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ABSTRACT 

Background. Variability in radiation exposure from CT scans can be appropriate and 

driven by patient features such as body habitus. Quantitative analysis may be 

performed to discover instances of unwarranted radiation exposure and to reduce the 

probability of such occurrences in future patient visits. No universal process to perform 

identification of outliers is widely available, and access to expertise and resources is 

variable. 

Objective. The goal of this study is to develop an automated outlier detection 

procedure to identify all scans with an unanticipated high radiation exposure, given 

the characteristics of the patient and the type of the exam. 

Materials and Methods. This Institutional Review Board-approved retrospective 

cohort study was conducted from June 30, 2012 - December 31, 2013 in a 

quaternary academic medical center. The de-identified dataset contained 28 fields 

for 189,959 CT exams. We applied the variable selection method Least Absolute 

Shrinkage and Selection Operator (LASSO) to select important variables for 

predicting CT radiation dose. We then employed a regression approach that is 

robust to outliers, to learn from data a predictive model of CT radiation doses given 

important variables identified by LASSO. Patient visits whose predicted radiation 

dose was statistically different from the radiation dose actually received were 

identified as outliers.  

Results. Our methodology identified 1% of CT exams as outliers. The top-5 predictors 

discovered by LASSO and strongly correlated with radiation dose were Tube Current, 

kVp, Weight, Width of collimator, and Reference milliampere-seconds. A human expert 

validation of the outlier detection algorithm has yielded specificity of 0.85 [95% CI 0.78-



0.92] and sensitivity of 0.91 [95% CI 0.85-0.97] (PPV=0.84, NPV=0.92). These values 

substantially outperform alternative methods we tested (F1 score 0.88 for our method 

against 0.51 for the alternatives).  

Conclusion. The study developed and tested a novel, automated method for 

processing CT scanner meta-data to identify CT exams where patients received an 

unwarranted amount of radiation. Radiation safety and protocol review committees may 

use this technique to uncover systemic issues and reduce future incidents.  
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INTRODUCTION 

Good clinical practice and regulatory compliance include routine performance of 

CT protocol review by a multidisciplinary team of experts. Review and quantitative 

analysis of retrospective patient imaging exams and protocol meta-data is typically 

performed to discover instances of unwarranted radiation exposure. Further analysis of 

these instances can help identify systemic problems and reduce the probability of such 

occurrences in future patient visits. Multiple authors have reported on methods to review 

and manage protocols (1–3). Other studies have described approaches using non-

adherence protocol review (4), manual root cause analysis (5), process control methods 

(6,7) and in children, a size-based quality informed framework (8). Related work studied 

the effects of transitioning to digital image acquisition (9) and estimated collective 

radiation dose due to medical exams in an entire population (10).  

This work is motivated by a desire to identify exposure events which may be 

missed by traditional outlier detection methods.  Such methods “flag” cases where the 

radiation dose exceeded an average value by several multiples of the standard 

deviation. In the absence of any knowledge on which cases may be outliers, computing 

an average from past data that do contain some outliers has the effect of skewing the 

average; and thus, masking future outliers. We report on the development and 

validation of an automated method for detecting radiation exposure outliers, using only 

two data types: patient demographics and protocol meta-data. The key innovation is the 

development of a predictive model of appropriate radiation exposure; outliers are then 

identified by statistically large deviations of the actual radiation dose from the predicted 

value.  



The developed method is based on a Regularized Regression (RR) (11) 

predictive model. By design, the model is robust to being exposed to outliers during 

training, which is not the case with more standard regression approaches. The most 

relevant predictors are extracted using Least Absolute Shrinkage and Selection 

Operator (LASSO) (12), a penalized regression model that induces sparsity on the 

predictor level and applies well to cases where the number of predictors far exceeds the 

number of patients. This type of sparse regression model can isolate relatively few 

predictive factors and, thus, enable interpretation of the predictions.    

 

MATERIALS AND METHODS 

Study Design and Setting 

This HIPAA-compliant, Institutional Review Board (IRB)-approved retrospective 

cohort study was conducted at an academic medical system including a 793-bed 

quaternary care hospital, and two outpatient imaging facilities. The IRB did not require 

informed consent. All consecutive CT examinations performed on the 11 operational CT 

scanners (GE, Philips, and Siemens) were eligible for study inclusion between June 30, 

2012 and December 31, 2013, a time-period during which there were no scanner 

equipment or software changes. 

