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Abstract

Time-dependent system reliability is computed as the probability that the responses of a
system do not exceed prescribed failure thresholds over a time duration of interest. In this
work, an efficient time-dependent reliability analysis method is proposed for systems
with bivariate responses which are general functions of random variables and stochastic
processes. Analytical expressions are derived first for the single and joint upcrossing
rates based on the First Order Reliability Method (FORM). Time-dependent system
failure probability is then estimated with the computed single and joint upcrossing rates.
The method can efficiently and accurately estimate different types of upcrossing rates for
the systems with bivariate responses when FORM is applicable. In addition, the
developed method is applicable to general problems with random variables, stationary,
and non-stationary stochastic processes. As the general system reliability can be
approximated with the results from reliability analyses for individual responses and
bivariate responses, the proposed method can be extended to reliability analysis of
general systems with more than two responses. Three examples, including a parallel
system, a series system, and a hydrokinetic turbine blade application, are used to

demonstrate the effectiveness of the proposed method.

Keywords: Time-dependent reliability, system reliability, upcrossing rate, stochastic

process



1. Introduction

Reliability is the ability that a component or system performs its intended function in
routine circumstances for a given period of time [1]. For a system, we are interested in
not only the reliability of its components, but also the system reliability. For many
applications, the system reliability is more critical because it can be used to estimate the
lifecycle cost, determine maintenance policies, and perform optimization [2-4]. The
system reliability is determined by the reliability of its components and also the
relationship between the system and its components. By component, in this work, we
mean a failure mode. A physical component itself can also be regarded as a system
because it may have multiple failure modes.

System reliability analysis is much more difficult than component reliability analysis.
The latter needs to compute the probability of a single event while the former needs to
compute the joint probability of multiple and possibly dependent events. Many
progresses have been made in system reliability analysis. For example, Ditlevsen [5]
approximated the system reliability using a bounding formulas. Song and Kang [6]
developed a matrix-based system reliability (MSR) method, which can calculate the
system reliability and system parameter sensitivities by a convenient matrix-based
framework. Nguyen [7] later developed a reliability-based system design optimization
method by using the MSR method. Mahadevan [8] and Ambartzumian [9] proposed a
system reliability method using a standard normal multivariate cumulative distribution
function (CDF); by employing the Morgan’s laws [10], the method expresses the system

probability of failure as the intersection of a set of unions of subsystems. Youn and Wang



[11] suggested a complementary intersection method (CIM) for system reliability
analysis by expressing the system failure event as complementary intersection events.
Based on the CIM method, a generalized CIM method is developed later in Ref. [12].
More system reliability analysis methods have also been reported in [13] and [1].

To predict the system reliability, we need at first to calculate component reliability.
This can be achieved by using the common reliability methods, such as the First Order
Reliability Method (FORM), Second Order Reliability Method (SORM), and Importance
Sampling (IS) [1, 14-19]. The next step is to calculate joint probabilities associated with
the failure events of all the components. If there are only two failure modes, the system
reliability can be computed using a bivariate distribution. One example was reported in
[9]. When there are many components involved, it is difficult and computationally
expensive to obtain the joint probabilities. For this case, the system reliability can be
approximated within its lower and upper bounds by just using the component reliabilities
and joint probabilities for up to two failure modes (bivariate responses) [5]; the reliability
bound is normally narrow for many engineering problems.

Although reliability is defined for a period of time and is also a function of time, most
of the aforementioned reliability methods are for time-invariant reliability that does not
change over time. For time-invariant reliability, the associated function of a response
variable, called a limit-state function, is not a function of time. The reliability is therefore
time independent. In many engineering applications, however, the limit-state function
changes over time, either because time appears explicitly in the function or because

stochastic processes are part of the input variables, or both. Examples include function



generator mechanisms [20, 21], bridges under stochastic loading [22, 23], hydrokinetic
turbine system subjected to wave or river flow loading [24, 25], and vehicles running on
stochastic road surfaces [4].

Time-dependent reliability analysis is much more challenging than its time-
independent counterpart. The most common time-dependent reliability method is the
Rice formula [26, 27] developed in 1944 and is still widely used nowadays. There are
still many developments in time-dependent reliability in recent years. For instance, for
component reliability problems, Yang [28, 29] developed a time-dependent reliability
analysis method using the Markov stochastic process. Mourelatos [30] employed the
time-series modeling and importance sampling method to approximate the time-
dependent reliability. Andrieu et al. [31] proposed a PHI2 method for the time-dependent
component reliability analysis of general problems with both random variables and
stochastic processes. By using the Rice’s formula [26, 27], Du and Hu [24] developed a
time-dependent reliability model for hydrokinetic turbine blades. Singh et al. [4]
proposed the concept of composite limit-state function for time-dependent reliability
analysis for a special group of problems. Du and Hu [32] presented a joint upcrossing
method based on the work of Madsen [33]. Wang and Wang [34, 35] developed a nested
extreme value response surface method by building a surrogate model for the extreme
value response. They also proposed a double-loop surrogate modeling approach for time-
dependent component reliability analysis in Ref. [36]. Jiang et al. [37, 38] studied the
time-dependent reliability analysis of general engineering systems based on stochastic

process discretization.



