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ABSTRACT

We consider the electricity price design problem faced by an
aggregator running a real-time pricing program to shape the
demand of its population of customers. To capture the effects
of the stochastic and unknown nature of the load’s price re-
sponse structure, we adopt a multi-armed bandit framework
and propose a Thompson Sampling based algorithm to mini-
mize the aggregator’s regret from running the real-time pric-
ing program given exogenously changing grid conditions. We
provide a discussion on regret bounds for our algorithm.

1. INTRODUCTION

Real-time retail electricity pricing (RTP) is a market-based
framework to shape electricity demand through hourly vary-
ing prices. There are attractive features that make RTP popu-
lar, including decentralized implementation, little communi-
cation needs, and relatively fair resource allocation with little
information. Yet, setting aside a few pilot programs that pass
on wholesale prices to retail customers, RTP algorithms have
not been adopted so far to shape residential and commercial
loads. One important reason for this is a lack of knowledge
on how customers respond to price signals.

It is not ideal to consider the problem of learning the re-
sponse of a population of customers to price signals as a com-
plete “black box problem”. There are many reasons for this,
including 1) the existence of random elements and exogenous
parameters that lead to variability in the daily behavior of the
load; 2) the variability of the control objective on a daily basis
(e.g., due to randomness in renewable generation outputs); 3)
complex inter-temporal correlations in load; and 4) the small
size of the set of observations that one can gather (there are
only 365 days in a year). In this paper, we exploit two fac-
tors that can reduce the complexity of this problem. Specif-
ically, we first consider that load flexibility exhibits a lower-
dimensional structure that we exploit in our framework. Sec-
ond, we adopt statistical models that incorporate prior knowl-
edge of how customers modify their usage patterns of indi-
vidual appliances in response to price signals from behav-
ioral studies [1]. Bayesian reinforcement learning and adap-
tive control methods provide the machinery to exploit such

prior knowledge in dynamic pricing, and have been studied
extensively in systems where the uncertain nature of human
decision-making behavior affects system performance [2].

Specifically, we adopt a multi-armed bandit (MAB) frame-
work to minimize the operational costs of an electricity aggre-
gator running an RTP program [3–5]. We assume that prices
are posted at the beginning of each day, and the cost incurred
every day is a non-linear function of the load response and ex-
ogenously varying parameters such as renewable generation
outputs or grid conditions. We propose a Thompson sampling
based algorithm to minimize the aggregator’s regret from not
knowing the true form of the customers’ price response [6–8].
Lastly, we provide a discussion on regret performance that
considers the effect of the exogenously varying parameters
on the performance of the algorithm [9, 10].

In the context of demand response (DR), a number of pa-
pers have considered online pricing methods [11]. For exam-
ple, in [12] and [13], the authors consider a linear regression
model to estimate the price response. In [14], the authors ap-
ply a combinatorial MAB framework to choose the right cus-
tomers to target in a DR program in order to maximize grid
reliability and propose a UCB based algorithm. In [15, 16],
the authors propose a perturbed myopic policy for price de-
sign based on a least square estimator of the unknown demand
parameters and discuss its regret performance. The authors
in [17] design an online learning algorithm for price design,
referred to as piecewise linear stochastic approximation. The
authors in [18] use an online learning framework to estimate
and control the load flexibility of a population of air condi-
tioners and separate it from other loads. The authors in [19]
use a MAB framework to select the right consumers to tar-
get for load reduction signals. Our paper focuses on the daily
price design problem of an aggregator performing RTP and
varies in terms of both load modeling and learning approach
from all the above papers. The main advantage of Thomp-
son sampling is its straightforward algorithmic implementa-
tion and the fact that it generalizes to more complex reward
models, which are common in practical applications such as
electricity pricing. In contract, UCB based approaches cannot
be extended easily beyond generalized linear models, which
are not generally sufficient for demand response optimization.
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2. PROBLEM SETTING

Let us first present how we mathematically capture the price
response of a population of electricity customers.

2.1. Load Flexibility Model

We adopt a general model of load flexibility that was first pro-
posed in [20]. Specifically, we assume that the load flexi-
bility of electric appliances can belong to a finite number of
clusters i ∈ I. Appliances in each cluster require approx-
imately the same amount of energy and exhibit similar con-
straints and flexibility in consuming this energy. Accordingly,
we can associate a set of feasible electricity consumption pat-
terns (a.k.a, load profiles) Li to each cluster. Any load profile
Li(τ) ∈ Li would satisfy the needs of an appliance in cluster
i. For example, consider the cluster that represents electric
vehicles (EVs) requiring a total of Ei = 20kWhs of charge
between the hours τ i1 = 6pm and τ i2 = 8am. Assume charg-
ing can happen at a maximum rate of ρ. The set Li of feasible
hourly load profiles is given by:

Li = {Li(τ)|
τ i
2∑

τ=τ i
1

Li(τ) = Ei, 0 ≤ Li(τ) ≤ ρ} (2.1)

For a full discussion on characterizing the sets Li for different
types of flexible appliances, we refer the reader to [20].

