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Abstract—Urban living in modern large cities has significant
adverse effects on health, increasing the risk of several chronic
diseases. We focus on the two leading clusters of chronic disease,
heart disease and diabetes, and develop data-driven methods to
predict hospitalizations due to these conditions. We base these
predictions on the patients’ medical history, recent and more
distant, as described in their Electronic Health Records (EHR).
We formulate the prediction problem as a binary classification
problem and consider a variety of machine learning methods,
including kernelized and sparse Support Vector Machines (SVM),
sparse logistic regression, and random forests. To strike a
balance between accuracy and interpretability of the prediction,
which is important in a medical setting, we propose two novel
methods: K-LRT, a likelihood ratio test-based method, and a
Joint Clustering and Classification (JCC) method which identifies
hidden patient clusters and adapts classifiers to each cluster.
We develop theoretical out-of-sample guarantees for the latter
method. We validate our algorithms on large datasets from the
Boston Medical Center, the largest safety-net hospital system in
New England.

Index Terms—Machine learning, Heart disease, Diabetes, Pre-
dictive analytics, Electronic Health Records, Smart health, Smart
city.

I. INTRODUCTION

Living in modern large cities is impacting our health in
many different ways [1]. Primarily due to: (i) stress associated
with fast-paced urban life, (ii) a sedentary lifestyle due to
work conditions and lack of time, (iii) air pollution, and
(iv) a disproportionate number of people living in poverty,
urban populations face an increased risk for the development
of chronic health conditions [2]. For example, according to the
World Health Organization [3], ambient (outdoor air) pollution
was estimated in 2012 to cause 3 million premature deaths
worldwide per year; this mortality is due to exposure to small
particulate matter of 10 microns or less in diameter (PM10),
which cause cardiovascular, respiratory disease, and cancers.
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In fact, the vast majority (about 72%) of these air pollution-
related premature deaths were due to ischemic heart disease
and strokes.

There is an increasing percentage of the world population
facing the adverse health effects of urban living. Specifically,
according to the United Nations [4], 54% of the earth’s pop-
ulation resides in urban areas, a percentage which is expected
to reach 66% by 2050. It becomes evident that the health of
citizens should become an important priority in the emerging
smart city agenda [5]. To that end, smart health care –“smart
health” as it has been called– involves the use of ehealth and
mhealth systems, intelligent and connected medical devices,
and the implementation of policies that encourage health, well-
ness, and well-being [6]. It is estimated that by 2020 the smart
city market will be worth about $1.5 trillion, with smart health
corresponding to 15% of that amount [6]. Additional potential
actions smart cities can adopt include ways to improve city
life, reduce congestion and air pollution levels, discourage
the use of tobacco products and foods high in fat and sugar
which increase the risk of chronic diseases, and improve access
to health care. Without overlooking the importance of all
these population-level measures, our work aims at enabling
personalized interventions using an algorithmic data-driven
approach.

Through smart health, smart cities and governments aim
at improving the quality of life of their citizens. In the state
of Massachusetts, the MassHealth program –a combination
of Medicaid and the Children’s Health Insurance Program–
provides health insurance for 1.9 million Massachusetts resi-
dents, children in low-income households, low-wage workers,
elders in nursing homes, people with disabilities, and others
with very low incomes who cannot afford insurance [7], [8].
The state’s fiscal year 2018 budget includes approximately
$16.6 billion for MassHealth, which is around 37% of the
total state budget [8]. Clearly, this is a substantial share of
the budget. Consequently, if health care costs can be lowered
through smart health, more resources will become available for
many other services smart cities can offer. Conversely, if other
aspects of smart cities can be improved, the adverse health
effects of urban living can be reduced, thus lowering health
care costs. This suggests a beneficial feedback loop involving
smart health and non-health-related smart city research.

Health care is also, unquestionably, an important national
and global economic issue. In 2013, the United States (U.S.)
spent about $3 trillion on health care, which exceeded 17%
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of its GDP [9]. The World Health Organization estimates that
healthcare costs will grow to 20% of the U.S. GDP (nearly
$5 trillion) by 2021 [10], especially with civilization diseases
(or else called lifestyle diseases), like diabetes, coronary heart
disease and obesity, growing.

Our goal in this paper is to explore and develop predictive
analytics aiming at predicting hospitalizations due to the two
leading chronic diseases: heart disease and diabetes. Predic-
tion, naturally, is an important first step towards prevention. It
allows health systems to target individuals most in need and
to use (limited) health resources more effectively. We refer
to [11] for a general discussion of the benefits, and some
risks, associated with the use of health analytics. We seek
to predict hospitalizations based on the patients’ Electronic
Health Records (EHR) within a year from the time we examine
the EHR, so as to allow enough lead time for prevention. What
is also critical is that our methods provide an interpretation (or
explanation) of the predictions. Interpretability will boost the
confidence of patients and physicians in the results, hence,
the chance they will act based on the predictions, and provide
insight into potential preventive measures. It is interesting that
interpretability is being increasingly recognized as important;
for instance recent European Union legislation [12] will en-
force a citizen’s right to receive an explanation for algorithmic
decisions.

Our focus on heart disease and diabetes is deliberate.
Diseases of the heart have been consistently among the top
causes of death. In the U.S., heart disease is yearly the cause
of one in every four deaths, which translates to 610,000
people [13]. At the same time, diabetes is recognized as the
world’s fastest growing chronic condition [14]. One in eleven
adults has diabetes worldwide (415 million) and 12% of global
health expenditures is spent on diabetes ($673 billion) [15]. In
the U.S. alone, 29.1 million people or 9.3% of the population
had diabetes in 2012 [16].

Our interest in hospitalizations is motivated by [17], which
found that nearly $30.8 billion in hospital care cost during
2006 was preventable. Heart diseases and diabetes were the
leading contributors accounting, correspondingly, for more
than $9 billion, or about 31%, and for almost $6 billion,
or about 20%. Clearly, even modest percentage reductions in
these amounts matter.

An important enabler of our work is the increasing avail-
ability of patients’ EHRs. The digitization of patients’ records
started more than two decades ago. Widespread adoption of
EHRs has generated massive datasets. 87% of U.S. office-
based physicians were using EHRs by the end of 2015, up
from 42% in 2008 [18]. EHRs have found diverse uses [19],
e.g., in assisting hospital quality management [20], in detecting
adverse drug reactions [21], and in general primary care [22].

A. Contributions and Organization

Our algorithmic approach towards predicting chronic dis-
ease hospitalizations employs a variety of methods, both al-
ready well-established, as well as novel methods we introduce,
tailored to solve the specific medical problem. We formulate
the problem as a binary classification problem and seek to

differentiate between patients that will be hospitalized in
a target year and those who will not. We review related
work in Section II. Section III explores baseline methods
that separate the two classes of samples (patients) using a
single classifier. We evaluate their performance in terms of
prediction accuracy and interpretability of the model and
the results. Baseline methods include linear and kernelized
Support Vector Machines (SVM), random forests, and logistic
regression. We also develop a novel likelihood ratio-based
method, K-LRT, that identifies the K most significant features
for each patient that lead to hospitalization. Surprisingly, this
method, under a small value of K, performs not substantially
worse than more sophisticated classifiers using all available
features. This suggests that in our setting, a sparse classifier
employing a handful of features can be very effective. What
is more challenging is that the “discriminative” features are
not necessarily the same for each patient.

Motivated by the success of sparse classifiers, in Section IV
we seek to jointly identify clusters of patients who share
the same set of discriminative features and, at the same
time, develop per-cluster sparse classifiers using these features.
Training such classifiers amounts to solving a non-convex
optimization problem. We formulate it as an integer program-
ming problem; which limits its use to rather smaller instances
(training sets). To handle much larger instances we develop a
local optimization approach based on alternating optimization.
We establish the convergence of this local method and bound
its Vapnik-Chervonenkis (VC) dimension; the latter bound
leads to out-of-sample generalization guarantees.

In Section V, we provide a detailed description of the two
datasets we use to evaluate the performance of the various
algorithms. One dataset concerns patients with heart-related
diseases and the other, patients with diabetes. The data have
been made available to us from the Boston Medical Center
(BMC) – the largest safety-net hospital in New England. We
define the performance metrics we use in Section VI. We
report and discuss our experimental settings and results in
Section VII and we present our conclusions in Section VIII.

Notation: All vectors are column vectors. For economy of
space, we write x =

(
x1, . . . , xdim(x)

)
to denote the column

vector x, where dim(x) is the dimension of x. We use 0
and 1 for the vectors with all entries equal to zero and one,
respectively. We denote by R+ the set of all nonnegative real
numbers. M ≥ 0 (resp., x ≥ 0) indicates that all entries of a
matrix M (resp., vector x) are nonnegative. We use “prime”
to denote the transpose of a matrix or vector and |D| the
cardinality of a set D. Unless otherwise specified, ‖·‖ denotes
the `2 norm and ‖ · ‖1 the `1 norm.

