016) with a
single agent.

In the feed-forward network case, the neural network structure for actor-
critic learning is shown in Figure 5. For the policy, we use a fully-connected
layer with a Softmax activation function. For the value function, we use an
additional fully-connected layer without an activation function. Letting s
the vector encoded state, h the output of the the first FC layer, v the output
of the FC layer producing the value function estimate, and p the output of
the FC layer producing the policy estimate, we have

h = ReLU(Wls+b1), (15)
p = Softmax(W,h +b,,),
v=W,h+b,,

16

where W; € R™*" b; € R™, W, € R**™ b, e R* W, € R™™ and b, € R
are the parameters in the neural networks we need to learn, and m is the
number of the hidden neurons in the first FC layer.

In the RNN case, and similar to the Q)-learning case, we let s;, s, be the
sequential encoding of the input state s, hy, hy the outputs of the first and
the second RNN layers, v the output of the FC layer producing the value
function estimate, and p the output of the FC layer producing the policy
estimate, which leads to

h' = ReLU(W;s; + Wy5h?), (16)
h? = ReLU(W;s; + Wysh!),
p = Softmax(W,h? + b,,),
v=W,h%+b, (17)

where the initial state of the RNN is h® = 0, W;; € R™*" W, € R™*™
W, € R*>™ W, € R b, € R? and b, € R are parameters to learn and
m is the number of hidden neurons in the RNN layers.

2.5. Neural Circuit Gating Model

The neural network implementations in ()-learning and actor-critic learn-
ing use standard firing-rate neuron models (Dayan and Abbott, 2001) with
threshold-linear input-output functions (rectified linear unit, ReLU). Next we
present an alternative approach for the tasks we outlined in Subsection 2.1.
This alternate approach uses neurons with simpler step-function threshold
dynamics that could be considered similar to the generation of single spikes
in individual neurons. These single spikes then gate the spread of activity
between other neurons by altering the weight matrix.

With regard to biological justification, this gating mechanism is based
on the nonlinear effects between synaptic inputs on adjacent parts of the
dendritic tree that are due to voltage-sensitive conductances such as the
N-Methyl-D-Aspartate (NMDA) current (Poirazi et al., 2003; Katz et al.,
2007). These interactions could allow synaptic input from a spiking neuron
to determine whether adjacent neurons have a significant influence on the
membrane potential. Here, this is represented by the spiking of hidden neu-
rons directly gating the weight matrix. Alternatively, these effects could be
due to axo-axonic inhibition gating the output of individual neurons.

Learning parameters for this model are based on the Hebbian rule for
plasticity of synaptic connections. Previously, Hasselmo (2005) presented

17

a neurobiological circuit model with gating of the spread of neural activity
combined with local Hebbian learning rules and suggested it could have func-
tions similar to TD learning. In this paper, we present another neural circuit
model based mostly on Hebbian rules, which has a performance comparable
to the more abstract neural network models. Our neural circuit model is
defined next. An illustrative example of this model and how it operates for
the task of Figure 1 can be found in Figure 6.

We will use the sequential encoding of the state as input, where a state s
is presented as a sequence of two n-dimensional vectors s; and s;. We have
n neurons to receive these signals. In addition to the input neurons, we use
m = 5 hidden neurons to process the information. Three of these neurons
store an internal state and two are used to output actions X and Y (see
Fig. 6(b)). We denote by a} the activation of neuron i at time ¢; af = 1 if the

neuron gets activated and is zero otherwise. Here, ¢ = 1,...,n corresponds
to the input neurons and ¢ = n + 1,...,n + m corresponds to the hidden
neurons. We let a’ = (af,...,dl,,). For simplicity, we assume there is only

one hidden neuron spiking at each time.

Spiking of different hidden neurons induces a different structure of the
neural network weight matrix between input neurons and hidden neurons.
As noted above, this reflects the nonlinear interaction of synapses on the
dendritic tree, in which activation of one synapse can allow an adjacent
synapse with voltage-sensitive conductances to have an effect. The weight
matrix of the neural network is denoted as W, € R™*(+m) when hidden
neuron j is spiking. Let

f' = W;a’, (18)

where j = {i | a} = 1} is the index of the activated hidden neuron at time
t. Notice that the activated hidden neuron determines the weight matrix to
be used. We assume these iterations start with the first hidden neuron being
activated at ¢ = 1, namely a' = (s1,1,0,0,0,0).

To determine the state of the hidden neurons (al},abth, alty) at time
t + 1, we use the following probabilistic model. With a small probability ¢,
we randomly pick one of these hidden neurons to emit a spike at time ¢ + 1.
Otherwise, we let the neuron k = n+1,n+2, n+3 with the highest f}, to emit
a spike. This procedure can be interpreted as a balance of exploration and
exploitation in the reinforcement learning context (Bertsekas, 1995; Bertsekas
and Tsitsiklis, 1996).

