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ABSTRACT

Background. Variability in radiation exposure from CT scans can be appropriate and

driven by patient features such as body habitus. Quantitative analysis may be
performed to discover instances of unwarranted radiation exposure and to reduce the
probability of such occurrences in future patient visits. No universal process to perform
identification of outliers is widely available, and access to expertise and resources is
variable.

Objective. The goal of this study is to develop an automated outlier detection
procedure to identify all scans with an unanticipated high radiation exposure, given
the characteristics of the patient and the type of the exam.

Materials and Methods. This Institutional Review Board-approved retrospective

cohort study was conducted from June 30, 2012 - December 31, 2013 in a

quaternary academic medical center. The de-identified dataset contained 28 fields

for 189,959 CT exams. We applied the variable selection method Least Absolute
Shrinkage and Selection Operator (LASSO) to select important variables for
predicting CT radiation dose. We then employed a regression approach that is

robust to outliers, to learn from data a predictive model of CT radiation doses given
important variables identified by LASSO. Patient visits whose predicted radiation

dose was statistically different from the radiation dose actually received were

identified as outliers.

Results. Our methodology identified 1% of CT exams as outliers. The top-5 predictors
discovered by LASSO and strongly correlated with radiation dose were Tube Current,
kVp, Weight, Width of collimator, and Reference milliampere-seconds. A human expert

validation of the outlier detection algorithm has yielded specificity of 0.85 [95% CI 0.78-



0.92] and sensitivity of 0.91 [95% CI 0.85-0.97] (PPV=0.84, NPV=0.92). These values
substantially outperform alternative methods we tested (F1 score 0.88 for our method
against 0.51 for the alternatives).

Conclusion. The study developed and tested a novel, automated method for
processing CT scanner meta-data to identify CT exams where patients received an
unwarranted amount of radiation. Radiation safety and protocol review committees may

use this technique to uncover systemic issues and reduce future incidents.
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INTRODUCTION

Good clinical practice and regulatory compliance include routine performance of
CT protocol review by a multidisciplinary team of experts. Review and quantitative
analysis of retrospective patient imaging exams and protocol meta-data is typically
performed to discover instances of unwarranted radiation exposure. Further analysis of
these instances can help identify systemic problems and reduce the probability of such
occurrences in future patient visits. Multiple authors have reported on methods to review
and manage protocols (1-3). Other studies have described approaches using non-
adherence protocol review (4), manual root cause analysis (5), process control methods
(6,7) and in children, a size-based quality informed framework (8). Related work studied
the effects of transitioning to digital image acquisition (9) and estimated collective
radiation dose due to medical exams in an entire population (10).

This work is motivated by a desire to identify exposure events which may be
missed by traditional outlier detection methods. Such methods “flag” cases where the
radiation dose exceeded an average value by several multiples of the standard
deviation. In the absence of any knowledge on which cases may be outliers, computing
an average from past data that do contain some outliers has the effect of skewing the
average; and thus, masking future outliers. We report on the development and
validation of an automated method for detecting radiation exposure outliers, using only
two data types: patient demographics and protocol meta-data. The key innovation is the
development of a predictive model of appropriate radiation exposure; outliers are then
identified by statistically large deviations of the actual radiation dose from the predicted

value.



The developed method is based on a Regularized Regression (RR) (11)
predictive model. By design, the model is robust to being exposed to outliers during
training, which is not the case with more standard regression approaches. The most
relevant predictors are extracted using Least Absolute Shrinkage and Selection
Operator (LASSO) (12), a penalized regression model that induces sparsity on the
predictor level and applies well to cases where the number of predictors far exceeds the
number of patients. This type of sparse regression model can isolate relatively few

predictive factors and, thus, enable interpretation of the predictions.

MATERIALS AND METHODS

Study Design and Setting

This HIPAA-compliant, Institutional Review Board (IRB)-approved retrospective
cohort study was conducted at an academic medical system including a 793-bed
quaternary care hospital, and two outpatient imaging facilities. The IRB did not require
informed consent. All consecutive CT examinations performed on the 11 operational CT
scanners (GE, Philips, and Siemens) were eligible for study inclusion between June 30,
2012 and December 31, 2013, a time-period during which there were no scanner

equipment or software changes.