Now, we consider a population of customers that own and
operate a heterogeneous group of electric appliances and have
different levels of flexibility in how their energy needs are sat-
isfied. Mathematically, the total flexibility of the electricity
demand of the population of customers can be characterized
as a function of how many appliances belong to each clus-
ter. If the number of appliances in each cluster is denoted as
ai, the set of load shapes L that can serve our population of
customers can be written as:

L =
∑
i∈I

aiLi, (2.2)

where the summation and scalar multiplication operations are
defined in the sense of Minkowski addition1.

Next, we discuss how a specific load shapeL(t) will emerge
in response to a price signal p = [p(τ)]τ∈Γ.

2.2. Price Response

Dynamic pricing can have two effects on the customers de-
mand for electricity, which we detail next.

1For two sets A and B defined on a finite dimensional Euclidean space,
the Minkowski sum is defined as:

A+B = {a+ b |a ∈ A, b ∈ B}. (2.3)

1) Automated per cluster response: For appliances in cluster
i, we assume all customers will choose L?i ∈ Li such that

L?i (τ,p) = argminLi(τ)∈Li

∑
τ∈Γ

p(τ)Li(τ). (2.4)

This is a reasonable assumption given the automated nature
of price response enabled through home energy management
systems once the customer’s preferences are set, e.g., the charge
amount and the deadline to charge for an EV are specified.
2) Preference adjustment: The number of appliances in each
cluster is driven by the economic price response of the cus-
tomers that own and operate them. Hence, in response to
dynamically varying prices, the customers can respond by
adjusting their preferences, i.e., the number of appliances in
each cluster becomes a function ai(p) of the posted price p.

Together, the above two effects define the response of a
population of electric appliances to a price signal p as:

L?(τ, p) =
∑
i∈I

ai(p)L?i (τ, p). (2.5)

Hence, given a set of feasible price signals p ∈ P and a full
characterization of the load response, i.e., knowing ai(p) and
Li, it is clear that one can pick the price p? that shapes the de-
mand according to a certain cost minimizing objective. How-
ever, in reality, the per cluster price response variables ai(p)
are 1) random variables, i.e., the same price will not always
elicit the same exact response from the customers. There is a
certain level of randomness involved in the price response; 2)
unknown to the aggregator, i.e., the aggregator does not know
the structure of the underlying model that drives the price re-
sponse ai(p); and 3) unobservable, i.e., the aggregator cannot
see the disaggregated response of each cluster. Only the ag-
gregate load L?(t, p) in response to a posted price p would be
observable to the aggregator.

2.3. The Price Design Objective

On day t, the aggregator’s cost would depend on the load
shape L?t (pt) = [L?t (τ,pt)]τ∈Γ observed in response to a
posted price pt, as well as an exogenous and random param-
eter vector dt that is observable before the pricing decisions
are made. The dt’s can mirror dynamically changing renew-
able generation outputs or grid conditions. For example, dt
can capture the target load profile on day t. The dt’s are i.i.d
drawn from a distribution defined on a finite sample set D,
and each dt occurs with a probability bounded away from
zero, i.e., P(d) > ε > 0, ∀d ∈ D.

We allow for a nonlinear but fixed and known function
g(L?t (pt),dt) to represent the aggregator’s cost on day t. Given
the knowledge of the true model for the ai(p)’s, the aggre-
gator can choose the price p?t that minimizes its daily cost
g(L?t (pt),dt). However, the true model of the per cluster
sensitivities ai(p) is not available to the aggregator. Hence,
the main question in this paper is, how can the aggregator
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choose a series of prices pt, t = 1, . . . , T to minimize its re-
gret from not knowing the true model of the ai(p)’s over a
horizon of T days, where regret is defined as:

R =
T∑
t=1

g(L?t (pt),dt)−
T∑
t=1

g(L?t (p
?
t ),dt). (2.6)

3. DYNAMIC PRICING USING MULTI-ARMED
BANDITS

3.1. Bandit Setup

We consider the sensitivities ai(p) as random variables with
parameterized distributions based on the posted price p and
an unknown but constant parameter vector θ? ∈ Θ (which
represents the true model for the customers’ price response).
A MAB setup allows us to capture the exploitation-exploration
trade-off that emerges when learning the reliance of the stochas-
tic behavior of the users’ price response on the unknown pa-
rameter vector θ? while trying to minimize costs. We propose
a Thompson Sampling (TS) algorithm for the MAB-based dy-
namic pricing problem next.

