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Abstract 

Time-dependent system reliability is computed as the probability that the responses of a 

system do not exceed prescribed failure thresholds over a time duration of interest. In this 

work, an efficient time-dependent reliability analysis method is proposed for systems 

with bivariate responses which are general functions of random variables and stochastic 

processes. Analytical expressions are derived first for the single and joint upcrossing 

rates based on the First Order Reliability Method (FORM). Time-dependent system 

failure probability is then estimated with the computed single and joint upcrossing rates. 

The method can efficiently and accurately estimate different types of upcrossing rates for 

the systems with bivariate responses when FORM is applicable. In addition, the 

developed method is applicable to general problems with random variables, stationary, 

and non-stationary stochastic processes. As the general system reliability can be 

approximated with the results from reliability analyses for individual responses and 

bivariate responses, the proposed method can be extended to reliability analysis of 

general systems with more than two responses. Three examples, including a parallel 

system, a series system, and a hydrokinetic turbine blade application, are used to 

demonstrate the effectiveness of the proposed method. 

Keywords: Time-dependent reliability, system reliability, upcrossing rate, stochastic 

process 
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1. Introduction  

Reliability is the ability that a component or system performs its intended function in 

routine circumstances for a given period of time [1]. For a system, we are interested in 

not only the reliability of its components, but also the system reliability. For many 

applications, the system reliability is more critical because it can be used to estimate the 

lifecycle cost, determine maintenance policies, and perform optimization [2-4]. The 

system reliability is determined by the reliability of its components and also the 

relationship between the system and its components. By component, in this work, we 

mean a failure mode. A physical component itself can also be regarded as a system 

because it may have multiple failure modes.  

System reliability analysis is much more difficult than component reliability analysis. 

The latter needs to compute the probability of a single event while the former needs to 

compute the joint probability of multiple and possibly dependent events. Many 

progresses have been made in system reliability analysis. For example, Ditlevsen [5] 

approximated the system reliability using a bounding formulas. Song and Kang [6] 

developed a matrix-based system reliability (MSR) method, which can calculate the 

system reliability and system parameter sensitivities by a convenient matrix-based 

framework. Nguyen [7] later developed a reliability-based system design optimization 

method by using the MSR method. Mahadevan [8] and Ambartzumian [9] proposed a 

system reliability method using a standard normal multivariate cumulative distribution 

function (CDF); by employing the Morgan’s laws [10], the method expresses the system 

probability of failure as the intersection of a set of unions of subsystems. Youn and Wang 
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[11] suggested a complementary intersection method (CIM) for system reliability 

analysis by expressing the system failure event as complementary intersection events. 

Based on the CIM method, a generalized CIM method is developed later in Ref. [12]. 

More system reliability analysis methods have also been reported in [13] and [1]. 

To predict the system reliability, we need at first to calculate component reliability. 

This can be achieved by using the common reliability methods, such as the First Order 

Reliability Method (FORM), Second Order Reliability Method (SORM), and Importance 

Sampling (IS) [1, 14-19]. The next step is to calculate joint probabilities associated with 

the failure events of all the components. If there are only two failure modes, the system 

reliability can be computed using a bivariate distribution. One example was reported in 

[9]. When there are many components involved, it is difficult and computationally 

expensive to obtain the joint probabilities.  For this case, the system reliability can be 

approximated within its lower and upper bounds by just using the component reliabilities 

and joint probabilities for up to two failure modes (bivariate responses) [5]; the reliability 

bound is normally narrow for many engineering problems. 

Although reliability is defined for a period of time and is also a function of time, most 

of the aforementioned reliability methods are for time-invariant reliability that does not 

change over time. For time-invariant reliability, the associated function of a response 

variable, called a limit-state function, is not a function of time. The reliability is therefore 

time independent. In many engineering applications, however, the limit-state function 

changes over time, either because time appears explicitly in the function or because 

stochastic processes are part of the input variables, or both. Examples include function 
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generator mechanisms [20, 21], bridges under stochastic loading [22, 23], hydrokinetic 

turbine system subjected to wave or river flow loading [24, 25], and vehicles running on 

stochastic road surfaces [4].  

Time-dependent reliability analysis is much more challenging than its time-

independent counterpart. The most common time-dependent reliability method is the 

Rice formula [26, 27] developed in 1944 and is still widely used nowadays. There are 

still many developments in time-dependent reliability in recent years. For instance, for 

component reliability problems, Yang [28, 29] developed a time-dependent reliability 

analysis method using the Markov stochastic process. Mourelatos [30] employed the 

time-series modeling and importance sampling method to approximate the time-

dependent reliability. Andrieu et al. [31] proposed a PHI2 method for the time-dependent 

component reliability analysis of general problems with both random variables and 

stochastic processes. By using the Rice’s formula [26, 27], Du and Hu [24] developed a 

time-dependent reliability model for hydrokinetic turbine blades. Singh et al. [4] 

proposed the concept of composite limit-state function for time-dependent reliability 

analysis for a special group of problems. Du and Hu [32] presented a joint upcrossing 

method based on the work of Madsen [33]. Wang and Wang [34, 35] developed a nested 

extreme value response surface method by building a surrogate model for the extreme 

value response. They also proposed a double-loop surrogate modeling approach for time-

dependent component reliability analysis in Ref. [36]. Jiang et al. [37, 38] studied the 

time-dependent reliability analysis of general engineering systems based on stochastic 

process discretization.  
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Studies on time-dependent system reliability have also been reported. For example, a 

method was developed to estimate the joint first-passage probability of failure for 

systems under stochastic excitation [39]. An analytical approach was proposed for  linear 

dynamical systems in higher dimensions by calculating the conditional upcrossing rate on 

the surfaces of failure boundaries [40]. An approximation method was reported to 

approximate the conditional first passage probability of systems under modulated white 

noise excitation [41]. By combining Monte Carlo simulations (MCS) with the asymptotic 

extreme value theory, Radhika [42] proposed a reliability analysis method for nonlinear 

vibrating systems. Gupta and Manohar [43] proposed a multivariate extreme value 

distribution approach to approximate the extreme value distributions of a vector of 

stationary Gaussian random processes. The developed multivariate extreme value 

distribution method was then applied to reliability analysis of randomly vibrating 

structures subjected to jointly stationary Gaussian excitations [44, 45]. Some of the above 

methods have been verified to have good accuracy for systems subjected to multiple 

Gaussian stationary stochastic processes. They, however, cannot be directly applied to 

general problems where the input variables of a limit-state function contain time, random 

variables, and non-stationary stochastic processes. Hagen and Tvedt [46] have 

investigated the reliability analysis of parallel system under vector of stochastic processes. 

Their method, however, needs to solve multi-variate normal distribution and new random 

variables are introduced into the model to compute the outcrossing rate. Although MCS is 

capable of handling the general problems, the required computational cost is prohibitive 

for engineering applications. 
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In this work, we propose a new time-dependent system reliability analysis method for 

bivariate responses that are nonlinear functions of time, random variables, and stochastic 

processes. The stochastic process can be stationary or non-stationary. The new method is 

an extension of the work in [39] and is based on the FORM and the Rice’s formula [26, 

27]. The major development is the derivations of bivariate joint upcrossing rates, which 

can be used for estimating time-dependent system reliability for bivariate responses. 