II. RELATED WORK

To the best of our knowledge, the problem of chronic dis-
ease hospitalization prediction using machine learning meth-
ods is novel. A closely related problem, which has received
a lot of attention in the literature, is the re-hospitalization
prediction, since around 20% of all hospital admissions occur
within 30 days of a previous discharge. Medicare penalizes
hospitals that have high rates of readmissions for some specific
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conditions that now include patients with heart failure, heart
attack, and pneumonia. Examples of work on this problem
include [23], [24], [25] and [26].

Other related problems considered in the literature are:
predicting the onset of diabetes using artificial neural networks
[27]; developing an intelligent system that predicts, using data-
mining techniques, which patients are likely to be diagnosed
with heart disease [28]; and using data-mining techniques to
predict length of stay for cardiac patients (employing decision
trees, SVM, and artificial neural networks) [29], or for acute
pancreatitis (using artificial neural networks) [30].

We should also mention the Heritage Health Prize, a compe-
tition by Kaggle, whose goal was to predict the length of stay
for patients who will be admitted to a hospital within the next
year, using insurance claims data and data-mining techniques
[31].

III. BASELINE METHODS AND K-LRT

In this section we outline several baseline classification
methods we use to predict whether patients will be hospitalized
in a target year, given their medical history.

In medical applications, accuracy is important, but also in-
terpretability of the predictions is indispensable [32], strength-
ening the confidence of medical professionals in the results.
Sparse classifiers are interpretable, since they provide succinct
information on few dominant features leading to the predic-
tion [33]. Moreover, medical datasets are often imbalanced
since there are much fewer patients with a condition (e.g.,
hospitalized) vs. “healthy” individuals (non-hospitalized). This
makes it harder for supervised learning methods to learn since
a training set may be dominated by negative class samples.
Sparsity, therefore, is useful in this context because there are
fewer parameters in the classifier one needs to learn. In this
light, we experiment with sparse versions of various classifi-
cation methods and show their advantages. While harder to
interpret than linear and sparse algorithms, ensemble methods
that build collections of classifiers, such as random forests, can
model nonlinear relationships and have been proven to provide
very accurate models for common health care problems [34],
including the one we study in this paper.

The last method we present in this section is an adaptation
of a likelihood ratio test, designed to induce sparsity of the
features used to make a prediction. All but the last method
fall into the category of discriminative learning algorithms,
while the last one is a generative algorithm. Discriminative
algorithms directly partition the input space into label regions
without modeling how the data are generated, while generative
algorithms assume a model that generates the data, estimate
the model’s parameters and use it to make classification
decisions. Our experiment results show that discriminative
methods are likely to give higher accuracy, but generative
methods provide more interpretable models and results [35],
[36]. This is the reason we experiment with methods from both
families and the trade-off between accuracy and interpretabil-
ity is observed in our results.

A. RBF, Linear & Sparse Linear Support Vector Machines

A Support Vector Machine (SVM) is an efficient binary
classifier [37]. The SVM training algorithm seeks a separating
hyperplane in the feature space, so that data points from the
two different classes reside on different sides of that hyper-
plane. We can calculate the distance of each input data point
from the hyperplane. The minimum over all these distances
is called margin. The goal of SVM is to find the hyperplane
that has the maximum margin. In many cases, however, data
points are neither linearly nor perfectly separable. So called
soft-margin SVM, tolerates misclassification errors and can
leverage kernel functions to “elevate” the features into a
higher dimensional space where linear separability is possible
(kernelized SVMs) [37].

Given our interest in interpretable, hence sparse, classifiers
we formulate a Sparse version of Linear SVM (SLSVM) as
follows. We are given training data xi ∈ RD and labels yi ∈
{−1, 1}, i = 1, . . . , n, where xi is the vector of features for
the ith patient and yi = 1 (resp., yi = −1) indicates that the
patient will (resp., not) be hospitalized. We seek to find the
classifier (β, β0), β ∈ RD, β0 ∈ R, by solving:

min
β,β0,ξi

1
2‖β‖

2 + C
∑n
i=1 ξi + ρ‖β‖1

s.t. ξi ≥ 0, ∀i,
yi(x′iβ + β0) ≥ 1− ξi, ∀i,

(1)

where ξi is a misclassification penalty. The first term in the
objective has the effect of maximizing the margin. The second
objective term minimizes the total misclassification penalty.
The last term, ‖β‖1, in the objective, imposes sparsity in the
feature vector β, thus allowing only a sparse subset of features
to contribute to the classification decision. The parameters
C and ρ are tunable parameters that control the relative
importance of the misclassification and the sparsity terms,
respectively, compared to each other and, also, the margin
term. When ρ = 0, the above formulation yields a standard
linear SVM classifier.

A linear SVM finds a linear hyperplane in the feature space
and can not handle well cases where a nonlinear separating
surface between classes is more appropriate. To that end,
kernel functions are being used that map the features to a
higher dimensional space where a linear hyperplane would
be applicable. In the absence of the sparse-inducing `1-norm
term, kernelized SVMs use K(xi,xj) = φ(xi)′φ(xi) as a
kernel for some feature mapping function φ and solve an
optimization problem that is based on the dual problem to (1)
to find an optimal (β, β0). In our application, we will employ
the widely used Radial Basis Function (RBF) K(xi,xj) =
exp(−‖xi − xj‖2/2σ2) [38] as the kernel function in our
experiments.

B. Random Forests

Bagging (or bootstrap aggregating) is a technique for reduc-
ing the variance of an estimated predictor by averaging many
noisy but approximately unbiased models. A random forest is
an ensemble of de-correlated trees [39]. Each decision tree
is formed using a training set obtained by sampling (with
replacement) a random subset of the original data. While
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growing each decision tree, random forests use a random
subset of the set of features (variables) at each node split.
Essentially, the algorithm uses bagging for both trees and
features. Each tree is fully grown until a minimum size is
reached, i.e., there is no pruning. While the predictions of a
single tree are highly sensitive to noise in its training set,
the average of many trees is not, as long as the trees are
not correlated. Bagging achieves de-correlating the trees by
constructing them using different training sets. To make a
prediction at a new sample, random forests take the majority
vote among the outputs of the grown trees in the ensemble.
Random forests run very efficiently for large datasets, do not
have the risk of overfitting (as, e.g., AdaBoost [40], a boosting
method) and can handle datasets with imbalanced classes. The
number of trees in the ensemble is selected through cross-
validation.

C. Sparse Logistic Regression
Logistic Regression (LR) [41] is a linear classifier widely

used in many classification problems. It models the posterior
probability that a patient will be hospitalized as a logistic
function of a linear combination of the input features, with
parameters θ that weigh the input features and an offset θ0.
The parameters of the model are selected by maximizing the
log-likelihood using a gradient method. For the test samples,
decisions are made by thresholding the log-likelihood ratio
of the positive (hospitalized) class over the negative class.
Logistic regression is popular in the medical literature be-
cause it predicts a probability of a sample belonging to the
positive class. Here, we use an `1-regularized (sparse) logistic
regression [33], [42], [43], which adds an extra penalty term
proportional to ‖θ‖1 in the log-likelihood. The motivation
is to induce sparsity, effectively “selecting” a sparse subset
of features. More specifically, we solve the following convex
problem using a gradient-type method:

min
θ,θ0

∑n
i=1(− log p(yi|xi;θ, θ0)) + λ‖θ‖1 (2)

where the likelihood function is given by

p(yi = 1|xi;θ, θ0) =
1

1 + e−θ0−θ′xi

=1− p(yi = −1|xi;θ, θ0),

and λ is a tunable parameter controlling the sparsity term.
Setting λ = 0, we obtain a standard logistic regression model.

D. K-Likelihood Ratio Test
The Likelihood Ratio Test (LRT) is a naive Bayes classi-

fier and assumes that individual features (elements) of the
feature vector x = (x1, . . . , xD) are independent random
variables [44]. The LRT algorithm empirically estimates the
distribution p(xj |y) of each feature j for the hospitalized
and the non-hospitalized class. Given a new test sample
z = (z1, z2, · · · , zD), LRT calculates the two likelihoods
p(z|y = 1) and p(z|y = −1) and then classifies the sample
by comparing the ratio

p(z|y = 1)
p(z|y = −1)

=
D∏
j=1

p(zj |y = 1)
p(zj |y = −1)

to a threshold. In our variation of the method, which we
will call K-LRT, 1 instead of taking into account the ratios
of the likelihoods of all features, we consider only the K
features with the largest ratios. We consider only the largest
ratios because they correspond to features with a strong
hospitalization “signal.” On the other hand, we do not consider
features with the smallest ratios because they could be due
to the imbalance of the dataset which has much more non-
hospitalized than hospitalized patients.