The last two hidden neurons (al,,,al ;) represent selection of either

18

action X or action Y. Specifically, (a! 4, al,,5) = (1,0) selects action X and
(al 4 al,5) = (0,1) action Y. Otherwise, no action is implemented.

To learn the weight matrices W; we follow the properties of the Heb-
bian learning rule. The synapses are updated by reward-dependent Hebbian
Long-Term Potentiation (LTP), in which active synapses are tagged based
on the presence of joint pre-synaptic and post-synaptic activity, and then,
the synapse is strengthened if the output action matches the correct action.
Long-Term Depression (LTD) provides an activity-dependent reduction in
the efficacy of neuronal synapses to serve as a regularization of the learning
process.

The LTP rule is mostly based on the basic Hebb rule in Dayan and Ab-
bott (2001), in which simultaneous pre- and post-synaptic activity increases
synaptic strength. In particular, suppose the i; hidden neuron is activated
at time t. Let a}, denote the vector consisting of the last m components of
a', corresponding to the hidden neurons. Then the LTP term is

tr .t
AWit,LTP = a,0,

where o' € R™ indicates the spiking of hidden neuron at time ¢. In particular,
we let of = 1 if hidden neuron i is activated at time ¢, and ol = 0 otherwise.
The LTD term is

AWit,LTD = —(a};)’e

where e € R™ is the vector of all 1’s.

Finally, the weight matrices W; are updated as follows. For a given input
signal, when the output of the neural circuit model coincides with the correct
output, we update the weight matrices W;, and W,, as

Wi, 41 =W, + arrpAW,, 1rp + arrpAW,, 11p (19)

where arprp and aprp are appropriate stepsizes. Since this updating rule
is not necessarily stable, we project the elements of W; to [0, 1] after every
update.

3. Results

In this section, we investigate the performance of the proposed algorithm
in the context association task of Figure 1. We also test our algorithms on
the larger task of Figure 2 to assess how well they scale.

19

Most neural models encode information in a distributed manner across
a population of neurons (Dayan and Abbott, 2001). This manner of encod-
ing information has many advantages, such as graceful degradation when
individual neurons are lost. However, the distributed representation makes
it difficult to interpret the activity patterns in trained models. In order to
overcome this difficulty, this paper uses two approaches to investigate the
performance of different methods. The first one is a minimalist approach,
which tries to use the simplest model to train the reinforcement learning
agents and the neural circuit gating model. Using the least number of units
and parameters, it becomes easier to understand how these methods solve
the learning tasks of Subsection 2.1. The other approach is to use a larger
numbers of neurons to learn the tasks since the real neural system encodes
the information in a distributed manner. We will compare the performance
of each model across different numbers of units and find some potential re-
lationships among these methods.

3.1. Q-Learning with Function Approximation by a Neural Network

First, we test the)-learning algorithm with function approximation on
the task of Figure 1 using a feedforward neural network (cf. (12)). For min-
imalism, we use only one hidden layer with 2 hidden neurons. For training
the network we use Algorithm 1 in Mnih et al. (2016). We observe, that the
policy we obtain can find the correct action related to each label without
having seen the 4 unseen states shown in Figure 1. One set of learned pa-
rameters which allows the model to successfully perform the task in Figure
1 is shown in (A.1) of Appendix Appendix A. It is interesting to observe in
W, the similarity of the columns corresponding to contexts 1 and 4 as well
as contexts 2 and 3, which reflects the symmetry of the mapping in Figure 1.

Next, we test the ()-learning algorithm on the task of Figure 1 using
sequentially-encoded input. Again, the neural network we use has 2 hidden
states in each simple RNN layer. Using the same setting, the learned model
successfully makes each generalization and finds the correct answer. One
set of learned parameters which succeed in the task of Figure 1 are shown
in (B.1) of Appendix Appendix B. Again, the desired symmetry can be
observed in the columns of Wy; corresponding to the various contexts.

Finally, we tested the ()-learning algorithm on the task of Figure 1 us-
ing different numbers of hidden neurons. It is known that biological neural
systems encode information in a distributed manner. One pattern of infor-
mation may be encoded by many neurons. This encoding may not be very

20

efficient (Dayan and Abbott, 2001), but increased numbers of units may help
in the learning procedure. We changed the number of the hidden neurons
to assess its effect on the performance of the neural network. We used the
following settings for the various parameters of the ()-learning and the actor-
critic learning algorithms. We used the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 0.05, 8 = 0.9, 3, = 0.999, ¢ = 1078, The
discount factor was v = 0.9. We let the algorithm update every 100 actions.
The maximum learning step was set to 50, 000 actions. Shown in Figure 7 is
the performance of all of our algorithms on the task of Figure 1 as a function
of the number of hidden neurons. Notice that by increasing the number of
hidden neurons, we improve the performance of the learning.