3.2. A Thompson Sampling (TS) Based Approach

Thompson Sampling assumes that there is a prior distribution
π available on the unknown parameters θ ∈ Θ, with a non-
zero probability associated with the true parameter θ?. On
each day t, the algorithm makes a random draw θt from the
prior, and then acts optimally on choosing the electricity price
pt that minimizes expected costs, i.e., E

[
g(L?(pt),dt)

)
|θ =

θt
]
, conditional on that draw. After observing the load in

response to this posted price, it performs a Bayesian update on
the probability distribution π based on the new observation.

Denote l(Y ;p,θ) = Pθ(L?(pt) = Y |pt = p) as the
likelihood of observing a load profile L?(p), upon posting a
price p when the true parameter is θ. For the price design
problem as defined above, our TS based algorithm is given by
Alg. 1.

3.3. A Discussion on Regret Performance

Our regret analysis is inspired by the results in [9] for TS
with nonlinear cost functions. We additionally analyze the ef-
fects of the exogenous parameters dt on the algorithm’s regret
bounds. The analysis provides a bound on the total number
of sub-optimal prices posted by the algorithm up to time T .
Let p?

d

denote the optimal price posted when the model θt
drawn is equal to the true model θ? and the target profile d

is observed. Any price p 6= p?
d

when the target profile d is
observed is considered a suboptimal price. Before stating our
results, we briefly explain how the posterior updates affect the
performance of TS. When price p is posted at day t, the prior

Algorithm 1 Thompson Sampling
Input: Parameter space Θ, set of prices P , output space Y ,
likelihood l(Y ;p,θ).
Parameter: Distribution π over Θ.
Initialization: Set π = π0.

for each day t = 1, 2, . . . T

1. Draw θt ∈ Θ according to the distribution πt−1.
2. Observe the exogenous parameter vector dt.
3. Post the optimal price

pt = argmin
p

E
[
g(L?(p),dt)

)
|θ = θt

]
(3.1)

4. Observe Yt = L?(pt).
5. (Posterior Update) set distribution πt over Θ to

∀S ⊆ Θ : πt(S) =

∫
S
l(Yt;pt,θ)πt−1(dθ)∫

Θ
l(Yt;pt,θ)πt−1(dθ)

(3.2)

density is updated as

πt(dθ) ∝ exp

(
− log

l(Yt;p,θ
?)

l(Yt;p,θ)

)
πt−1(dθ). (3.3)

Denote by D(θ?p||θp) the marginal Kullback-Leibler diver-
gence between the distribution {l(Y ;p,θ?) : Y ∈ Y} and
{l(Y ;p,θ) : Y ∈ Y}. As in [9], we can approximately write
(3.3) as:

πt(dθ) ∝ exp

(
−
∑
p∈P

Nt(p)D(θ?p||θp)

)
πt−1(dθ), (3.4)

where Nt(p) =
∑

d∈DNt(p,d), and Nt(p,d) is the num-
ber of times up to day t that the algorithm simultaneously
observes a daily target load profile d and posts a price p. Fur-
thermore, we define Nt = [Nt(p)]p∈P as a vector including
number of times each price is posted up to day t. We can con-
sider the quantity in the exponent of (3.4) as a loss suffered
by model θ up to time t. Since the term in the exponent of
(3.4) is equal to 0 when θ = θ?, we can see that Thompson
sampling samples θ? and hence posts an optimal price with at
least a constant probability at each day, i.e.,Nt(p?

d

,d) grows
linearly with t for all d.

For each price, we define Sp(d) := {θ ∈ Θ : pt =
p|dt = d} to be the set of parameters θ ∈ Θ whose optimal
price (i.e., the solution of (3.1)) when observing a daily tar-
get load profile d is p. Furthermore, define S

′

p(d) := {θ ∈
Sp(d) : D(θ?

p?d ‖θp?d ) = 0} which is the set of models θ

that exactly match θ? in marginal distribution of Y when the
true model θ? is selected and the optimal price p?

d

is posted,
and S

′′

p(d) := Sp(d)\S′

p(d).