Studies on time-dependent system reliability have also been reported. For example, a
method was developed to estimate the joint first-passage probability of failure for
systems under stochastic excitation [39]. An analytical approach was proposed for linear
dynamical systems in higher dimensions by calculating the conditional upcrossing rate on
the surfaces of failure boundaries [40]. An approximation method was reported to
approximate the conditional first passage probability of systems under modulated white
noise excitation [41]. By combining Monte Carlo simulations (MCS) with the asymptotic
extreme value theory, Radhika [42] proposed a reliability analysis method for nonlinear
vibrating systems. Gupta and Manohar [43] proposed a multivariate extreme value
distribution approach to approximate the extreme value distributions of a vector of
stationary Gaussian random processes. The developed multivariate extreme value
distribution method was then applied to reliability analysis of randomly vibrating
structures subjected to jointly stationary Gaussian excitations [44, 45]. Some of the above
methods have been verified to have good accuracy for systems subjected to multiple
Gaussian stationary stochastic processes. They, however, cannot be directly applied to
general problems where the input variables of a limit-state function contain time, random
variables, and non-stationary stochastic processes. Hagen and Tvedt [46] have
investigated the reliability analysis of parallel system under vector of stochastic processes.
Their method, however, needs to solve multi-variate normal distribution and new random
variables are introduced into the model to compute the outcrossing rate. Although MCS is
capable of handling the general problems, the required computational cost is prohibitive

for engineering applications.



In this work, we propose a new time-dependent system reliability analysis method for
bivariate responses that are nonlinear functions of time, random variables, and stochastic
processes. The stochastic process can be stationary or non-stationary. The new method is
an extension of the work in [39] and is based on the FORM and the Rice’s formula [26,
27]. The major development is the derivations of bivariate joint upcrossing rates, which
can be used for estimating time-dependent system reliability for bivariate responses.
Since the bivariate joint probabilities are the basis for general system reliability analysis
when the reliability bound method is used, the proposed method can also be applied to
general time-dependent system reliability analysis for general systems with more than
two components.

In Section 2, we give the background of time-dependent reliability. In Section 3, we
first introduce the upcrossing rate method; we then derive necessary equations for the
bivariate joint upcrossing rates. The numerical procedure is summarized in Section 4,

followed by three examples in Section 5. Conclusions are presented in Section 6.

2. Time-Dependent System Reliability
Recall that in this work a component corresponds to a failure mode. Suppose there are

r failure modes or » components. For component i, where i =1,2,...,7, let its limit-state
function be G, (1) =g,(X,Y(¢?),t) , where X=[X,, X,,---, X,] is a vector of random
variables, Y(¢) =[Y,(?), Y,(¢),---, Y (¢)] is a vector of stochastic processes, G,(f) is the

response variable, and ¢ stands for time. Functions G, (¢¥) = g,(X,Y(¢),t), i=1,2,---,r,

are usually computer simulation models, such as those of finite element analysis (FEA) or



computational fluid dynamics (CFD). They are nonlinear functions of random variables

X and stochastic processes Y(¢). As a result, the response variables G,(¢), i=1,2,---,r,

are stochastic processes with variation and correlations over time. For a special case

where G,(t) = g,(X,?), although no stochastic processes Y(¢) appear in the input, the
response variable G,(t) is still a stochastic process due to the time-varying statistical
properties and correlations over time. In addition, even if X and Y(z) are mutually
independent from each other, the stochastic responses G,(¢), i=1,2,---,7 , are still

correlated multivariate stochastic processes due to the sharing random variables or
stochastic processes in the limit-state functions.

The time-dependent reliability R (z,,¢,) of component i over the time interval [7,, ¢, ]
is defined by
R(t,,1)=Pr{g,(X,Y(0),)) <e, Vi e[t,, 1]} (1)
in which e, is the failure threshold, and Pr{-} stands for a probability. Note that e, is
usually defined as e, =0 in most of reliability analysis problems.
The corresponding time-dependent probability of failure p, ,(z),¢,)is
Pty 1) =Pr{g,(X,Y(®), ) > e, 3t €[t,, 1,1} (2)

Let Q_ be the safe region for a system. For a series system,
Q, =X YO ng(X, Y0, ) <e, Ve[t 1,] (3)

in which N stands for an intersection.



For a parallel system,
0, = {[(X. YO Ug (X, Y(0). 1) <e, Vi <[ty 1,] (4)

in which U stands for a union.
With above definitions, we then have the time-dependent system reliability R (Z,,?,)
and probability of failure p, (¢, 7,)as follows:
R (t,,t,)=Pr{[X,Y(1)]eQ,, Vte[t,,t.]} (5
and
Py, 1) =Pr{{X, Y(D] € Q, 3relty, 1]} (6)
The system reliability requires not only the component reliability but also joint
probabilities up to an order of r. Evaluating a joint probability with a high order is

extremely difficult. To make the system reliability easier, Ditlevsen [5] proposed abound

formulas for a series system as follows:

pr;],l?(tO’tv)Spf,v(tO’tv)gprfnix(toﬂtq) (7)
where
) r i—1
PI(ty, 1) =Dyt 1)+ Y max{p, (t,, )= D p, ;(t.1,), 0} (8)
i=2 j=1
Pty 1,) = p, .y, ts)—zn}gpr,,-j(to, ) (9)
i=1 =2

In the above equations, p,(f.t) is the component probability of failure.

Components probabilities of failure are sorted in a decreasing order, and p,,(z),2,) is



therefore the maximum component probability of failure [1]. p, (¢, ¢,) is the joint

probability of failure of components i and ;. It is the probability that both components fail
over [f,,t,]. The above reliability bounds (i.e. Egs. (7) to (9)) are for series systems. For
parallel systems, the failure probability can be expressed as a function of series system
reliability using De Morgan’s law [10]. For mixed system with combined series and
parallel structures, the generalized CIM method presented in Ref. [12] can be employed
to decompose the system failure event into multiple mutually exclusive failure paths.
Based on the decomposition, the reliability bounds for series systems can be used to
provide bounds for the system reliability.

