A Hebbian learning algorithm for training a neural circuit to perform
context-dependent associations of stimuli

Henghui Zhu T, Toannis Ch. Paschalidis ¥, and Michael E. Hasselmo 8

Abstract— We propose a biologically plausible learning al-
gorithm to train a neural circuit model to perform context-
dependent associations of stimuli with correct responses. The
specific cognitive task we consider requires the ability to learn
a context-dependent association rule and generalize beyond
what has been seen during training. We analyze the learning
algorithm using a Markov chain framework and establish
its convergence. Using numerical simulation, we validate the
performance of the learning algorithm and the generalization
ability of the neural circuit model.

I. INTRODUCTION

Behavioral data indicates that humans and animals are able
to learn new rules and make different decisions based on
different contexts. This requires the ability to generalize from
what is learned, i.e., interpreting previously unseen sensory
input to make a correct decision based on a previously
learned rule [1]. It is believed that the neural circuit cor-
tical structures, especially the prefrontal cortex, play a very
important role in learning new rules [2], [3]. This requires
some form of symbolic processing for the neural circuit to
flexibly apply learned rules to new input.

There are many ways to modeling how a neural circuit
flexibly links an unseen sensory input to the correct response.
We focus on a flexible gating mechanism between different
cortical working memory buffers by the basal ganglia [4]
and the flexible routing in prefrontal cortex [2]. We consider
a new neural circuit model inspired by the one described
in [5]. The model uses interacting populations of neurons
to gate neurons on the synaptic spread of activity between
other neurons. Gating can be mediated by the interaction of
activity from different populations of input neurons on the
dendrites of a set of output neurons. For example, the activity
of a first set of gating neurons may cause synaptic currents
in the dendritic tree of the output neurons that are adjacent
to the synaptic currents of a second set of input neurons. If
the second set of input neurons activates voltage-sensitive N-
Methyl-D-Aspartate synaptic currents [6], [7], these voltage-

* Research partially supported by the Office of Naval Research under
MURI grant N00014-16-1-2832, by the NSF under grants DMS-1664644,
CNS-1645681, CCF-1527292, and IIS-1237022, by the ARO under grant
WO11NF-12-1-0390, by the Boston University Digital Health Initiative, and
by the Center for Information and Systems Eng. at Boston University.

1 Henghui Zhu is with Center for Information and Systems Eng., Boston
University, e-mail: henghuiz@bu.edu.

1 Ioannis Ch. Paschalidis is with the Department of Electrical and
Computer Eng., the Division of Systems Eng., and the Dept. of Biomedical
Eng., Boston University, 8 St. Mary’s St., Boston, MA 02215, e-mail:
yannisp@bu.edu, http://sites.bu.edu/paschalidis/.

§ Michael E. Hasselmo is with the Center for Systems Neuroscience, and
the Dept. of Psychological and Brain Sciences, Boston University, e-mail:
hasselmo@bu.edu, www.bu.edu/hasselmo.

sensitive properties mean that the voltage change caused
by the gating neurons will increase the current caused by
the second set of input neurons, thereby gating the activity
of the output neurons. Alternatively, axo-axonic inhibitory
interneurons can also regulate spiking output [8].

We are interested in performing a context-dependent as-
sociation task presented in [9]. Such a task was also con-
sidered in our earlier work [10], [11], which explored the
use of approximate dynamic programming methods using
deep neural network approximation architectures. Here, we
prove properties of a learning algorithm previously proposed
in [5] to optimize parameters of the neural circuit model.
The learning algorithm is based on Hebbian learning [12],
hence, it is biologically plausible because experimental data
supports Hebbian modification in neural circuits. We estab-
lish convergence of the algorithm in a parameterized neural
circuit model which can perform the context association
task correctly. To that end, we use machinery from finite-
state Markov chains. Finally, we use simulation to evaluate
the convergence speed of the learning algorithm and the
generalization ability of the optimized neural circuit model.

The remainder of the paper is organized as follows.
Section II presents the context association learning task, the
neural circuit model, and our new, biologically plausible
learning algorithm. In Section III, we establish our main
result on the convergence of the learning algorithm using
Markov chain analysis. In Section IV, we conduct a simu-
lation analysis of the performance of the learning algorithm
and the generalization ability of the neural circuit model.
Conclusions can be found in Section V.