Since the bivariate joint probabilities are the basis for general system reliability analysis 

when the reliability bound method is used, the proposed method can also be applied to 

general time-dependent system reliability analysis for general systems with more than 

two components. 

In Section 2, we give the background of time-dependent reliability. In Section 3, we 

first introduce the upcrossing rate method; we then derive necessary equations for the 

bivariate joint upcrossing rates. The numerical procedure is summarized in Section 4, 

followed by three examples in Section 5. Conclusions are presented in Section 6. 

 

2. Time-Dependent System Reliability 

Recall that in this work a component corresponds to a failure mode. Suppose there are 

r failure modes or r components. For component i, where 1,2, ,i r , let its limit-state 

function be ( ) ( ), )( ,i iG t g t tX Y , where 1 2[ , , , ]nX X XX  is a vector of random 

variables, 1 2) [ ( ), ( ),( , ( )]mY t t Y tt YY  is a vector of stochastic processes, ( )iG t  is the 

response variable, and t stands for time. Functions ( ) ( ), )( ,i iG t g t tX Y , 1, 2, ,i r , 

are usually computer simulation models, such as those of finite element analysis (FEA) or 
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computational fluid dynamics (CFD).  They are nonlinear functions of random variables 

X  and stochastic processes )(tY . As a result, the response variables ( )iG t , 1, 2, ,i r , 

are stochastic processes with variation and correlations over time. For a special case 

where ( ) )( ,i iG t g tX , although no stochastic processes )(tY  appear in the input, the 

response variable ( )iG t  is still a stochastic process due to the time-varying statistical 

properties and correlations over time. In addition, even if X  and )(tY  are mutually 

independent from each other, the stochastic responses ( )iG t , 1, 2, ,i r , are still 

correlated multivariate stochastic processes due to the sharing random variables or 

stochastic processes in the limit-state functions. 

The time-dependent reliability 0( , )i sR t t  of component i over the time interval 0[ , ]st t  

is defined by  

  0 0( , ) Pr ( , ( , [ , ]), )i s i i sR t t g t e t t tt  X Y  ( 1) 

in which ie  is the failure threshold, and Pr{ }  stands for a probability. Note that ie  is 

usually defined as 0ie   in most of reliability analysis problems. 

The corresponding time-dependent probability of failure , 0( , )i sfp t t is 

  0 0, ( , ) Pr ( , ( ), ) , [ , ]s i if i sp t t g t e t t tt  X Y  ( 2) 

Let s  be the safe region for a system. For a series system, 

  01
[ , ( ( ,)] ),( , , ]) [

r

s i i si
tt g t e t t t


    X Y X Y  ( 3) 

in which   stands for an intersection.  
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For a parallel system, 

  01
[( , ( ( ,)] )( [ ]) , ,,

r

s i i si
tt g t e t t t


   X Y X Y  ( 4) 

in which   stands for a union.  

With above definitions, we then have the time-dependent system reliability 0( , )s sR t t  

and probability of failure , 0( , )f s sp t t as follows: 

 0 0( , ) Pr{[ , ( , [ , ])] }s s s sR t t t t t t   X Y  ( 5) 

and 

 , 0 0( , ) Pr{[ , ( ,) , ]}] [f s s s sp t t t t t t   X Y  ( 6) 

The system reliability requires not only the component reliability but also joint 

probabilities up to an order of r. Evaluating a joint probability with a high order is 

extremely difficult. To make the system reliability easier, Ditlevsen [5] proposed abound 

formulas for a series system as follows: 

 min max
, 0 , 0 , 0( , ) ( , ) ( , )f s s f s s f s sp t t p t t p t t   ( 7) 

where 

 
1

min
, 0 ,1 0 , 0 , 0

2 1
( , ) ( , ) max{ ( , ) ( , ), 0}

r i

f s s f s f i s f ij s
i j

p t t p t t p t t p t t


 

     ( 8) 

 max
, 0 , 0 , 0

1 2
( , ) ( , ) max ( , )

r r

f s s f i s f ij sj ii i
p t t p t t p t t


 

    ( 9) 

In the above equations, , 0( , )f i sp t t  is the component probability of failure. 

Components probabilities of failure are sorted in a decreasing order, and ,1 0( , )f sp t t   is 



10 
 

therefore the maximum component probability of failure [1]. , 0( , )f ij sp t t is the joint 

probability of failure of components i and j. It is the probability that both components fail 

over 0[ , ]st t . The above reliability bounds (i.e. Eqs. (7) to (9)) are for series systems. For 

parallel systems, the failure probability can be expressed as a function of series system 

reliability using De Morgan’s law [10]. For mixed system with combined series and 

parallel structures, the generalized CIM method presented in Ref. [12] can be employed 

to decompose the system failure event into multiple mutually exclusive failure paths. 

Based on the decomposition, the reliability bounds for series systems can be used to 

provide bounds for the system reliability. 

Eq. (9) indicates that the component probability of failure , 0( , )f i sp t t and bivariate 

probability of failure , 0( , )f ij sp t t are the bases for the system probability of failure. As 

reviewed previously, many time-dependent reliability methods are available for 

, 0( , )f i sp t t . In this work, we focus on developing a new method for the bivariate 

probability of failure , 0( , )f ij sp t t . A straightforward way of evaluating , 0( , )f ij sp t t  is to 

directly generate samples of X  and )(tY  using Monte Carlo simulation method. After 

that, the samples of X  and )(tY  are plugged into the limit-state functions to get samples 

of responses and then obtain the system failure probability. Estimating the failure 

probability in this way is straightforward and accurate. However, as discussed previously, 

the limit-state functions may be expensive simulation models, such as FEA and CFD 

models. The required computational effort for this kind of straightforward simulation 

method is prohibitive. We discuss how to overcome this challenge in the following 
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sections. The idea is to reduce the number of times of calling the limit-state function 

while maintaining the accuracy of reliability analysis. 

 

3. Time-Dependent System Reliability for Bivariate Responses  

For limit-state functions ( ) ( ), )( ,i iG t g t tX Y and ( ) ( ), )( ,j jG t g t tX Y , the joint 

time-dependent probability of failure is given by  

 , 0 0( , ) Pr{ ( ) ) ) ) ,  and, ( , ( , ( , , [ ]}f ij s i ji j sp t t g g t te e         X Y X Y  ( 10) 

Eq. (10) can be further transformed into [39] 

 
, 0 0

0

( , ) Pr{ ( , ( , [0, ]} Pr{ ( , ( , [) ) , ) ) ,
) ) ) ) , an

, ]}
Pr{ ( , ( , ( ( [d, , , ]}
f ij s i s j s

i j s

i j

i j

p t t g t g t t
g g

e e
e te t

    

    

      

    

X Y X Y
X Y X Y

( 11) 

According to Eq. (2), the first two terms on the right-hand side of Eq. (11) are 

component reliabilities, and Eq. (11) can be rewritten as 

 , 0 , 0 , 0 , 0( , ) ( , ) ( , ) ( , )f ij s f i s f j s f i j sp t t p t t p t t p t t    ( 12) 

where 

 , 0 0( , ) Pr{ ( , ( ) ) ) ) , an, ( , ( , [ , ]}df i j s i ji sjp t t g g t te e         X Y X Y  ( 13) 

which is the time-dependent probability of failure for a series system with components i 

and j. In the following sections, we first discuss the method for the time-dependent 

component reliability. We then derive equations for time-dependent joint probability, 

, 0( , )f i j sp t t
. 
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3.1.  Time-dependent component reliability analysis 

In this work, we employ the upcrossing rate method [31] to evaluate the time-

dependent component probability of failure. It is the most commonly used method for 

time-dependent reliability analysis. 

