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We report the first observation of the parity-violating gamma-ray asymmetry A;” in neutron-proton
capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron
Source at Oak Ridge National Laboratory. Ay” isolates the Al = 1, 3S; — 3P, component of the weak
nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single
coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured
AP =[-3.0 & 1.4(stat) & 0.2(syst)] x 1078, which implies a DDH weak zNN coupling of &l =
[2.6 + 1.2(stat) + 0.2(syst)] x 1077 and a pionless EFT constant of C*51~>"F1/Cy = [~7.4 4 3.5(stat) +
0.5(syst)] x 107! MeV~!. We describe the experiment, data analysis, systematic uncertainties, and
implications of the result.
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Introduction.—In this Letter we present the first obser-
vation of the parity-violating (PV) asymmetry A;” of
gammas emitted from the capture of polarized neutrons
on protons. Analysis of the asymmetry leads to the first
determination of an isolated term in the weak nucleon-
nucleon (NN) potential. This represents a major step toward
a complete experimental determination of the spin-isospin
structure of the hadronic weak interaction (HWI).

The electroweak component of the standard model (SM)
describes the weak couplings of W* and Z gauge bosons
to quarks and, in principle, the HWI. The HWI causes
parity-violating admixtures in nuclear wave functions and
produces small but observable PV spin-momentum corre-
lations and photon circular polarizations. However, non-
perturbative QCD dynamics make a direct calculation of
PV nuclear observables out of reach.

Desplanques, Donoghue, and Holstein (DDH) [1] intro-
duced a meson exchange model to describe the HWI.
This model is parametrized by six parity-odd time-reversal-
even rotational invariants that can be constructed from
the spin, isospin, momenta, and coordinates of the inter-
acting nucleons. Each term has a Yukawa dependence in
the separation of the nucleons with range determined by
the mass of the exchanged meson (z, p, or w). The six

adjustable coupling constants are labeled by the meson

exchanged and the change of the total isospin A/: AL, hg’l’z ,

and h'. DDH also give reasonable ranges for these
coupling constants. Observables are calculated as matrix
elements of the PV potential terms between nuclear states
and the coupling constants are to be determined from
experiment.

The two-body n-p system is exactly calculable once the
strong NN interaction is specified and there is no nuclear
structure uncertainty in the interpretation of A,”. A,”
depends on only Al =1 coupling constants. Similarly,
the value of the circular polarization P, of the 1.081 MeV y
emitted by unpolarized '®F nuclei [2] depends only on the
Al = 1 terms in the HWI. However, the contributions from

heavy meson terms are much larger in P, than in A}”

allowing a determination of 4! and a linear combination of
Al =1 heavy meson couplings in a combined analysis.
New theoretical approaches to weak NN interactions
based on effective field theory (EFT) and the 1 /N, expansion
of QCD, where N, is the number of colors, predict relative
sizes of PV couplings. In pionless EFT, the HW1I is described
by five S-P transition amplitudes first introduced by Danilov
[3] and elaborated in subsequent work [4—7]. In the pionless
EFT approach [7], A;? is proportional to the Al = 1 low
energy constant CSi=P /Cy. Recently the 1/N, expansion
of QCD [8-12] has been applied to the HWI. Phillips et al.
[13,14] constructed the 1/N, expansion of the DDH cou-
plings, Schindler et al. [15] developed the 1 /N . expansion in
pionless EFT, valid for two-body systems at low energy,
and the phenomenology was analyzed by Gardner et al. [16].
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FIG. 1. A schematic vertical cut view of the NPDGamma
experiment on the FnPB; for details see text.