 

Data description and pre-processing 

We followed the steps below to pre-process the data. 

 Examination metadata were de-identified at the site.  



 Patient visits with more than half of the corresponding variables missing, or a missing 

value for CT Dose Index (CTDI), or a missing value for patient weight, are discarded. 

 CT examinations of the body were retained. Head CT examinations were not included.  

 Binary encoding: categorical variables (such as scanner type, protocol type, patient 

gender, X-ray modulation type) are encoded using binary (indicator) variables for each 

category. Furthermore, categories present only in a small number of exams are deleted. 

 Variables that have low correlation with CTDI (absolute value below 0.06) are removed 

from further consideration, e.g., scan length, the number of scans, age, pitch factor, and 

the number of X-ray sources, as the unit of analysis for this method is the single 

acquisition event rather than the total patient encounter. The specific threshold 0.06 is 

selected because it separates the variables with relatively high correlation with CTDI 

(0.30 on average) from the ones with low correlation (0.01 on average). 

 We impute the missing values by the mean (for numerical predictors) or mode (for 

categorical predictors). 

 Normalization of the predictors: all predictors are standardized by subtracting the mean 

and dividing by the standard deviation. 

 Splitting the data into a training set and a test set randomly: as is common in machine 

learning, the dataset of CT exams is randomly split into a training and a test set. The 

training set is used to train the model and the test set to evaluate its performance. Since 

from a statistical point of view, all the data points (patients’ features) are drawn from the 

same distribution, we do not differentiate between patients whose records appear 

earlier in time than others with later time stamps.  

 



Outcome Measures  

CT Dose Index (CTDIvol), which measures the amount of exposure to CT radiation for 

each dose event, was chosen as the primary outcome measure (dependent variable). 

Note that this is a metric of the conformance of the protocol and the behavior of the 

automatic exposure control on a per acquisition level. Multi-phase evaluations are 

included, but the number of phases and/or the repetition of acquisition events are 

beyond the scope of this method of analysis. In addition, we use the coefficient of 

determination, R2, to measure the goodness of fit for the regression procedure, which 

assesses its ability to accurately predict CTDIvol. Finally, we use the accuracy of the 

outlier detection procedure, expressed in terms of sensitivity and specificity, by 

employing a human expert to assess whether outliers identified by the algorithms are 

indeed outliers or not.  

 

Statistical Analysis 

Statistical Objective and Background 

The variables containing patient characteristics such as age, gender and weight, and CT 

exam-related variables such as scanner type, X-ray modulation type, exposure time, the 

number of X-ray sources, and tube current, etc., are captured by a predictor vector 𝒙 ∈

ℝ𝑑, for each exam 𝑖 = 1, … , 𝑁. We are interested in predicting the normal amount of 

exposure to CT radiation (CTDI) given the predictors, and “screening out” the outliers, 

which are defined to be the exams where the patient received an abnormal radiation dose. 

We denote the CTDI by a continuous variable 𝑦 ∈ ℝ. Using statistical terminology, the 

problem can be cast as a regression problem. We seek to find a regression plane that 



accurately describes the relationship between the CTDI 𝑦 and the predictors 𝒙  for non-

outlying CT exams. Ordinary Least Squares (OLS) regression cannot accomplish this 

goal due to the presence of outliers. For example, in Figure 1, we plot (blue) sample points 

(𝒙, 𝑦) according to some probability distribution that satisfies a roughly linear relationship. 

Suppose now our samples include few outliers (magenta) that are unknown to us. OLS 

produces the black line; shifting the “true” line to accommodate the outliers. When we use 

regression residuals to detect outliers, it can be seen that moderate outliers may not be 

identified as they would not be too far from the black line. What is needed is the line that 

is robust to outliers, as indicated by the red line in Fig. 1 and such a line can be computed 

using a robust, Regularized Regression (RR) technique (11).  

 

The LASSO + RR framework  

 A set of predictors is needed to perform the regression analysis. Usually in medical 

datasets, the number of predictors far exceeds the number of patients, which will cause 

a rank deficiency issue commonly seen in OLS analysis. To solve this problem, an 

effective variable selection method called Least Absolute Shrinkage and Selection 

Operator (LASSO) (12) is applied to extract a subset of effective predictors. Earlier work 

has established that a sparse regression model enhances the predictive power of the 

regression model and produces more interpretable results (13–15). 

