
A Hebbian learning algorithm for training a neural circuit to perform
context-dependent associations of stimuli ∗

Henghui Zhu †, Ioannis Ch. Paschalidis ‡, and Michael E. Hasselmo §

Abstract— We propose a biologically plausible learning al-
gorithm to train a neural circuit model to perform context-
dependent associations of stimuli with correct responses. The
specific cognitive task we consider requires the ability to learn
a context-dependent association rule and generalize beyond
what has been seen during training. We analyze the learning
algorithm using a Markov chain framework and establish
its convergence. Using numerical simulation, we validate the
performance of the learning algorithm and the generalization
ability of the neural circuit model.

I. INTRODUCTION

Behavioral data indicates that humans and animals are able
to learn new rules and make different decisions based on
different contexts. This requires the ability to generalize from
what is learned, i.e., interpreting previously unseen sensory
input to make a correct decision based on a previously
learned rule [1]. It is believed that the neural circuit cor-
tical structures, especially the prefrontal cortex, play a very
important role in learning new rules [2], [3]. This requires
some form of symbolic processing for the neural circuit to
flexibly apply learned rules to new input.

There are many ways to modeling how a neural circuit
flexibly links an unseen sensory input to the correct response.
We focus on a flexible gating mechanism between different
cortical working memory buffers by the basal ganglia [4]
and the flexible routing in prefrontal cortex [2]. We consider
a new neural circuit model inspired by the one described
in [5]. The model uses interacting populations of neurons
to gate neurons on the synaptic spread of activity between
other neurons. Gating can be mediated by the interaction of
activity from different populations of input neurons on the
dendrites of a set of output neurons. For example, the activity
of a first set of gating neurons may cause synaptic currents
in the dendritic tree of the output neurons that are adjacent
to the synaptic currents of a second set of input neurons. If
the second set of input neurons activates voltage-sensitive N-
Methyl-D-Aspartate synaptic currents [6], [7], these voltage-
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sensitive properties mean that the voltage change caused
by the gating neurons will increase the current caused by
the second set of input neurons, thereby gating the activity
of the output neurons. Alternatively, axo-axonic inhibitory
interneurons can also regulate spiking output [8].

We are interested in performing a context-dependent as-
sociation task presented in [9]. Such a task was also con-
sidered in our earlier work [10], [11], which explored the
use of approximate dynamic programming methods using
deep neural network approximation architectures. Here, we
prove properties of a learning algorithm previously proposed
in [5] to optimize parameters of the neural circuit model.
The learning algorithm is based on Hebbian learning [12],
hence, it is biologically plausible because experimental data
supports Hebbian modification in neural circuits. We estab-
lish convergence of the algorithm in a parameterized neural
circuit model which can perform the context association
task correctly. To that end, we use machinery from finite-
state Markov chains. Finally, we use simulation to evaluate
the convergence speed of the learning algorithm and the
generalization ability of the optimized neural circuit model.

The remainder of the paper is organized as follows.
Section II presents the context association learning task, the
neural circuit model, and our new, biologically plausible
learning algorithm. In Section III, we establish our main
result on the convergence of the learning algorithm using
Markov chain analysis. In Section IV, we conduct a simu-
lation analysis of the performance of the learning algorithm
and the generalization ability of the neural circuit model.
Conclusions can be found in Section V.

II. NOTATION AND PROBLEM SETUP

We will use boldfaced lowercase letters to denote vectors,
boldfaced uppercase letters to denote matrices, ordinary
lowercase letters to denote scalars, and calligraphic capital
letters to denote sets. For a matrix A, we will denote by
A(i, j) its element in the ith row and jth column. All vectors
are column vectors. For space saving reasons, we will write
x = (x1, . . . , xdim(x)) to denote the column vector x, where
dim(x) is the dimension of x. We use prime to denote the
transpose of a matrix or a vector, 0 for the matrix or vector
of all zeroes, and e for the vector of all ones. We will also
denote by bxc the maximum integer that is smaller than or
equal to x.

A. Learning task

Fig. 1 shows the diagram of the learning task. There are
four contexts in this task, corresponding to the four quadrants
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TABLEI:Theencodingofdifferentstimuliandcontextsin
thetaskofFigure1.