3.2. Actor-Critic Learning

We first tested the actor-critic algorithm on the task of Figure 1 using
the vector-encoded input. As a minimal example, we again used only one
hidden layer with 2 hidden neurons. Using Algorithm S3 in Mnih et al.
(2016), the actor-critic agent converges to parameters that succeed in per-
forming the learning task. The learned parameters are shown in (C.1) of
Appendix Appendix C. Again, the columns of the weight matrix Wy cor-
responding to contexts 1 and 4 are similar, and the same is the case for the
columns corresponding to contexts 2 and 3.

Next, we investigated actor-critic learning by using sequentially-encoded
inputs on the task of Figure 1. Each RNN uses 2 hidden neurons. We use the
same learning parameters as in (J-learning and set the entropy regularization
parameter (§ in Mnih et al. (2016)) to 1. The trained model successfully
makes the appropriate generalizations and succeeds in finding the correct
action. One set of learned parameters are shown in (D.1) of Appendix Ap-
pendix D, where again the correct context symmetry is evident.

Finally, we tested the actor-critic learning algorithm on the task of Fig-
ure 1 using different numbers of hidden neurons. We used the same settings
as in the last subsection to evaluate the performance as a function of the
number of hidden neurons. We did not include the entropy regularization in
Algorithm S3 in Mnih et al. (2016) for simplicity.

3.3. Neural Circuit Gating Model

In this section, we used the neural circuit model with gating described
in Subsection 2.5 and applied to the task of Figure 1. As we described, we
use five hidden neurons in this model, three of which are used to store the

21

internal state. The neural circuit gating model uses the sequentially-encoded
input. We let ¢ = 0.01, arrp = 0.8, and arrp = 0.1. This neural circuit
gating model can successfully generalize what it learned and find the correct
actions. One set of learned parameters that succeeded in the task in Figure
1 is shown in (E.1)—(E.4) of Appendix Appendix E. Again, these matrices
reflect the symmetry exhibited in the mapping from states to actions.

We also tested the performance of the neural circuit gating model on
the task of Figure 1 with different numbers of hidden neurons. We set the
maximum number of iterations to 50,000 actions. The performance of this
model is shown in Figure 7. It can be seen that the neural circuit gating
model attains relatively high performance with a small number of hidden
neurons and then increases gradually as the number of the hidden neurons
increases. Its performance is comparable to the RNN versions of the Q-
learning and actor-critic models. We discuss these observations further in
Subsection 4.3.

3.4. Learning to perform the larger task

In this subsection, we consider the larger context association task (cf.
Figure 2) in order to assess the scalability of the methods we examined. We
test the performances of different algorithms as we increase the size of the
model. The results are shown in Figure 8. We find that the performances
of the different algorithms in this larger task are qualitatively similar to the
smaller task we discussed earlier. The accuracy in this larger task is slightly
higher than the basic task under the same model complexity. This is because
this task provides more training examples than the basic task, which makes
the models less likely to overfit.

4. Discussion

4.1. Comparison Between Models with Sequentially-Encoded Inputs

The development of different models allowed us to compare the mecha-
nisms with which the trained neural networks and the spiking neural circuit
model make decisions for the context-dependent association task. We first
analyze the neural circuit model applied to the task of Figure 1, with the
decision rule shown in Figure 9. Suppose the input is A1l. Recall that hidden
neuron 1 is activated before the first input. So the neural network structure
used at time 1 is W;. From the matrices in Appendix E, it can be seen that
stimulus A or B will activate hidden neuron 2 while stimulus C or D will

22

activate hidden neuron 3. Thus, at time 2, if hidden neuron 2 is activated,
the network uses weight matrix W, whereas if hidden neuron 3 is activated,
the network uses weight matrix W3 (shown in the Appendix). From the
structure of Wy, context 1 or 4 will activate hidden neuron 4 and context 2
or 3 will activate hidden neuron 5. Thus, for stimulus A or B in context 1 or
4, the network generates action X, and for stimulus A or B in context 2 or
3 it will generate action Y. If stimulus C or D is presented, then activation
of neuron 3 results in the network using weight matrix W3 and the network
selects the opposite actions in response to the contexts (e.g., contexts 1 & 4
result in generation of action Y'). The neural circuit model makes this deci-
sion hierarchically. It also utilizes the similarities, say between context 1 and
context 2, to make decisions. Thus, based on our mechanism of gating, the
trained neural circuit gating model has the capacity to abstract the learning
rules and properly select actions for previously unseen pairings of contexts
and stimuli.