With the effective predictors 𝒙 obtained from LASSO, we use a Regularized 

Regression (RR) model to learn a robustified relationship between the CTDI 𝑦 and 𝒙. The 

mechanism is as follows: we minimize the deviation of  𝑦 from the prediction produced by 

the model, plus a term that penalizes the complexity of the model. It has been established 



(11) that this penalty term provides protection against outliers, essentially producing a 

regression model that fits the non-outlying training samples.  

Given such a robust regression model, outliers are identified when the absolute 

residuals from RR, i.e., the absolute value of the difference between 𝑦 and the prediction, 

exceeds 3 times the standard deviation of the residual.  

We use the metric 𝑅2, the coefficient of determination in statistics, to evaluate how 

well the regression model predicts CTDI using the selected predictors.  

𝑅2 ≜ 1 −
𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

𝑁 ∗ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑇𝐷𝐼
, 

 

where 𝑁 is the total number of exams considered, and the residual for each exam is the 

difference between the CTDI and the prediction. 𝑅2 assesses the percentage of variation 

in CTDI that is explained by the model. 

Analyses and visualizations were performed using the R statistical programming 

environment (version 3.2.2) using the glmnet R package for LASSO modelling (16). 

 

Outlier Algorithm Validation Process 

To assess the accuracy of the outlier cohort discovery process, we conducted a 

manual validation in which the results of a human-expert classification were compared 

to those extracted by the algorithm. One radiologist (a body imaging radiologist with 14 

years of experience) has performed a manual chart and image review of each of the 

outliers identified and cases which were classified as appropriate, blinded to the results 

of the algorithm. A validation sample size of a random 200 sample cases were 

reviewed, in accordance with a power calculation of a standard significance level 



(alpha) of 5% and power (1-beta) of 80% (17). Specificity, sensitivity and 95% 

Confidence Intervals (95% CIs) of the algorithmic outlier detection method were 

computed. 

 

Alternative methods 

We compared our outlier detection method against two alternatives on the same 

validation set of 200 samples that were reviewed by the human expert. The first 

alternative method is what we call a “cutoff” method. We compute the average and 

standard deviation of CTDI over a training set and identify as outliers exams where the 

CTDI was larger than the average plus 3 times the standard deviation.    

The second alternative method was identical with our approach, except that 

Ordinary Least Squares (OLS) was used in lieu of the RR method. As with our method, 

the regression residuals (this time from OLS) were used to detect outliers.  

 

RESULTS 

Study Cohort 

The original de-identified dataset contained 28 fields for 189,959 CT exams, and 

the per acquisition CT Dose Index (CTDI), which measures the amount of exposure to 

CT radiation. Mean patient age was 60.6±17.1 years; 54.7% were females.  

 

Pre-processing and variable selection 

After pre-processing, we are left with 606 numerically encoded predictors for 

88,566 CT exams. Patient characteristics for these exams are summarized in Table 1.  



The implementation of LASSO+RR is described in Figure 2, where 𝑁 is the 

number of patients, and 𝑝 is the number of predictors. The figure illustrates the various 

steps in the implemented pipeline for outlier detection. 

We found that 574 out of the 606 predictors (95%) were selected by the process 

described above. In Table 2 we summarize the most important predictors identified by the 

LASSO algorithm. Specifically, we run LASSO five times, each with a different training 

dataset, average the coefficients corresponding to the various predictors over the five 

runs, and report the predictors with the largest average coefficients. Note that all 

predictors are standardized, and thus it is reasonable to identify important predictors 

based on the magnitudes of the average coefficients. We do not list the categorical 

predictors in Table 2 since one single categorical variable may correspond to hundreds 

of numerically encoded variables (“dummy” variables).  

           We also plot the coefficients for numerical predictors vs. the LASSO penalty 

parameter (Lambda) in Fig. 3. We see that the relative importance of the predictors 

implied by Fig. 3 coincides with Table 2. It is of interest to see which dummy variables 

are selected by LASSO to have a rough sense of the relative importance of the 

categorical predictors. In Fig. 4 we plot the coefficients’ paths for the top 5 predictors, 2 

of which are the aforementioned numerical variables, and the rest represent the 

categorical variables such as manufacturer and range name. (The green and blue lines 

represent two different range names.)  