Data description and pre-processing

We followed the steps below to pre-process the data.

e Examination metadata were de-identified at the site.



e Patient visits with more than half of the corresponding variables missing, or a missing
value for CT Dose Index (CTDI), or a missing value for patient weight, are discarded.

e CT examinations of the body were retained. Head CT examinations were not included.

e Binary encoding: categorical variables (such as scanner type, protocol type, patient
gender, X-ray modulation type) are encoded using binary (indicator) variables for each
category. Furthermore, categories present only in a small number of exams are deleted.

e Variables that have low correlation with CTDI (absolute value below 0.06) are removed
from further consideration, e.g., scan length, the number of scans, age, pitch factor, and
the number of X-ray sources, as the unit of analysis for this method is the single
acquisition event rather than the total patient encounter. The specific threshold 0.06 is
selected because it separates the variables with relatively high correlation with CTDI
(0.30 on average) from the ones with low correlation (0.01 on average).

e We impute the missing values by the mean (for numerical predictors) or mode (for
categorical predictors).

e Normalization of the predictors: all predictors are standardized by subtracting the mean
and dividing by the standard deviation.

e Splitting the data into a training set and a test set randomly: as is common in machine
learning, the dataset of CT exams is randomly split into a training and a test set. The
training set is used to train the model and the test set to evaluate its performance. Since
from a statistical point of view, all the data points (patients’ features) are drawn from the
same distribution, we do not differentiate between patients whose records appear

earlier in time than others with later time stamps.



Outcome Measures

CT Dose Index (CTDIvol), which measures the amount of exposure to CT radiation for
each dose event, was chosen as the primary outcome measure (dependent variable).
Note that this is a metric of the conformance of the protocol and the behavior of the
automatic exposure control on a per acquisition level. Multi-phase evaluations are
included, but the number of phases and/or the repetition of acquisition events are
beyond the scope of this method of analysis. In addition, we use the coefficient of
determination, R?, to measure the goodness of fit for the regression procedure, which
assesses its ability to accurately predict CTDIlvol. Finally, we use the accuracy of the
outlier detection procedure, expressed in terms of sensitivity and specificity, by
employing a human expert to assess whether outliers identified by the algorithms are

indeed outliers or not.

Statistical Analysis

Statistical Objective and Background

The variables containing patient characteristics such as age, gender and weight, and CT
exam-related variables such as scanner type, X-ray modulation type, exposure time, the
number of X-ray sources, and tube current, etc., are captured by a predictor vector x €
R4, for each exam i =1,...,N. We are interested in predicting the normal amount of
exposure to CT radiation (CTDI) given the predictors, and “screening out” the outliers,
which are defined to be the exams where the patient received an abnormal radiation dose.
We denote the CTDI by a continuous variable y € R. Using statistical terminology, the

problem can be cast as a regression problem. We seek to find a regression plane that



accurately describes the relationship between the CTDI y and the predictors x for non-
outlying CT exams. Ordinary Least Squares (OLS) regression cannot accomplish this
goal due to the presence of outliers. For example, in Figure 1, we plot (blue) sample points
(x, y) according to some probability distribution that satisfies a roughly linear relationship.
Suppose now our samples include few outliers (magenta) that are unknown to us. OLS
produces the black line; shifting the “true” line to accommodate the outliers. When we use
regression residuals to detect outliers, it can be seen that moderate outliers may not be
identified as they would not be too far from the black line. What is needed is the line that
is robust to outliers, as indicated by the red line in Fig. 1 and such a line can be computed

using a robust, Regularized Regression (RR) technique (11).