Then we consider the RNN version of the ()-learning and the actor-critic
model applied to the task of Figure 1. We will argue that these RNN models
learn similar decision making processes as the neuron circuit model, even
though this is not immediately evident by observing the trained parameters.
Figure 10 shows the evolution of the hidden states of the RNN in ()-learning
and actor-critic learning, respectively. The RNN represents stimuli A and B
or stimuli C and D using similar encodings. From the RNN weight matrices
learned by these two methods, we observe the similarity between contexts
1 and 4 and 2 and 3, respectively. It follows that the RNN discovers the
appropriate symmetry in the mapping and can successfully select actions for
previously unseen pairings of context and stimulus.

4.2. Comparison of Feedforward Neural Networks and Recurrent Neural Net-
works

As we have seen, there are similarities in decision making by the neural
circuit gating model and the RNN models learned by either ()-learning or
actor-critic learning. Both are able to discover the symmetry of the map be-
tween stimulus-context pairs and actions. Both make decisions hierarchically.
The functional properties of feed-forward neural networks are, however, quite
different.

We show the states of the hidden layers of each of the feedforward neural
networks used for learning to perform the task of Figure 1 in Figure 11. Both
hidden layers separate the different inputs in one shot. Based on the weight

23

matrices learned by the two reinforcement learning algorithms, they capture
the symmetry in the state-action map. Yet, we can no longer claim that
the feedforward neural networks make the decision hierarchically, since the
linear structure of the fully-connected layer can not compose a hierarchical
decision rule.

4.3. Relationship of Neural Circuit Gating Model to other models

We have seen some similarities between the reinforcement learning meth-
ods using neural networks and the neural circuit gating model. This raises
the following question: why are the two types of methods similar?

First, the neural circuit gating model does not involve an explicit method
of optimization nor does it employ temporal difference learning and back-
propagation of the error. We think the key is in the way the weight matrices
of the neural circuit get updated by Eq. (19). Notice that this update re-
inforces the weight matrix involved in a correct decision through the LTP
term. On the other hand, the LTD term reduces these weights in order to
avoid “overfitting” to a correct decision. Furthermore, the noise introduced
in translating the f* signals of (18) into neuron firings allows sufficient explo-
ration of the state-action space.

This neuro-computational model uses the effect of internal activity on gat-
ing units that regulate the spread of activity within the circuit. These models
are based on earlier models using interactions of current sensory input states
with backward spread of activity from future desired goals (Hasselmo, 2005;
Koene and Hasselmo, 2005). These earlier models were able to simulate the
learning of goal-directed action selection based on the interaction of feedback
from goal with current input, rather than using temporal difference learning.
The use of gating in these early models resembles the gating properties used
in models known as LSTM (Long Short Term Memory) in which gating was
regulated by back-propagation through time (Hochreiter and Schmidhuber,
1997; Gers et al., 2000; Graves and Schmidhuber, 2005). The use of gating in
these models also resembles the models developed by O’Reilly and his group
in which the prefrontal cortex interacts with basal ganglia to gate the flow
of information into and out of working memory (O’Reilly and Frank, 2006).
However, the models differ in that the O’Reilly and Frank model used gat-
ing regulated by reinforcement learning mechanisms (termed PVLV) similar
to temporal difference learning for regulating dopaminergic activity for re-
ward or expectation of reward (O’Reilly et al., 2007), whereas the Hasselmo
model (Hasselmo, 2005) focused on the internal spread from representations

24

of desired output or goals within cortical structures (Koene and Hasselmo,
2005). The O’Reilly and Frank framework has been used to effectively store
symbol-like role-filler interactions (Kriete et al., 2013) and to model per-
formance in an n-back task (Chatham et al., 2011) and a hierarchical rule
learning task (Badre and Frank, 2012).

These gating models can be thought of as extending the use of actions
in reinforcement learning models. In most of these models, actions change
the state of an agent in its external network (Sutton and Barto, 1998). In
contrast, the model presented here builds on the use of internal processes or
“memory actions” (Zilli and Hasselmo, 2008¢c) that modify internal activity
by performing tasks such as loading a working memory buffer, or loading
an episodic memory buffer (Zilli and Hasselmo, 2008c). The use of memory
actions allows solution of non-Markov decision processes based on retention
of memory from prior states (Zilli and Hasselmo, 2008a,b). The modeling
of gating in neural circuits could provide different potential mechanisms for
rule learning.

5. Conclusions

We simulated performance of a contextual association task from Raud-
ies et al. (2014) involving inputs consisting of a stimulus and context and
exhibiting particular symmetry in the stimulus-action map. In particular,
under some contexts one type of mapping from input to actions is applica-
ble, while in other contexts the mapping is reversed. Human and animals,
when presented with enough examples that demonstrate both maps, have
the ability to generalize and make correct decisions even on inputs that have
never been presented to them.