Eq. (9) indicates that the component probability of failure p, (¢, 7,)and bivariate
probability of failure p, . (7,,7,)are the bases for the system probability of failure. As
reviewed previously, many time-dependent reliability methods are available for
p,;(t,t) . In this work, we focus on developing a new method for the bivariate
probability of failure p, .(¢),¢). A straightforward way of evaluating p, .(z,,7,) is to
directly generate samples of X and Y(¢) using Monte Carlo simulation method. After
that, the samples of X and Y(7) are plugged into the limit-state functions to get samples

of responses and then obtain the system failure probability. Estimating the failure
probability in this way is straightforward and accurate. However, as discussed previously,
the limit-state functions may be expensive simulation models, such as FEA and CFD
models. The required computational effort for this kind of straightforward simulation

method is prohibitive. We discuss how to overcome this challenge in the following
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sections. The idea is to reduce the number of times of calling the limit-state function

while maintaining the accuracy of reliability analysis.

3. Time-Dependent System Reliability for Bivariate Responses
For limit-state functions G;(r)=g,(X,Y(7),?) and G,()=g,(X,Y(?),?) , the joint
time-dependent probability of failure is given by
Pt 1) =Prig,(X.Y(), ) > e ng;(X,Y(7),7)>e,, Iy and A7 €[¢,, £, ]} (10)
Eq. (10) can be further transformed into [39]

pf,ij(tm ts) = Pr{g;(XaY(;{)az) > € El)( E[Oa ts]}+Pr{gj(XaY(T)a7'-) > eja Els e[l‘O’ ts]}

—Prig,(X,Y(x), 1) >e Vg, (X, Y(7),7)>e;, Iy and 7 €[¢,, 1, ]} (1)

According to Eq. (2), the first two terms on the right-hand side of Eq. (11) are

component reliabilities, and Eq. (11) can be rewritten as
Prilos6) = Ps (o 1)+ Py ;s 1) =Py i (Eos 1) (12)
where
Dot 1) =Prig(X.Y(0), ) > e v g, (X, Y(7),7)>e, Iy and 7 €[4, £,]} (13)
which is the time-dependent probability of failure for a series system with components i

and j. In the following sections, we first discuss the method for the time-dependent

component reliability. We then derive equations for time-dependent joint probability,

pf,iuj(tO’ts) .

11



3.1. Time-dependent component reliability analysis

In this work, we employ the upcrossing rate method [31] to evaluate the time-
dependent component probability of failure. It is the most commonly used method for
time-dependent reliability analysis.

3.1.1. Upcrossing rate method for time-dependent component reliability analysis

For a general limit-state function G, (¢) = g,(X,Y(?),?), k =i or j with threshold e,
the time-dependent probability of failure p, (7,7, is given by the upcrossing rate

method as follows:
Pyt t)=1-01=p, G)lexp | [ vi (1| (14)
in which p . (¢,) is the instantaneous probability of failure at ¢, and is given by
Pri(ty) =Prig (X, Y(1). 1)) > €} (15)

v, (¢) is the upcrossring rate of component & at time instant z. Fig. 1 shows upcrossing

events of component k. An upcrossing event happens when the response variable G

passes the threshold e at time instant ¢ from the safe region G, (¢) <e, to the failure

region G, (f+At)>e,, where Ar is an infinitesimally small time interval. The upcrossing

rate v, (¢)is defined by the following limit:

v () = lim Pr{[g, (X, Y (1), 1) <e, ]N[g, (X, Y(t + At), t + At) > ¢, ]}

o Al (16)

12



Eq. (14) is derived based on the assumption that all the upcrossings over [#,,7,] are

independent. Knowing v, (), we can easily obtain the component probability of failure

P, (ty,1,) using Eq. (14).

Place Figure 1 here

In addition to using the upcrossing rate method, we also use FORM, which linearizes
the limit-state function of components i and j at the so-called most probable point (MPP).
Next, we first discuss the linearization and then discuss the estimation of upcrossing rate

v, (¢). The linearization later is also used in the derivation of p, . .(¢,,2,)-

3.1.2. Transformation of limit-state functions
To wuse FORM for a general Ilimit-state function of component £,
G, ()=g,(X,Y(?),t), k=ior j, we first transform random variables X and stochastic
processes Y(¢) into standard normal random variables U(#) =(Uy,U,(?)) . Then the
limit-state function becomes
G (1) =g (X, Y(1),1) = g, (T(Uy), T(Uy (1)), 1) = g, (U, 1), k=ior j  (17)
where T'(-) stands for the transforming operator. The transformation can be found in [47].
Then the MPP u, (¢) = (uy,uy(¢)), k =i or j is found with the following optimization

model:

{mgnnua)n .

subject to g, (u(?),t)=e¢,,k=ior j

13



in which ||| stands for the length of a vector.

After the limit-state function is linearized at the MPP, the failure event

G (t)=g,(X,Y(),t)>e,, k=ior j is equivalent to the following event [47]

L()=0c, (OU@®) > B,(t). k=ior (19)
in which
B0 =|w, ). k=ior j (20)
o, ()= ke —ior (21)
u,

B, (t), k=ior j is called the Hasofer-Lind reliability index.
Therefore, the failure events given in Eq. (12) become
Pt 1) =PriL () =, (U () > B(x). 3x lty, 1,1} (22)
Py (1) =Pr{L, (1) =, (D)U" (1) > B,(7), AT €[t 1,]} (23)
and
Py, (o 1) =Pr{ey, (DU () > B,(2). 3 1 €ltys 1,100, (DU (2) > B,(0), 37 e[ty 1,1} (24)
The equations for the time-dependent component probabilities of failure,

P, (l-1,), k=ior j,are already available. We reviewed these equations in Appendix A.

In the next section, we investigate the method for the approximation of the bivariate

probability p, , (Z,1,). Note that since the FORM method is employed to linearize the

limit-state function at the MPP, the accuracy of the failure probability estimate may be

14



affected by the accuracy of FORM. The developed method in the following sections is

therefore applicable to problems where FORM is accurate.