The optimal K can be selected using cross-validation from
a set of pre-defined values, that is, as the value with the best
classification performance in a validation set. The purpose of
this “feature selection” is again sparsity, that is, to identify the
K most significant features for each individual patient. Thus,
each patient is actually treated differently and this algorithm
provides interpretability as to why a specific classification
decision has been made for each individual patient.

IV. JOINT CLUSTERING AND CLASSIFICATION (JCC)

In this section, we introduce a novel Joint Clustering and
Classification method. The motivation comes from the success
of K-LRT, which we will see in Section VII. Since K-LRT
selects a sparse set of features for each patient, it stands to
reason that there would be clusters of patients who share the
same features. Moreover, since K-LRT uses the K largest
likelihood ratios, feature selection is more informative for
patients that are hospitalized (positive class). This is intuitive:
patients are hospitalized for few underlying reasons while non-
hospitalized patients appear “normal” in all features associated
with a potential future hospitalization.

To reflect this reasoning, we consider a classification prob-
lem in which the positive class consists of multiple clusters,
whereas negative class samples form a single cluster. It is
possible to extend our framework and consider a setting where
clustering is applied to both the positive and the negative
class. However, because our results are satisfactory and to
avoid further increasing complexity, we do not pursue this
direction in this work. We assume that for each (positive
class) cluster there is a sparse set of discriminative dimensions,
based on which the cluster samples are separated from the
negative class. Fig. 1 provides an illustration of this structure.
The different clusters of patients are naturally created based
on age, sex, race or different diseases. From a learning
perspective, if the hidden positive groups are not predefined
and we would like to learn an optimal group partition in the
process of training classifiers, the problem could be viewed as
a combination of clustering and classification. Furthermore,
with the identified hidden clusters, the classification model
becomes more interpretable in addition to generating accurate
classification labels. A preliminary theoretical framework for
JCC appeared in our conference paper [45], but without
containing all detailed proofs of the key technical results and
with very limited numerical evaluation.

1K-LRT was first proposed in [44] and was applied only to a heart-disease
dataset.
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Fig. 1. The positive class contains two clusters and each cluster is linearly
separable from the negative class.

A. An integer programming formulation

We next consider a joint cluster detection and classification
problem under a Sparse Linear SVM (SLSVM) framework.
Let x+

i and x−j be the D-dimensional positive and neg-
ative class data points (each representing a patient), and
y+
i = 1, ∀i, y−j = −1, ∀j, the corresponding labels, where
i ∈ {1, 2, . . . , N+} and j ∈ {1, 2, . . . , N−}. Assuming L
hidden clusters in the positive class, we seek to discover:
(a) the L hidden clusters (denoted by a mapping function
l(i) = l, l ∈ {1, 2, . . . , L}), and (b) L classifiers, one for each
cluster. Let T l be a parameter controlling the sparsity of the
classifier for each cluster l. We formulate the Joint Clustering
and Classification (JCC) problem as follows:

min
βl,βl

0,l(i)

ζl
j ,ξ

l
i

L∑
l=1

(
1
2‖β

l‖2 + λ+
∑

i:l(i)=l

ξ
l(i)
i + λ−

N−∑
j=1

ζlj

)

s.t.
D∑
d=1

|βld| ≤ T l, ∀l,

ξ
l(i)
i ≥ 1− y+

i β
l(i)
0 −

D∑
d=1

y+
i β

l(i)
d x+

i,d, ∀i,

ζlj ≥ 1− y−j βl0 −
D∑
d=1

y−j β
l
dx
−
j,d, ∀j, l,

ξ
l(i)
i , ζlj ≥ 0, ∀i, j, l.

(3)
In the above formulation, the margin between the two classes
in cluster l is equal to 2/‖βl‖, hence the first term in
the objective seeks to maximize the margin. The variables
ξli, ζ

l
j represent misclassification penalties for the positive and

negative data points, respectively. The first constraint limits the
`1 norm of βl to induce a sparse SVM for each cluster. The
second (resp., third constraint) ensures that the positive (resp.,
negative) data points end up on the positive (resp. negative)
side of the hyperplane; otherwise a penalty of ξli (resp., ζlj)
is imposed; these misclassification penalties are minimized at
optimality. We use different misclassification penalties for the
positive and negative data points to accommodate a potential

imbalance in the training set between available samples; typ-
ically, we have more negative (i.e., not hospitalized) samples.
Notice that the misclassification costs of the negative samples
are counted L times because they are drawn from a single
distribution and, as a result, they are not clustered but simply
copied into each cluster. The parameters λ− and λ+ control the
weights of costs from the negative and the positive samples.

As stated, problem (3) is not easily solvable as it combines
the cluster allocation decisions (i.e., deciding the cluster as-
signment l(i) for each sample i) with the determination of
the SVM hyperplanes. One approach to solve JCC is shown
below, where we transform the problem into a mixed integer
programming problem (MIP) by introducing binary indicator
variables to represent the cluster assignment in JCC (each
positive sample can only be assigned to one cluster):

min
βl,βl

0,zil

ζl
j ,ξ

l
i

L∑
l=1

(
1
2‖β

l‖2 + λ+
N+∑
i=1

ξli + λ−
N−∑
j=1

ζlj

)

s.t.
D∑
d=1

|βld| ≤ T l, ∀l,

ξli ≥ 1− y+
i β

l
0 −

D∑
d=1

y+
i β

l
dx

+
i,d −M

∑
k 6=l

zik, ∀i, l,

ζlj ≥ 1− y−j βl0 −
D∑
d=1

y−j β
l
dx
−
j,d, ∀j, l

L∑
l=1

zil = 1, ∀i; zil ∈ {0, 1}, ∀i, l,

ξli, ζ
l
j ≥ 0,∀i, j, l,

(4)
where zil = 1 when l(i) = l and 0 otherwise (binary
variables describing the cluster assignments) and M is a large
positive real number. The following proposition establishes the
equivalence between formulations (4) and (3). The proof can
be found in Appendix A.

Proposition IV.1 The MIP formulation (4) is equivalent to
the original JCC formulation (3).

In order to obtain better clustering performance, we in-
troduce a penalty term in the objective function seeking to
minimize the intra-cluster distances between samples, that is,
making samples in the same cluster more similar to each other.
This term takes the form: ρ

∑N+

i1=1

∑N+

i2=1 σi1i2‖x
+
i1
− x+

i2
‖2,

where

σi1i2 =

{
1, if x+

i1
and x+

i2
belong to the same cluster,

0, otherwise.

For σ to comply with this definition, we need to impose the
constraint

zi1l + zi2l − σi1i2 ≤ 1, ∀ i1 6= i2, l and σi,j ∈ {0, 1}.
The MIP approach presented above comes in a compact

form, solves jointly the clustering and the classification prob-
lem, and exhibits good performance on small-scale problems.
However, there are no general polynomial-time algorithms for
solving MIPs, thus, making it problematic for large datasets
that are most common in practice. This motivates us to develop
the following Alternating Clustering and Classification (ACC)
approach, which does not suffer from these limitations.
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B. An alternating optimization approach

The idea behind ACC is to alternately train a classification
model and then re-cluster the positive samples, yielding an
algorithm which scales well and also, as we will see, comes
with theoretical performance guarantees.

Given cluster assignments l(i) for all positive training
samples i, the JCC problem (3) can be decoupled into L
separate quadratic optimization problems, essentially solving
an SVM training problem per cluster. Our alternating opti-
mization approach, summarized in Algorithms 1–2, consists
of two major modules: (i) training a classifier for each cluster
and (ii) re-clustering positive samples given all the estimated
classifiers.

The process starts with an initial (e.g., random or using
some clustering algorithm) cluster assignment of the positive
samples and then alternates between the two modules. Algo-
rithm 1 orchestrates the alternating optimization process; given
samples’ assignment to clusters, it obtains the optimal per-
cluster SLSVM classifiers and calls the re-clustering procedure
described in Algorithm 2.

Algorithm 2 uses the computed L classifiers and assigns
a positive sample i to the cluster l whose classification
hyperplane is the furthest away from the sample i, that is,
whose classifier better separates sample i from the negative
class. Notice that the re-clustering of the positive samples is
based on C, a subset of {1, . . . , D}, which is a set of selected
features that allows us to select which features are important in
cluster discrimination so that the identified clusters are more
interpretable. In a notational remark, we denote x+

i,C (resp.,
xC) as the projection of the D-dimensional feature vector x+

i

(resp., x) on the subset C. We also impose the constraint (5) in
Algorithm 2, which is necessary for proving the convergence
of ACC.

Algorithm 1 ACC Training
Initialization:
Randomly assign positive class sample i to cluster l(i), for
i ∈ {1, . . . , N+} and l(i) ∈ {1, . . . , L}.
repeat

Classification Step:
Train an SLSVM classifier for each cluster of positive
samples combined with all negative samples. Each clas-
sifier is the outcome of a quadratic optimization problem
(cf. (11)) and provides a hyperplane perpendicular to βl

and a corresponding optimal objective value Ol.
Re-clustering Step:
Re-cluster the positive samples based on the classifiers
βl and update the l(i)’s.

until no l(i) is changed or
∑
lO

l is not decreasing.