We first established that traditional reinforcement learning algorithms,
such as @)-learning or ()-learning using a linear function approximation ar-
chitecture, do not have the ability to generalize beyond the examples pre-
sented to them in a training phase. We then examined a variety of neural
network-based models. We considered two reinforcement learning algorithms,
@-learning and actor-critic, analyzed in the approximate dynamic program-
ming literature (Bertsekas and Tsitsiklis, 1996) and recently tested by train-
ing on a series of computer games (Mnih et al., 2015; Hausknecht and Stone,
2015; Mnih et al., 2016). We employed both feedforward neural networks
and recurrent neural networks as function approximators in these learning
methods. We found that the recurrent neural networks perform better, which

25

could potentially be explained by their use of a hierarchical (rather than a
“flat”) decision making process. We also devised a custom-made neural cir-
cuit gating model, which uses hidden neurons to determine how the input is
being processed. This model was trained using Hebbian-type updating of the
weight matrices. Surprisingly, the simple neural circuit performs similarly to
the more sophisticated reinforcement learning algorithms. A potential ex-
planation is that hierarchical reasoning is the key to performance and the
specific learning method is of less importance.

Appendix A. Parameters: Q-learning with vector-encoded state
stimulus context
A B C D 1 2 3 4

1.70 1.66 —-0.17 —-0.17 —-0.29 1.57 1.59 —0.11
—1.57 =201 1.89 1.95 202 —-1.77r —-191 1.86

b, — { 1.01 } W, = [0.25 —1.21] by = {—2.40] '

wi- |
—0.27 1.17 1.29 —5.57

Appendix B. Parameters: Q-learning with sequentially-encoded

state
stimulus context
A B C D 1 2 3 4

— 1.49 141 —0.85 —0.89 195 —218 —218 1.96
W= 1014 —-021 123 125 —200 1.84 1.85 —2.03

115 —1.30 1.33 143 4.64
Wiz = {—1.82 0.62 } W2 = [—1.26 —1.37] b2 = {9.82} ‘

(B.1)

26

Appendix C. Parameters: Actor-critic learning with vector-enco-

ded state
stimulus context
A B C D 1 2 3 4
W, — —0.03 —-0.00 1.42 1.38 1.45 0.04 0.04 1.50
t= 1.27 1.27 —-158 —-1.68 —-1.66 1.31 128 —1.62
1.24 —2.10 —2.95 7.36
b1 = {0.22] W = { 212 292 } by = [—7.36]

W, = [1.02 0.77], b, = 5.95.
(C.1)

Appendix D. Parameters: Actor-critic learning with sequentially-
encoded state

stimulus context
A B C D 1 2 3 4
W _ | 148 12 -119 -108 165 -160 -139 141
e [—0.78 —-1.20 —0.68 —0.56 —1.03 1.00 1.26 —0.31}

—-1.69 0.20 —4.01 —2.06
Wiz = [0.90 —0.18} Wy = {4‘01 2.10] ’
b, = [3.15 —3.15], W, = [-0.01 —0.04] , b, =9.92.
(D.1)
Appendix E. Parameters: Neural circuit gating model
stimulus context hid. neur.
AB C D 1 2 3 4 1 2 3 4 5
00 0 0 O0O0OO0OO0OO0OTO0OO0OTO0°0O0
W, = 110 00 0 O0OO0OOOO0OO0OO (E.1)
001 1 00O0O0O0O0O0OTO0O0
000 0 O0O0OO0OO0OO0OTO0OTUO0OTO0O@O0
0000 0 O0OO0OO0OO0OTO0OTO0OTUO0O°0O0

27

stimulus context hid. neur.

A B C D 1 2 3 4 1 2 3 4 5
0O 00 0 O0O0O0OO0OO0OO0OO0OTO00O0
W, = 0O 00000 O0O0OO0OO0OO0OTUO0OTO0 (E.2)
0O 00000 0O O0OO0OTO0OO0OTUODO
0 0001 00 1T 0O0O0O0OO0
0O 00001 1.0 0O0O0O0O0
stimulus context hid. neur.
A B C D 1 2 3 4 1 2 3 4 5
0O 00 0 0 O0O0OO0OO0OTO0OTO0TO00O0
W, — 0O 0000 O0O0OO0OO0OTO0OO0OTUO0OTUO0 (E.3)
0O 00000 0O O0OO0OTO0OO0OTUO0ODTO
0 00001 10 0O0O0O0OTO0
0O 0o o1 001 00000
Acknowledgments

Research partially supported by the NSF under grants DMS-1664644,
CNS-1645681, CCF-1527292 and IIS-1237022, by the ARO under grant
WI11NF-12-1-0390, and by the ONR under grant MURI N00014-16-1-2832.

References

Badre, D., Frank, M. J., 2012. Mechanisms of hierarchical reinforcement
learning in cortico—striatal circuits 2: Evidence from fMRI. Cerebral cortex
22 (3), 527-536.

Badre, D., Kayser, A. S., D’Esposito, M., 2010. Frontal cortex and the dis-
covery of abstract action rules. Neuron 66 (2), 315-326.