3.2.  Time-dependent joint probability p, ,  .(Z,,7,)
3.2.1. Outcrossing rate method for time-dependent joint probability analysis

We now derive equations for the bivariate joint probability p, . (%) . Following

the same strategy of upcrossing rate in Eq. (14), we have p, . .(%.¢,) as follows:

Dot t)=1-R, (to)exp{—j: Vi j(t)dt} (25)
in which R, (%,) s the probability that both components are safe at the initial time and is
given by

R, (1) =Prig,(X, Y(#,).t)) <, N g, (X, Y(t).1)) < ¢} (26)
v, ;(?) is the outcrossing rate of a series system with components i and j at time instant 7.

An outcrossing event occurs when the system outcrosses its bounds at time instant ¢ from
the safe region to the failure region. Fig. 2 shows three representative outcrossing events
of the series system. For the outcrossing events, both components i and j are in the safe
region at time instants t,, m=1I, 2, and 3. The system then outcrosses into the failure
region as a result of the upcrossing of Gi, or upcorring of Gj, or both the upcrossings of G;

and G; at the following time instants, #,+At, m=1,3, and 2. Given in mathematical form,

the outcrossing rate v,

VJ

(¢) is given by the following limit:

15



. (t):hmPr{[Gl.(t)<eimG_/.(t)<ej]m[Gl.(t+At)>ei uG_/(t+At)>ej]} (27

V..,
e At—0 At

where Az is an infinitesimally small time interval.

The probability in Eq. (27) can be decomposed into three components.

Pr{[G,.(t) <eNG, ()< ej]m[Gi(HAt) >e VG, (t+At)> ej]} (28)

=p; (O+p; (O+p; @)
where

py (1) = Pr{[G,.(t) <e NG (<e |N[Gt+A)>eNG (t+A)<e; || (29)

———

P O=Pr{{GW<enG®<e]n[Gra<anGran>e ]l (30)

p; 0=Pr{[G(0<eNG (O <e, |N[G+A)>e NG (t+M)>e ]} (3D)

Place Figure 2 here

p; (¢)is the probability that G,(¢) upcrosses its barrier ¢, while G,(¢) remains below
its barrier e, at {, p,"(¢)is the probability that G,(¢) upcrosses its barrier e, while G, (1)
remains below its barrier ¢, at 7, and p,*(r)is the probability that both G,(¢) and G,(¢)

upcross their barriers at .

We then have three corresponding joint upcrossing rates defined by

Dy (D
v, ()= l}znm A (32)

16



v, (t)= tim 20 (33)

A—0 At
N e ()|
v, ()= l}% e (34)
Then
v;w. ()= v;‘(t) +vl;.+ 3] +v;.+ ) (35)

Equations for v (¢) are available for special limit-state functions with two stationary

Gaussian vector processes [39]. In the subsequent subsections, we derive equations for

v, (t) and other two joint upcrossing rates for general limit-state functions. The

derivations are based on the approximation discussed in Sec. 3.1.2.
3.22. v ()
Substituting Eqs. (22) and (23) into Eq. (29) yields
()= Pr{[Li(t) <BONLO) < B6) | [ Lt +A)> B(t+A) L (t+A1) < ﬁj(t+At)]} (36)
It is the probability that Z,(¢) upcrosses its barrier f,(¢) while L (¢) remains below
its barrier f,(¢) at t. With the Rice’s formula [26, 27], v;_(t):gn%) pl.j_(t)/At can be
calculated by the following integral:
. Bit) po - . ..
v =[] = B0, (B, Ddidl, (37)

where f, Li, (

,+,) is the joint PDF of L(t), L (¢), and L (7).

17



As there 1s no close form available for v;.’ (1), we perform some transformations for

Eq. (37) before we derive necessary equations for it. The transformation is given in
Appendix B.

Applying Eq. (A4), Eq. (B3) is rewritten as below:

50 O i1, /- M lt-p

¢

GL/‘Li:ﬂi(t) GL] ‘Li:ﬂi(t)

vy ()= g(B )|

—00

Hdl, (38)

where

A0 Hijt-p,,-, 3 B0~ Hilt-p .14, o B0~ Hilt-p .-,

(39)

(o o o.
LiL=p,0), L=, LiL=p, ), =1, LiL=p,), L=,

The above equations indicate that My and

o .
=5 yiLi-g fuL,\L,.:ﬁ,(z),szlj >

: - . .
O lt=por.1,1, AT required to solve for v;"(#), for which we must to obtain the mean and

covariance of L (¢) and L=[L,(?), L,(0)].
Since L.(f) = o, (H)U’ (£) = oy, (1) Uy + vy, (1)UL () , we have L(¢) as follows:

L, (1) = 61, (YUY + 6y, (UL (1) + 0y, (DU (1)

) (40)
= &, (U7 () + 0y, (UL (1)

With Egs. (22) through (23) and (40), we write the covariance matrix of L and

L below.
2
c c @ () CLi, CLJL'i
ii,  “iL
¢ = = ¢ 1 €L, (41)
Ci Cu
C.i Cu 1

18



in which @’(¢) is given in Eq. (A5), and the other components of the matrix are given

below.
¢,; =0 (ey (t) (42)
¢, = oy () (1) (43)
¢, ;, =S, (e (1) (44)

After obtaining the covariance matrix ¢; , we now derive equations for the conditional
means and standard deviations. They are given by

L=p,(1), L;=; - cL',LcLL

R (45)

H;

2 _ _ -1
O b= n-, = it Tl G (46)

in which 1=[£(2);/,].
Substituting Eq. (41) into Egs. (45) and (46), we have

3 B, (t)(chL',. Cro, =€) L(e ey = L, )

iy pion g = (47)
L|L=p (), L;=l; CZL,»LJ 1
c,:(c,.c,, —c, .)+c, (¢, .c,, —c, )
5 9 LL \NTLL-LL; LI L.L \"LL T LL; L;L;
O ifn=panr-t, ~ @ () - ; 2 _,1 - (48)

Ll-L/
Since o, ()] (£) =1, we have ¢, ; =0Li(t)('xl.r(t)=0. Egs. (47) and (48) are then
simplified as

B ,Bi(t)chL'[_cL‘.Lj _lchb/.l',,»
Hile-pone-1, =

(49)

2
CLL, -1

and

19



2

co.
=’ ()+ Lf'Lfl (50)

2
o .
L|L=p, (), L=,

2
Crp, ~

Similarly, we have

Hijrieg oy = CL,.LJ.IBi(t) (51)
O-zj‘Lf:ﬂr(f) =1- CiiL/ (52)

We have so far derived all the equations needed to calculate v;™(¢), which can be

solved by substituting Eqgs. (47) through (52) into Eq. (38).