 

 

 



Regularized Regression-based outlier detection and human expert validation 

Given the effective predictors obtained by LASSO, we are able to fit the RR model, 

whose residuals are used to identify outliers. Our methodology identifies 1% patient visits 

as outliers. In addition, the percentage of the variance explained by the model is 𝑅2 =

76%. 

Table 3 lists the results of the human expert validation of the outlier detection 

algorithm. The first row of the table lists how manual review classified the outliers 

identified by the algorithm, whereas the second row lists the results of manual review for 

the CT exams the algorithm classified as non-outliers. The specificity was at 0.85 [95% 

CI 0.78-0.92] and sensitivity was at 0.91 [95% CI 0.85-0.97] (Positive Predictive Value 

PPV=0.84, Negative Predictive Value NPV=0.92).  

 

Comparison with alternative methods 

We compared our outlier detection method against the two alternatives described 

earlier (cutoff method and OLS) on the validation set of 200 samples that were reviewed 

by the human expert.  

Tables 4 and 5 present results similar to Table 3 but for the cutoff and the OLS 

method, respectively. Table 6 summarizes the accuracy of the three methods on the 

200 human-reviewed validation dataset. For each method, we report sensitivity, 

specificity, PPV, NPV, and the F1 score, which is the harmonic mean of PPV and 

sensitivity.  

For an additional point of comparison between our RR-based method and OLS, 

we considered the top-40 outliers identified by each method. Among these outliers, 7 of 



the top-40 OLS outliers (17.5%) were considered to be “false positives;” while all the 

top-40 outliers detected by our method were real outliers. 

Finally, Figure 6 plots the number of outliers detected by the three methods 

among the 88,566 CT exams maintained after the pre-processing steps.  

 

DISCUSSION 

This work proposes a completely automated outlier detection method to identify 

CT scans during which the patient received an unusually high radiation dose. The 

developed method was able to identify outlying CT exams that were largely in 

agreement with assessment by a human expert, achieving specificity of 85% and 

sensitivity of 91%. After pre-processing of the original dataset, we evaluated 88,566 CT 

exams and identified 1% as outliers.  

A regression analysis was used to train a predictive model of CT radiation dose 

given patient/exam characteristics. The gap between the actual radiation dose (as 

recorded in the dataset) and the value predicted by the regression model was used to 

detect outlying CT exams.  

We compared our outlier detection method against two alternatives, a basic 

cutoff method and a method based on OLS regression in lieu of our Regularized 

Regression (RR)-based method. Comparing Tables 3, 4, and 5, it is evident that our 

method is in much better agreement with the human expert. Table 6 summarizes the 

key difference: our method has a much higher sensitivity with a corresponding high 

specificity. OLS and the cutoff methods detect much fewer exams as outliers (lower 

sensitivity). They have a higher specificity, but that is a natural consequence of very low 



sensitivity (i.e., the fewer outliers one detects, the fewer will be the false outliers). Figure 

6 depicts the number of outliers detected by each method across the patient weight 

range (from Small to XXL, cf. weight ranges from Table 1). This figure confirms that we 

detect more outliers than the alternatives, especially for M and L patients who make up 

the majority of the patients (79.11%).    

These results suggest that OLS regression fails to capture an accurate 

relationship between variables when the data are contaminated by outliers. The same is 

true for the simpler cutoff method. In contrast, our Regularized Regression (RR) 

approach demonstrates robustness to the presence of outliers in the training set. The 

effective predictors provided as input to RR were extracted using the Least Absolute 

Shrinkage and Selection Operator (LASSO) (12), a penalized regression model that 

induces sparsity of the predictors. This type of sparse regression model can reveal 

relatively few predictive factors and, thus, enable interpretation of the predictions. 

Table 2 and Figures 3 and 4 reveal the most important predictors selected by 

LASSO, which include Tube Current, kVp, Weight, Width of collimator, and Reference 

mAs. The tube current is mathematically related to the calculation (estimate) of CTDIvol 

(18), and is thus expected to be one of the most effective predictors. The peak 

kilovoltage (kVp) has a positive non-linear relationship with CTDIvol (19).  