II. NOTATION AND PROBLEM SETUP

We will use boldfaced lowercase letters to denote vectors,
boldfaced uppercase letters to denote matrices, ordinary
lowercase letters to denote scalars, and calligraphic capital
letters to denote sets. For a matrix A, we will denote by
A(i,) its element in the ith row and jth column. All vectors
are column vectors. For space saving reasons, we will write
X = (Z1,. .., Zgim(x)) to denote the column vector x, where
dim(x) is the dimension of x. We use prime to denote the
transpose of a matrix or a vector, 0 for the matrix or vector
of all zeroes, and e for the vector of all ones. We will also
denote by |z| the maximum integer that is smaller than or
equal to x.

A. Learning task

Fig. 1 shows the diagram of the learning task. There are
four contexts in this task, corresponding to the four quadrants

http://sites.bu.edu/paschalidis/
www.bu.edu/hasselmo

TABLE I: The encoding of different stimuli and contexts in
the task of Figure 1.

Stimuli and contexts Encoding
A (1,0,0,0,00 0,0
) B (010000 0.0
Stmulss o g 001, 0,0,0,0.0)
D (©.001000.0
1 0, 0,0,0,1,0,00)
2 (0.0, 0,0,0, 1, 0 0)
Context 3 (0.0, 0,000, 1.0)
1 (0.0, 0,0,0,0,0.1)

and denoted by numbers 1, 2, 3, and 4. Four input stimuli,
denoted by letters A, B, C, and D, are associated with
two responses, X and V', using different rules for different
contexts. Specifically, the association rule between stimulus
and response is the same in the 1st (upper left) and 4th
quadrant (lower right). The same symmetry exists between
the 2nd and 3rd quadrants.

31..._______11 u-.._________‘?
B— |B2—

l::1'----.._____‘h‘r _G.t'--.______‘x
pi— |

.l!-.________iﬂr M-‘H‘""l

[~] cd
1 1
03 D4

Fig. 1: Mapping between individual stimuli (A, B, C, D)
and the spatial context (quadrants 1, 2, 3, 4) onto correct
responses X or ¥, providing 16 input-response pairs. The
underlined (red) input-response pairs are not seen during
training but presented during the generalization test in Sec-
tion IV.

We will use the term inpwr to refer to a stimulus-
context pair. Every stimulus and context is encoded as an
8-dimensional binary wector according to Table I Notice
that the first four bits of the vector correspond to the
stimulus and the last four bits to the context An input
is represented as a sequence of two such vectors. For
example, consider the stimulus-context pair B3. Stimulus B
is encoded as (0,1,0,0,0,0,0.0) and context 3 is encoded
as (0,0,0,0,0,0,1,0). Hence, the input is represented as a
sequence s = (8;,82) where 5y = (0,1,0,0,0,0,0,0) and
sz = (0,0,0,0,0,0,1,0).

B. Neural circuit model

Inspired by the work in [5], we consider a neural circuit
model to perform the context association task we introduced.
The model consists of a gating mechanism based on the non-
linear effects between synaptic inputs on adjacent parts of the
dendritic tree that are due to voltage-sensitive conductances
such as the N-Methyl-D-Aspartate (NMDA) current [6], [7].
These effects make it possible to determine the influence of
spiking hidden neurons to the membrane potential of their

adjacent neurons. Depending on which hidden neurons are
spiking, different weight (gating) matrices get activated.

The input to the neural circuit model is the stimulus-
context pair s we described earlier, represented as a sequence
(51,82) of two 8-dimensional vectors. The model has n =
8 neurons that receive such input sequences in two time
instances. In addition, there are m = 2 hidden neurons and m
weight matrices connecting the input neurons and the hidden
neurons; these weight matrices are denoted by W, € R™*%,
i=1...,m

For each input s, the model makes a decision in two time
steps denoted by ¢t = 1, 2. £ = 0 will correspond to the initial
condition. After a decision is made, the model gets initialized
again and ¢ is set to zero. We assume that the stimulus s
is the input at time ¢+ = 1 and the context ss at time ¢+ = 2.
Denote by a, = (ar1,...,8m) € {0,1}™ the indicator
vector associated with the activation of hidden neurons at
time t; specifically, a,; = 1 if neuron i spikes at time ¢ and
is zero otherwise. At each time instance, there is only one
hidden neuron spiking. We denote by i, the activated neuron
at time ¢, i.e., i, = arg max, a; ;.