Stimuliandcontexts Encoding

Stimulus

A (1,0,0,0,0,0,0,0)
B (0,1,0,0,0,0,0,0)
C (0,0,1,0,0,0,0,0)
D (0,0,0,1,0,0,0,0)

Context

1 (0,0,0,0,1,0,0,0)
2 (0,0,0,0,0,1,0,0)
3 (0,0,0,0,0,0,1,0)
4 (0,0,0,0,0,0,0,1)

anddenotedbynumbers1,2,3,and4.Fourinputstimuli,
denotedbylettersA,B,C,andD,areassociatedwith
tworesponses,XandY,usingdifferentrulesfordifferent
contexts.Specifically,theassociationrulebetweenstimulus
andresponseisthesameinthe1st(upperleft)and4th
quadrant(lowerright).Thesamesymmetryexistsbetween
the2ndand3rdquadrants.

Fig.1: Mappingbetweenindividualstimuli(A,B,C,D)
andthespatialcontext(quadrants1,2,3,4)ontocorrect
responsesX orY,providing16input-responsepairs.The
underlined(red)input-responsepairsarenotseenduring
trainingbutpresentedduringthegeneralizationtestinSec-
tionIV.

We willusetheterm inputtorefertoastimulus-
contextpair.Everystimulusandcontextisencodedasan
8-dimensionalbinaryvectoraccordingtoTableI.Notice
thatthefirstfourbitsofthevectorcorrespondtothe
stimulusandthelastfourbitstothecontext.Aninput
isrepresentedasasequenceoftwosuchvectors.For
example,considerthestimulus-contextpairB3.StimulusB
isencodedas(0,1,0,0,0,0,0,0)andcontext3isencoded
as(0,0,0,0,0,0,1,0).Hence,theinputisrepresentedasa
sequences=(s1,s2)wheres1=(0,1,0,0,0,0,0,0)and
s2=(0,0,0,0,0,0,1,0).

B.Neuralcircuitmodel

Inspiredbytheworkin[5],weconsideraneuralcircuit
modeltoperformthecontextassociationtaskweintroduced.
Themodelconsistsofagatingmechanismbasedonthenon-
lineareffectsbetweensynapticinputsonadjacentpartsofthe
dendritictreethatareduetovoltage-sensitiveconductances
suchastheN-Methyl-D-Aspartate(NMDA)current[6],[7].
Theseeffectsmakeitpossibletodeterminetheinfluenceof
spikinghiddenneuronstothemembranepotentialoftheir

adjacentneurons.Dependingonwhichhiddenneuronsare
spiking,differentweight(gating)matricesgetactivated.
Theinputtotheneuralcircuit modelisthestimulus-
contextpairswedescribedearlier,representedasasequence
(s1,s2)oftwo8-dimensionalvectors.Themodelhasn=
8neuronsthatreceivesuchinputsequencesintwotime
instances.Inaddition,therearem≥2hiddenneuronsandm
weightmatricesconnectingtheinputneuronsandthehidden
neurons;theseweightmatricesaredenotedbyWi∈R

m×n,
i=1,...,m.
Foreachinputs,themodelmakesadecisionintwotime

stepsdenotedbyt=1,2.t=0willcorrespondtotheinitial
condition.Afteradecisionismade,themodelgetsinitialized
againandtissettozero. Weassumethatthestimuluss1
istheinputattimet=1andthecontexts2attimet=2.
Denotebyat=(at,1,...,at,m)∈{0,1}

m theindicator
vectorassociatedwiththeactivationofhiddenneuronsat
timet;specifically,at,i=1ifneuronispikesattimetand
iszerootherwise.Ateachtimeinstance,thereisonlyone
hiddenneuronspiking.Wedenotebyittheactivatedneuron
attimet,i.e.,it=argmaxiat,i.
Thedecision-makingruleoftheneuralcircuitmodelis

describedasfollows.Weassumeneuron1isspikinginitially,
i.e.,a0,1=1.Ateachtimeinstancet,thepre-activation
functionft =(ft,1,...,ft,m)ofthehiddenneuronsis
definedas

ft=Wit 1st+ωt, (1)

at,i=
1, ifi=argmaxift,i,

0, otherwise,
(2)

whereωt∈R
m isanenvironmentnoisewitheachelement

independentoftheothersanduniformlydistributedin[0,1).
(Tiesin(2)arebrokenarbitrarily.) Weassumeωtare
independentfordifferenttimest.Noticethattheactivated
hiddenneuronattheprevioustimeinstancedeterminesthe
weightmatrixtobeused.Thespikingneuronattisthe
neuronthathasthemaximumpre-activationvalue.
Atthelasttimeinstanceforeachinput(t=2),thelasttwo

hiddenneuronsdeterminetheselectionofeitherresponseX
orresponseY.Specifically,ifa2,m−1=1,thenresponseX
isselected.Ifa2,m=1,thenresponseYisselected.Ifthe
activatedneuronisnotoneofthelasttwo,thennoresponse
isprovided.
Weprovideanexampletoillustratetheoperationofthe

neuralcircuitmodel.Supposetherearetwohiddenneurons
(m=2)andthetwocorrespondingweightmatricesare:

W1=
1 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0

,

W2=
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1

. (3)

Supposetheinputisthestimulus-contextpairC1andthe
noiseωt=(0,0).Theinputatthefirsttimeinstanceis
s1=(0,0,1,0,0,0,0,0).Then,thepre-activationfunction
becomesf1=W1s1=(0,1).Therefore,a1=(0,1)and
thesecondhiddenneuronspikesattimet=1.Theinputfor



t=2iss2=(0,0,0,0,1,0,0,0)andf2=W 2s2=(0,1).
Hence, a2 =(0,1)andresponseY isselectedsinceitis
thesecondhiddenneuronspikingatthefinaltimeinstance
t=2.Itcanbeverifiedthattheweightmatricesin(3)will
alwaysyieldthecorrectresponseforeverystimulus-context
pairinputaccordingtotheruleofFig.1.

C.LearningAlgorithm

Totraintheweight matrices,wedevisealearningalgo-
rithmfortheneuralcircuitbasedonthe Hebbianrulefor
plasticityofsynapticconnections.TheweightmatricesW i

areupdatedaccordingtoacombinationofLong-TermPoten-
tiation(LTP)andLong-TermDepression(LTD),modulated
byappropriategatinganddependingonwhethertheoutput
responsematchesthecorrectone.

TheLTPruleis mostlybasedonthebasicHebbianrule
in[12],inwhichsimultaneouspre-andpost-synapticactivity
increasessynapticstrength.Recallthatitistheindexofthe
spikinghiddenneuronattimet,t=0,1,2.Accordingto
ourassumption,i0=1.TheLTPtermis:

∆W it 1,LTP=atst. (4)

Long-TermDepression(LTD)providesanactivity-dependent
reductionintheefficacyofneuronalsynapsestoserveasa
regularizationofthelearningprocess.TheLTDtermis:

∆W it 1,LTD=−est. (5)

Finally,weconsiderthefollowingupdaterule.Givenan
inputsignal,iftheresponseoftheneuralcircuit model
coincides withthecorrectresponse, weupdatethe weight
matricesusingtheLTPrule. Otherwise, wheneitherthe
responseisincorrectorthereisnoresponseproduced,we
updatetheweight matricesusingtheLTDrule. Weproject
theelementsofthe weight matricesW i to[0,1]after
everyupdate.Algorithm1specifiesthestepsofthelearning
algorithm,whereα∈(0,1)isastepsize.

III. MAINRESULTS

Inthissection, weestablishtheconvergenceof Algo-
rithm1forthecontextassociationtaskwehaveintroduced.
Tothatend,wewillconsideradiscrete-time Markovchain
whose“state”ischaracterizedbytheweight matrices. We
willusexttodenotethestateofa(generic) Markovchain
attimet. Wemakethefollowingassumptionabouttheinputs
providedtothealgorithm.

Assumption1 Eachinput(stimulus-contextpair)issam-
pledinAlgorithm1uniformly.

Infact,itsufficestosampleanyinputwithaconstantpositive
probabilityateachtime; weassumeauniformsampling
distributionforsimplicity.

Definition2([13]) Astateiina Markovchainiscalled
closed,ifP(xt+1 = i|xt = i) =1. Wesayastateiis
accessiblefromastatej,ifthereexistssomeT >0,such
thatP(xt+T =i|xt=j)>0.

Algorithm1 HebbianLearning Algorithmfortheneural
circuitmodel.

Initialization:InitializeW i=0,i=1,...,m.
repeat

Sampleastates.Seta0=(1,0,...,0).
fort=1,2do

Findthespikingneuronattimetusing(1)and(2).
Set∆W it 1,LTP,∆W it 1,LTDaccordingto(4)and
(5).

endfor
SelectresponseX orY accordingthespikingneuron
att=2.
iftheresponseiscorrectthen

PerformanLTPupdatefortheweightmatrices

W it 1
← W it 1

+α∆W it 1,LTP,t=1,2.

else
PerformanLTDupdatefortheweightmatrices

W it 1
← W it 1

+α∆W it 1,LTD,t=1,2.

endif
ProjectallelementsofW ito[0,1],∀i=1,...,m.

untilsomeconvergencecriteriononW iissatisfied.