The LASSO + RR framework

A set of predictors is needed to perform the regression analysis. Usually in medical
datasets, the number of predictors far exceeds the number of patients, which will cause
a rank deficiency issue commonly seen in OLS analysis. To solve this problem, an
effective variable selection method called Least Absolute Shrinkage and Selection
Operator (LASSO) (12) is applied to extract a subset of effective predictors. Earlier work
has established that a sparse regression model enhances the predictive power of the
regression model and produces more interpretable results (13—15).

With the effective predictors x obtained from LASSO, we use a Regularized
Regression (RR) model to learn a robustified relationship between the CTDI y and x. The
mechanism is as follows: we minimize the deviation of y from the prediction produced by

the model, plus a term that penalizes the complexity of the model. It has been established



(11) that this penalty term provides protection against outliers, essentially producing a
regression model that fits the non-outlying training samples.

Given such a robust regression model, outliers are identified when the absolute
residuals from RR, i.e., the absolute value of the difference between y and the prediction,
exceeds 3 times the standard deviation of the residual.

We use the metric R?, the coefficient of determination in statistics, to evaluate how
well the regression model predicts CTDI using the selected predictors.

R2 & 1 the sum of squared residuals
- N * the variance of CTDI '’

where N is the total number of exams considered, and the residual for each exam is the
difference between the CTDI and the prediction. R? assesses the percentage of variation
in CTDI that is explained by the model.

Analyses and visualizations were performed using the R statistical programming

environment (version 3.2.2) using the gimnet R package for LASSO modelling (16).

Outlier Algorithm Validation Process

To assess the accuracy of the outlier cohort discovery process, we conducted a
manual validation in which the results of a human-expert classification were compared
to those extracted by the algorithm. One radiologist (a body imaging radiologist with 14
years of experience) has performed a manual chart and image review of each of the
outliers identified and cases which were classified as appropriate, blinded to the results
of the algorithm. A validation sample size of a random 200 sample cases were

reviewed, in accordance with a power calculation of a standard significance level



(alpha) of 5% and power (1-beta) of 80% (17). Specificity, sensitivity and 95%
Confidence Intervals (95% Cls) of the algorithmic outlier detection method were

computed.

Alternative methods

We compared our outlier detection method against two alternatives on the same
validation set of 200 samples that were reviewed by the human expert. The first
alternative method is what we call a “cutoff” method. We compute the average and
standard deviation of CTDI over a training set and identify as outliers exams where the
CTDI was larger than the average plus 3 times the standard deviation.

The second alternative method was identical with our approach, except that
Ordinary Least Squares (OLS) was used in lieu of the RR method. As with our method,

the regression residuals (this time from OLS) were used to detect outliers.

RESULTS

Study Cohort

The original de-identified dataset contained 28 fields for 189,959 CT exams, and
the per acquisition CT Dose Index (CTDI), which measures the amount of exposure to

CT radiation. Mean patient age was 60.6£17.1 years; 54.7% were females.

Pre-processing and variable selection

After pre-processing, we are left with 606 numerically encoded predictors for

88,566 CT exams. Patient characteristics for these exams are summarized in Table 1.



The implementation of LASSO+RR is described in Figure 2, where N is the
number of patients, and p is the number of predictors. The figure illustrates the various
steps in the implemented pipeline for outlier detection.

We found that 574 out of the 606 predictors (95%) were selected by the process
described above. In Table 2 we summarize the most important predictors identified by the
LASSO algorithm. Specifically, we run LASSO five times, each with a different training
dataset, average the coefficients corresponding to the various predictors over the five
runs, and report the predictors with the largest average coefficients. Note that all
predictors are standardized, and thus it is reasonable to identify important predictors
based on the magnitudes of the average coefficients. We do not list the categorical
predictors in Table 2 since one single categorical variable may correspond to hundreds
of numerically encoded variables (“dummy” variables).

We also plot the coefficients for numerical predictors vs. the LASSO penalty
parameter (Lambda) in Fig. 3. We see that the relative importance of the predictors
implied by Fig. 3 coincides with Table 2. It is of interest to see which dummy variables
are selected by LASSO to have a rough sense of the relative importance of the
categorical predictors. In Fig. 4 we plot the coefficients’ paths for the top 5 predictors, 2
of which are the aforementioned numerical variables, and the rest represent the
categorical variables such as manufacturer and range name. (The green and blue lines

represent two different range names.)