The decision-making rule of the neural circuit model is
described as follows. We assume neuron 1 is spiking initially,
i€, apy = 1. At each time instance ¢, the pre-activation
function £ = (fi1,...,fim) of the hidden neurons is
defined as

fi = Wy, 5 +wy, (1)

ity = L,
t,i 0,

where w, £ E™ is an environment noise with each element
independent of the others and uniformly distributed in [0, 1).
(Ties in (2) are broken arbitrarily.) We assume w,; are
independent for different times ¢. Motice that the activated
hidden neuron at the previous time instance determines the
weight matrix to be used. The spiking neuron at ¢ is the
neuron that has the maximum pre-activation value.

At the last time instance for each input (f = 2), the last two
hidden neurons determine the selection of either response X
or response Y. Specifically, if as m—1 = 1, then response X
is selected. If aa m = 1, then response Y is selected. If the
activated neuron is not one of the last two, then no response
is provided.

We provide an example to illustrate the operation of the
neural circuit model. Suppose there are two hidden neurons
{m = 2) and the two corresponding weight matrices are:

if i = arg max, fi ,

otherwise, @

11001001
wl:[[]ﬂll[]llﬂ]"

00000110
wQ:[unnnlnnl]‘ @

Suppose the input is the stimulus-context pair C1 and the
noise w; = (0,0). The input at the first time instance is
becomes f; — Wis; — (0,1). Therefore, a; = (0,1) and
the second hidden neuron spikes at time ¢+ = 1. The input for

t=2is 8 =(0,0,0,0,1,0,0,0) and fs = Wasa = (0,1).
Hence, a; = (0,1) and response ¥ is selected since it is
the second hidden neuron spiking at the final time instance
t = 2. It can be verified that the weight matrices in (3) will
always yield the correct response for every stimulus-context
pair input according to the rule of Fig. 1.

C. Learning Alporithm

To train the weight matrices, we devise a learning alpo-
rithm for the neural circuit based on the Hebbian rule for
plasticity of synaptic connections. The weight matrices W,
are updated according to a combination of Long-Term Poten-
tiation (LTP) and Long-Term Depression (LTD), modulated
by appropriate gating and depending on whether the output
response matches the correct one.

The LTP rule is mostly based on the basic Hebbian rule
in [12], in which simultaneous pre- and post-synaptic activity
increases synaptic strength. Recall that i, is the index of the
spiking hidden neuron at time ¢, ¢+ = (0, 1,2. According to
our assumption, iy = 1. The LTP term is:

AW,, | uTP = 2:5;. (4)

Long-Term Depression (LTDY) provides an activity-dependent
reduction in the efficacy of neuronal synapses to serve as a
regularization of the learning process. The LTD term is:

AW,, ,1TD = —es;. (5)

Finally, we consider the following update rule. Given an
input signal, if the response of the neural circuit model
coincides with the correct response, we update the weight
mafrices using the LTP rule. Otherwise, when either the
response is incorrect or there is no response produced, we
update the weight matrices using the LTD rule. We project
the elements of the weight matrices W, to [0,1] after
every update. Algorithm 1 specifies the steps of the learning
algorithm, where o € (0,1) is a stepsize.

ITI. MAIN RESULTS

In this section, we establish the convergence of Algo-
rithm 1 for the context association task we have introduced.
To that end, we will consider a discrete-time Markov chain
whose “state™ is characterized by the weight mairices. We
will use r; to denote the state of a (generic) Markov chain
at time . We make the following assumption about the inputs
provided to the algorithm.

Assumption 1 Each input (stimulus-context pair) is sam-
pled in Algorithm 1 uniformly.

In fact, it suffices to sample any input with a constant positive
probability at each time; we assume a uniform sampling
distribution for simplicity.