3.1.1. Upcrossing rate method for time-dependent component reliability analysis 

For a general limit-state function ( ) ( , ( ), ),k k tG t k i org t jX Y   with threshold ke , 

the time-dependent probability of failure , 0( , )f k sp t t is given by the upcrossing rate 

method as follows: 

  
0

, 0 0, ( )]( , ) 1 [1 exp ( )st

f k s kf k t
p t t p t v t dt     ( 14) 

in which 0, ( )f kp t  is the instantaneous probability of failure at 0t  and is given by 

 0 0, 0Pr{ ( , ( , }( ) ) )kf k kp t g t etX Y   ( 15) 

( )kv t

 is the upcrossring rate of component k at time instant t. Fig. 1 shows upcrossing 

events of component k. An upcrossing event happens when the response variable Gk 

passes the threshold ek at time instant t from the safe region ( )k kG t e to the failure 

region ( )k kG t t e   , where t  is an infinitesimally small time interval. The upcrossing 

rate ( )kv t is defined by the following limit: 

 
0

),Pr{[ ( , ( ] [ ( , ( ]}( ) lim ) ), )k k k k
k t

g t e g t t t ev t t t
t

X Y X Y

 

   



 ( 16) 
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Eq. (14) is derived based on the assumption that all the upcrossings over 0[ , ]st t   are 

independent. Knowing ( )kv t , we can easily obtain the component probability of failure 

, 0( , )f k sp t t  using Eq. (14).  

------------------------------- 
Place Figure 1 here  
------------------------------- 

In addition to using the upcrossing rate method, we also use FORM, which linearizes 

the limit-state function of components i and j at the so-called most probable point (MPP). 

Next, we first discuss the linearization and then discuss the estimation of upcrossing rate 

( )kv t . The linearization later is also used in the derivation of , 0( , )f i j sp t t
.  

3.1.2. Transformation of limit-state functions 

To use FORM for a general limit-state function of component k, 

( ) ( , ( ,) ),k kG t g it t k or jX Y  , we first transform random variables X and stochastic 

processes )(tY  into standard normal random variables ( ) ( ), ( )t t X YU U U . Then the 

limit-state function becomes 

 ) ) ) ) )( ) ( , ( , ( ( ), ( ( ), , ,( ( )k k k kG t g t t g T T t t g t k i r jt oX YX Y U U U    ( 17) 

where ( )T   stands for the transforming operator. The transformation can be found in [47]. 

Then the MPP * * *( ) ( , ( ,))k k it jt orX Yu u u   is found with the following optimization 

model: 

 
min ( )

subject to ( ( ), ) ,k k k i or j

t

g t t e
u

u

u 






 ( 18) 
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in which   stands for the length of a vector.  

After the limit-state function is linearized at the MPP, the failure event 

( ) ( , ( ), ) ,k k kG t g t t e k i or jX Y    is equivalent to the following event [47] 

 ( ) ( ) ( ) ( ,)T
k k k k i orL t t t jtU     ( 19) 

in which 

 *( ) ( ) ,k kt ot k i r ju    ( 20) 

 
*

*

( )) ,(
( )

k
k

k

k i or jtt
t

 
u
u

 ( 21) 

),(k kt i or j   is called the Hasofer-Lind reliability index.  

Therefore, the failure events given in Eq. (12) become 

 , 0 0,( , ) Pr{ ( ) ( ) ( ) ( ) [ , ]}T
f i s i i i sp t t L t t        U  ( 22) 

 , 0 0,( , ) Pr{ ( ) ( ) ( ) ( ) [ , ]}T
f j s j j j sp t t L t t         U  ( 23) 

and 

 , 0 0 0( , ) Pr ( ) ( ) ,( ) [ , ] ( ) ( ) ( ) [, , ]T T
f i j s i i s j j sp t t t t t t                U U ( 24) 

The equations for the time-dependent component probabilities of failure, 

, 0( , ),f k sp t t k i or j , are already available. We reviewed these equations in Appendix A. 

In the next section, we investigate the method for the approximation of the bivariate 

probability , 0( , )f i j sp t t
. Note that since the FORM method is employed to linearize the 

limit-state function at the MPP, the accuracy of the failure probability estimate may be 
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affected by the accuracy of FORM. The developed method in the following sections is 

therefore applicable to problems where FORM is accurate. 

 

3.2.  Time-dependent joint probability , 0( , )f i j sp t t
 

3.2.1. Outcrossing rate method for time-dependent joint probability analysis  

We now derive equations for the bivariate joint probability , 0( , )f i j sp t t
. Following 

the same strategy of upcrossing rate in Eq. (14), we have , 0( , )f i j sp t t
 as follows: 

  
0

, 0 0( , ) 1 exp( () )st

f i j s ij i jt
p t t R t v t dt

     ( 25) 

in which 0( )ijR t is the probability that both components are safe at the initial time and is 

given by 

 0 0 0 0 0Pr{ ( , ( ,( ) ) ( ,) ) )( , }ij i ji jeR t g t t g t t e   X Y X Y  ( 26) 

( )i jv t

  is the outcrossing rate of a series system with components i and j at time instant t. 

An outcrossing event occurs when the system outcrosses its bounds at time instant t from 

the safe region to the failure region. Fig. 2 shows three representative outcrossing events 

of the series system. For the outcrossing events, both components i and j are in the safe 

region at time instants tm, m=1, 2, and 3. The system then outcrosses into the failure 

region as a result of the upcrossing of Gi, or upcorring of Gj, or both the upcrossings of Gi 

and Gj at the following time instants, tm+△t, m=1,3, and 2.  Given in mathematical form, 

the outcrossing rate ( )i jv t

  is given by the following limit: 
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 

0

Pr ( ) ( ) ( ) ( )
( ) lim

i i j j i i j j
i j t

G t e G t e G t t e G t t e
v t

t



 

           





 ( 27) 

where t  is an infinitesimally small time interval. 

The probability in Eq. (27) can be decomposed into three components. 