Regularized Regression-based outlier detection and human expert validation

Given the effective predictors obtained by LASSO, we are able to fit the RR model,
whose residuals are used to identify outliers. Our methodology identifies 1% patient visits
as outliers. In addition, the percentage of the variance explained by the model is R? =
76%.

Table 3 lists the results of the human expert validation of the outlier detection
algorithm. The first row of the table lists how manual review classified the outliers
identified by the algorithm, whereas the second row lists the results of manual review for
the CT exams the algorithm classified as non-outliers. The specificity was at 0.85 [95%
Cl1 0.78-0.92] and sensitivity was at 0.91 [95% CI 0.85-0.97] (Positive Predictive Value

PPV=0.84, Negative Predictive Value NPV=0.92).

Comparison with alternative methods

We compared our outlier detection method against the two alternatives described
earlier (cutoff method and OLS) on the validation set of 200 samples that were reviewed
by the human expert.

Tables 4 and 5 present results similar to Table 3 but for the cutoff and the OLS
method, respectively. Table 6 summarizes the accuracy of the three methods on the
200 human-reviewed validation dataset. For each method, we report sensitivity,
specificity, PPV, NPV, and the F1 score, which is the harmonic mean of PPV and
sensitivity.

For an additional point of comparison between our RR-based method and OLS,

we considered the top-40 outliers identified by each method. Among these outliers, 7 of



the top-40 OLS outliers (17.5%) were considered to be “false positives;” while all the
top-40 outliers detected by our method were real outliers.
Finally, Figure 6 plots the number of outliers detected by the three methods

among the 88,566 CT exams maintained after the pre-processing steps.

DISCUSSION

This work proposes a completely automated outlier detection method to identify
CT scans during which the patient received an unusually high radiation dose. The
developed method was able to identify outlying CT exams that were largely in
agreement with assessment by a human expert, achieving specificity of 85% and
sensitivity of 91%. After pre-processing of the original dataset, we evaluated 88,566 CT
exams and identified 1% as outliers.

A regression analysis was used to train a predictive model of CT radiation dose
given patient/exam characteristics. The gap between the actual radiation dose (as
recorded in the dataset) and the value predicted by the regression model was used to
detect outlying CT exams.

We compared our outlier detection method against two alternatives, a basic
cutoff method and a method based on OLS regression in lieu of our Regularized
Regression (RR)-based method. Comparing Tables 3, 4, and 5, it is evident that our
method is in much better agreement with the human expert. Table 6 summarizes the
key difference: our method has a much higher sensitivity with a corresponding high
specificity. OLS and the cutoff methods detect much fewer exams as outliers (lower

sensitivity). They have a higher specificity, but that is a natural consequence of very low



sensitivity (i.e., the fewer outliers one detects, the fewer will be the false outliers). Figure
6 depicts the number of outliers detected by each method across the patient weight
range (from Small to XXL, cf. weight ranges from Table 1). This figure confirms that we
detect more outliers than the alternatives, especially for M and L patients who make up
the maijority of the patients (79.11%).

These results suggest that OLS regression fails to capture an accurate
relationship between variables when the data are contaminated by outliers. The same is
true for the simpler cutoff method. In contrast, our Regularized Regression (RR)
approach demonstrates robustness to the presence of outliers in the training set. The
effective predictors provided as input to RR were extracted using the Least Absolute
Shrinkage and Selection Operator (LASSO) (12), a penalized regression model that
induces sparsity of the predictors. This type of sparse regression model can reveal
relatively few predictive factors and, thus, enable interpretation of the predictions.

Table 2 and Figures 3 and 4 reveal the most important predictors selected by
LASSO, which include Tube Current, kVp, Weight, Width of collimator, and Reference
mAs. The tube current is mathematically related to the calculation (estimate) of CTDIvol
(18), and is thus expected to be one of the most effective predictors. The peak
kilovoltage (kVp) has a positive non-linear relationship with CTDIvol (19).