Definition 2 ([13]) A state i in a Markov chain is called
closed, if Plryyq = ilzy = 1) = 1. We say a state i is
accessible from a state j, if there exists some T = 0, such
that P{I;_F]" = !-II:, = j} =0

Algorithm 1 Hebbian Learning Algorithm for the neural
circuit model

Initializarion: Initialze W; =0,i=1,...,m.

repeat
Sample a state s. Set ag = (1,0,...,0).
for t=1,2do

Find the spiking neuron at time ¢ using (1) and (2).
Set .ﬂw;‘ 1L.LTP: ﬂw-gl LLTD according to (4) and
(5).
end for
Select response X or Y according the spiking neuron
att = 2.
if the response is correct then
Perform an LTP update for the weight matrices

W;‘ 1 Wh 1 +ﬂ‘ﬂw-|_: 1,LTP, t= 1,2.

else
Perform an LTD update for the weight matrices

Wi_: 1 <—W;‘ 1 +ﬂ.ﬂwi‘ 1LLTD t= 1,2.

end if
Project all elements of W to [0,1], Vi=1,...,m.
until some convergence criterion on W, is satisfied.

The following lemma follows from standard Markov chain
theory. We omit the proof.

Lemma 3 Consider a Markov chain with a finite state space
X. Let X. be the set that contains all its closed states
Suppose that for all stares i © X, there exists some j(i) € X
such that j(i) is accessible from i. Then, for every initial
distribution of the Markov chain, a stationary distribution
exists and is such that all elements corresponding to non-
closed states are zero.

Let us now denote by W = {W,..., Wn,} the collec-
tion of weight matrices for the neural circuit and by W the
set of all possible weight matrices generated by Algorithm 1.
We consider a Markov chain with states W and state space
W. The state space is finite since, as a result of the updates in
Algorithm 1, each element of a weight mairix takes values in
{0, 2a, ..., |2]a 1, 1-a, ...1—| 1 |a}. The zero state
is defined as the collection of zero weight matrices and notice
that it corresponds to the initial condition of Algorithm 1.
The Markov chain we have defined is homogeneous due to
Assumption 1.

Consider now Algorithm 1 and the updates it performs
when the input is some 5 = (8;,8:). We will denote a
decision path by the 5-tuple (ig, j1,i1, j2, i2), whem ig = 1,
iy and ip are the activated neurons at times 0, 1, and 2,
respectively, and j; = argmaxg 8k, jo = arg maxgSa g
are the indices of the non-zero entries in the stimulus s, and
the context ss, respectively. For example, for the stimulus-
context pair C2, j; = 3 and j» = 6. Notice that an LTP
update under a decision path (ig, j1,11,j3,12) implies an
increase of Wi (i1, 71) and Wy, (ia, j2). Similarly, an LTD

update under the same decision path implies a decrease of all
the elements in the j;th column of W, and all the elements
in the joth column of W, . We will call the first four columns
of each W, the stimulus columns and the last four columns
the context columns. From the above discussion, it is seen
that the stimulus columns of W,, ¢ = 2,3,... are not
updated by Algorithm 1, since ¢ is always 1. Hence, given
the initialization, these columns maintain all elements equal
to zero.

Definition 4 We call a state W sub-optimal, if for all inputs
and all possible values of the noise, the forward propagation
(1) under W yields the correct response. We say a state W is
optimal, if it is sub-optimal and invariant under all possible
LTP updates.

Lemma 5 For any sub-optimal state W, there is an optimal
state W* that is accessible from W.

Proof: ~An LTP update only reinforces the matrix
elements in a decision path. Since a sub-optimal state only
produces the correct response for all inputs, it can be seen
that the state after an LTP update remains sub-optimal.
Further, the LTP update is monotonic with respect to the
elements of all weight matrices. Hence, if we keep sampling
uniformly all possible inputs at a sub-optimal state, the LTP
updates will lead to saturation (a value equal to 1) all nonzero
elements of the weight matrices, which will result in an
invariant, hence, optimal state. |

Next, we argue that an optimal state exists for all the
circuits with m > 2. For m = 2 we have provided an
optimal state in Equation (3) and we can easily extend
that construction for m > 2. It is possible that there exist
multiple optimal states. In any case, however, an optimal
state is accessible from the zero state, since we can always
provide the appropriate inputs to reinforce the desired matrix
elements.

We note that, based on the initialization assumptions in
Algorithm 1, hidden neuron 1 always spikes at time ¢ = 0.
This implies that the stimulus columns of W, determine
which neuron will spike after the stimulus is presented.