Finally, Algorithm 3 describes how ACC classifies new
samples not used in training. Specifically, it assigns a new
sample to the cluster whose classifier is furthest away from
that sample and uses the classifier of that cluster to make the
classification decision.

Algorithm 2 Re-clustering procedure given classifiers

Input: positive samples x+
i , classifiers βl, current cluster

assignment which assigns sample i to cluster l(i).
for all i ∈ {1, . . . , N+} do

for all l ∈ {1, . . . , L} do
calculate the projection ali of positive sample i onto the
classifier for cluster l using only elements in a feature
set C: ali = x+

i,C

′

βlC ;
end for
update cluster assignment of sample i from l(i) to
l∗(i) = arg max

l
ali, subject to

x+
i

′

βl
∗(i) + β

l∗(i)
0 ≥ x+

i

′

βl(i) + β
l(i)
0 . (5)

end for

Algorithm 3 ACC Testing
for each test sample x do

Assign it to cluster l∗ = arg max
l

xC
′
βlC .

Classify x with βl
∗
.

end for

C. ACC performance and convergence guarantees

In this subsection, we rigorously prove ACC convergence
and establish out-of-sample (in a “test” set not seen during
training) performance guarantees. While theoretical, such re-
sults are important because (i) they establish that ACC will
converge to a set of clusters and a classifier per cluster and
(ii) characterize the number of samples needed for training, as
well as (iii) bound out-of-sample classification performance
in terms of the in-sample performance.

We first present a result that suggests a favorable sample
complexity for SLSVM compared to the standard linear SVM.
Suppose that SLSVM for the l-th cluster yields Ql < D non-
zero elements of βl, thus, selecting a Ql-dimensional subspace
of features used for classification. The value of Ql is controlled
by the parameter T l (cf. (4)).

As is common in the learning literature [46], we draw
independent and identically distributed (i.i.d.) training samples
from some underlying probability distribution. Specifically, we
draw N− negative samples from some distribution P0 and
N+
l positive samples for cluster l from some distribution P l1,

where the total number of positive and negative samples used
to derive the classifier of cluster l is N l = N+

l +N−. Let RlN l

denote the expected training error rate and Rl the expected
test error (out-of-sample) for the classifier of cluster l under
these distributions. The proof of the following result is in
Appendix B. We note that e in (6) is the base of the natural
logarithm.

Theorem IV.2 For a specific cluster l, suppose that the corre-
sponding sparse linear SVM classifier lies in a Ql-dimensional
subspace of the original D-dimensional space. Then, for any
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ε > 0 and δ ∈ (0, 1), if the sample size N l satisfies

N l ≥ 8
ε2

[
log

2
δ

+ (Ql + 1) log
2eN l

Ql + 1
+Ql log

eD

Ql

]
, (6)

it follows that with probability no smaller than 1 − δ, Rl −
RlN l ≤ ε.

Theorem IV.2 suggests that if the training set contains a
number of samples roughly proportional to (Ql+log(1/δ))/ε2,
then we can guarantee with probability at least 1 − δ an
out-of-sample error rate ε-close to the training error rate.
In other words, sparse SVM classification requires samples
proportional to the effective dimension of the sparse classifier
and not the (potentially much larger) dimension D of the
feature space.

Next we establish that the ACC training algorithm con-
verges. The proof is given in Appendix C. As a remark on
convergence, it is worth mentioning that the values λ+ and λ−

should be fixed across all clusters to guarantee convergence.

Theorem IV.3 The ACC training algorithm (Alg. 1) converges
for any set C.

The following theorem establishes a bound on the VC-
dimension of the class of decision functions produced by ACC
training. As we will see, this bound will then lead to out-
of-sample performance guarantees. To state the result, let us
denote by H the family of clustering/classification functions
produced by ACC training. The proof of the following theorem
is in Appendix D.

Theorem IV.4 The VC-dimension of H is bounded by

VACC
4
= (L+ 1)L(D + 1) log

(
e
(L+ 1)L

2

)
.

Theorem IV.4 implies that the VC-dimension of ACC-based
classification grows linearly with the dimension of data sam-
ples and polynomially (between quadratic and cubic) with the
number of clusters. Since the local (per cluster) classifiers are
trained under an `1 constraint, they are typically defined in a
lower dimensional subspace. At the same time, the clustering
function also lies in a lower dimensional space C. Thus, the
“effective” VC-dimension could be smaller than the bound in
Theorem IV.4.

An immediate consequence of Thm. IV.4 is the follow-
ing corollary which establishes out-of-sample generalization
guarantees for ACC-based classification and is based on a
result in [47] (see also Appendix B). To state the result, let
N = N+ + N− the size of the training set. Let RN denote
the expected training error rate and R the expected test error
(out-of-sample) of the ACC-based classifier.

Corollary IV.5 For any ρ ∈ (0, 1), with probability at least
1− ρ it holds:

R ≤ RN + 2

√
2
VACC log 2eN

VACC
+ log 2

ρ

N
.

V. THE DATA

The data we use to evaluate the various methods we
presented come from the Boston Medical Center (BMC). BMC
is the largest safety-net hospital in New England and with 13
affiliated Community Health Centers (CHCs) provides care for
about 30% of Boston residents. The data integrate information
from hospital records, information from the community health
centers, and some billing records, thus forming a fairly rich
and diverse dataset.

The study is focused on patients with at least one
heart-related diagnosis or procedure record in the period
01/01/2005–12/31/2010 or a diagnosis record of diabetes
mellitus between 01/01/2007–12/31/2012. For each patient in
the above set, we extract the medical history (demograph-
ics, hospital/physician visits, problems, medications, labs,
procedures and limited clinical observations) for the period
01/01/2001–12/31/2010 and 01/01/2001–12/31/2012, corre-
spondingly, which includes relevant medical factors from
which we will construct a set of patient features. Data were
available both from the hospital EHR and billing systems.
Table I shows the ontologies, along with the number of factors
and some examples corresponding to each of the heart patients.
Similarly, Table II shows the ontologies with some examples
for the diabetic patients. In these tables, ICD9 (International
Classification of Diseases, 9th revision) [48], CPT (Current
Procedural Terminology) [49], LOINC (Logical Observation
Identifiers Names and Codes) [50], and MSDRG (Medicare
Severity-Diagnosis Related Group) [51] are commonly used
medical coding systems for diseases, procedures, laboratory
observations, and diagnoses, respectively.

We note that some of the diagnoses and admissions in Ta-
ble I are not directly heart-related, but may be good indicators
of a heart problem. Also, as expected, many of the diagnoses
and procedures in Table II are direct complications due to
diabetes. Diabetes-related admissions are not trivially identi-
fiable, and are revealed through the procedure described in
the next subsection. Overall, our heart dataset contains 45,579
patients and our diabetes dataset consists of 33,122 patients
after preprocessing, respectively. Among these patients, 3,033
patients in the heart dataset and 5,622 patients in the diabetes
dataset are labeled as hospitalized in a target year. For each
dataset we randomly select 60% of the patients for training
and keep the remaining 40% of the patients for testing.

Our objective is to leverage past medical factors for each
patient to predict whether she/he will be hospitalized or not
during a target year which, as we explain below, could be
different for each patient.

In order to organize all the available information in a
uniform way for all patients, some preprocessing of the data
is needed to summarize the information over a time interval.
Details will be discussed in the next subsection. We will refer
to the summarized information of the medical factors over a
specific time interval as features.

Each feature related to diagnoses, procedures (CPT), pro-
cedures (ICD9) and visits to the Emergency Room is an
integer count of such records for a specific patient during
the specific time interval. Zero indicates the absence of any
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TABLE I
MEDICAL FACTORS IN THE HEART DISEASES DATASET.