In addition to 1/N_. dependence, all Al = 1 terms in both
DDH and EFT theories are suppressed by a factor
sin?(0y) = 0.223. Since charged currents are suppressed
in A = 1 NN processes by Va,/V?2, = 0.053, the weak NN
interaction is one of the few systems sensitive to quark-quark
neutral current effects [17,18]. Within each of the different
theoretical approaches described above, predictions for the
relative size of weak NN amplitudes in different meson and
isospin channels vary by an order of magnitude. Their
relative sizes may reveal new aspects of strong QCD, and
their calculation within the SM has consequently been the
subject of extensive theoretical work [19—42]. Finally, lattice
gauge theory calculations present an exciting intellectual
opportunity for understanding nonperturbative aspects of
QCD. Wasem [36] has published a pioneering lattice QCD
calculation of the contribution of connected diagrams to /..

Experiment.—We measured A,” on the fundamental
neutron physics beam line (FnPB) at the spallation neutron
source (SNS) using the same apparatus as the first phase of
the experiment [43] with some improvements. At the SNS
proton pulses delivered at 60 Hz to a mercury target
produce spallation neutrons which are cooled by a liquid
hydrogen moderator. The neutrons travel 15 m down a
supermirror (SM) neutron guide [44] to the NPDGamma
experiment. Two choppers select neutron wavelengths
between 3.1-6.6 A from each 60 Hz time-of-flight (TOF)
pulse and reject neutrons outside this range to prevent lower
energy neutrons mixing into the next pulse. The neutron
beam intensity was sampled by two *He ionization chambers,
one upstream (M1) and one downstream (M4) from the
hydrogen target [43,45]; see Fig. 1. M1 absorbed approx-
imately 1% of the beam and determined the number of
neutrons in each pulse with a statistical uncertainty of 1074

After M1, neutrons passed through a SM polarizer and
emerged with an average polarization of 94% [46]. The
neutron spin was transported to the target by a uniform

magnetic field ﬁo =9.5 G aligned within 3 mrad to the
+9 axis. To eliminate Stern-Gerlach beam steering, the
gradient was limited to 9B,/dy <2 mG/cm within
the volume between the rf Spin Rotator (RFSR) and the
target volume [47,48]. The neutron flux at the LH, target
position was 7.7 x 10° n/s at 1 MW [44,49].
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Ay? was determined from interactions of the polarized
neutron beam on a 16 1 liquid hydrogen (LH,) target in the
parahydrogen (p-H,) molecular state [45,50]. Scattering
from the S =0 p-H, molecular ground state preserves
neutron polarization for incident neutron energies which
fall below the 14.7 meV threshold for spin-flip scattering
into the § =1 orthohydrogen (0-H,) molecular ground
state. The o-H, fraction f,_y,, which can flip the neutron
spin upon scattering, was minimized by continuously
circulating the liquid through a catalytic converter operated
at 15.4 K [45]. Because of the long neutron mean free path
in p-H,, only about 43% of the incident neutrons were
captured by p-H,. The rest were scattered by the LH, and
absorbed by the target vessel made from an aluminum alloy
or by a SLi-loaded neutron absorber wrapped on the outside
surface of the vessel. f,_y, was monitored periodically
with neutron transmission measurements using M1 and
M2 [45]. We measured the neutron- p-H, scattering cross
sections and used that to determined an upper limit of
So-n, <0.0015 [45]. With this limit, we estimated the
neutron depolarization to be 0.032 £ 0.016 using MCNPX
[51] and the cross sections in Ref. [52].

y rays were detected with an array of 48 cubical CsI(Tl)
detectors (sides 15.2 cm) arranged symmetrically in four
rings of 12 covering ~3zsr [43,53]. The detector array was
aligned within 3 mrad to the local magnetic field direction
to suppress any mixing of the PV (up-down) asymmetry
with the parity-conserving (left-right) asymmetry [54].
The detectors were operated in current mode due to high
instantaneous detector rates of ~10® Hz. Scintillation light
was converted to a voltage signal using magnetic field
insensitive vacuum photodiodes and low-noise amplifiers
[43]. The spectral density of the amplifier noise was
measured to be much smaller than the shot noise density
from the y counting statistics [55,56]. The ability of the
apparatus to detect a PV asymmetry was tested by meas-
uring the large (~3 x 107>) PV y asymmetry from polarized
slow neutron capture on 3Cl [57-59]. We observed
asymmetries consistent with previous work [60].