Corollary 6 If all elements in the ith column of W1 are
smaller than 1, for © < 4, then all hidden neurons could
spike after the ith stimulus is presented. Similarly, if all the
elements in the ith column of W1 are all equal to 1, for
i < 4, then all hidden neurons could spike after the ith
stimulus is presented.

This is a simple observation due to (1) and the noise term
wy; we omit the proof.

Lemma 7 The zero state is accessible from state W if for
all i =1,...,m, all elements in the stimulus columns of the
matrix W71 are either all smaller 1 or all equal to 1.

Proof: First, by Corollary 6, all hidden neurons have the
possibility to spike after any stimulus is presented. Moreover,

given a stimulus, all responses are possible depending on the
context. It follows that it is possible to find an adversarial
input that leads to an incorrect response.

As a result, given a weight matrix W; with elements
in the stimulus columns smaller than 1 or all equal to
1, it is possible to find a sequence of adversarial inputs
that eventually drive to zero every nonzero element in the
stimulus columns of W;. Extending this argument, it is
possible to drive to zero all remaining nonzero elements in
the weight matrices included in W. Specifically, for a context
72 and hidden neuron 1, it is possible to find a stimulus
with index j; and associated decision path (1,31,1, ja,i2)
that leads to an incorrect response. We can first drive to
zero the context columns of W; using LTD. Then, for a
stimulus jp, since the last four column of W; are all zeros,
we can pick an incorrect response i, in the decision path of
the form (1, j1,1,5,42). This will drive to zero the stimulus
columns of W ;. Finally, to drive to zero any jath column
in matrix W, where jo > 4 and ¢ > 1, we can pick a
stimulus j; that leads to an incorrect decision path of the
form (1,j1,i,j2,i2). |

Lemma 8 Suppose W is invariant under LTD given all
possible examples. If there is a zero column in the stimulus
columns of W1, then W is the zero state.

Proof: Suppose a non-zero W is invariant under LTD
given all possible inputs, and, without loss of generality, the
first column of Wj is zero. This implies that all hidden

neurons, ¢ = 1,...,m, can spike after stimulus A is
presented. Also, recall that the stimulus columns of Wj,
for ¢+ = 2,3,..., are zero since they are not updated by

Algorithm 1. Therefore, the fact that W is not zero implies
the following two possibilities.

1) The context columns of W are all zero for all ¢. This
indicates there is some non-zero element in the context
columns of W . This is impossible since there is some
decision path resulting in an LTD update which will
decrease this non-zero element.

2) There is some non-zero element in the context columns
of W,;. Given the invariance under LTD, the neural
circuit will produce the correct response for every
input. In this case, since all hidden neurons, ¢ =
1,...,m, may spike after stimulus A is presented,
W, should map context 1 to response X for all i,
according the rule in Figure 1. This also implies that
each of the context columns of W leads to a unique
response. Consider now the input C'1. No matter which
hidden neuron, say neuron k, is spiking at time ¢t = 1,
the neural circuit will produce response X, which
is not correct. Hence, according to Algorithm 1, an
LTD update will be performed and matrix W, will be
changed. This contradicts the invariance of W.

Corollary 9 Suppose a non-zero W is invariant under LTD
given all possible inputs. It is impossible to have a column

in the stimulus columns of W1 whose elements are either
all smaller than 1 or all equal to 1.

By using Lemma 6, the proof is similar to the proof of
Lemma 10 and is therefore omitted.

Lemma 10 Suppose W is invariant under LTD given all
possible examples. If W is not sub-optimal, then W is the
zero state.

Proof: By Lemma 8, if W is not sub-optimal or the
zero state, then all stimulus columns of W have all their
elements being non-zero. Since W is not sub-optimal, then
there exists some decision path, say (1,1, 71,42, j2), which
produces an incorrect response. According to Algorithm 1,
an incorrect response will lead to an LTD update. Since
W is invariant under LTD, according to Corollary 9 the
first column of W should not lead to an uncertain choice
of the hidden neuron to be activated. This implies that
Wi1(1,71) > 0, which is not invariant under an LTD update.
This contradicts the assumption that W is invariant under
LTD.]

Lemma 11 For every W € W, there exists an optimal
solution W* such that W* is accessible from W.