Bertsekas, D., Tsitsiklis, J., 1996. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Bertsekas, D. P., 1995. Dynamic Programming and Optimal Control. Vol. I
and II. Athena Scientific, Belmont, MA.

28

Chatham, C. H., Herd, S. A., Brant, A. M., Hazy, T. E., Miyake, A., O’Reilly,
R., Friedman, N. P., 2011. From an executive network to executive control:
a computational model of the n-back task. Journal of Cognitive Neuro-
science 23 (11), 3598-3619.

Dayan, P., Abbott, L. F., 2001. Theoretical neuroscience. Vol. 10. Cambridge,
MA: MIT Press.

Dayan, P., Watkins, C., 1992. Q-learning. Machine learning 8 (3), 279-292.

Estanjini, R. M., Li, K., Paschalidis, I. C., 2012. A least squares temporal
difference actorcritic algorithm with applications to warehouse manage-
ment. Naval Research Logistics (NRL) 59 (3-4), 197-211.

URL http://dx.doi.org/10.1002/nav.21481

Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to forget: Con-
tinual prediction with LSTM. Neural computation 12 (10), 2451-2471.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning, book in prepa-
ration for MIT Press.
URL http://www.deeplearningbook.org

Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Net-
works 18 (5), 602-610.

Grondman, 1., Busoniu, L., Lopes, G. A., Babuska, R., 2012. A survey of
actor-critic reinforcement learning: Standard and natural policy gradients.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) 42 (6), 1291-1307.

Hasselmo, M. E., 2005. A model of prefrontal cortical mechanisms for goal-
directed behavior. Journal of cognitive neuroscience 17 (7), 1115-1129.

Hasselmo, M. E., Eichenbaum, H., 2005. Hippocampal mechanisms for the
context-dependent retrieval of episodes. Neural networks 18 (9), 1172—
1190.

Hausknecht, M., Stone, P., 2015. Deep reinforcement learning in parameter-
ized action space. arXiv preprint arXiv:1511.04143.

29

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural com-
putation 9 (8), 1735-1780.

Katz, Y., Kath, W. L., Spruston, N., Hasselmo, M. E., 2007. Coincidence
detection of place and temporal context in a network model of spiking
hippocampal neurons. PLoS Comput Biol 3 (12), e234.

Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Koene, R. A., Hasselmo, M. E., 2005. An integrate-and-fire model of pre-
frontal cortex neuronal activity during performance of goal-directed deci-
sion making. Cerebral Cortex 15 (12), 1964-1981.

Konda, V. R., Tsitsiklis, J. N., 2003. On actor-critic algorithms. STAM Jour-
nal on Control and Optimization 42 (4), 1143-1166.

Kriete, T., Noelle, D. C., Cohen, J. D., OReilly, R. C., 2013. Indirection and
symbol-like processing in the prefrontal cortex and basal ganglia. Proceed-
ings of the National Academy of Sciences 110 (41), 16390-16395.

LeCun, Y., Bengio, Y., Hinton, G., may 2015. Deep learning. Nature
521 (7553), 436-444.

Levine, S., Finn, C., Darrell, T., Abbeel, P., 2016. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research
17 (1), 1334-1373.

Liu, H., Wu, Y., Sun, F., 2018. Extreme trust region policy optimization
for active object recognition. IEEE transactions on neural networks and
learning systems 29 (6), 2253-2258.

Miller, E. K., Cohen, J. D., 2001. An integrative theory of prefrontal cortex
function. Annual review of neuroscience 24 (1), 167-202.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley,
T., Silver, D., Kavukcuoglu, K., 2016. Asynchronous Methods for Deep
Reinforcement Learning. arXiv 48, 1-28.

URL http://arxiv.org/abs/1602.01783

30

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik, A., Antonoglou, 1., King, H., Kumaran, D.,
Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through
deep reinforcement learning. Nature 518 (7540), 529-533.

URL http://dx.doi.org/10.1038/nature14236

Nair, V., Hinton, G. E., 2010. Rectified linear units improve restricted boltz-
mann machines. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10). pp. 807-814.

O’Reilly, R. C., Frank, M. J., 2006. Making working memory work: a com-
putational model of learning in the prefrontal cortex and basal ganglia.
Neural computation 18 (2), 283-328.

O’Reilly, R. C., Frank, M. J., Hazy, T. E., Watz, B., 2007. PVLV: the pri-
mary value and learned value Pavlovian learning algorithm. Behavioral
neuroscience 121 (1), 31.

Pennesi, P., Paschalidis, I. C., 2010. A distributed actor-critic algorithm
and applications to mobile sensor network coordination problems. IEEE
Transactions on Automatic Control 55 (2), 492-497.

Peters, J., Schaal, S., 2008. Reinforcement learning of motor skills with policy
gradients. Neural networks 21 (4), 682-697.