The prompt signal from the LH, target consisted of
~80% y’s from capture on hydrogen and ~20% y’s from
capture on aluminum. Neutrons that capture on Z8Al
produce a prompt PV y cascade, followed by a f-delayed
y (r = 194 s). The f-delayed signal manifests as a constant
pedestal. The prompt PV yasymmetry in aluminum must be
measured separately. The aluminum prompt y asymmetry
was first measured using the same apparatus, replacing the
LH, target with an aluminum target. The apparatus was
then removed to allow for installation of the next experi-
ment (n-"He). During data analysis, the importance of
constructing the aluminum target from the same material
used to fabricate the LH, target vessel became clear. So, the
apparatus was reinstalled to remeasure the aluminum
asymmetry. The different aluminum components of the
apparatus such as the RFSR windows, cryostat vacuum
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FIG. 2. Plot of a typical detector voltage signal as a function of
time bin for eight 60 Hz neutron pulses. The proton pulse was not
delivered to the spallation target in the 2nd pulse resulting in a
dropped pulse. The peak yield in the 3rd pulse is 1% low because
the phosphorescence tail from the second pulse is missing. The
rising (falling) edges of the pulses correspond to the choppers
opening (closing). The pedestal from the f-delayed y’s of 28Al is
shown. Finally, the fiducial time interval (27 time bins wide) is
shown in pulse seven (time bins 253 to 279).

windows, target vessel entrance and exit windows, and
vessel side walls could have different prompt y asymme-
tries due to different impurities. To account for this, we
built 4 targets from the 4 different components of the
apparatus and one target from the window material of the
new RFSR. We also built one composite target that
incorporated material from each component with mass
proportional to their relative yields to the prompt signal,
as determined by Monte Carlo calculation [61]. For
these measurements, we used the improved DAQ and
the high-efficiency RFSR from the n->He experiment.

Data, analysis, and results.—For each neutron pulse,
the current-mode signals from each detector were
digitized to give 40 time bins of differential photon yield.
These differential yields were summed over a fiducial time
interval for which both choppers were open and the neutron
polarization was well defined for each spin direction 1.
The neutron polarization was reversed with a 16-step
spin sequence (SS) MTIMIMMLITIIMLLT. A total of
5.9 x 107 SS were accumulated during the LH, running.
This pattern rejects known 30 Hz beam intensity fluctua-
tions and suppresses drifts up to 3rd order.

The contributions to the detector yields must be under-
stood to determine the PV asymmetries. The f-delayed y’s
and small electronic offsets combine to form a pedestal that
is nearly time independent on the scale of a SS. Each
CsI(TI1) detector also has a delayed light, multicomponent
phosphorescence tail [62] with a typical decay time of
6.7 £ 1.6 ms contributing 1% of the yield in the subsequent
pulse (see Fig. 2). The tails are assumed to have the same
PV and intensity variations as the prompt yields. The
asymmetry for detector d is defined in terms of prompt
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FIG. 3. Histogram of hydrogen asymmetries (~1/30 of all the
data) for a typical detector before (left) and after (right) the cuts
described in the text have been applied. Note the different x-axis
scale on the right panel. The distinct side lobes in the uncut data
correspond to SS in which one or more dropped pulses occurred.

photon yields, ¥, as Ay, = [(Y} - Yj)}/[(Y; + Yf,)], but is
not measured directly. The measured detector yields con-
tain nonprompt contributions (and delayed light tails) as
defined above. These contributions can be determined from
“dropped pulses,” in which protons were not sent to the
spallation target and the prompt photons are not present in
the signal, but nonprompt contributions are (see Fig. 2).
Three different analyses used information from dropped
pulses to properly normalize the asymmetries.