 
 Pr ( ) ( ) ( ) ( )

( ) ( ) ( )

i i j j i i j j

ij ij ij

G t e G t e G t t e G t t e

p t t tp p  

 



         



 


 ( 28) 

where 

  ( ) Pr ( ) ( ) ( ) ( )ij i i j j i i j jp t G t e G t e G t t e G t t e                  ( 29) 

  ( ) Pr ( ) ( ) ( ) ( )ij i i j j i i j jp t G t e G t e G t t e G t t e                  ( 30) 

  ( ) Pr ( ) ( ) ( ) ( )ij i i j j i i j jp t G t e G t e G t t e G t t e                  ( 31) 

------------------------------- 
Place Figure 2 here  
------------------------------- 

( )ijp t is the probability that ( )iG t  upcrosses its barrier ie  while ( )jG t  remains below 

its barrier je  at t , ( )ijp t is the probability that ( )jG t  upcrosses its barrier je while ( )iG t  

remains below its barrier ie  at t , and ( )ijp t is the probability that both ( )iG t  and ( )jG t  

upcross their barriers at t .  

We then have three corresponding joint upcrossing rates defined by 

 
0

( )
( ) lim ij

ij t

p t
v t

t





 



 ( 32) 
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0

( )
( ) lim ij

ij t

p t
v t

t





 



 ( 33) 

 
0

( )
( ) lim ij

ij t

p t
v t

t





 



 ( 34) 

Then 

 ( ) ( ) ( ) ( )i j ij ij ijv t v t v t v t   

     ( 35) 

Equations for ( )ijv t are available for special limit-state functions with two stationary 

Gaussian vector processes [39]. In the subsequent subsections, we derive equations for 

( )ijv t and other two joint upcrossing rates for general limit-state functions. The 

derivations are based on the approximation discussed in Sec. 3.1.2. 

3.2.2. ( )ijv t  

Substituting Eqs. (22) and (23) into Eq. (29) yields 

  ( ) Pr ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij i i j j i i j jp t L t t L t t L t t t t L t t t t                      ( 36) 

It is the probability that ( )iL t  upcrosses its barrier ( )i t  while ( )jL t  remains below 

its barrier ( )j t  at t . With the Rice’s formula [26, 27], 
0

( ) lim ( )ij ijt
v t p t t 

 
   can be 

calculated by the following integral: 

 
( )

( )
( ) [ ( )] ( ( ), , )j

i j ii

t

ij i i i j i i jL L Lt
v t l t f t l l dl dl




 





    ( 37) 

where ( , , )
i j iL L Lf     is the joint PDF of ( )iL t , ( )jL t , and ( )iL t .  
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As there is no close form available for ( )ijv t , we perform some transformations for 

Eq. (37) before we derive necessary equations for it. The transformation is given in 

Appendix B.  

Applying Eq. (A4), Eq. (B3) is rewritten as below: 

 
( ) ( )( ),

( ) ( )

( ) ( ( )) j j i ii i i j j

j i i j i i

jt L L tL L t L l
ij i j

L L t L L t

l
v t t Hdl

 

 


  

 

 


 

 
 
 
 

  ( 38) 

where 

 ( ), ( ), ( ),

( ), ( ), ( ),

( ) ( ) ( )
i i i j j i i i j j i i i j j

i i i j j i i i j j i i i j j

i i iL L t L l L L t L l L L t L l

L L t L l L L t L l L L t L l

t t t
H   

  

     


  

     

     

     
     
   
   

 ( 39) 

The above equations indicate that 
iLj Li 




, 
Lj Li i




, ( ),i i i j jL L t L l


 
, and 

( ),i i i j jL L t L l


 
are required to solve for ( )ijv t ,  for which we must to obtain the mean and 

covariance of ( )iL t  and [ ( ), ( )]i jL t L tL .  

Since ( ) ( ) )( ) ( ) ( ) (T T T
i i i iL t t t t t t  X X Y YU U U , we have ( )iL t  as follows: 

 
( ) ( ) ( ) ( ( ) (

( ) ( ) ( )

) )

)(

T T T
i i i i

T T
i i

L t t t t t t

t t t t

 

 

X X Y Y Y Y

Y Y

U U U

U U
 ( 40) 

With Eqs. (22) through (23) and (40), we write the covariance matrix of L  and 

L below. 

 

2 ( )

1

1

i i j i

i i i

i ji i

i

i jj i

i L L L L
L L L

L LL L
L

L LL L

t c c

c c

c c

 
  
   
   
 
 

L

L
LLL

c c
c

c c
 ( 41) 
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in which 2( )i t  is given in Eq. (A5), and the other components of the matrix are given 

below.  

 ( ) ( )
i i

T
i iL Lc t t  ( 42) 

 ( ) ( )
i j

T
L L i jc t t  ( 43) 

 ( ) ( )
j i

T
i jL Lc t t  ( 44) 

After obtaining the covariance matrix Lc , we now derive equations for the conditional 

means and standard deviations. They are given by 

 1
( ), ii i i j j LL L t L l

 

 
 LLLc c l  ( 45) 

 2 1
( ), i i i ii i i j j L L L LL L t L l

 

 
  LLL Lc c c c  ( 46) 

in which [ ( ); ]i jt ll . 

Substituting Eq. (41) into Eqs. (45) and (46), we have  

 2( ),

( )( ) ( )

1
i j i jj i i i i i j i

i i i j j
i j

i L L j L LL L L L L L L L

L L t L l
L L

t c c c l c c c

c




 

  



 ( 47) 

 2 2
2( ),

( ) ( )
( )

1
i j i ji i j i i i j i i i j i

i i i j j
i j

L L L LL L L L L L L L L L L L
iL L t L l

L L

c c c c c c c c
t

c
 

 

  
 


 ( 48) 

Since ( ) ( ) 1T
i it t  , we have ( ) ( ) 0

i i

T
i iL Lc t t  . Eqs. (47) and (48) are then 

simplified as 

 2( ),

( )

1
i jj i j i

i i i j j
i j

i L L jL L L L

L L t L l
L L

t c c l c

c




 





 ( 49) 

and 
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2

2 2
2( ), ( )

1
j i

i i i j j
i j

L L
iL L t L l

L L

c
t

c
 

 
 


 ( 50) 

Similarly, we have 

 ( ) ( )
i ji L L iLj Li t c t


 


  ( 51) 

 2 2
( )

1
i jj i i

L LL L t
c





   ( 52) 

We have so far derived all the equations needed to calculate ( )ijv t , which can be 

solved by substituting Eqs. (47) through (52) into Eq. (38).  

3.2.3. ( )ijv t  

After obtaining the first joint upcrossing rate ( )ijv t , we can easily get the second 

upcrossing rate ( )ijv t . We just need to change the subscripts of Eqs. (36) through (52) 

by switching i and j. 

3.2.4. ( )ijv t  

Substituting Eqs. (22) and (23) into Eq. (31), we have 

 
0

( ) lim ij
ij t

M
v t

t





 



 ( 53) 

where 

 Pr[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]ij i i j j i i j jM L t t L t t L t t t t L t t t t                ( 54) 

Defining ( ) ( ) ( )i i iZ t L t t  , we have  

 
0 0

0 0
( , , , )

i j i jij i j i j i j i jZ Z Z ZM f z z z z dz dz dz dz
 



 
      ( 55) 
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t is omitted in Eq. (55) for brevity; for example iz  stands for ( )iz t  now. In Appendix 

C, we have demonstrated that ( )ijv t  tends to be zero when t  becomes infinitely small. 