323 v, (0
After obtaining the first joint upcrossing rate v, (¢), we can easily get the second
upcrossing rate v, " (¢). We just need to change the subscripts of Egs. (36) through (52)

by switching i and ;.

3.24. (D)

Substituting Egs. (22) and (23) into Eq. (31), we have

++

++ . Ml'j
v; (0)=lim A (53)

where

M =PHL (1) < B(O) L) < B,OIOLL (1 +A0) > Bt +A6) L+ A1) > (¢ +An)](54)

Defining Z,(t) = L(t)— B,(¢) , we have

M= J‘0+°° J‘()“O J‘io J'ic fz,z,zfzf‘ (252, 2, 2;)dz,dz dz,dz (55)

20



t is omitted in Eq. (55) for brevity; for example z, stands for z;(#) now. In Appendix
C, we have demonstrated that v; (¢) tends to be zero when Af becomes infinitely small.

Base on the demonstration, we therefore conclude that v;" () =0.

Having obtained all the three joint upcrossing rates, the outcrossing rate in Eq. (35) is

then given by

Vo, (O =v; @) +v," () (56)

3.2.5. R.(¢)
R;(t,) is another component we need for the system reliability analysis. After the
MPPs of components i and j are found at ¢, , R;(¢,) is calculated by [8]

R (1) =D(B(t,), B,(1,). ) (57)
in which @(,-,-) is the CDF of a bivariate normal random variable, and p, is the
coefficient of correlation between the two components. p, is given by Eq. (50) as
follows:

Po =, (1) (1) (58)
With Egs. (25) through (58), we can estimate p, ., .(4,?,) . Then, the time-dependent
probability of failure for bivariate responses, p, (¢, ¢,), can be computed.

3.3.  System reliability analysis

With the availability of the outcrossing rate v/, (), we now summarize the system

reliability analysis method for bivariate responses.
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For a series system with component i and j, the system probability of failure is given

by
to,
pf,s (t09 tv) = pf,iuj (tO’ tv) = 1 - R;'j (t())eXp {_J.fo viu j (t)dt} ( 59)
For a parallel system, we have

D, (o 1,)=1= R (ty)exp {— j v (t)dt} ~ R, (t,)exp {— j’ v (t)dt}
' ' (60)

+R,.(t,)exp {—LS v, (t)dt}

t

In above equations, R, (Z,) is computed using Eqs. (57) and (58), v;’uj(t) is estimated
using Eq. (56), and v/ (¢) is computed using Eq. (16). In addition, v;._(t) and v;(t) are
required to compute vfu_/ (¢) in Eq. (56). These two terms can be computed using the

expressions given from Eq. (40) through Eq. (52). Note that this paper only focuses on
reliability analysis of systems with bivariate responses. Extension of the proposed method
to systems with higher number of responses will be investigated in future.

Until now we have all the equations needed for the time-dependent system reliability

analysis for bivariate responses.

4. Numerical procedure
We provide a flowchart for the proposed method in Fig. 3; we also summarize the

main steps as below.

e Step 1: Initialization of parameters
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Transform the non-Gaussian random variables and stochastic processes into standard
Gaussian random variables and stochastic processes.

Step 2: FORM

Perform the MPP search at time instant ¢ using Eq. (18); obtain the associated
reliability indexes, and the derivative of reliability indexes, such as
a,(1), &,(1), B0), (1), 0,(0), 6,(0), B,(0), 3,(¢)., by applying Egs. (20), (21, (A3) and
(A6).

Step 3: Initial reliability

Calculate the initial component reliability using Eq. (25) and initial system reliability
using Eqgs. (57) and (58).

Step 4: Upcrossing rates and outcrossing rate

Compute the component upcrossing rates using Eq. (A2) and v, () and v;"(?) using
Eq.(38); then obtain the joint upcrossing rate v/ ; () .

Step 5: Integration

Integrate the upcrossing rates over [f,, f,] using Egs. (14) and (25).

Step 6: System reliability

Obtain the system probability of failure p, (7,,,) using Eq. (59) or (60).

Place Figure 3 here
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5. Numerical examples

In this section, we use three examples to demonstrate the proposed method. They are
a Daniels system [48], a function generator mechanism system, and a hydrokinetic
turbine system. Each example represents an important area of applications. Example 1 is
a parallel system and a structural analysis problem where both random variables and
stochastic processes are involved. Example 2 is a series system and a mechanism analysis
problem. Even though there are no stochastic processes in the limit-state functions in
Example 2, the responses of the mechanism system are still stochastic process because
the limit-state functions are functions of time and random variables. Example 3 is a
hydrokinetic turbine system where the turbine blades are subjected to non-stationary

stochastic river flow load.

5.1. Example 1 — A Daniels System

Fig. 4 shows a structural system under stochastic loading.

Place Figure 4 here

The system consists of two bars. Due to different manufacturing precisions, the two
bars have different standard deviations in their dimensions. As the two bars are exposed
to corrosions, their widths and heights decrease at the rates of k; and k>, respectively.

Each of the two bars resists a load of P(¢)/2 until both of the two bars yield. The task is
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to determine the time-dependent system probabilities of failure over different time
intervals up to [0, 20] years.