Ontology
Number

of
Factors

Examples

Demographics 4 Sex, Age, Race, Zip Code

Diagnoses 22

e.g., Acute Myocardial Infarction (ICD9: 410),
Cardiac Dysrhythmias (ICD9: 427), Heart Fail-
ure (ICD9: 428), Acute Pulmonary Heart Dis-
ease (ICD9: 415), Diabetes Mellitus with Com-
plications (ICD9: 250.1-250.4, 250.6-250.9),
Obesity (ICD9: 278.0)

Procedures
CPT 3

Cardiovascular Procedures (including CPT
93501, 93503, 93505, etc.), Surgical Procedures
on the Arteries and Vein (including CPT 35686,
35501, 35509, etc.), Surgical Procedures on the
Heart and Pericardium (including CPT 33533,
33534, 33535)

Procedures
ICD9 4

Operations on the Cardiovascular System (ICD9:
35-39.99), Cardiac Stress Test and pacemaker
checks (ICD9: 89.4), Angiocardiography and
Aortography (ICD9: 88.5), Diagnostic Ultra-
sound of Heart (ICD9: 88.72)

Vitals 2
Diastolic Blood Pressure, Systolic Blood
Pressure

Lab
Tests 4

CPK (Creatine phosphokinase) (LOINC:2157-
6), CRP Cardio (C-reactive protein)
(LOINC:30522-7), Direct LDL (Low-density
lipoprotein) (LOINC:2574-2), HDL (High-
Density Lipoprotein) (LOINC:9830-1)

Tobacco 2 Current Cigarette Use, Ever Cigarette Use

Visits to
the ER 1 Visits to the Emergency Room

Admissions 17

e.g., Heart Transplant or Implant of Heart Assist
System (MSDRG: 001, 002), Cardiac Valve and
Other Major Cardiothoracic procedures (MS-
DRG: 216-221), Coronary Bypass (MSDRG:
231-234), Acute Myocardial Infarction (MS-
DRG: 280-285), Heart Failure and Shock (MS-
DRG: 291-293), Cardiac Arrest (MSDRG: 296-
298), Chest Pain (MSDRG: 313), Respiratory
System related admissions (MSDRG: 175-176,
190-192)

record. Blood pressure and lab tests features are continuous
valued. Missing values are replaced by the average of values
of patients with a record at the same time interval. Features
related to tobacco use are indicators of current- or past-smoker
in the specific time interval. Admission features contain the
total number of days of hospitalization over the specific time
interval the feature corresponds to. Admission records are used
both to form the admission features (past admission records)
and in order to calculate the prediction variable (existence of
admission records in the target year). We treat our problem as
a classification problem and each patient is assigned a label: 1
if there is a heart-related (or diabetes-related) hospitalization
in the target year and −1 otherwise.

A. Heart Data Preprocessing

In this section we discuss several data organization and
preprocessing choices we make for the heart dataset. For
each patient, a target year is fixed (the year in which a
hospitalization prediction is sought) and all past patient records

TABLE II
MEDICAL FACTORS IN THE DIABETES DATASET.

Ontology Examples

Demographics Sex, Age, Race, Zip Code

Diagnoses e.g., Diabetes mellitus with complications, Thyroid
disorders, Hypertensive disease, Pulmonary heart
disease, Heart failure, Aneurysm, Skin infections,
Abnormal glucose tolerance test, Family history of
diabetes mellitus

Procedures (CPT
or ICD9)

e.g., Procedure on single vessel, Insertion of intraoc-
ular lens prosthesis at time of cataract extraction,
Venous catheterization, Hemodialysis, Transfusion of
packed cells

Admissions e.g., Diabetes (with and without) complications,
Heart failure and shock, Deep Vein Throm-
bophlebitis, Renal failure, Chest pain, Chronic ob-
structive pulmonary disease, Nutritional. & misc
metabolic disorders, Bone Diseases & Arthropathies,
Kidney & urinary tract infections, Acute myocardial
infarction, O.R. procedures for obesity, Hypertension

Service by De-
partment

Inpatient (admit), Inpatient (observe), Outpatient,
Emergency Room

are organized as follows.

1) Summarization of the medical factors in the history of
a patient: After exploring multiple alternatives, an effective
way to summarize each patient’s medical history is to form
four time blocks for each medical factor. Time blocks 1, 2,
and 3 summarize the medical factors over one, two, and three
years before the target year, whereas the 4th block summarizes
all earlier patient records. For tobacco use, there are only two
features, indicating whether the patient is currently smoking
and whether he/she has ever smoked. After removing features
with zero standard deviation, this process results in a vector
of 212 features for each patient.

2) Selection of the target year: As a result of the nature of
the data, the two classes are highly imbalanced. When we fix
the target year for all patients to be 2010, the number of hos-
pitalized patients is about 2% of the total number of patients,
which does not yield enough positive samples for effective
training. Thus, and to increase the number of hospitalized
patient examples, if a patient had only one hospitalization
throughout 2007–2010, the year of hospitalization is set as
the target year for that patient. If a patient had multiple
hospitalizations, a target year between the first and the last
hospitalization is randomly selected.

3) Setting the target time interval to be a year: After testing
several options, a year appears to be an appropriate time
interval for prediction. Shorter prediction windows increase
variability and do not allow sufficient time for prevention.
Moreover, given that hospitalization occurs roughly uniformly
within a year, we take the prediction time interval to be a
calendar year.

4) Removing noisy samples: Patients who have no records
before the target year are impossible to predict and are thus
removed.
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B. Identifying Diabetes-Related Hospitalizations
Identifying the hospitalizations that occur mainly due to

diabetes is not a trivial task, because for financial reasons (i.e.,
higher reimbursement) many diabetes-related hospitalizations
are recorded in the system as other types of admissions, e.g.,
heart-related. Therefore, as a first step, we seek to separate
diabetes-related admissions from all the rest. To that end,
we consider all patients with at least one admission record
between 1/1/2007 and 12/31/2012. From this set, patients with
at least one diabetes mellitus record during the same period are
assigned to the diabetic population, while the rest are assigned
to the non-diabetic population.

We list the union of all unique admission types for both
populations (732 unique types). The total number of admission
samples for the diabetic and non-diabetic populations are
N1 = 47, 352 and N2 = 116, 934, respectively. For each
type of admission d, each admission sample can be viewed
as the outcome of a binary random variable that takes the
value 1, if the hospitalization occurs because of this type of
admission, and 0, otherwise. Thus, we can transform the two
sets of admission records for the two populations into binary
(0/1) sequences. By (statistically) comparing the proportions
of d in the two populations, we can infer whether admission
d was caused mainly by diabetes or not.

To that end, we will utilize a statistical hypothesis test
comparing sample differences of proportions. Suppose we
generate two sets of admissions S1 and S2 of size N1 and
N2 drawn from the diabetic and the non-diabetic patient
populations, respectively. Consider a specific admission type
d and suppose that it appears with probability p1, out of all
possible admission types in S1. Similarly, a type d admission
appears with probability p2 in S2. Given now the two sets
of admissions from diabetics (S1) and non-diabetics (S2), let
P1 and P2 be the corresponding sample proportions of type
d admissions. We want to statistically compare P1 and P2

and assess whether a type d admission is more prevalent in
S1 vs. S2. Consider as the null hypothesis the case where
p1 = p2, i.e., a type d admission is equally likely in the
two populations. Under the null hypothesis, the sampling
distribution of differences in proportions is approximately
normally distributed, with its mean and standard deviation
given by

µP1−P2 = 0 and σP1−P2 =

√√√√pq

(
1
N1

+
1
N2

)
,

where p = (N1P1 + N2P2)/(N1 + N2) is used as an
estimate of the probability of a type d admission in both
populations and q = 1−p. By using the standardized variable
z = (P1−P2)/(σP1−P2) we can assess if the results observed
in the samples differ markedly from the results expected
under the null hypothesis. We do that using the single sided
p-value of the statistic z. The smaller the p-value is, the
higher the confidence we have in the alternative hypothesis or
equivalently in the fact that the diabetic patients have higher
chance of getting admission records of type d than the non-
diabetic ones (since we consider the difference P1 − P2). We
list admission types in increasing order of p-value and we set

a threshold of p-value ≤ α = 0.0001; admission types with p-
value less than α are considered to be attributed to diabetes. 2

Examples of diabetes-related admissions are shown in Table II.

C. Diabetes Data Preprocessing

The features are formed as combinations of different medi-
cal factors (instead of considering the factors as separate fea-
tures) that better describe what happened to the patients during
their visits to the hospital. Specifically, we form triplets that
consist of a diagnosis, a procedure (or the information that no
procedure was done), and the service department. An example
of a complex feature (a triplet) is the diagnosis of ischemic
heart disease that led to an adjunct vascular system procedure
(procedure on single vessel) while the patient was admitted
to the inpatient care. Clearly, since each category can take
one of several discrete values, a huge number of combinations
should be considered. Naturally, not all possible combinations
occur, which reduces significantly the total number of potential
features that describe each patient. Also for each patient, we
extract information about the diabetes type over their history
and demographics including age, gender and race. Next, we
present several data organization and preprocessing steps we
take. For each patient, a target year is fixed and all past patient
records are organized as follows.

1) Forming the complex features: We create a diagnoses-
procedures indicator matrix to keep track of which diagnosis
occurs with which procedure. The procedures that are not
associated with any diabetes-related diagnosis are removed.
Procedures in the dataset are listed in the most detailed level
of the ICD9 coding system [48] or the CPT coding system
[49]. We group together procedures that belong to the same
ICD9/CPT family, resulting in 31 categories (out of 2004 in
total).

2) Summarization of the complex features in the history of
a patient: We use the same approach as with heart diseases:
we form four time blocks for each medical factor with all
corresponding records summarized over one, two, three years
before the target year, and a fourth time block containing
averages of all the earlier records. This produces a 9, 402-
dimensional vector of features characterizing each patient.