Proof: If W is sub-optimal, the result holds by
Lemma 5. Now consider a W which is not sub-optimal. This
implies that the neural circuit model can produce an incorrect
response. Then, an LTD update is performed according to
Algorithm 1. After such an LTD update, some elements of
the matrices in W are decreased. Consider the set Ufyy, which
contains all states invariant under LTD we can reach by
starting from W and providing as many adversarial inputs as
necessary (with all resulting in LTD updates). According to
Lemma 10, states in Uy can only be sub-optimal or the zero
state. If the zero state is in Uy, then it is accessible from
W. Therefore, any optimal state W* is accessible from W
since optimal states are accessible from the zero state. If Uw
contains only sub-optimal states, the result is also true since
there exist some optimal state accessible from a sub-optimal
state. |

Finally, we state our main convergence result for Algo-
rithm 1.

Theorem 12 The neural circuit model converges to an op-
timal state under Algorithm 1 and Assumption 1.

Proof: Consider the Markov chain on W induced by
Algorithm 1. Optimal states are closed. By Lemma 11, for
any state W, there exists some optimal state W* such that
W* is accessible from W. By Lemma 3, and given the zero
initial state, Algorithm 1 converges to some optimal state. W

Remark 13 The convergence result can be easily extended
to the case where the environment noise w; has elements
taking values in [0, Unoise], where Upoise < 1. Further,
the result can be extended to the case where the initial

state does not consist of all-zero weight matrices. In such
a case, optimal states may contain some weight matrices
with elements in (0,1).

IV. SIMULATION

In this section, we validate the convergence of Algorithm 1
and demonstrate the generalization ability of the neural
circuit model.

In our first experiment, we let the number of hidden
neurons to be m = 2 and set the stepsize to o = 0.1. We
run the learning algorithm for many iterations and after each
iteration we evaluate the accuracy of the neural circuit model
over all inputs. Fig. 2 plots the accuracy, measured by the
fraction of correct responses to all possible inputs, while we
vary the number of iterations. We observe convergence to an
optimal state. Note that 100% accuracy does not necessarily
imply we have reached an optimal state. However, based on
our results, we are guaranteed we will reach an optimal state.

0 50 100 150 200 250 300
number of iterations

Fig. 2: Accuracy of the neural circuit model trained by
Algorithm 1.

Next, we evaluate the performance of the learning algo-
rithm with respect to the two hyperparameters: the stepsize
« and the strength of the noise U,,ise defined in Remark 13.
We set the number of hidden neurons to m = 2. To evaluate
the performance with respect to the stepsize «, we use noise
terms uniformly distributed in [0, 1). For each value of a,
we run the learning algorithm 100 times and compute the
average number of iterations required to reach an optimal
state. The results are shown in Fig. 3a. It can be seen that
there exists a stepsize value (close to 0.7) which minimizes
the average number of iterations. Having a too small, or too
large stepsize, can lead to slower convergence either due to
small stepsize, or due to oscillations.

To evaluate the performance with respect to the noise
strength Ulpise, We fix the number of hidden neurons to
m = 2 and the stepsize to o = 0.1. For each value of U, ise,
we run the learning algorithm 100 times and compute the
average number of iterations required to reach an optimal
state. Shown in the Fig. 3b is a plot of the average number
of iterations as a function of Uise. Not surprisingly, the
number of iterations increases as the noise strength increases.

Finally, we evaluate the generalization ability of the neural
circuit model. In this test, we hide four stimulus-context pairs

average converge time
I o @ 3]
g 8 8 8 B8

N
2

01 02 03 0.4 08 0.6 07 0.8 09
step size

(a) Average number of iterations with respect to the stepsize a.