ThefollowinglemmafollowsfromstandardMarkovchain
theory. Weomittheproof.

Lemma3 ConsideraMarkovchainwithafinitestatespace
X.LetXc bethesetthatcontainsallitsclosedstates.
Supposethatforallstatesi∈X,thereexistssomej(i)∈Xc

suchthatj(i)isaccessiblefromi.Then,foreveryinitial
distributionofthe Markovchain,astationarydistribution
existsandissuchthatallelementscorrespondingtonon-
closedstatesarezero.

LetusnowdenotebyW ={W 1,...,W m}thecollec-
tionofweightmatricesfortheneuralcircuitandbyW the
setofallpossibleweightmatricesgeneratedbyAlgorithm1.
Weconsidera Markovchainwithstates W andstatespace
W.Thestatespaceisfinitesince,asaresultoftheupdatesin
Algorithm1,eachelementofaweightmatrixtakesvaluesin
{0,α,2α,..., 1

α α,1,1−α,...1− 1
α α}.Thezerostate

isdefinedasthecollectionofzeroweightmatricesandnotice
thatitcorrespondstotheinitialconditionofAlgorithm1.
The Markovchainwehavedefinedishomogeneousdueto
Assumption1.

Considernow Algorithm1andtheupdatesitperforms
whentheinputissome s=(s1,s2). We willdenotea
decisionpathbythe5-tuple(i0,j1,i1,j2,i2),wherei0=1,
i1 andi2 aretheactivatedneuronsattimes0,1,and2,
respectively,andj1 =argmaxks1,k,j2 =argmaxks2,k

aretheindicesofthenon-zeroentriesinthestimuluss1and
thecontexts2,respectively.Forexample,forthestimulus-
contextpairC2,j1 =3 andj2 =6. NoticethatanLTP
updateunderadecisionpath(i0,j1,i1,j2,i2)impliesan
increaseofWi0

(i1,j1)andWi1
(i2,j2).Similarly,anLTD



update under the same decision path implies a decrease of all
the elements in the j1th column of Wi0 and all the elements
in the j2th column of Wi1 . We will call the first four columns
of each Wi the stimulus columns and the last four columns
the context columns. From the above discussion, it is seen
that the stimulus columns of Wi, i = 2, 3, . . . are not
updated by Algorithm 1, since i0 is always 1. Hence, given
the initialization, these columns maintain all elements equal
to zero.

Definition 4 We call a state W sub-optimal, if for all inputs
and all possible values of the noise, the forward propagation
(1) under W yields the correct response. We say a state W is
optimal, if it is sub-optimal and invariant under all possible
LTP updates.

Lemma 5 For any sub-optimal state W, there is an optimal
state W∗ that is accessible from W.

Proof: An LTP update only reinforces the matrix
elements in a decision path. Since a sub-optimal state only
produces the correct response for all inputs, it can be seen
that the state after an LTP update remains sub-optimal.
Further, the LTP update is monotonic with respect to the
elements of all weight matrices. Hence, if we keep sampling
uniformly all possible inputs at a sub-optimal state, the LTP
updates will lead to saturation (a value equal to 1) all nonzero
elements of the weight matrices, which will result in an
invariant, hence, optimal state.

Next, we argue that an optimal state exists for all the
circuits with m ≥ 2. For m = 2 we have provided an
optimal state in Equation (3) and we can easily extend
that construction for m > 2. It is possible that there exist
multiple optimal states. In any case, however, an optimal
state is accessible from the zero state, since we can always
provide the appropriate inputs to reinforce the desired matrix
elements.

We note that, based on the initialization assumptions in
Algorithm 1, hidden neuron 1 always spikes at time t = 0.
This implies that the stimulus columns of W1 determine
which neuron will spike after the stimulus is presented.

Corollary 6 If all elements in the ith column of W1 are
smaller than 1, for i ≤ 4, then all hidden neurons could
spike after the ith stimulus is presented. Similarly, if all the
elements in the ith column of W1 are all equal to 1, for
i ≤ 4, then all hidden neurons could spike after the ith
stimulus is presented.

This is a simple observation due to (1) and the noise term
ωt; we omit the proof.

Lemma 7 The zero state is accessible from state W if for
all i = 1, . . . ,m, all elements in the stimulus columns of the
matrix W1 are either all smaller 1 or all equal to 1.