Base on the demonstration, we therefore conclude that ( ) 0ijv t  .  

Having obtained all the three joint upcrossing rates, the outcrossing rate in Eq. (35) is 

then given by 

 ( ) ( ) ( )i j ij ijv t v t v t  

    ( 56) 

 

3.2.5. 0( )ijR t  

0( )ijR t  is another component we need for the system reliability analysis. After the 

MPPs of components i and j are found at 0t , 0( )ijR t is calculated by [8] 

 0 0 0 0( ) ( ( ), ( ), )i jijR t t t    ( 57) 

in which ( , , )     is the CDF of a bivariate normal random variable, and 0  is the 

coefficient of correlation between the two components. 0  is given by Eq. (50) as 

follows: 

 0 0 0( ) ( )T
i jt t   ( 58) 

With Eqs. (25) through (58), we can estimate , 0( , )f i j sp t t
. Then, the time-dependent 

probability of failure for bivariate responses, , 0( , )f ij sp t t , can be computed. 

3.3.  System reliability analysis  

With the availability of the outcrossing rate ( )i jv t


, we now summarize the system 

reliability analysis method for bivariate responses.  
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For a series system with component i and j, the system probability of failure is given 

by  

  
0

, 0 , 0 0( , ) (( , ) 1 exp ( )) st

f s s f i j s ij i jt
p t t p t t R t v t dt

      ( 59) 

For a parallel system, we have 

 
   

 
0 0

0

, 0 0 0

0

( , ) 1 exp ( ) exp ( )

exp (

) ( )

( ) )

( s s

s

t t

f s s i i j jt t

t

ij i jt

p t t R t v t dt R t v t dt

R t v t dt

 





    

 

 


 ( 60) 

In above equations, 0( )ijR t  is computed using Eqs. (57) and (58), ( )i jv t


 is estimated 

using Eq. (56), and ( )iv t  is computed using Eq. (16). In addition, ( )ijv t  and ( )ijv t  are 

required to compute ( )i jv t


 in Eq. (56). These two terms can be computed using the 

expressions given from Eq. (40) through Eq. (52). Note that this paper only focuses on 

reliability analysis of systems with bivariate responses. Extension of the proposed method 

to systems with higher number of responses will be investigated in future. 

Until now we have all the equations needed for the time-dependent system reliability 

analysis for bivariate responses.  

 

4. Numerical procedure 

We provide a flowchart for the proposed method in Fig. 3; we also summarize the 

main steps as below.  

• Step 1: Initialization of parameters 
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Transform the non-Gaussian random variables and stochastic processes into standard 

Gaussian random variables and stochastic processes.  

• Step 2: FORM 

Perform the MPP search at time instant t using Eq. (18); obtain the associated 

reliability indexes, and the derivative of reliability indexes, such as 

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )i i i i j j j jt t t t t t t t   α α α α , by applying Eqs. (20), (21), (A3) and 

(A6).  

• Step 3: Initial reliability 

Calculate the initial component reliability using Eq. (25) and initial system reliability 

using Eqs. (57) and (58). 

• Step 4: Upcrossing rates and outcrossing rate 

Compute the component upcrossing rates using Eq. (A2) and ( )ijv t and ( )ijv t  using 

Eq.(38); then obtain the joint upcrossing rate ( )i jv t


.  

• Step 5: Integration 

Integrate the upcrossing rates over 0[ , ]st t  using Eqs. (14) and (25).  

• Step 6: System reliability 

Obtain the system probability of failure , 0( , )f s sp t t  using Eq. (59) or (60).  

------------------------------- 
Place Figure 3 here  
------------------------------- 
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5. Numerical examples 

In this section, we use three examples to demonstrate the proposed method. They are 

a Daniels system [48], a function generator mechanism system, and a hydrokinetic 

turbine system. Each example represents an important area of applications. Example 1 is 

a parallel system and a structural analysis problem where both random variables and 

stochastic processes are involved. Example 2 is a series system and a mechanism analysis 

problem. Even though there are no stochastic processes in the limit-state functions in 

Example 2, the responses of the mechanism system are still stochastic process because 

the limit-state functions are functions of time and random variables. Example 3 is a 

hydrokinetic turbine system where the turbine blades are subjected to non-stationary 

stochastic river flow load. 

 

5.1.  Example 1 – A Daniels System 

Fig. 4 shows a structural system under stochastic loading.  

------------------------------- 
Place Figure 4 here  
------------------------------- 

The system consists of two bars. Due to different manufacturing precisions, the two 

bars have different standard deviations in their dimensions. As the two bars are exposed 

to corrosions, their widths and heights decrease at the rates of k1 and k2, respectively. 

Each of the two bars resists a load of ( ) / 2P t  until both of the two bars yield. The task is 
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to determine the time-dependent system probabilities of failure over different time 

intervals up to [0, 20] years.  

Since the system is parallel, the time-dependent system probability of failure is given 

by  

 1, 0 1 2 2 0( , ) Pr{ ( , ( , ( , ( , [ , ]) ) ) ) , and }f s s sp t t g ge te t        X Y X Y  ( 61) 

where 

 1 1 1 1 1 1
( )( , ( ), ) ( 2 )( 2 )
2 b

P tg t t a k t b k t    X Y  ( 62) 

 2 2 2 2 2 2
( )( , ( ), ) ( 2 )( 2 )
2 b

P tg t t a k t b k t    X Y  ( 63) 

and 1 1 2 2 1 2[ , , , , , ]b ba b a b  X , and ( ) [ ( )]t P tY ; 1b  and 2b  are the yield strengths of 

bars 1 and 2, respectively. The parameters in Eqs. (62) and (63) are presented in Table 1.  

------------------------------- 
Place Table 1 here  
------------------------------- 

The auto-correlation function of the stochastic process ( )P t  is given by 

 2 2
1 2 2 1( , ) exp ( )P t t t t       ( 64) 

where 2 years  is the correlation length. The longer is the time interval 2 1t t , the 

weaker is the auto-correlation.  

To evaluate the accuracy of the new method, we also performed Monte Carlo 

simulation (MCS) using a large sample size of 107. We compared the upcrossing rates 

12 ( )v t , 12 ( )v t , and 1 2( )v t


 obtained from the proposed method and MCS as well.  
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Figs. 5 through 7 depict the upcrossing rates 12 ( )v t , 12 ( )v t , and outcrossing rate 

1 2( )v t

  from both the new method and MCS.  

------------------------------- 
Place Figs. 5-7 here  
------------------------------- 

Note that the curves of upcrossing rates and outcrossing rate from MCS are not 

smooth. The noise comes from the numerical discretization of stochastic process. 

Nevertheless, the results show the good consistency between the MCS results and those 

from the proposed method. This example indicates that the proposed method can produce 

accurate joint upcrossing rates and outcrossing rate that are needed for time-dependent 

system reliability analysis. 

Using the outcrossing rate 1 2( )v t


, we obtained the system reliability analysis result. 

The joint probability ,1 2 0( , )f sp t t
 and time-dependent system probability of failure 

, 0( , )f s sp t t  are depicted in Figs. 8 and 9, respectively. The latter is also given in Table 2. 