3) Reducing the number of features: We remove all the
features that do not contain enough information for a signifi-
cant amount of the population (less than 1% of the patients),
as they could not help us generalize. This leaves 320 medical
and 3 demographical features.

4) Identifying the diabetes type: The ICD9 code for dia-
betes is assigned to category 250 (diabetes mellitus). The fifth
digit of the diagnosis code determines the type of diabetes and
whether it is uncontrolled or not stated as uncontrolled. Thus,
we have four types of diabetes diagnoses: type II, not stated as
uncontrolled (fifth digit 0), type I, not stated as uncontrolled
(fifth digit 1), type II or unspecified type, uncontrolled (fifth
digit 2) and type I, uncontrolled (fifth digit 3). Based on these
four types, we count how many records of each type each

2Apart from selecting a small-value α, we also ensure that the cumulative
fraction of patients that are potentially labeled as belonging to the hospitalized
class is not too small, so that the dataset is not highly imbalanced.
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patient had in the four time blocks before the target year, thus
adding 16 new features for each patient.

5) Setting the target time interval to a calendar year:
Again, as with heart diseases, we seek to predict hospital-
izations in the target time interval of a year starting on the 1st
of January and ending on the 31st of December.

6) Selection of the target year: As a result of the nature of
the data, the two classes are highly imbalanced. To increase
the number of hospitalized patient examples, if a patient had
only one hospitalization throughout 2007–2012, the year of
hospitalization will be set as the target year. If a patient had
multiple hospitalizations, a target year between the first and
the last hospitalizations will be randomly selected. 2012 is set
as the target year for patients with no hospitalization, so that
there is as much available history for them as possible. By
this policy, the ratio of hospitalized patients in the dataset is
16.97%.

7) Removing patients with no record: Patients who have
no records before the target year are removed, since there is
nothing on which a prediction can be based. The total number
of patients left is 33,122.

8) Splitting the data into a training set and a test set
randomly: As is common in supervised machine learning,
the population is randomly split into a training and a test
set. Since from a statistical point of view, all the data points
(patients’ features) are drawn from the same distribution, we
do not differentiate between patients whose records appear
earlier in time than others with later time stamps. A ret-
rospective/prospective approach appears more often in the
medical literature and is more relevant in a clinical trial setting,
rather than in our algorithmic approach. What is critical
in our setting is that for each patient prediction we make
(hospitalization/non-hospitalization in a target year), we only
use that patients’ information before the target year.

VI. PERFORMANCE EVALUATION

Typically, the primary goal of learning algorithms is to
maximize the prediction accuracy or equivalently minimize the
error rate. However, in the specific medical application prob-
lem we study, the ultimate goal is to alert and assist patients
and doctors in taking further actions to prevent hospitalizations
before they occur, whenever possible. Thus, our models and
results should be accessible and easily explainable to doctors
and not only machine learning experts. With that in mind, we
examine our models from two aspects: prediction accuracy and
interpretability.

The prediction accuracy is captured in two metrics: the false
alarm rate (how many patients were predicted to be in the
positive class, i.e., hospitalized, while they truly were not) and
the detection rate (how many patients were predicted to be
hospitalized while they truly were). In the medical literature,
the detection rate is often referred to as sensitivity and the
term specificity is used for one minus the false alarm rate.
Two other terms that are commonly used are the recall rate,
which is the same as the detection rate, and the precision rate,
which is defined as the ratio of true positives (hospitalizations)
over all the predicted positives (true and false). For a binary

classification system, the evaluation of the performance is typ-
ically illustrated with the Receiver Operating Characteristic
(ROC) curve, which plots the detection rate versus the false
alarm rate at various threshold settings. To summarize the ROC
curve and be able to compare different methods using only one
metric, we will use the Area Under the ROC Curve (AUC).
An ideal classifier achieves an AUC equal to 1 (or 100%),
while a classifier that makes random classification decisions
achieves an AUC equal to 0.5 (or 50%). Thus, the “best” (most
accurate) classification method will be the one that achieves
the highest AUC.

For the heart study we conduct, we will also generate
the ROC curve based on patients’ 10-year risk of general
cardiovascular disease derived by the Framingham Heart Study
(FHS) [52]. FHS is a seminal study on heart diseases that has
developed a set of risk factors for various heart problems. The
10-year risk we are using is the closest to our purpose and has
been widely used. It uses the following features (predictors):
age, diabetes, smoking, treated and untreated systolic blood
pressure, total cholesterol, High-Density Lipoprotein (HDL),
and BMI (Body Mass Index) which can be used to replace
lipids in a simpler model. We calculate this risk value (which
we call the Framingham Risk Factor-FRF) for every patient
and make the classification based on this risk factor only. We
also generate an ROC curve by applying random forests just to
the features involved in FRF. The generated ROC curve serves
as a baseline for comparing our methods to classifiers that are
based on features suggested only by medical intuition.

For the diabetes study, we also consider baseline classifiers
that are based only on features commonly considered by
physicians. More specifically, the features we select are: age,
race, gender, average over the entire patient history of the
hemoglobin A1c, or HbA1c for short (which measures average
blood sugar concentrations for the preceding two to three
months), and the average number of emergency room visits
over the entire patient history. All these features are part of
a 3-year risk of diabetes metric in [53]. We apply random
forests to just these features to obtain a baseline to compare
our methods against.

Let us also note that we will compare our new algorithm
ACC to SVMs (linear and RBF), and two other hierarchical
approaches that combine clustering with classification, to
which we refer as Cluster-Then-Linear-SVM (CT-LSVM) and
Cluster-Then-Sparse-Linear-SVM (CT-SLSVM). Specifically,
CT-LSVM first clusters the positive samples (still based on
the feature set C) with the widely used k-means method [39],
then copies negative samples into each cluster, and finally
trains classifiers with linear SVM for each cluster. The only
difference between algorithm CT-SLSVM and CT-LSVM is
that CT-SLSVM adopts sparse linear SVM in the last step.

Notice that ACC implements an alternating procedure while
CT-LSVM, CT-SLSVM do not. With only one-time cluster-
ing, CT-LSVM and CT-SLSVM create unsupervised clusters
without making use of the negative samples, whereas ACC is
taking class information and classifiers under consideration so
that the clusters also help the classification.
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TABLE III
QUANTIZATION OF FEATURES.

Features Levels of
quantiza-
tion

Comments

Sex 3 0 represents missing information

Age 6 Thresholds at 40, 55, 65, 75 and 85
years old

Race 10

Zip Code 0 Removed due to its vast variation

Tobacco (Current
and Ever
Cigarette Use)

2 Indicators of tobacco use

Diastolic Blood
Pres-sure (DBP)

3 Level 1 if DBP < 60mmHg, Level 2
if 60mmHg ≤ DBP ≤ 90mmHg and
Level 3 if DBP > 90mmHg

Systolic Blood
Pressure (SBP)

3 Level 1 if SBP < 90mmHg, Level 2
if 90mmHg ≤ SBP ≤ 140mmHg and
Level 3 if SBP > 140mmHg

Lab Tests 2 Existing lab record or Non-Existing lab
record in the specific time period

All other dimen-
sions

7 Thresholds are set to 0.01%, 5%, 10%,
20%, 40% and 70% of the maximum
value of each dimension

VII. EXPERIMENTAL RESULTS

In this section, we will present experimental results on the
two datasets for all methods we have presented so far, in terms
of both accuracy and interpretability.

For SVM, tuning parameters are the misclassification
penalty coefficient C (cf. (1)) and the kernel
parameter σ; we used the values {0.3, 1, 3} and
{0.5, 1, 2, 7, 15, 25, 35, 50, 70, 100}, respectively. Optimal
values of 1 and 7, respectively, were selected by cross-
validation.

For K-LRT, we quantize the data as shown in Table III.
After experimentation, the best performance of K-LRT is
achieved by setting k = 4.

In Figures 2 and 3, we present the ROC curves of all
methods, for a particular random split of the data into a
training and test set. In Tables IV and V, we present the
average (avg.) and the standard deviation (std) of the AUC
over 10 different splits of the data into a training and a test
set. In these tables, Lin. and RBF SVM correspond to SVM
with a linear and an RBF kernel, respectively. Sparse LR
corresponds to sparse logistic regression (cf. Sec. III-C). FRF
10-yr risk corresponds to thresholding the Framingham 10-
year risk and random forests on FRF features simply trains a
random forest on the features used in the Framingham 10-year
risk. We also report the baseline diabetes method we presented
in the previous subsection in the last row of Table V.

Based on the results, random forests perform the best
followed by our ACC. It is interesting that using features
selected by physicians (as in FRF or the diabetes baseline
method) leads to significantly inferior performance even if
a very sophisticated classifier (like random forests) is being
used. This suggests that the most intuitive medical features do

Fig. 2. ROC curves for the heart data.