Scan protocols are set in advance of any patient encounter. A reference set of
values are entered into the scanner for a "standard size subject,” expressed as a
reference milliampere seconds (Reference mAs). The exposure given to any given
patient is the result of a response by the Automatic Exposure Control (AEC, a system

setting which is modifiable). In certain protocols, reference mAs is purposely set to a



high level by the physician, technologist and the physicist who designs the protocol,
because they desire a higher low contrast detectability or thin slices viewing is needed
to make the diagnosis. Aberrant patient positioning (20), or shields (21) or external
hardware in the field of view when the scan is planned can alter the imaging systems
AEC response to this selected parameter unexpectedly.

Low kVp studies are deliberately used to optimize the visualization of iodine, and
typically used in vascular imaging. The trend identified vascular examinations to have
low kVP. To improve penetration of the x-rays through larger size patients and produce
an image, higher kVP may be required due to physical limitations of x-ray tubes. The
automatic selection of a higher kVp may occur when the technical capacity of the tube
to generate adequate milliamperes for the necessary scan time is not adequate. For
vascular exams, selecting a higher than average kVp is problematic due to the
reduction of contrast to noise ratio that is intrinsic in higher kVp imaging. For osseous
imaging a higher kVp is often selected. These protocols are infrequent though and as
such may not have undergone as careful systematic scrutiny by protocol review
committees.

Some of the results reported in our variable selection and RR building steps have
been previously independently identified by other studies. For example, we found that
patient age is removed in the initial pre-processing step (see Materials and Methods)
since it displays a low (below the cutoff threshold chosen in this study) correlation with
the CTDIvol predictor variable. Similar behavior has been reported in two recent studies
(22,23). Sodickson et al. have investigated the effects of patient size on radiation dose

reduction and image quality in low-kVp CT pulmonary angiography, and have found



patient age to be of no statistical significance as a factor correlated with radiation dose
accumulation in CT pulmonary angiography (22). More recently, Valtchinov et al. (23)
have investigated the probability of a CT Dose-Check alarm to be generated when static
CTDlvol-valued threshold was used to define what event constitutes an outlier. They
have utilized a logistic regression formalism and found patient age to not be statistically
significantly associated with predicting the probability of an exam being an outlier.
Interestingly however, they have included an interaction term in their regression model
of the form age x weight, which did present a statistical significance in predicting an
alarm even though the magnitude of the interaction term was quite small.

These two works have also confirmed that the patient weight is a statistically
significant predictor variable for various metrics associated with radiation dose

accumulation (22,23), which is consistent with our results.

The methodology we developed can readily leverage additional variables for
each CT exam. In principle, any information available in the Radiation Dose Structured
Report (RDSR) using the DICOM standard and available in most modern CT scanners
could be used. Useful additional variables may include the use of a dual energy protocol
and the size of the focal spot. For specific types of CT exams, such as cardiac CT,
additional information such as the choice of gating techniques (prospective or
retrospective) could also be incorporated. The use of additional variables has the
potential to further improve the accuracy of the CTDI predictive model and, as a result,

the performance of the outlier detection method.



Our study has limitations. One limitation of our data set was that scanners were
limited to hospital CT units and software installed before 2012. Since then, devices and
associated software have evolved. Taken together with the fact that the data set we
used for building and testing our outlier prediction model has come from a quaternary
care academic medical center, this limits the immediate claims of generalizability of our
findings to other healthcare settings, scanner vendors and software versions. Therefore,
it is highly desirable to independently test our algorithms on data from different
institutions that might have a different mix of scanned vendors, imaging protocols and

settings.

CONCLUSION
LASSO-based variable selection followed by a Regularized Regression using the
selected set of variables is capable of accurately pinpointing the set of relevant dose
outliers in an unsupervised-learning fashion. Because the method detects outliers when
a predicted radiation dose is statistically different from the actual dose, it is capable of
identifying outliers across the patient weight and size spectrum, outperforming more
standard approaches that become “skewed” by the presence of outliers in the training
data. We demonstrated that the proposed method is in excellent agreement with a
human expert (85% specificity and 91% sensitivity).