Since the system is parallel, the time-dependent system probability of failure is given

by
pf,s(lO’ t)=Prig (X Y(x), x)>e ng, (X Y(7),7)>e,, yand Tt €[, £ ]} (61)
where
g (X, Y(l), t) = ? - (al - 2k1t)(b1 - 2klt)6bl ( 62)
(X, Y0, 0= - (0 = 2Kt )b, 2k, (63)

and X=[a,,b,,a,,b,,0,,,0,,],and Y(¢)=[P(¢)]; 0, and o,, are the yield strengths of

bars 1 and 2, respectively. The parameters in Egs. (62) and (63) are presented in Table 1.

Place Table 1 here

The auto-correlation function of the stochastic process P(f) is given by

pP(tl,tz):exp[—(tz—11)2/4’2] (64)
where { =2 years is the correlation length. The longer is the time interval ¢, —¢,, the

weaker is the auto-correlation.
To evaluate the accuracy of the new method, we also performed Monte Carlo

simulation (MCS) using a large sample size of 10’. We compared the upcrossing rates

v, (1), v, (), and v,_,(¢) obtained from the proposed method and MCS as well.
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Figs. 5 through 7 depict the upcrossing rates v/, (¢), v, (t), and outcrossing rate

v/ ,(¢) from both the new method and MCS.

Place Figs. 5-7 here

Note that the curves of upcrossing rates and outcrossing rate from MCS are not
smooth. The noise comes from the numerical discretization of stochastic process.
Nevertheless, the results show the good consistency between the MCS results and those
from the proposed method. This example indicates that the proposed method can produce
accurate joint upcrossing rates and outcrossing rate that are needed for time-dependent
system reliability analysis.

Using the outcrossing rate v,

()

(t), we obtained the system reliability analysis result.
The joint probability p,, ,(%,%) and time-dependent system probability of failure

p;.s(t,1,) are depicted in Figs. 8 and 9, respectively. The latter is also given in Table 2.

Place Figs. 8-9 here

As shown in Fig. 9, the error of the new method becomes larger with a longer period
of time or with a larger probability of failure. The error resource is mainly the assumption
of independent crossings. It is the intrinsic drawback of the upcrossing and outcrossing

rate method [33].
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Place Table 2 here

The error £ (%) is calculated by

c= pf,MCS - pf,new

x100% (65)
Py ovcs

in which p, . and p,  are the results obtained from MCS and the new method,

respectively.

To show the computational cost of the new method, we also provide the numbers of
function calls in Table 3. The results indicate that the new method is much more efficient

than MCS.

Place Table 3 here

5.2. Example 2 — A function generator mechanism system
A function generator mechanism is a mechanism used to realize a desired motion [20,

21]. Such a system is shown in Fig. 10. This system consists of two function generator

mechanisms. Mechanism 1, a four-bar linkage mechanism with links B,, B,, B; and B,,

generates a sine function while mechanism 2, the other four-bar linkage mechanism with

links B,, B;, B, and B,, generates a logarithm function.
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Place Fig. 10 here

For the sine function generator (Mechanism 1), the motion input and motion output

are y and x =k, (B, y), respectively. The required motion output is given by
. o3 .
x,(y)=60"+60sin |:Z (y—97 )} (66)

For the logarithm function generator (Mechanism 2), the motion input and motion

output are @and 17 =17,(B, 8), respectively. The required motion output is given by

log,,[(8+157)/607]
log,,(2)

1,(0) = 60 (67)

A motion error is the difference between the actual motion output and the required

motion output. For the two mechanisms, their motion errors are
&.(B,y)=x,(B,y)—x,(y) (68)
and
€,(B,0)=1,(B,0)-1,(0) (69)
where B=[B,,B,,---,B,].
Links B> and Bs are welded together, the two input angles satisfy
y=62"+6 (70)

From the mechanism analysis, the following equations can be obtained:

EKi«/E,f+D,f—FK2)

FK - DK

K,(B,y)=2 arctan(_ (71)
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where D_=2B,(B,—B,cosy) , E_=-2B,B,siny , and
F.=B’+B;+B; —B; —2B,B,cosy .
—E, *,|E; +D; - F;
n,(B, @) = 2arctan( ) (72)
-D,
n n
7,(6) =60 log,,[(9+15)/60°]/ log,(2) (73)

where D, =2B,(B, —B;cost), E, =-2B,B,sin®, and

F, =B} +B; +B; —B; —2B B cos 0 .

In this problem, the time factor is the input angle @ . There are no stochastic
processes in the input variables. The vector of random variables is therefore
X=B=[B,B,,:-,B,] , and the vector of stochastic processes Y is empty. Since the
time factor @ appears in both functions of the motion errors, the motion errors are still

stochastic processes. The motion errors should not be large, and their allowable values

are denoted by ¢, and e, . All the parameters are given in Table 4.

Place Table 4 here

We would like the mechanism system to perform its intended functions over an

interval of [4,, 8.]1=[45",105]. If either motion error is greater than its allowable value
over [6,,6,1=[45",105"], a failure is considered. As a result, the system is a series

system, and the system probability of failure is
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pf,s(909 gs) = PI‘{EK(B, Z) > el ugy](Ba T) > eza EIZ? Te [009 eg']} ( 74)
Figs. 11 through 13 show the results of joint upcrossing rates v; (), v;, (6), and

outcrossing rate v, ,(6), from the proposed method and MCS. The sample size of MCS

is 107.

Place Figs. 11-13 here

The results show that the proposed method is able to estimate the joint upcrossing rate
with good accuracy. Based on the joint upcrossing rates, we obtained the time-dependent

system probability of failure as presented in Fig. 14 and Table 5.

Place Fig. 14 here

Place Table 5 here

The results show that the accuracy of the proposed method is good. Table 6 gives the

number of function calls required by the new method and MCS.