919



For each model θ in S
′′

p(d), p 6= p?
d

, D(θ?
p?d ‖θp?d ) >

ε > 0. As we have assumed that the probability of observ-
ing any target profile d ∈ D is bounded away from zero,
Nt(p

?d) grows linearly with t for all d ∈ D. Hence, any
such model θ is sampled with probability exponentially de-
caying in t in (3.4) and the regret from such S

′′

p(d)-sampling
is negligible. We define the set of all such models as θ ∈
Θ′′ = ∪d∈DS

′′

p(d).
A model θ ∈ S′

p(d) will only face loss whenever the al-
gorithm posted a suboptimal price p for which D(θ?p‖θp) >

0. For d, a suboptimal price pd
k 6= p?

d

may still be posted
if any of the set of models in S

′

pd
k

(d) may still be drawn with
non-negligible probability. Hence, a price will be eliminated
after the probability of drawing all θ ∈ S′

pd
k

(d) is negligible.
For each d, suboptimal prices are eliminated one after the
other at times tdk , k = 1, . . . , |P| − 1. The regret bounds we
provide, which are adopted from [9] and generalized to take
into account the effects of the daily profiles d, characterize the
total number of suboptimal prices posted as a function of T .
The result holds under the assumptions that |P|, |Y|, |Θ| <∞
and the uniqueness of optimal price p?

d

for all d ∈ D. We
refer the reader to [9] for a full discussion of when a subop-
timal price p is considered statistically eliminated, which is
used to write constraints (3.7)-(3.8) below.

Theorem 3.1. For δ, ε ∈ (0, 1), there exists T ? > 0, such
that for all T > T ?, with probability at least 1− δ,∑

d∈D

∑
p∈{P\p?d}

NT (p,d) ≤ B + C(logT ).

WhereB ≡B(δ, ε,P,Y,Θ) is a problem-dependent constant
which is not dependent on T , and:

C(log T) ≡

max
∑
d∈D

|P|−1∑
k=1

Ntdk (p,d) (3.5)

s.t. ∀d ∈ D, ∀j > 1, ∀1 ≤ k ≤ |P| − 1 : (3.6)

min
θ∈

{
S

′
pd
k

(d)−Θ′′
}〈Ntdk

, Dθ〉 ≥
1 + ε

1− ε
logT, (3.7)

min
θ∈

{
S

′
pd
k

(d)−Θ′′
}〈Ntdk

− e(j), Dθ〉 <
1 + ε

1− ε
logT, (3.8)

where e(j) denotes the j-th unit vector in finite-dimensional
Euclidean space. The last two constraints ensure that price
pd
k is eliminated exactly at time tdk (no earlier and no later).

4. SIMULATION RESULTS

In our numerical experiment, we use the TS approach pro-
posed in Algorithm 1 to quantify the potential cost reduction

in a residential electric vehicle (EV) smart charging scenario
under RTP. We assume our target profiles d belong to a set of
6 potential profiles representing general wind generation pro-
files at night time. We assume EVs can belong to one of 27
clusters, with the cluster parameters Ei, τ i1, and τ i2 defined in
(2.1). Vehicle charge requests are discretized in the simula-
tion into seven 2-hour periods from 6 PM to 8 AM, periods of
time particularly suited for residential EV charging. Taking
a typical residential charging rate of 3.3kW, the period-wise
charging rate ρ is specified as double this rate, resulting in ρ
= 6.6 kWh/period. Charge requests range from 15 kWh to 45
kWh in 5-kWh increments. Time constraints τ i1, and τ i2 were
selected to produce charging periods of 10 hours, 12 hours,
or 14 hours in length. The set of potential models adopted to
represent the per cluster sensitivities of the users, i.e., ai(p),
are selected as ai(p) ∼ N ( ci

θ?Tp
, σ2), where ci is a scalar

specific to cluster i. The unknown parameter vector set Θ
has 6 elements. Price signals pt can be any vector of length
seven with low (p(τ) = 1), medium (p(τ) = 2), and high
(p(τ) = 3) price elements.

The cost function g(.) is defined as a function of the de-
viation of the load profile L?(pt) from the target profile dt.
Upward deviations of the load from dt were penalized at $50
per MWh, whereas downward deviations of the load from dt
were penalized at $30 per MWh (for each 2hr time period).
The cumulative cost incurred by the aggregator over 100 days
for a representative iteration is shown in Fig. 1. The cumula-
tive cost incurred by Algorithm 1 is compared against a solu-
tion that knows θ?, i.e., optimizes posted prices with respect
to the true model of the customers’ price response.

Fig. 1. Cumulative cost with knowledge of the true model θ?

versus that of Thompson sampling.

As the simulation proceeds, dynamic pricing decisions are
assisted by the increasing certainty of the true model θ? via
Bayesian updating. In this way, the incurred cost with the
Thompson sampling algorithm more closely matches the in-
curred cost with knowledge of the θ?.
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