Scan protocols are set in advance of any patient encounter. A reference set of 

values are entered into the scanner for a "standard size subject,” expressed as a 

reference milliampere seconds (Reference mAs). The exposure given to any given 

patient is the result of a response by the Automatic Exposure Control (AEC, a system 

setting which is modifiable). In certain protocols, reference mAs is purposely set to a 



high level by the physician, technologist and the physicist who designs the protocol, 

because they desire a higher low contrast detectability or thin slices viewing is needed 

to make the diagnosis. Aberrant patient positioning (20), or shields (21) or external 

hardware in the field of view when the scan is planned can alter the imaging systems 

AEC response to this selected  parameter unexpectedly. 

 Low kVp studies are deliberately used to optimize the visualization of iodine, and 

typically used in vascular imaging. The trend identified vascular examinations to have 

low kVP. To improve penetration of the x-rays through larger size patients and produce 

an image, higher kVP may be required due to physical limitations of x-ray tubes. The 

automatic selection of a higher kVp may occur when the technical capacity of the tube 

to generate adequate milliamperes for the necessary scan time is not adequate. For 

vascular exams, selecting a higher than average kVp is problematic due to the 

reduction of contrast to noise ratio that is intrinsic in higher kVp imaging. For osseous 

imaging a higher kVp is often selected. These protocols are infrequent though and as 

such may not have undergone as careful systematic scrutiny by protocol review 

committees.  

Some of the results reported in our variable selection and RR building steps have 

been previously independently identified by other studies. For example, we found that 

patient age is removed in the initial pre-processing step (see Materials and Methods) 

since it displays a low (below the cutoff threshold chosen in this study) correlation with 

the CTDIvol predictor variable. Similar behavior has been reported in two recent studies 

(22,23). Sodickson et al. have investigated the effects of patient size on radiation dose 

reduction and image quality in low-kVp CT pulmonary angiography, and have found 



patient age to be of no statistical significance as a factor correlated with radiation dose 

accumulation in CT pulmonary angiography (22). More recently, Valtchinov et al. (23) 

have investigated the probability of a CT Dose-Check alarm to be generated when static 

CTDIvol-valued threshold  was used to define what event constitutes an outlier. They 

have utilized a logistic regression formalism and found patient age to not be statistically 

significantly associated with predicting the probability of an exam being an outlier. 

Interestingly however, they have included an interaction term in their regression model 

of the form age x weight, which did present a statistical significance in predicting an 

alarm even though the magnitude of the interaction term was quite small. 

These two works have also confirmed that the patient weight is a statistically 

significant predictor variable for various metrics associated with radiation dose 

accumulation (22,23), which is consistent with our results.  

The methodology we developed can readily leverage additional variables for 

each CT exam. In principle, any information available in the Radiation Dose Structured 

Report (RDSR) using the DICOM standard and available in most modern CT scanners 

could be used. Useful additional variables may include the use of a dual energy protocol 

and the size of the focal spot. For specific types of CT exams, such as cardiac CT, 

additional information such as the choice of gating techniques (prospective or 

retrospective) could also be incorporated. The use of additional variables has the 

potential to further improve the accuracy of the CTDI predictive model and, as a result, 

the performance of the outlier detection method. 



Our study has limitations. One limitation of our data set was that scanners were 

limited to hospital CT units and software installed before 2012. Since then, devices and 

associated software have evolved. Taken together with the fact that the data set we 

used for building and testing our outlier prediction model has come from a quaternary 

care academic medical center, this limits the immediate claims of generalizability of our 

findings to other healthcare settings, scanner vendors and software versions. Therefore, 

it is highly desirable to independently test our algorithms on data from different 

institutions that might have a different mix of scanned vendors, imaging protocols and 

settings. 

 

 

CONCLUSION  

LASSO-based variable selection followed by a Regularized Regression using the 

selected set of variables is capable of accurately pinpointing the set of relevant dose 

outliers in an unsupervised-learning fashion. Because the method detects outliers when 

a predicted radiation dose is statistically different from the actual dose, it is capable of 

identifying outliers across the patient weight and size spectrum, outperforming more 

standard approaches that become “skewed” by the presence of outliers in the training 

data. We demonstrated that the proposed method is in excellent agreement with a 

human expert (85% specificity and 91% sensitivity).   