Place Table 6 here
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5.3. Example 3 — A hydrokinetic turbine system
5.3.1. Problem statement

A hydrokinetic turbine system is employed as our third example [24, 49]. This system
is used to extract energy from river water flow and it is subjected to stochastic flow loads
during its operation. A 3-dimensional model of the hydrokinetic turbine blade is created
as shown in Fig. 15. The blade is one-meter long and made of steel. The turbine blade is
twisted and has variable chord length along the radial direction. The hydrofoil of the
blade is NREL S809. The lift and drag coefficients of the hydrofoil are available in Ref.
[50].

Place Fig. 15 here

A failure occurs if either of the two blades fails when the maximum strain of the
blade is larger than the allowable strain. The time-dependent failure probability of the

turbine system is given by

Py (1) =Prigi(X, Y(x), 1) >0Mg, (X, Y(7),7) >0, Iy and 7 €[z, 1,1} (75)
where [7,7,]=[0,12] months, g,(X,Y(¥),¥)=S..,(¥)—0, , where S .(y) is the
maximum strain of the blade obtained from FEA simulation, X=[v,,0,,,V,,0,,],
v,, and o,, are the Young’s modulus and maximum allowable strain of the i-th blade,
respectively, and Y(¢) =[V.(¢)] is the stochastic river flow velocity. Table 7 gives the

statistical information of the variables involved. The mean g, (¢), standard deviation
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o,(t), and correlation function p, (¢,,t,) of the stochastic river velocity V (¢) are given

by
4
w, ()= a;sin(bt +c,) (76)
i=1

where [a,, a,, a,, a,] =[3.815,2.528,1.176, —0.0786],
[, b,, by, b,1=[0.2895, 0.5887,0.7619,2.183], and

[¢,» ¢y, ¢5,0,]1=[—0.2668,0.9651,3.116, —3.161]
4

o, ()= 0.1a,exp(—((t=b,))/ ¢,)*) (77)
i=1

where [a,, a,, a,, a,]=[0.7382,1.013,1.875,1.283],
[b,, by, by, b,]=[6.456, 4.075,9.913,1.035], and
[c,, ¢,, ¢y, ¢,]=[0.9193,1.561, 6.959, 2.237],

py (. 1,) =exp| —(t, —1,)*/0.08" | (78)

The above information of the river flow velocity is obtained by analyzing the

historical data of the Missouri river [51].

Place Table 7 here

Next we first discuss how to perform FEA analysis to obtained the maximum strain
for a given river flow velocity and realization of random variables. We then present the

process and result of the time-dependent reliability analysis.
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5.3.2. FEA analysis
From the load analysis, it is found that the turbine blade is subjected to an edgewise

moment generated from the edgewise force F, and a flapwise moment generated from
the flapwise force F) . In order to compute F; and F) , the turbine blade is divided into
48 stations along the radial direction. After the discretization, the edgewise force F;. ; and
flapwise force F) ; at station i are computed using the Blade Element Momentum (BEM)

theory [52] based on the geometry of the turbine blade, local pitch, and the river velocity
at the station. More details about the load analysis of the turbine blade is available in Ref.
[52]. After the forces at stations of the turbine blade are obtained, they are input into
Finite Element Analysis (FEA) to get the stress response of the blade. Fig. 16 gives the
flowchart of the stress analysis. Fig. 17 plots a snapshot of the stress analysis results of
the blade. From the stress response, we obtain the maximum stress and also the maximum

strain.

Place Figs. 16-17 here

5.3.3. Time-dependent reliability analysis

Figs. 18 through 20 show the results of v, (0), v, (6), and v, ,(0), from the

proposed method and MCS. The sample size of MCS is 10°.

Place Figs. 18-20 here
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The results show that the proposed method is able to estimate the joint upcrossing rate
accurately even for problems with non-stationary Gaussian process. Based on the joint
upcrossing rates, we obtain the time-dependent system probability of failure as presented
in Fig. 21 and Table 8. The results show that the accuracy of the proposed method is

good. Table 9 gives the number of function calls required by the new method and MCS.

Place Fig. 21 here

Place Tables 8-9 here

6. Conclusion

Time-dependent system reliability analysis plays a vital role in the system level
optimization, lifecycle cost estimation, and decision making on maintenance and
warranty. With the availability of computational models, predicting how the system
reliability changes with time is possible. Making such a prediction both accurate and
efficient is critical.

In this work we proposed a time-dependent reliability method for a system with two
response variables that are functions of random variables and stochastic processes. The
method is based the First Order Method (FORM) and the upcrossing rate method (the
Rice’s formula). The new method can be applied to general problems with random
variables, stochastic processes, and time because it can be extended to systems with more

than two response variables. With the use of FORM, the proposed method is also
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efficient. However, the error of FORM may affect the accuracy of the proposed method.
The proposed method is therefore limited to problems when FORM is applicable.

As an upcrossing rate method, the new method may produce a larger error if the
probability of failure is larger. The reason is that when the probability of failure is large,
the dependency between upcrossings may become strong.

The future research based on this work may be (1) the improvement of the accuracy,
(2) the extension of the method to systems with more than two response variables, and (3)
the integration of the method with optimization so that the time-dependent system

reliability-based design can be performed.

Appendix A: Time-dependent component probability of failure, p, , (7,,7,)
P, (4,1, k=ior j can be computed with Eq. (14), where the initial probability of
failure is
D (t0)=1—d)[,8k(t0)] where k=ior j (A1)
where @(-) is the cumulative probability function (CDF) of a standard normal random

variable.