TABLE IV
PREDICTION ACCURACY (AUC) ON HEART DATA.

Settings avg. AUC std AUC

ACC, L = 1 (SLSVM) 76.54% 0.59%
ACC, L = 2 76.83% 0.87%
ACC, L = 3 77.06% 1.04%
ACC, L = 4 75.14% 0.92%
ACC, L = 5 75.14% 1.00%
ACC, L = 6 74.32% 0.87%

4-LRT 75.78% 0.53%
Lin. SVM 72.83% 0.51%
RBF SVM 73.35% 1.07%
sparse LR 75.87% 0.67%

CT-LSVM (L = 2) 71.31% 0.76%
CT-SLSVM (L = 2) 71.97% 0.73%

random forests 81.62% 0.37%
FRF 10-yr risk 56.48% 1.09%

random forests on FRF features 62.20% 1.13%

not contain all the information that could be used in making
an accurate prediction.

In terms of interpretability, with RBF SVM, the features are
mapped through a kernel function from the original space into
a higher-dimensional space. This, however, makes the features
in the new space not interpretable. Random forests are also not
easy to interpret. While a single tree classifier which is used
as the base learner is explainable, the weighted sum of a large
number of trees makes it relatively complicated to find the
direct attribution of each feature to the final decision. LRT
itself lacks interpretability, because we have more than 200
features for each sample and there is no direct relationship

TABLE V
PREDICTION ACCURACY (AUC) ON DIABETES DATA.

Settings avg. AUC std AUC

ACC, L = 1 (SLSVM) 79.24% 0.52%
ACC, L = 2 78.55% 0.41%
ACC, L = 3 78.53% 0.41%
ACC, L = 4 78.46% 0.35%
ACC, L = 5 78.36% 0.36%
ACC, L = 6 78.18% 0.50%

4-LRT 78.74% 0.28%
Lin. SVM 76.87% 0.48%
RBF SVM 77.96% 0.27%
sparse LR 78.91% 0.38%

CT-LSVM (L = 2) 75.63% 0.50%
CT-SLSVM (L = 2) 77.99% 0.49%

random forests 84.53% 0.26%
random forests on selected features (baseline) 65.77% 0.47%
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Fig. 3. ROC curves for diabetes data.

between prediction of hospitalization and the reasons that led
to it. On the other hand, sparse linear SVM (SLSVM which
coincides with ACC using L = 1 cluster), ACC, K-LRT, and
sparse LR are easily interpretable because they are based on
sparse classifiers involving relatively few features. ACC, in
addition, clusters patients and cluster membership provides
extra interpretation.

Our modified LRT, K-LRT, is particularly interpretable
and it is surprising that such a simple classifier has strong
performance. It highlights the top K features that lead to
the classification decision. These features could be of help
in assisting physicians reviewing the patient’s EHR profile
and formulating hospitalization-prevention strategies. To pro-
vide an example of intuition that can be gleaned from this
information, we consider the heart disease dataset and in
Table VI we present the features highlighted by 1-LRT. We
remind the reader that in 1-LRT, each test patient is essentially
associated with a single feature. For each feature j, we (i)
count how many times it was selected as the primary feature
in the test set, and (ii) calculate the average likelihood ratio
p(zj |y = 1)/p(zj |y = −1) over all test patients. We normalize
both quantities (i) and (ii) to have zero mean and variance
equal to 1. The average of these two normalized quantities is
treated as the importance score of the feature j. We rank the
importance scores and report the top 10 features in Table VI. In
the table, CPK stands for creatine phosphokinase, an enzyme
which, when elevated, it indicates injury or stress to the heart
muscle tissue, e.g., as a result of a myocardial infarction (heart
attack). It is interesting that in addition to heart-related medical
factors, utilization features such as lab tests and emergency
room visits, contribute to the classification decision. This is
likely the reason why our methods, which use the entirety of
the EHR, perform much better than the Framingham-based
methods.

To interpret the clusters generated by ACC for the heart
study (for the case L = 3 which yields the best performance),
we plot in Figure 4 the mean value over each cluster of
each element in the feature vector xC . The 3 clusters are
well-separated. Cluster 2 contains patients with other forms
of chronic ischemic disease (mainly coronary atherosclerosis)
and myocardial infarction that had occurred sometime in the
past. Cluster 3 contains patients with dysrhythmias and heart
failure. Cardiologists would agree that these clusters contain

TABLE VI
TOP 10 SIGNIFICANT FEATURES FOR 1-LRT.

1-LRT 1-LRT
Importance Score Feature Name

10.50 Admission of heart failure, 1 year before the target year

9.71 Age

6.23 Diagnosis of heart failure, 1 year before the target year

5.43 Admission with other circulatory system diagnoses, 1 year
before the target year

4.38 Diagnosis of heart failure, 2 years before the target year

4.16 Diagnosis of hematologic disease, 1 year before the target
year

3.45 Diagnosis of diabetes mellitus w/o complications, 1 year
before the target year

3.40 Symptoms involving respiratory system and other chest symp-
toms, 1 year before the target year

3.24 visit to the Emergency Room, 1 year before the target year

3.13 Lab test CPK, 1 year before the target year

patients with very different types of heart disease. Finally,
Cluster 1 contains all other cases with some peaks correspond-
ing to endocardium/pericardium disease. It is interesting, and
a bit surprising, that ACC identifies meaningful clusters of
heart-disease even though it is completely agnostic of medical
knowledge.

Fig. 4. Average feature values in each cluster (L = 3) for the heart diseases
dataset.

In the diabetes dataset, best ACC performance is obtained
for L = 1 (a single cluster). Still, it is of interest to examine
whether meaningful clusters emerge for L > 1. We plot
again in Figure 5 the mean value over each cluster of each
element in the feature vector, using as “diagnostic” features
the subset of features which have a correlation larger than
0.01 with the labels in the training set. This is done for
a single repetition of the experiment and L = 3, yielding
interesting clusters and highlighting the interpretative power of
ACC. We observe that Cluster 1 contains diabetes patients with
chronic cerebrovascular disease, skin ulcers, hypertension, an
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abnormal glucose tolerance test, and other complications as
a result of diabetes. Cluster 2 contains patients with diabetes
complicating pregnancy. Cluster 3 contains patients with less
acute disease, combining diabetes with hypertension. The
feature values of these three clusters clearly separate from the
feature values in the negative class.

Fig. 5. Average feature values in each cluster (L = 3) for the diabetes dataset.

VIII. CONCLUSIONS

In this paper, we focused on the challenge of predicting
future hospitalizations for patients with heart problems or
diabetes, based on their Electronic Health Records (EHRs).
We explored a diverse set of methods, namely kernelized,
linear and `1-regularized linear Support Vector Machines, `1-
regularized logistic regression and random forests. We pro-
posed a likelihood ratio test-based method, K-LRT, that is able
to identify the K most significant features for each patient that
lead to hospitalization.

Our main contribution is the introduction of a novel joint
clustering and classification method that discovers hidden clus-
ters in the positive samples (hospitalized) and identifies sparse
classifiers for each cluster separating the positive samples from
the negative ones (non-hospitalized). The joint problem is non-
convex (formulated as an integer optimization problem); still
we developed an alternating optimization approach (termed
ACC) that can solve very large instances. We established the
convergence of ACC, characterized its sample complexity, and
derived a bound on VC dimension that leads to out-of-sample
performance guarantees.

For all the methods we proposed, we evaluated their perfor-
mance in terms of classification accuracy and interpretability,
an equally crucial criterion in the medical domain. Our ACC
approach yielded the best performance among methods that
are amenable to an interpretation (or explanation) of the
prediction.

Our findings highlight a number of important insights and
opportunities by offering a more targeted strategy for “at-
risk” individuals. Our algorithms could easily be applied to

care management reports or EHR-based prompts and alerts
with the goal of identifying individuals who might benefit
from additional care management and outreach. Depending
on available resources and economic considerations, a medical
facility can select a specific point on the ROC curve to operate
at. This is equivalent to selecting a tolerable maximum false
positive (alarm) rate, or, equivalently, a minimum specificity.
Because costs associated with preventive actions (such as tests,
medications, office visits) are orders of magnitude lower than
hospitalization costs, one can tolerate significant false alarm
rates and still save a large amount of money in preventable
hospitalization costs. To get a sense of this difference, the
average cost per hospital stay in the U.S. was $9,700 in
2010 [54], with some heart related hospitalizations costing
much more on average (e.g., $18,200 for Acute Myocardial
Infarction). In contrast, an office visit costs on the order of
$200, tests like an ECG or an echo on the order of $100-$230,
and a 90-day supply of common medication (hypertension or
cholesterol) no more than $50. Clearly, even a small fraction
of prevented hospitalizations can lead to large savings. Our
methods can be seen as enabling such prevention efforts.