Proof: First, by Corollary 6, all hidden neurons have the
possibility to spike after any stimulus is presented. Moreover,

given a stimulus, all responses are possible depending on the
context. It follows that it is possible to find an adversarial
input that leads to an incorrect response.

As a result, given a weight matrix W1 with elements
in the stimulus columns smaller than 1 or all equal to
1, it is possible to find a sequence of adversarial inputs
that eventually drive to zero every nonzero element in the
stimulus columns of W1. Extending this argument, it is
possible to drive to zero all remaining nonzero elements in
the weight matrices included in W. Specifically, for a context
j2 and hidden neuron 1, it is possible to find a stimulus
with index j1 and associated decision path (1, j1, 1, j2, i2)
that leads to an incorrect response. We can first drive to
zero the context columns of W1 using LTD. Then, for a
stimulus j1, since the last four column of W1 are all zeros,
we can pick an incorrect response i2 in the decision path of
the form (1, j1, 1, 5, i2). This will drive to zero the stimulus
columns of W1. Finally, to drive to zero any j2th column
in matrix Wi, where j2 > 4 and i > 1, we can pick a
stimulus j1 that leads to an incorrect decision path of the
form (1, j1, i, j2, i2).

Lemma 8 Suppose W is invariant under LTD given all
possible examples. If there is a zero column in the stimulus
columns of W1, then W is the zero state.

Proof: Suppose a non-zero W is invariant under LTD
given all possible inputs, and, without loss of generality, the
first column of W1 is zero. This implies that all hidden
neurons, i = 1, . . . ,m, can spike after stimulus A is
presented. Also, recall that the stimulus columns of Wi,
for i = 2, 3, . . ., are zero since they are not updated by
Algorithm 1. Therefore, the fact that W is not zero implies
the following two possibilities.

1) The context columns of Wi are all zero for all i. This
indicates there is some non-zero element in the context
columns of W1. This is impossible since there is some
decision path resulting in an LTD update which will
decrease this non-zero element.

2) There is some non-zero element in the context columns
of Wi. Given the invariance under LTD, the neural
circuit will produce the correct response for every
input. In this case, since all hidden neurons, i =
1, . . . ,m, may spike after stimulus A is presented,
Wi should map context 1 to response X for all i,
according the rule in Figure 1. This also implies that
each of the context columns of Wi leads to a unique
response. Consider now the input C1. No matter which
hidden neuron, say neuron k, is spiking at time t = 1,
the neural circuit will produce response X , which
is not correct. Hence, according to Algorithm 1, an
LTD update will be performed and matrix Wk will be
changed. This contradicts the invariance of W.

Corollary 9 Suppose a non-zero W is invariant under LTD
given all possible inputs. It is impossible to have a column



in the stimulus columns of W1 whose elements are either
all smaller than 1 or all equal to 1.

By using Lemma 6, the proof is similar to the proof of
Lemma 10 and is therefore omitted.

Lemma 10 Suppose W is invariant under LTD given all
possible examples. If W is not sub-optimal, then W is the
zero state.

Proof: By Lemma 8, if W is not sub-optimal or the
zero state, then all stimulus columns of W1 have all their
elements being non-zero. Since W is not sub-optimal, then
there exists some decision path, say (1, 1, j1, i2, j2), which
produces an incorrect response. According to Algorithm 1,
an incorrect response will lead to an LTD update. Since
W is invariant under LTD, according to Corollary 9 the
first column of W1 should not lead to an uncertain choice
of the hidden neuron to be activated. This implies that
W1(1, j1) > 0, which is not invariant under an LTD update.
This contradicts the assumption that W is invariant under
LTD.

Lemma 11 For every W ∈ W , there exists an optimal
solution W∗ such that W∗ is accessible from W.

Proof: If W is sub-optimal, the result holds by
Lemma 5. Now consider a W which is not sub-optimal. This
implies that the neural circuit model can produce an incorrect
response. Then, an LTD update is performed according to
Algorithm 1. After such an LTD update, some elements of
the matrices in W are decreased. Consider the set UW, which
contains all states invariant under LTD we can reach by
starting from W and providing as many adversarial inputs as
necessary (with all resulting in LTD updates). According to
Lemma 10, states in UW can only be sub-optimal or the zero
state. If the zero state is in UW, then it is accessible from
W. Therefore, any optimal state W∗ is accessible from W
since optimal states are accessible from the zero state. If UW
contains only sub-optimal states, the result is also true since
there exist some optimal state accessible from a sub-optimal
state.