------------------------------- 
Place Figs. 8-9 here  
------------------------------- 

As shown in Fig. 9, the error of the new method becomes larger with a longer period 

of time or with a larger probability of failure. The error resource is mainly the assumption 

of independent crossings. It is the intrinsic drawback of the upcrossing and outcrossing 

rate method [33].  
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------------------------------- 
Place Table 2 here  
------------------------------- 

The error  (%) is calculated by 

 , ,

,

100%f MCS f new

f MCS

p p
p




   ( 65) 

in which ,f MCSp  and  ,f newp  are the results obtained from MCS and the new method, 

respectively.  

To show the computational cost of the new method, we also provide the numbers of 

function calls in Table 3. The results indicate that the new method is much more efficient 

than MCS. 

------------------------------- 
Place Table 3 here  
------------------------------- 

 

5.2.  Example 2 – A function generator mechanism system 

A function generator mechanism is a mechanism used to realize a desired motion [20, 

21]. Such a system is shown in Fig. 10. This system consists of two function generator 

mechanisms. Mechanism 1, a four-bar linkage mechanism with links 1B , 2B , 3B  and 4B , 

generates a sine function while mechanism 2, the other four-bar linkage mechanism with 

links 1B , 5B , 6B  and 7B , generates a logarithm function.   
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------------------------------- 
Place Fig. 10 here  
------------------------------- 

For the sine function generator (Mechanism 1), the motion input and motion output 

are   and ( , )a   B , respectively. The required motion output is given by 

 3( ) 60 60 sin ( 97 )
4d  
 

    
 ( 66) 

For the logarithm function generator (Mechanism 2), the motion input and motion 

output are  and ( , )a   B , respectively. The required motion output is given by 

 10

10

log [( 15 ) / 60 ]( ) 60
log (2)d


 


  ( 67) 

A motion error is the difference between the actual motion output and the required 

motion output. For the two mechanisms, their motion errors are  

 ( , ) ( , ) ( )a d      B B  ( 68) 

and 

 ( , ) ( , ) ( )a d      B B  ( 69) 

where 1 2 7[ , , , ]B B BB . 

Links B2 and B5 are welded together, the two input angles satisfy 

 62    ( 70) 

From the mechanism analysis, the following equations can be obtained: 

 

2 2 2

( , ) 2arctan( )a

E E D F
F D

   

 

 
   




B  ( 71) 
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where 4 1 22 ( cos )D B B B   , 2 42 sinE B B   , and  

2 2 2 2
1 2 4 3 1 22 cosF B B B B B B      .  

 
2 2 2

( , ) 2arctan( )a

E E D F
F D

   

 

 
   




B  ( 72) 

 10 10( ) 60 log [( 15 ) / 60 ]/ log (2)d     ( 73) 

where 7 1 52 ( cos )D B B B   , 5 72 sinE B B   , and  

2 2 2 2
1 5 7 6 1 52 cosF B B B B B B      . 

In this problem, the time factor is the input angle  . There are no stochastic 

processes in the input variables. The vector of random variables is therefore 

1 2 7[ , , , ]B B B X B  , and the vector of stochastic processes Y  is empty. Since the 

time factor   appears in both functions of the motion errors, the motion errors are still 

stochastic processes. The motion errors should not be large, and their allowable values 

are denoted by 1e  and 2e . All the parameters are given in Table 4.  

------------------------------- 
Place Table 4 here  
------------------------------- 

We would like the mechanism system to perform its intended functions over an 

interval of 0[ , ] [45 ,105 ]s   . If either motion error is greater than its allowable value 

over 0[ , ] [45 ,105 ]s   , a failure is considered. As a result, the system is a series 

system, and the system probability of failure is 
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  , 0 01 2( , ) Pr ( , ) ( , ) [ , ], ,f s s sp e e            B B  ( 74) 

Figs. 11 through 13 show the results of joint upcrossing rates 12 ( )v  , 12 ( )v  , and 

outcrossing rate 1 2( )v 


, from the proposed method and MCS. The sample size of MCS 

is 107. 

------------------------------- 
Place Figs. 11-13 here  
------------------------------- 

The results show that the proposed method is able to estimate the joint upcrossing rate 

with good accuracy. Based on the joint upcrossing rates, we obtained the time-dependent 

system probability of failure as presented in Fig. 14 and Table 5.  

------------------------------- 
Place Fig. 14 here  
------------------------------- 

------------------------------- 
Place Table 5 here  
------------------------------- 

The results show that the accuracy of the proposed method is good. Table 6 gives the 

number of function calls required by the new method and MCS.  

------------------------------- 
Place Table 6 here  
------------------------------- 
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5.3. Example 3 – A hydrokinetic turbine system 

5.3.1. Problem statement 

A hydrokinetic turbine system is employed as our third example [24, 49]. This system 

is used to extract energy from river water flow and it is subjected to stochastic flow loads 

during its operation. A 3-dimensional model of the hydrokinetic turbine blade is created 

as shown in Fig. 15. The blade is one-meter long and made of steel. The turbine blade is 

twisted and has variable chord length along the radial direction. The hydrofoil of the 

blade is NREL S809. The lift and drag coefficients of the hydrofoil are available in Ref.  

[50].  

------------------------------- 
Place Fig. 15 here  
------------------------------- 

A failure occurs if either of the two blades fails when the maximum strain of the 

blade is larger than the allowable strain. The time-dependent failure probability of the 

turbine system is given by 

 , 0 1 2 0( , ) Pr{ ( , ( , ( , ( , [ , ]) ) 0 ) ) 0, and }f s s sp t t g g t tX Y X Y          ( 75) 

where 0[ , ] [0,12]st t   months, max,) ) (( , ( , ) bii iSg X Y      , where max, ( )iS   is the 

maximum strain of the blade obtained from FEA simulation, 1 1 2 2[ , , , ]b bX     , 

,i and bi  are the Young’s modulus and maximum allowable strain of the i-th blade, 

respectively, and (( ) [ )]rVt tY   is the stochastic river flow velocity. Table 7 gives the 

statistical information of the variables involved. The mean ( )V t , standard deviation 
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( )V t , and correlation function 1 2( , )V t t  of the stochastic river velocity ( )rV t  are given 

by 

 
4

1
( ) sin( )V i i i

i
t a bt c



   ( 76) 

where 1 2 3 4[ , , , ] [3.815, 2.528,1.176, 0.0786]a a a a   , 

1 2 3 4[ , , , ] [0.2895, 0.5887, 0.7619, 2.183]b b b b  , and 

1 2 3 4[ , , , ] [ 0.2668, 0.9651, 3.116, 3.161]c c c c     

 
4

2

1
( ) 0.1 exp( (( ) / ) )V i i i

i
t a t b c



    ( 77) 

where 1 2 3 4[ , , , ] [0.7382,1.013,1.875,1.283]a a a a  , 

1 2 3 4[ , , , ] [6.456, 4.075, 9.913,1.035]b b b b  , and 

1 2 3 4[ , , , ] [0.9193,1.561, 6.959, 2.237]c c c c  , 

 2 2
2 11 2 exp ( ) 0.0) 8( ,V tt t t      ( 78) 

The above information of the river flow velocity is obtained by analyzing the 

historical data of the Missouri river [51]. 