APPENDIX A
PROOF OF PROPOSITION IV.1

Proof: Let C∗JCC and C∗MIP be the optimal objective
values of problems (3) and (4).

Given any feasible solution to the JCC problem (3):
l(i),βl, βl0, ζ

l
i ,∀l, i, and ξli,JCC(i), a feasible solution to the

MIP problem is:

zil =

{
1, l(i) = l,

0, otherwise,
ξli,MIP =

{
ξli,JCC , l(i) = l,

0, otherwise;

and βl, βl0, ζ
l
i remain the same as in the JCC solution.

The feasibility of the constructed MIP solution is verified as
follows. Notice that except for the 2nd constraint in the MIP
formulation (4) (the big-M constraint), all other constraints
can be easily verified to be satisfied by the constructed
MIP solution. For the big-M constraint, if zil = 1, then
M
∑
k 6=l zik = 0, and the big-M constraint holds since

ξli,MIP = ξli,JCC . If, however, zil = 0, then M
∑
k 6=l zik =

M, and the big-M constraint also holds (trivially).
The above two feasible solutions have the same objective

values, and this equality holds for any feasible solution to the
JCC problem, hence we can conclude that C∗JCC ≥ C∗MIP .

Next, we prove that each optimal solution to the MIP
problem satisfies ξli,MIP = 0 when zil = 0. Note that when
zil = 0, M

∑
k 6=l zik = M, and the big-M constraint becomes

ξli,MIP ≥ 1 − y+
i β

l
0 −

∑D
d=1 y

+
i β

l
dx

+
i,d − M , which will

always hold since M is a large enough number. Therefore,
to minimize the objective, the optimal solution should select
the smallest feasible ξli,MIP , i.e., ξli,MIP = 0.

Given an optimal solution to the MIP problem, a corre-
sponding feasible solution to JCC problem is: if zil = 1, then
ξli,JCC = ξli,MIP , and l(i) = l; and all other variables retain
their values in the MIP solution. Since the two solutions have
the same objective cost, it follows C∗JCC ≤ C∗MIP .
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APPENDIX B
PROOF OF THEOREM IV.2

Proof: To simplify notation we drop the cluster index l.
We will use a result from [47]. We note that the family of
linear classifiers in a D-dimensional space has VC-dimension
D + 1 ([35]). Let G be a function family with VC-dimension
D + 1. Let RN (g) denote the training error rate of classifier
g on N training samples randomly drawn from an underlying
distribution P . Let R(g) denote the expected test error of g
with respect to P . The following theorem from [47] is useful
in establishing our result.

Theorem B.1 ([47]) If the function family G has VC-
dimension D + 1, then the probability

P

R(g)−RN (g) ≤ 2

√
2
(D + 1) log 2eN

D+1 + log 2
ρ

N


≥ 1− ρ (7)

for any function g ∈ G and ρ ∈ (0, 1).

For the given ε in the statement of Theorem IV.2, select
large enough N such that

ε ≥ 2

√
2
(D + 1) log 2eN

D+1 + log 2
ρ

N
,

or
2
ρ
≤ exp

{
Nε2

8
− (D + 1) log

(
2eN
D + 1

)}
. (8)

It follows from Thm. B.1,

P [R(g)−RN (g) ≥ ε] ≤ ρ. (9)

In our setting, the classifier g is restricted to a Q-dimensional
subspace of the D-dimensional feature space. Thus, the bound
in (8) holds by replacing D with Q in the right hand side and
the bound in (9) holds for any such Q-dimensional subspace
selected by the `1-penalized optimization. Since there are

(
D
Q

)
possible choices for the subspace, using the union bound we
obtain:

P [R(g)−RN (g) ≥ ε] ≤
(
D

Q

)
ρ.

Using the bound
(
D
Q

)
≤ ( eDQ )Q = exp(Q log eD

Q ), it follows:

P [R(g)−RN (g) ≥ ε] ≤ ρ exp
{
Q log

eD

Q

}
. (10)

For the given δ ∈ (0, 1) in the statement of Theorem IV.2,
select small enough ρ such that

δ ≥ ρ exp
{
Q log

eD

Q

}
,

or equivalently

1
δ
≤ 1
ρ

exp
{
−Q log

eD

Q

}
.

Using (8) (with Q replacing D), we obtain

log
2
δ
≤ Nε2

8
− (Q+ 1) log

(
2eN
Q+ 1

)
−Q log

eD

Q
,

which implies that N must be large enough to satisfy

N ≥ 8
ε2

[
log

2
δ

+ (Q+ 1) log
2eN
Q+ 1

+Q log
eD

Q

]
.

This establishes P (R(g)−RN (g) ≥ ε) ≤ δ, which is equiv-
alent to Theorem IV.2.

APPENDIX C
PROOF OF THEOREM IV.3

Proof: At each alternating cycle, and for each cluster l, we
train a SLSVM using as training samples the positive samples
of that cluster combined with all negative samples. This
produces an optimal value Ol for the corresponding SLSVM
training optimization problem (cf. (3)) and the corresponding
classifier (βl, βl0). Specifically, the SLSVM training problem
for cluster l is:

Ol = minβl,βl
0,

ζl
j ,ξ

l
i

1
2 ||β

l||2 + λ+
∑N+

l
i=1 ξ

l
i + λ−

N−∑
j=1

ζlj

s.t. ξli ≥ 1− y+
i β

l
0 −

∑D
d=1 y

+
i β

l
dx

+
i,d, ∀i,

ζlj ≥ 1− y−j βl0 −
∑D
d=1 y

−
j β

l
dx
−
j,d, ∀j,∑D

d=1 |βld| ≤ T l, ξli, ζlj ≥ 0, ∀i, j.
(11)

Set

Z =
L∑
l=1

Ol =
L∑
l=1

(
1
2
||βl||2 + λ−

N−∑
j=1

ζlj

)
+ λ+

N+∑
i=1

ξ
l(i)
i ,

where l(i) maps sample i to cluster l(i),
∑L
l=1N

+
l = N+,

and βl, βl0, ζlj , and ξl(i)i are optimal solutions of (11) for each
l. Let us now consider the change of Z at each iteration of
the ACC training procedure.

First, we consider the re-clustering step (Alg. 2) given
computed SLSVMs for each cluster. During the re-clustering
step, the classifier and slack variables for negative samples are
not modified. Only the ξl(i)i get modified since the assignment
functions l(i) change. When we switch positive sample i from
cluster l(i) to l∗(i), we can simply assign value ξl(i)i to ξl

∗(i)
i .

Therefore, the value of Z does not change during the re-
clustering phase and takes the form

Z =
L∑
l=1

(
1
2
||βl||2 + λ+

∑
{i:l∗(i)=l}

ξli + λ−
N−∑
j=1

ζlj

)
.

Next, given new cluster assignments, we re-train the local
classifiers by resolving problem (11) for each cluster l. Notice
that re-clustering was done subject to the constraint in Eq. (5).
Since y+

i = 1 for all positive samples, we have

ξ
l(i)
i ≥1− βl(i)0 −

D∑
d=1

β
l(i)
d x+

i,d

≥1− βl
∗(i)

0 −
D∑
d=1

β
l∗(i)
d x+

i,d.

The first inequality is due to ξl(i)i being feasible for (11). The
second inequality is due to y+

i = 1 and Eq. (5). Thus, by
assigning ξl(i)i to ξl

∗(i)
i it follows that the ξl

∗(i)
i remain feasible
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for problem (11). Given that the remaining decision variables
do not change, (βl, βl0, ζ

l
j , ξ

l∗(i)
i , ∀i = 1, . . . , N+

l , ∀j =
1, . . . , N−) forms a feasible solution of problem (11). This
solution has a cost equal to Ol. Re-optimizing can produce an
optimal value that is no worse. It follows that in every iteration
of ACC, Z is monotonically non-increasing. Monotonicity and
the fact that Z is bounded below by zero, suffices to establish
convergence.

APPENDIX D
PROOF OF THEOREM IV.4

Proof: The proof is based on Lemma 2 of [55]. Given an
assignment of each positive sample i to cluster l(i), define L
clustering functions

gl(i) =

{
1, if l(i) = l,
0, otherwise.

Hence, positive sample i is assigned to cluster arg maxl gl(i).
This can be viewed as the output of (L− 1)L/2 comparisons
between pairs of gl1 and gl2 , where 1 ≤ l1 < l2 ≤ L.
This pairwise comparison could be further transformed into
a boolean function (i.e., sgn(gl1 − gl2)). Together with the
L classifiers (one for each cluster), we have a total of
(L + 1)L/2 boolean functions. Among all these boolean
functions, the maximum VC-dimension is D + 1, because
at most D features are being used as input. Therefore, by
Lemma 2 of [55], the VC-dimension of the function family H
is bounded by 2( (L+1)L

2 )(D+1) log(e (L+1)L
2 ), or equivalently

(L+ 1)L(D + 1) log(e (L+1)L
2 ).
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