Finally, we state our main convergence result for Algo-
rithm 1.

Theorem 12 The neural circuit model converges to an op-
timal state under Algorithm 1 and Assumption 1.

Proof: Consider the Markov chain on W induced by
Algorithm 1. Optimal states are closed. By Lemma 11, for
any state W̃, there exists some optimal state W∗ such that
W∗ is accessible from W̃. By Lemma 3, and given the zero
initial state, Algorithm 1 converges to some optimal state.

Remark 13 The convergence result can be easily extended
to the case where the environment noise ωt has elements
taking values in [0, Unoise], where Unoise < 1. Further,
the result can be extended to the case where the initial

state does not consist of all-zero weight matrices. In such
a case, optimal states may contain some weight matrices
with elements in (0, 1).

IV. SIMULATION

In this section, we validate the convergence of Algorithm 1
and demonstrate the generalization ability of the neural
circuit model.

In our first experiment, we let the number of hidden
neurons to be m = 2 and set the stepsize to α = 0.1. We
run the learning algorithm for many iterations and after each
iteration we evaluate the accuracy of the neural circuit model
over all inputs. Fig. 2 plots the accuracy, measured by the
fraction of correct responses to all possible inputs, while we
vary the number of iterations. We observe convergence to an
optimal state. Note that 100% accuracy does not necessarily
imply we have reached an optimal state. However, based on
our results, we are guaranteed we will reach an optimal state.

Fig. 2: Accuracy of the neural circuit model trained by
Algorithm 1.

Next, we evaluate the performance of the learning algo-
rithm with respect to the two hyperparameters: the stepsize
α and the strength of the noise Unoise defined in Remark 13.
We set the number of hidden neurons to m = 2. To evaluate
the performance with respect to the stepsize α, we use noise
terms uniformly distributed in [0, 1). For each value of α,
we run the learning algorithm 100 times and compute the
average number of iterations required to reach an optimal
state. The results are shown in Fig. 3a. It can be seen that
there exists a stepsize value (close to 0.7) which minimizes
the average number of iterations. Having a too small, or too
large stepsize, can lead to slower convergence either due to
small stepsize, or due to oscillations.

To evaluate the performance with respect to the noise
strength Unoise, we fix the number of hidden neurons to
m = 2 and the stepsize to α = 0.1. For each value of Unoise,
we run the learning algorithm 100 times and compute the
average number of iterations required to reach an optimal
state. Shown in the Fig. 3b is a plot of the average number
of iterations as a function of Unoise. Not surprisingly, the
number of iterations increases as the noise strength increases.

Finally, we evaluate the generalization ability of the neural
circuit model. In this test, we hide four stimulus-context pairs



(a) Average number of iterations with respect to the stepsize α.

(b) Average number of iterations with respect to the noise strength
Unoise.

Fig. 3: Average number of iterations required to converge to
an optimal state with respect to the stepsize α and the noise
strength Unoise.

during the training (A1, C2, D3, and B4, shown in red in
Fig. 1). Notice that we hide one input from each context,
and as a result, the neural circuit has to be able to learn the
context-dependent rule and generalize beyond what it has
seen during training. We evaluate the generalization ability
of the neural circuit model with respect to the number of the
hidden neurons m. We fix the stepsize to α = 0.3 and the
noise strength to Unoise = 0.7 during the training. Also, we
set the maximum number of iterations to 10, 000. For each
value of m, we again run the learning algorithm 100 times
and compute the average accuracy under all the stimulus-
context pairs, including the hidden ones. The result is shown
in Fig. 4. We observe that when the number of the hidden
neurons is large, the neural circuit model is more complex
and hence does not generalize as effectively across additional
stimuli, resulting in generalization errors for the simple task
of Fig. 1. Naturally, however, if one increases the complexity
of the task (e.g., by increasing the number of stimuli and
contexts) more than 2 hidden neurons will be needed to learn
effectively.

V. CONCLUSION

In this paper, we proposed a biologically plausible learning
algorithm to train a neural circuit model to perform a context
association task. The algorithm uses the principle of Hebbian
learning which is believed to be consistent with the way
the human brain learns. In contrast, gradient-based methods

Fig. 4: Accuracy of the neural circuit with respect to the
number of the hidden neurons in the generalization test.

for reinforcement learning have less support from biological
data. We established the convergence of the algorithm using
Markov chain techniques. Using numerical simulation, we
validated the performance of the learning algorithm and
demonstrated the generalization ability of the neural circuit
model.
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