------------------------------- 
Place Table 7 here  
------------------------------- 

Next we first discuss how to perform FEA analysis to obtained the maximum strain 

for a given river flow velocity and realization of random variables. We then present the 

process and result of the time-dependent reliability analysis.  
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5.3.2. FEA analysis 

From the load analysis, it is found that the turbine blade is subjected to an edgewise 

moment generated from the edgewise force TF  and a flapwise moment generated from 

the flapwise force NF . In order to compute TF  and NF , the turbine blade is divided into 

48 stations along the radial direction. After the discretization, the edgewise force ,T iF  and 

flapwise force ,N iF  at station i are computed using the Blade Element Momentum (BEM) 

theory [52] based on the geometry of the turbine blade, local pitch, and the river velocity 

at the station. More details about the load analysis of the turbine blade is available in Ref. 

[52]. After the forces at stations of the turbine blade are obtained, they are input into 

Finite Element Analysis (FEA) to get the stress response of the blade. Fig. 16 gives the 

flowchart of the stress analysis. Fig. 17 plots a snapshot of the stress analysis results of 

the blade. From the stress response, we obtain the maximum stress and also the maximum 

strain. 

------------------------------- 
Place Figs. 16-17 here  
------------------------------- 

5.3.3. Time-dependent reliability analysis 

Figs. 18 through 20 show the results of 12 ( )v  , 12 ( )v  , and 1 2( )v 


, from the 

proposed method and MCS. The sample size of MCS is 106. 

------------------------------- 
Place Figs. 18-20 here  
------------------------------- 
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The results show that the proposed method is able to estimate the joint upcrossing rate 

accurately even for problems with non-stationary Gaussian process. Based on the joint 

upcrossing rates, we obtain the time-dependent system probability of failure as presented 

in Fig. 21 and Table 8. The results show that the accuracy of the proposed method is 

good. Table 9 gives the number of function calls required by the new method and MCS.  

------------------------------- 
Place Fig. 21 here  
------------------------------- 

------------------------------- 
Place Tables 8-9 here  
------------------------------- 

6. Conclusion  

Time-dependent system reliability analysis plays a vital role in the system level 

optimization, lifecycle cost estimation, and decision making on maintenance and 

warranty. With the availability of computational models, predicting how the system 

reliability changes with time is possible. Making such a prediction both accurate and 

efficient is critical.  

In this work we proposed a time-dependent reliability method for a system with two 

response variables that are functions of random variables and stochastic processes. The 

method is based the First Order Method (FORM) and the upcrossing rate method (the 

Rice’s formula). The new method can be applied to general problems with random 

variables, stochastic processes, and time because it can be extended to systems with more 

than two response variables. With the use of FORM, the proposed method is also 
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efficient. However, the error of FORM may affect the accuracy of the proposed method. 

The proposed method is therefore limited to problems when FORM is applicable. 

As an upcrossing rate method, the new method may produce a larger error if the 

probability of failure is larger. The reason is that when the probability of failure is large, 

the dependency between upcrossings may become strong.   

The future research based on this work may be (1) the improvement of the accuracy, 

(2) the extension of the method to systems with more than two response variables, and (3) 

the integration of the method with optimization so that the time-dependent system 

reliability-based design can be performed. 

 Appendix A: Time-dependent component probability of failure, , 0( , )f k sp t t  

, 0( , ),f k sp t t k i or j  can be computed with Eq. (14), where the initial probability of 

failure is 

  0 0( ) 1 ( )  where 
kf k k i or jp t t    (A1) 

where ( )   is the cumulative probability function (CDF) of a standard normal random 

variable.  

The upcrossing rate ( )kv t  in Eq. (14) is calculated with the Rice’s formula [26, 27] and 

is given by 

 ( ) ( ) ( ( )) ( ( ) / ( ))k k k k kv t t t t t        (A2) 

in which  

 ( )( ) k
k

tt
t








 (A3) 
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 ( ) ( ) ( ) ( ) ( )
x

x q x q dq x x x 


        (A4) 

and ( )   is the probability density function (PDF) of a standard normal random variable. 

 k t  is given by [24] 

 2
12( ) ( ) ( ) ( ) ( , ) ( )T T

k k k k kt t t t t t t   C  (A5) 

where 

 ( ) [ ( ) ( )] /k k kt t t t t      (A6) 

and 
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1 2
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 

 
   

0

C  (A7) 

in which 1 2( , )lY t t , where 1, 2,l m , are coefficients of auto correlation of stochastic 

process l.  

Appendix B: Transformation of ( )ijv t  

Eq. (37) can be rewritten as 

 
( )

( ),( )( )
( ) [ ( )] ( ( )) ( ) ( )j

i i i i j jj i ii

t

ij i i L i j i i jL L t L lL L tt
v t l t f t f l f l dl dl




 




 
    (B1) 

where ( )
( )

j i iL L t
f


  is the conditional PDF of jL  given ( )i iL t , and ( ), ( )

i i i j jL L t L lf
 

  is 

the conditional PDF of iL  given ( )i iL t  and j jL l .  
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Since ( )iL t , ( )jL t , and ( )iL t  are all Gaussian processes, we have  

  
( ) ( )

( ),( )
( ) ( )

1( ) ( ( )) [ ( )] ( )j j i i

i i i j ji
j i i j i i

jt L L t
ij i i i i i jL L t L lt

L L t L L t

l
v t t l t f l dl dl

 


 


   

 



 
 

 
  
 
 

  (B2) 

Defining ( ), ( ),( )
i i i j j i i i j ji L L t L l L L t L lz l

 
 

   
  , we transform Eq. (B2) into  
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where ( ), ( ),( ( ) )
i i i j j i i i j jL i L L t L l L L t L lZ t

 
  

   
  . 

Appendix C: Derivation of ( )ijv t  

Since ( ) 0iZ t t   and ( ) 0jZ t t  , expanding iZ  and jZ  at time t, we have 

( ) ( ) ( ) 0i i iZ t t z t z t t       and ( ) ( ) ( ) 0j j jZ t t z t z t t     , then Eq. (55) becomes 

 
0 0

0 0 ( ) ( )
( , , , )

i j i jj i
ij i j i j i j i jZ Z Z Zz t t z t t

M f z z z z dz dz dz dz
 



   
      (C1) 

Let ( ) / ( ( ) ) ( )i i iZ t Z t t W t   and ( ) / ( ( ) ) ( )j j jZ t Z t t W t   , Eq. (C1) is further 

transformed into  

 
0 0

0 0 1 1
( , , , )

i j i jij i i j j i j i j i j i jW W Z ZM f z tw z tw z z z z t tdw dw dz dz
 

            (C2) 

Plugging Eq. (C2) into (53) yields 
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Table 1 Variables in Example 1 