All data for which the apparatus was operating normally
were included in the analysis. Roughly 20% of SS were
eliminated because of unstable beam power, improper
chopper phasing (which impacts the fiducial time window)
or RFSR errors. The measured neutron intensity in the
polarization-insensitive monitor M1 was used to apply
the beam power cuts, which accounted for nearly all of the
eliminated data. Figure 3 shows the effect of these cuts
on the asymmetry of a typical detector. After cuts were
applied, the asymmetry distributions were indistinguish-
able from Gaussian [63]. The extracted asymmetries
determined using three different analyses agreed to within
a small fraction of the statistical uncertainties.

The aluminum asymmetry measurements were taken
with a different DAQ and RFSR using a simple 30 Hz
neutron spin state reversal pattern 1] 1 - - -, with a total of
1.5 x 107 SS accumulated. This simple reversal pattern
introduced a sensitivity to a 30 Hz neutron intensity
modulation of 10~*. Proper normalization of raw detector
asymmetries was applied to remove detector dependence
from such 30 Hz signals. The information needed to
normalize the detector responses was determined from
the detector yields in the neighborhood of the dropped
pulses [61,64]. Detector-pair asymmetries were formed
from the difference of azimuthally opposing detector
asymmetries to extract the physics result. In order to verify
that the normalization sufficiently suppressed the 30 Hz

modulation, a regression analysis was performed between
the beam intensity modulation extracted from M1 signals
and the pair asymmetries. The slope of this regression was
consistent with zero.

The differential cross section for the direction
of the capture y’s with respect to the spin direction is
[(do)/(dQ)] ~ 1+ Aylg; - §,, heglecting parity-conserving
contributions. Correcting for the finite geometry of the
beam, target, and detectors requires a Monte Carlo calcu-
lation of the energy-weighted values of the average scalar
product k, -s, for each detector, denoted “geometric
factors.” The geometric factors are calculated for all y rays
from simulated neutron capture in the target, target vessel,
and its surrounding shielding which deposit energy in a
detector element. Compton scattering causes a single y to
deposit energy in more than one detector leading to
correlations between energy depositions in different detec-
tors. These correlations lead to non-diagonal uncertainty
covariance matrices. The geometric factors were calculated
using GEANT4 and MCNPX simulations [61,65] and the
covariances were determined from data.

The relationship between the pair asymmetries A, and
the physics asymmetries A, becomes A, = >, Pl f,GLAL,
where Py, f},, G}, and A} are the net polarization factor
(beam polarization, target depolarization, and RFSF effi-
ciency), the fractional contribution to the detector yield, the
geometric factor, and the y asymmetry of the ith target
component (e.g., hydrogen, aluminum window, etc.)
respectively, for detector pair p.

The hydrogen and aluminum asymmetries were simul-
taneously extracted from a y> minimization scheme using
data sets from hydrogen and aluminum targets as well as
the corresponding sets of Py, f*,, and G',. Three different
analyses were consistent in their results. The integrated y?
probability for each analysis was 0.73, 0.64, and 0.43.
The extracted hydrogen asymmetry is Ay” =[-3.0 +
1.4(stat)] x 1078 and the extracted aluminum PV asymme-
try is [—12 4 3(stat)] x 1078, The statistical uncertainty is
only 15% larger than expected from the neutron beam shot
noise [49].

Systematic uncertainties.—Table 1 lists the largest
systematic uncertainties in our measurement of Ay”.

TABLEI. Dominant sources of systematic uncertainty and their
contributions to A,”.

Source Contribution
Prompt Al y’s: window thickness 1x107°
Prompt Al y’s: geometric factors 7 x 10710
28A1 bremsstrahlung <9 x 107!
False electronic asymmetry (LEDs off) <1x107°
False electronic asymmetry (LEDs on) <1x107
Remaining systematic uncertainty [43] <3 x 10710
Total <2x 107
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The variation in thickness of the formed aluminum entrance
windows leads to an uncertainty in the fractional yield of
prompt aluminum ys, resulting in a systematic uncertainty
in Ay” of 1 x 107 [64]. The targets used to measure the
aluminum asymmetry were centered in the detector array,
while the aluminum components of the apparatus were
located near the upstream end of the detector. We tested our
ability to calculate geometric factors for such different
geometries by measuring the large Cl asymmetry with
targets in the center, front, and back of the detector [60].
The spread in the extracted Cl asymmetries was 3%, which
yields an additional uncertainty from the contribution of
prompt aluminum y’s of 7 x 10710,