600

g

average converge time
o F
3 3

200

01 02 03 0.4 0.5 0.6 07 0.8 09
hoise level

(b) Average number of iterations with respect to the noise strength
Unoise'

Fig. 3: Average number of iterations required to converge to
an optimal state with respect to the stepsize « and the noise
strength Upoise-

during the training (Al, C2, D3, and B4, shown in red in
Fig. 1). Notice that we hide one input from each context,
and as a result, the neural circuit has to be able to learn the
context-dependent rule and generalize beyond what it has
seen during training. We evaluate the generalization ability
of the neural circuit model with respect to the number of the
hidden neurons m. We fix the stepsize to o = 0.3 and the
noise strength to Upgise = 0.7 during the training. Also, we
set the maximum number of iterations to 10,000. For each
value of m, we again run the learning algorithm 100 times
and compute the average accuracy under all the stimulus-
context pairs, including the hidden ones. The result is shown
in Fig. 4. We observe that when the number of the hidden
neurons is large, the neural circuit model is more complex
and hence does not generalize as effectively across additional
stimuli, resulting in generalization errors for the simple task
of Fig. 1. Naturally, however, if one increases the complexity
of the task (e.g., by increasing the number of stimuli and
contexts) more than 2 hidden neurons will be needed to learn
effectively.

V. CONCLUSION

In this paper, we proposed a biologically plausible learning
algorithm to train a neural circuit model to perform a context
association task. The algorithm uses the principle of Hebbian
learning which is believed to be consistent with the way
the human brain learns. In contrast, gradient-based methods

aceuracy
°
o
2

2 3 7 8 9 10

5 6
number of hidden neurons

Fig. 4: Accuracy of the neural circuit with respect to the
number of the hidden neurons in the generalization test.

for reinforcement learning have less support from biological
data. We established the convergence of the algorithm using
Markov chain techniques. Using numerical simulation, we
validated the performance of the learning algorithm and
demonstrated the generalization ability of the neural circuit
model.

REFERENCES

[1] J. A. Fodor and Z. W. Pylyshyn, “Connectionism and cognitive
architecture: A critical analysis,” Cognition, vol. 28, no. 1-2, pp. 3-71,
1988.

[2] E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal
cortex function,” Annual review of neuroscience, vol. 24, no. 1, pp.
167-202, 2001.

[3] J. D. Wallis, K. C. Anderson, and E. K. Miller, “Single neurons in
prefrontal cortex encode abstract rules,” Nature, vol. 411, no. 6840, p.
953, 2001.

[4] T. Kriete, D. C. Noelle, J. D. Cohen, and R. C. O’Reilly, “Indirection
and symbol-like processing in the prefrontal cortex and basal ganglia,”
Proceedings of the National Academy of Sciences, p. 201303547, 2013.

[5] M. E. Hasselmo and C. E. Stern, “A network model of behavioural
performance in a rule learning task,” Phil. Trans. R. Soc. B, vol. 373,
no. 1744, p. 20170275, 2018.

[6] P. Poirazi, T. Brannon, and B. W. Mel, “Arithmetic of subthreshold
synaptic summation in a model CA1 pyramidal cell,” Neuron, vol. 37,
no. 6, pp. 977-987, 2003.

[7]1 Y. Katz, W. L. Kath, N. Spruston, and M. E. Hasselmo, “Coincidence
detection of place and temporal context in a network model of spiking
hippocampal neurons,” PLoS Comput Biol, vol. 3, no. 12, p. 234,
2007.

[8] V. Cutsuridis and M. Hasselmo, “Gabaergic contributions to gating,
timing, and phase precession of hippocampal neuronal activity during
theta oscillations,” Hippocampus, vol. 22, no. 7, pp. 1597-1621, 2012.

[9] F. Raudies, E. A. Zilli, and M. E. Hasselmo, “Deep belief networks
learn context dependent behavior,” PLoS ONE, vol. 9, no. 3, 2014.

[10] H. Zhu, M. Hasselmo, and I. C. Paschalidis, “Feature extraction in
Q-Learning using neural networks,” in Proceedings of the 56th IEEE
Conference on Decision and Control, Melbourne, Australia, December
12-16 2017, pp. 3330-3335.

[11] H. Zhu, 1. C. Paschalidis, and M. E. Hasselmo, “Neural circuits for
learning context-dependent associations of stimuli,” Neural Networks,
vol. 107, pp. 48-60, November 2018.

[12] P. Dayan and L. F. Abbott, Theoretical neuroscience.
MA: MIT Press, 2001, vol. 10.

[13] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation,
and queues. Springer Science & Business Media, 2013, vol. 31.

Cambridge,

	Introduction
	Notation and Problem Setup
	Learning task
	Neural circuit model
	Learning Algorithm

	Main Results
	Simulation
	Conclusion
	References