Poirazi, P., Brannon, T., Mel, B. W., 2003. Arithmetic of subthreshold synap-
tic summation in a model CA1 pyramidal cell. Neuron 37 (6), 977-987.

Raudies, F., Zilli, E. A., Hasselmo, M. E., 2014. Deep belief networks learn
context dependent behavior. PLoS ONE 9 (3).

Rumelhart, D. E., Hinton, G. E., Williams, R. J., oct 1986a. Learning rep-
resentations by back-propagating errors. Nature 323 (6088), 533-536.
URL http://dx.doi.org/10.1038/323533a0

Rumelhart, D. E., McClelland, J. L., et al., 1986b. Parallel distributed pro-
cessing. MIT Press, Cambridge, MA.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P., 2015. Trust re-
gion policy optimization. In: International Conference on Machine Learn-
ing. pp. 1889-1897.

31

Sutton, R., Barto, A., 1998. Reinforcement Learning. MIT Press, Cambridge,
MA.

Tesauro, G., 1994. TD-Gammon, a self-teaching backgammon program,
achieves master-level play. Neural computation 6 (2), 215-219.

Tsitsiklis, J. N., 1994. Asynchronous stochastic approximation and g-
learning. Machine Learning 16 (3), 185-202.

Tsitsiklis, J. N., Van Roy, B., 1997. An analysis of temporal-difference learn-
ing with function approximation. IEEE transactions on automatic control
42 (5), 674-690.

Wallis, J. D., Anderson, K. C., Miller, E. K., 2001. Single neurons in pre-
frontal cortex encode abstract rules. Nature 411 (6840), 953-956.

Wang, J., Ding, X., Lahijanian, M., Paschalidis, I. C., Belta, C. A., 2015.
Temporal logic motion control using actor—critic methods. The Interna-
tional Journal of Robotics Research 34 (10), 1329-1344.

Wang, J., Paschalidis, I. C., 2017a. An actor-critic algorithm with second-
order actor and critic. IEEE Trans. Automat. Contr. 62 (6), 2689-2703.

Wang, J., Paschalidis, I. C., 2017b. An actor-critic algorithm with second-
order actor and critic. IEEE Trans. Automat. Contr. 62 (6), 26892703,
dx.doi.org/10.1109/TAC.2016.2616384.

Watkins, C. J., Dayan, P., 1992. Q-learning. Machine learning 8 (3-4), 279—
292.

Watter, M., Springenberg, J., Boedecker, J., Riedmiller, M., 2015. Embed to
control: A locally linear latent dynamics model for control from raw im-
ages. In: Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., Garnett,
R. (Eds.), Advances in Neural Information Processing Systems 28. Curran
Associates, Inc., pp. 2746-2754.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel,
R. S., Bengio, Y., 2015. Show, attend and tell: Neural image caption
generation with visual attention. arXiv preprint arXiv:1502.03044 2 (3), 5.

32

Xu, X., Zuo, L., Huang, Z., 2014. Reinforcement learning algorithms with
function approximation: Recent advances and applications. Information
Sciences 261, 1-31.

Zilli, E. A., Hasselmo, M. E., 2008a. Analyses of markov decision process
structure regarding the possible strategic use of interacting memory sys-
tems. Frontiers in computational neuroscience 2, 6.

Zilli, E. A., Hasselmo, M. E.; 2008b. The influence of markov decision process
structure on the possible strategic use of working memory and episodic
memory. PLoS ONE 3 (7), e2756.

Zilli, E. A., Hasselmo, M. E., 2008c. Modeling the role of working memory
and episodic memory in behavioral tasks. Hippocampus 18 (2), 193-209.

33

Input Input
L InpUt) L (Time 1)) L (Time 2))
() (Simple 1. Simple)
—>
\ FC layer) RNN 7| RNN
FC layer FC layer FC layer FC layer
\.) \. J \. J
v V v v
4) 4) 4)
Value est.] [Policy Value est. Policy
\ J/ \ J \ J

(a) An illustration of the neural net- (b) An illustration of the neural net-
work for actor-critic learning using the work for actor critic learning using the
vector encoding of the state. sequential encoding of the state.

Figure 5: An illustration of the neural networks used in actor-critic learning. The FC layer
in the diagram represents a fully-connected layer. @-value est. in the diagram denotes the
estimate of the Q-value of the state at all possible actions.

34

Input: stimulus A 1st hidden neuron activated

£
E 2
ez g
[
3
[}
b4
Input: context 2 2nd hidden neuron activated
| | | | | | | | | | | | | | Initial activated state
Stimulus Aor B
£
g Stimulus C or D
% 8 Imulus C or
N N = Action X
n (E“ = g
5 Action Y
(]
z
(b) An inter-
(a) An illustration of the decision process using pretation of the
the neural circuit gating model. hidden states.