The proposed method is a good candidate for being implementing in the
workflow of medical imaging centers. Since it “flags” a small percentage of CT exams as

outliers (1% in our study), it facilitates the work of radiation safety committees which will



have a small percentage of cases to manually review. Review of these cases may help
to identify systemic issues to address, leading to reduced future overexposure incidents.

The automated outlier detection procedure may also be implemented in a
Radiology Information Systems (RIS) which is often used in conjunction with a Picture
Archiving and Communication System (PACS). Such platforms have rudimentary CT
dose monitoring modules that allow for computation of simple averages (e.g., of DLP)
(24). One could envision incorporating into these modules our outlier detection

algorithm.
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Figure 1: Comparison between OLS and Regularized Regression.

Table 1: Patient characteristics for exams after pre-processing.

e Percentage, % Standard
Characteristic Group (N=88,566) Mean Deviation
Female 54.10
Gender Male 45.90 NA
S (<56.5) 10.65 50.52 4.90
M (=56.5 and
<79.5) 45.73 68.72 6.55
Weight (kg) LT gfs"’)‘”d 33.38 88.98  6.49
XL (=102.5 and
<136.5) 8.98 113.69 8.95
XXL (=136.5) 1.26 156.19 26.81
<18 0.03 17 1.09
>18 and <34 6.09 29 3.40
>34 and <49 11.95 43 4.31
Ade >49 and <59 18.51 55 2.81
9 >59 and <69 24.70 65 2.88
>69 and <79 23.07 74 2.82
>79 and <89 11.55 84 2.81
>89 4.10 98 11.61
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Figure 2. Schematic representation of the data pre-processing and analysis steps in the
proposed LASSO+RR-based pipeline. N denotes the number of CT exams used and p
the number of features (variables) retained for each exam.

Table 2: Important features identified by LASSO.

Important Predictors for CTDI, Average
(ranked by the average LASSO coefficient
coefficients)
Tube Current 3.49
kVp 1.73
Weight 1.15
Width of collimator 0.66
Reference mAs 0.37
Lambda
150 1 0.0067 4.5e-05
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Figure 3: The coefficients’ paths for numerical predictors in LASSO. Lambda refers to
the coefficient of the sparsity-inducing penalty in LASSO. A collimator is a metallic
barrier with an aperture of variable width used to control the diameter of the X-ray

beam.



1 0.0106?

4‘5?-05

Coefficients

Manufacturer

Tube Current

Range Name
kVvp

Log Lambda

Figure 4: The coefficients’ paths for the top 5 predictors in LASSO. Range Name is a
parameter specified by the protocol as to which region is being scanned in a multiple

body part evaluation.

Table 3. Validation results of our RR-based outlier detection algorithm against manual
review for 200 randomly selected entries.

Algorithm

Manual Review

True Outlier False Outlier
True Outlier 84 16 100
False Outlier 8 92 100
92 108




Table 4. Validation results of the cutoff method against the 200 manually reviewed

entries.

Algorithm

Manual Review

True Outlier False Outlier
True Outlier 34 7 41
False Outlier 58 101 159
92 108

Table 5. Validation results of the OLS method against the 200 manually reviewed

entries.

Algorithm

Manual Review

True Outlier False Outlier
True Outlier 33 5 38
False Outlier 59 103 162
92 108

Table 6. Summary comparison of our proposed RR-based method against OLS and the

cutoff method.

Sensitivity Specificity PPV NPV F1 score
RR 0.91 0.85 0.84 0.92 0.88
OoLS 0.36 0.95 0.87 0.64 0.51
Cutoff 0.37 0.94 0.83 0.64 0.51
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Figure 5: Outliers identified in the entire dataset (after pre-processing, N=88,566) by the
three methods, Cutoff, OLS, and our proposed RR-based method.