Another systematic uncertainty arises from bremsstrah-
lung y’s from the S decay of polarized *8Al. The 8Al
ground state /3 decays to the first excited state of 23Si and the
direction of the f and subsequent bremsstrahlung y’s are
correlated with the polarization direction by the PV p
asymmetry parameter, which is assumed to have its
maximum possible value of unity. The bremsstrahlung
yield was calculated from recent measurements [66].
The spin-lattice relaxation of the polarized aluminum
nuclei at room and LH, temperatures and the effects of
the different polarization reversal patterns were included.
The estimated systematic uncertainty was below 0.9 x 10719,

All other systematic effects discussed in Ref. [43] were
reconsidered and their limits were either unchanged or
slightly reduced. False electronic asymmetries were peri-
odically measured with the neutron beam off and light
emitting diodes (LEDs) illuminating the scintillator crystals
(LED ON) or not (LED OFF). False asymmetries in both
cases were less than 1 x 10°.

Multiplicative corrections are applied to the data to
account for geometric factors and neutron polarization.
These include the uncertainties in the neutron depolarization
by orthohydrogen (1.6%), geometric factors (3%), beam
polarization (0.5%), and spin flipper efficiency (0.5%). The
relative uncertainties of the three analysis methods were
estimated to be 1% [49]. The combined uncertainty from
these corrections is 3.6%, which is negligible when added
in quadrature with the 47% statistical uncertainty in the
PV asymmetry.

The final result for the hydrogen asymmetry is A" =
[—3.0 & 1.4(stat) + 0.2(syst)] x 1078, This is consistent
with the statistics-limited phase 1 result and surpasses the
precision of Ref. [67], which was unable to resolve A,”.

Discussion and conclusion.—We can extract a value of
h) from the measured asymmetry because the heavy meson
couplings enter the expression of Ay” with very small
coefficients. Hyun et al. [30] and Liu [29] give expansions
of A} in the meson-exchange picture using the AV18 NN
potential: Ay”=—0.117h;—0.001%)+0.002h,, and A} =
—0.111h} —0.0014), + 0.0024},, respectively. We adopt
the average of these two expansions, A,” = —0.114h} —
0.001h,1J + 0.002A4). The rms theoretical uncertainty in this

pz [ . [20] (1986)
FCDH |- . (23] (1991) 1
QCD sum . [28] (2002) -
rules [ ]
Skyrme [ — [25] (1999) -
Laco b — [37] (2012)
N E [13] (2015)
YEFT E . [39] (2014)
NPDG _ —_— this work —
SO 1 .

h! x 107

FIG. 4. h! from theoretical estimates or calculations (blue) and
this work (red).

procedure is 3%, which is negligible compared to the
statistical uncertainty. Neglecting heavy-meson terms,
which contribute less than 1% of A,” in the DDH
reasonable range [1], we obtain hl = [2.6 + 1.2(stat) +
0.2(syst)] x 1077, Our value for A)” gives the pionless
EFT coupling constant CS1~"1/Cy = [=7.4 & 3.5(stat) &
0.5(syst)] x 1071 MeV~! [7]. Since A;” only depends on
h}, and '8F P, contains all of the Al = 1 contributions, we
can eliminate /. and find a constraint on the heavy mesons
to be 0.4k} + 0.6h}, = 8.5 + 5.0, which is consistent with
recent theoretical estimates [13,16].

Figure 4 shows an overview of theoretical estimates and
this work’s extraction of .. We report the most precise and
direct determination of 4. in a few-body system without
atomic or nuclear corrections, and it is the best constraint
for future investigation of the HWI. Additional theoretical
and experimental work in exactly calculable few-body
systems is needed to establish a complete determination
of the HWL
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