Figure 6: An illustration of the decision process by the simplest version of the neural
circuit model after successful learning for the task of Figure 1. In this example, we use the
stimulus-context pair A2 as input, provided in the form of the sequential encoding s1, so.
Gray entries denote 1 and empty (white) entries denote zero. For illustrative proposes, we
ignore the noise (setting e = 0). At ¢ = 1, the first hidden neuron is activated by default.
After Hebbian learning, this neuron gates the weight matrix W;. The encoded input for
stimulus A spreads across this weight matrix W gated by the hidden neuron (cf. (18)),
resulting in the output pattern in which the second hidden neuron is activated, which
gates the weight matrix Wy. Thus, at ¢ = 2, the network weight matrix W is applied
to a2 = (0,0,0,0,0,1,0,0,0,1,0,0,0). With the coded input of context 2, the activity
spreads across the weight matrix to generate an output in which the fifth hidden neuron
is activated, corresponding to action Y.

35

1.00 ~_§—a———E——a——————a—a-u

0.95 ~-‘../I—I’.’.*.’._H’.\-
N—0—0—0—n—12—4 . “o—o—o

0.90 =

0.85

0.80

0.75
Q-learning

0.70 actor-critic learning
RNN Q-learning

0.65 RNN actor-criric learning
neural circuit model

average accuracy

Frtd

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
number of hidden neurons (hidden states)

Figure 7: The average accuracy (% of correct actions in a test set of input states) of
different models. We tested each algorithm 1000 times and averaged the test results.

1.0
0.9
>
(&)
o
3 038
(&)
©
©
o)
o
3 0.7
© —8— Q-learning
=@~ actor-critic learning
0.6 —l— RNN Q-learning
—l— RNN actor-criric learning
neural circuit model
0.5

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
number of hidden neurons (hidden states)

Figure 8: The average accuracy (% of correct actions in a test set of input states) of
different models. We tested each algorithm 1000 times and averaged the test results.

36

NN

Stimuli A & B

Stimuli C & D

H HEN

Contexts 1 & 4 Contexts 2 & 3

Contexts 1 & 4

Contexts 2 & 3

HEE EpEEEE REEEE pEEE B

Figure 9: The hierarchical decision rule of the neural circuit model demonstrated for the
task of Figure 1. The blocks at the three different levels show the state of the hidden
neurons at each time instant. The gray block indicates the spiking of the corresponding

hidden neuron.

37

h3

Time Step 1 Time Step 2
[40 1
N 2
c o 3
®o 3s x
[
30
®
25
& 204
N,
N,
N,
15 N
N,
N,
N,
10 ‘Q
N,
N,
N,
N,
0.5 Q\
\\
@ e e RN @
G0 o2 o0s o6 o8 10 12 14 16 oo 05 10 15 20 25 30 35 40
hi ht
(a) Q-learning using the simple RNN.
Time Step 1 Time Step 2
[) 1
8 2
c 2.5 ° e 3
L] e > 4
20
AY
ki 15 \‘
= .‘\
A
PR Y
1048 \
AY
\
AY
AY
AY
05 AY
AY
\
A
@ N
@ G - N *
0.0 0.2 04 0.6 0.8 10 12 14 16 0.0 05 10 15 2.0 25
hi ht

(b) Actor-critic learning using the simple RNN.

Figure 10: The hidden state of the simple RNN for the task of Figure 1. The activation
function is ReLU, so the hidden state variables are nonnegative. The linkage between
the two time steps in the corresponding figures indicates that a state s; in time step 1 is
precursor of a state sy in time step 2. The black dashed line in the figures in time step
2 is the decision boundary: points above the line correspond to X and points below the
line correspond to Y. For example, note in Figure (a), stimulus C in the left figure is
connected to contexts 2 and 3 in the right figure and map to X. To make the dots easier
to differentiate, a small amount of noise was added to the position of the dots in time step

2.

38

A a AL a
2 c2 a2 [+
4 IS c3 A3 3
M c M c
BL DL BL D1
B2 D2 B2 D2
3 83 D3 B3 D3
B4 D4 “~ B4 D4
< < s
~
2 2 Sao
~N
~\
~
~—~a S
. 1 ~
1 - ~
S~ S
-~ ~
- ~
Sea s
~—~a S
-~ ~
] - 1 ~
0 " S~ 0 ‘ @ ~
0 1 2 3 a 0 1 2 3 4
h1 'hl

(a) @-learning using the vector- (b)
encoded input.

Actor-critic learning
vector-encoded input.

using

Figure 11: The hidden state of the feedforward neural networks for the task of Figure 1.
The activation function is ReLU, so the hidden state variables are nonnegative. The black
dashed line in the figures is the decision boundary determined by the output layer; points
above the line correspond to action Y and below the line to action X.

39