Variable Mean Standard deviation Distribution Autocorr
-elation 

1a  1.3 in 0.01 in Gaussian N/A 

1b  1.2 in 0.01 in Gaussian N/A 

2a  1.3 in 0.05 in Gaussian N/A 

2b  1.2 in 0.05 in Gaussian N/A 

1b  36 kpsi 0.36 kpsi Gaussian N/A 

2b  36 kpsi 0.36 kpsi Gaussian N/A 
( )P t  90 kpsi 9 kpsi Gaussian Process Eq. (64) 

1k  5×10-4 in/year 0 Deterministic N/A 

2k  3×10-4 in/year 0 Deterministic N/A 

1e  0 0 Deterministic N/A 

2e  0 0 Deterministic N/A 
 

 

Table 2 Time-dependent system probability of failure  

Time 
interval 

New Method MCS 

, 0( , )f s sp t t   (%) , 0( , )f s sp t t  95% confidence 
interval 

[0, 2] 0.0126 2.64 0.0123 [0.0121, 0.0125] 
[0, 5] 0.0261 4.46 0.0250 [0.0247, 0.0253] 
[0, 8] 0.0416 5.31 0.0395 [0.0391, 0.0398] 
[0, 11] 0.0591 7.08 0.0552 [0.0547, 0.0556] 
[0, 14] 0.0789 8.21 0.0729 [0.0724, 0.734] 
[0, 17] 0.1010 10.03 0.0918 [0.0912, 0.0924] 
[0, 20] 0.1256 11.98 0.1122 [0.1116, 0.1128] 
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Table 3 Number of function calls 

Time 
interval New Method MCS 

[0, 2] 230 8×106 
[0, 5] 575 2×107 
[0, 8] 920 3.2×107 
[0, 11] 1265 4.4×107 
[0, 14] 1610 5.6×107 
[0, 17] 1955 6.8×107 
[0, 20] 2300 8×107 

 

 

Table 4 Parameters in Example 2 

Variable Mean Standard deviation Distribution 
1B  100 mm 0.3 mm Normal 

2B  55.5 mm 0.05 mm Normal 

3B  144.1 mm 0.05 mm Normal 

4B  72.5 mm 0.05 mm Normal 

5B  79.5 mm 0.05 mm Normal 

6B  203 mm 0.05 mm Normal 

7B  150.8 mm 0.05 mm Normal 

1e  1.4̊ 0̊ Deterministic 

2e  1.4̊ 0̊ Deterministic 
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Table 5 System time-dependent probability of failure  

Time 
interval 

New Method MCS 
, 0( , )f sp   (1

0-3) 
 (%) , 0( , )f sp  

(10-3) 
95% confidence 
interval (10-3) 

[45, 50] 0.224 13.13 0.198 [0.189, 0.206] 
[45, 55] 1.165 3.56 1.125 [1.104, 1.146] 
[45, 57] 1.701 3.85 1.638 [1.613, 1.663] 
[45, 59] 2.253 3.16 2.184 [2.155, 2.213] 
[45, 61] 2.615 2.03 2.563 [2.532, 2.595] 
[45, 63] 2.694 1.32 2.659 [2.627, 2.691] 
[45, 65] 2.695 1.35 2.659 [2.627, 2.691] 

 

 

Table 6 Number of function calls 

Time interval New Method MCS 
[45, 50] 14685 5×108 
[45, 55] 29370 10×108 
[45, 57] 35244 12×108 
[45, 59] 41118 14×108 
[45, 61] 46992 16×108 
[45, 63] 52866 18×108 
[45, 65] 58740 20×108 

 

Table 7 Parameters in Example 3 

Variable Mean Standard deviation Distribution 
1  1.4GPa 0.02GPa Normal 

1b  0.024 0.002 Normal 

2  1.4GPa 0.02GPa Normal 

2b  0.024 0.002 Normal 
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Table 8 System time-dependent probability of failure  

Time 
interval  

New Method MCS 

, 0( , )f sp   (10-3)  (%) , 0( , )f sp   (10-3) 

[0, 2] 0 0 0 
[0, 4] 0.04 33 0.06 
[0, 6] 0.25 16.7 0.30 
[0, 8] 1.39 14.9 1.21 
[0, 10] 1.39 14.9 1.21 
[0, 12] 1.39 14.9 1.21 

 
 

 
 

Table 9 Number of function calls 

Time interval New Method MCS 
[0, 2] 398 5×106 
[0, 4] 780 1×107 
[0, 6] 1174 1.5×107 
[0, 8] 1562 2×107 
[0, 10] 1950 2.5×107 
[0, 12] 2346 3×107 
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Fig. 1 Upcrossing events of a stochastic process 

 

 

 

Fig. 2 Outcrossing events of a system with bivariate responses 
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Fig. 3 Flowchart of time-dependent system reliability analysis 

 

 

Fig. 4 A two-bar system 

 

 

Step 1: Parameter Initialization 

Step 2: First Order Reliability Method (FORM) 
( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )i i i i j j j jt t t t t t t t   α α α α  

Step 4: Solve for 
component upcrossing 

rates and joint 
upcrossing rate 
( )iv t , ( )iv t , ( )ijv t , 

and ( )ijv t  

( )i jv t


 

Step 5: Integrate the 
upcrossing rates and 

outcrossing rate 

 
Step 3: Solve for 
initial component 

reliabilities 
0( )iR t and 0( )jR t , 

and system 
reliability 0( )ijR t  

Step 6: Solve for 
, 0( , )f s sp t t  

P(t) 

2 1 

A-A 

a1 

 

k1t 

 

k1t 

 b1 

 
B-B 

a2 

 

k2t 

 

k2t 

 b2 

 

A A B B 
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Fig. 5 12 ( )v t  over time interval [0, 20] years 
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Fig. 6 12 ( )v t over time interval [0, 20] years 
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Fig. 7 1 2( )v t


 over time interval [0, 20] years 
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Fig. 8 ,1 2 0( , )f sp t t
 over time interval [0, 20] years 
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Fig. 9 , 0( , )f s sp t t  time interval [0, 20] years 

 

 
Fig. 10. A function generator mechanism system 
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Fig. 11 12 ( )v  over [45̊, 105̊] 

 

40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-4

()

 v
12-+

 (
)

 

 
MCS
New Method

 
Fig. 12 12 ( )v   over [45̊, 105̊] 
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Fig. 13 1 2( )v 


 over [45̊, 105̊] 
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Fig. 14 Time-dependent system probability of failure over [45 ,105 ]  
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(a) Side view (b) Front view 

 
(c) Top view 

 
Fig. 15. Geometry configuration of the turbine blade 

 
 
 
 

 

Fig. 16. Flowchart of the stress analysis for the turbine blade 

 

 

 

 

Fig. 17. Stress response of the turbine blade 

 

Blade geometry (i.e. 
hydrofoil, twist angle, 

chord distribution) 

Velocity at different 
stations 

Blade 
Element 

Momentum 
(BEM) 
theory 

Force at stations 

Finite Element 
Analysis (FEA) 

Stress 
response 

, ,,T i N iF F   



59 
 

 
Fig. 18 12 ( )v  over [0, 12] months 

 
Fig. 19 12 ( )v   over [0, 12] months 
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Fig. 20 1 2( )v 


 over [0, 12] months 

 

 
Fig. 21 Time-dependent system probability of failure over [0, 12] months 

 