 The proposed method is a good candidate for being implementing in the 

workflow of medical imaging centers. Since it “flags” a small percentage of CT exams as 

outliers (1% in our study), it facilitates the work of radiation safety committees which will 



have a small percentage of cases to manually review. Review of these cases may help 

to identify systemic issues to address, leading to reduced future overexposure incidents.  

 The automated outlier detection procedure may also be implemented in a 

Radiology Information Systems (RIS) which is often used in conjunction with a Picture 

Archiving and Communication System (PACS). Such platforms have rudimentary CT 

dose monitoring modules that allow for computation of simple averages (e.g., of DLP) 

(24). One could envision incorporating into these modules our outlier detection 

algorithm.  
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FIGURES AND TABLES 

 

 

Figure 1: Comparison between OLS and Regularized Regression. 

Table 1: Patient characteristics for exams after pre-processing. 

Characteristic Group 
Percentage, % 

(N=88,566) 
Mean 

Standard 
Deviation 

Gender 
Female 54.10 

NA 
Male 45.90 

Weight (kg) 

S (<56.5) 10.65 50.52 4.90 

M (≥56.5 and 
<79.5) 

45.73 68.72 6.55 

L (≥79.5 and 
<102.5) 

33.38 88.98 6.49 

XL (≥102.5 and 
<136.5) 

8.98 113.69 8.95 

XXL (≥136.5) 1.26 156.19 26.81 

Age 

≤18 0.03 17 1.09 

>18 and ≤34 6.09 29 3.40 

>34 and ≤49 11.95 43 4.31 

>49 and ≤59 18.51 55 2.81 

>59 and ≤69 24.70 65 2.88 

>69 and ≤79 23.07 74 2.82 

>79 and ≤89 11.55 84 2.81 

>89 4.10 98 11.61 



 

 

 

Figure 2. Schematic representation of the data pre-processing and analysis steps in the 
proposed LASSO+RR-based pipeline. N denotes the number of CT exams used and p 
the number of features (variables) retained for each exam. 

 

Table 2: Important features identified by LASSO. 

Important Predictors for CTDIvol 

(ranked by the average LASSO 

coefficients) 

Average 

coefficient 

Tube Current 3.49 

kVp 1.73 

Weight 1.15 

Width of collimator 0.66 

Reference mAs 0.37 

 

 
Figure 3: The coefficients’ paths for numerical predictors in LASSO. Lambda refers to 

the coefficient of the sparsity-inducing penalty in LASSO. A collimator is a metallic 
barrier with an aperture of variable width used to control the diameter of the X-ray 

beam. 
 

Raw data  

N = 189,959, p = 28 

After pre-processing 

N = 88,566, p = 606 

After LASSO 

N = 88,566, p = 574 

After RR-based 

outlier detection 

Detect 1% outliers 



 
Figure 4: The coefficients’ paths for the top 5 predictors in LASSO. Range Name is a 
parameter specified by the protocol as to which region is being scanned in a multiple 

body part evaluation. 
 

 

Table 3. Validation results of our RR-based outlier detection algorithm against manual 
review for 200 randomly selected entries.  

  Manual Review  

  True Outlier False Outlier  

A
lg

o
ri

th
m

 True Outlier 84 16 100 

False Outlier 8 92 100 

  92 108  

 

 

 

 



Table 4. Validation results of the cutoff method against the 200 manually reviewed 
entries. 

  
Manual Review 

 

  
True Outlier False Outlier 

 

A
lg

o
ri

th
m

 

True Outlier 34 7 41 

False Outlier 58 101 159 

  
92 108 

 

 
 
 
Table 5. Validation results of the OLS method against the 200 manually reviewed 
entries. 

 

 
 

Manual Review 
 

  
True Outlier False Outlier 

 

A
lg

o
ri

th
m

 

True Outlier 33 5 38 

False Outlier 59 103 162 

  
92 108 

 

 
 
 
Table 6. Summary comparison of our proposed RR-based method against OLS and the 
cutoff method. 
 
 

 Sensitivity Specificity PPV NPV F1 score 

RR 0.91 0.85 0.84 0.92 0.88 
OLS 0.36 0.95 0.87 0.64 0.51 

Cutoff 0.37 0.94 0.83 0.64 0.51 



 
 

Figure 5: Outliers identified in the entire dataset (after pre-processing, N=88,566) by the 
three methods, Cutoff, OLS, and our proposed RR-based method.  

 