The upcrossing rate v, (¢) in Eq. (14) is calculated with the Rice’s formula [26, 27] and

is given by
Vi (1) = o, (P BB, ()] o (2)) (A2)
in which
o _ aﬂk (t )
Dy === (A3)
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¥(x) = [ (g = )d(q)dg = P(x) — xD(~x) (A4)
and ¢(-) is the probability density function (PDF) of a standard normal random variable.

o, (1) is given by [24]

@} (£) = &, (S () + oy (NC, (¢, Doy (1) (AS)
where
&, () =[o, (1 + Af) — o, (£)]/ At (A6)
and
[0 0 0 - 0 |
aszl(ltlﬂlE) 0 0
ot
Clz(fl,fz)l:l .= 0 0 I 0 (A7)
0 0 0 ... PpMh)
i onot, |

in which pY’ (¢,,t,), where [ =1,2,---m, are coefficients of auto correlation of stochastic

process /.

Appendix B: Transformation of v;_(l)

Eq. (37) can be rewritten as
— ﬂ] (1) po . . . .
V()= Lo jﬂ L= BOVL BV, )y U0, Gl (B1)

where ij () is the conditional PDF of L; given L, = f,(¢), and fLi\ LeA,L, () is

|L=p, (1)

the conditional PDF of L. given L, = 3,(¢) and L=I.
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Since L(?), L), and Zi(t) are all Gaussian processes, we have

( lj_'uL.L.: (¢
V;_(t)=¢(/3i(t))fi() 1 p J|L=5,) {Iﬂ()[ —ﬂ()]f Hennt, l(l)dl}dl (B2)

GL,\L,:ﬂ,-(t) GL,\L,-=ﬁ,-(t)

Defining z=(/, - Hilt-po0.1,-, )/O-L‘,.\L,:ﬂ,.m,;,:z, , we transform Eq. (B2) into

py0) b=ty pn

¢

LjL=p) O lL-p0

OELVAG)

(B3)

o0 ﬂL L= (t),L,=l. _IB(t)
NES deehont T gz Ll
\L =B L=l )z, o. J
L|L=p,), L;=1,

where Z (ﬁ(t) ,uL‘L =B, L, 1)/ L|L=p(),L

= j

Appendix C: Derivation of v, (¢)
Since Z,(1+Ar)>0and Z,(t+Af)>0, expanding Z, and Z, at time ¢, we have

Z(t+At)~z(t)+Z,(t)At >0 and Z (t+A) =z (t)+2;()Ar >0, then Eq. (55) becomes
My =77 (ij_z S22, i 2ps 21 2 )z dz 2 d2 (CI)
Let Z(t)/(-Z,(t)A)=W,(¢) and Z,(t)/(=Z,()At)=W,(¢) , Eq. (Cl) is further
transformed into
My = [T S aa) G2 AN, — 2 At 2, 22 2 Ardwdw dz 2, (C2)

Plugging Eq. (C2) into (53) yields
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++
v (2

+o© +o 0 0 . - - . - . - .
. J‘O IO L L fW,WfZ'iz'/ (=z,Atw,, =z Atw,, z,, 2 )Z,Z AtAtdw,dw,dz,dz,
B At—0 At

0 p40 #0 0 L o Lo
o [0 T T T 2 (00,2, 2022 AtAdwdw dz, d,
t

At—0 A

=timAdf, [ i B B 13 = B = ) didi,

At—0

=0

(C3)
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Table 1 Variables in Example 1

Variable Mean Standard deviation Distribution Auto;on
-elation
a, 1.3 1in 0.01 in Gaussian N/A
b, 1.2 in 0.01 in Gaussian N/A
a, 1.31in 0.05in Gaussian N/A
b, 1.21in 0.05 in Gaussian N/A
Oy 36 kpsi 0.36 kpsi Gaussian N/A
Oy, 36 kpsi 0.36 kpsi Gaussian N/A
P(1) 90 kpsi 9 kpsi Gaussian Process  Eq. (64)
k, 5x10** in/year 0 Deterministic N/A
k, 3x10*in/year 0 Deterministic N/A
e 0 0 Deterministic N/A
e, 0 0 Deterministic N/A
Table 2 Time-dependent system probability of failure
. New Method MCS
Time 95% confidence
i t,,t t,,t
interval | P, ,(t0:8) &%) | Pr1) nterval
[0, 2] 0.0126 2.64 0.0123 [0.0121, 0.0125]
[0, 5] 0.0261 4.46 0.0250 [0.0247, 0.0253]
[0, 8] 0.0416 5.31 0.0395 [0.0391, 0.0398]
[0, 11] 0.0591 7.08 0.0552 [0.0547, 0.0556]
[0, 14] 0.0789 8.21 0.0729 [0.0724, 0.734]
[0, 17] 0.1010 10.03 0.0918 [0.0912, 0.0924]
[0, 20] 0.1256 11.98 0.1122 [0.1116, 0.1128]
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Table 3 Number of function calls

JTime oW Method  MCS
interval

0. 2] 230 8x10°
[0, 5] 575 2107
(0. 8] 920 3.2x107
[0, 11] 1265 4.4x107
[0, 14] 1610 5.6x107
[0, 17] 1955 6.8x107
[0, 20] 2300 8x107

Table 4 Parameters in Example 2

Variable Mean Standard deviation Distribution
B, 100 mm 0.3 mm Normal
B, 55.5 mm 0.05 mm Normal
B, 144.1 mm 0.05 mm Normal
B, 72.5 mm 0.05 mm Normal
B, 79.5 mm 0.05 mm Normal
B, 203 mm 0.05 mm Normal
B, 150.8 mm 0.05 mm Normal
e 1.4 0 Deterministic
e, 1.4 0 Deterministic
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Table 5 System time-dependent probability of failure

T New Method MCS
; ntler;lVZI Pr.s @,,0)(1 £(%) pf,s(eoa 0) 95% confidence
0?) ° (107) interval (107%)
[45, 50] 0.224 13.13 0.198 [0.189, 0.206]
[45, 55] 1.165 3.56 1.125 [1.104, 1.146]
[45, 57] 1.701 3.85 1.638 [1.613, 1.663]
[45, 59] 2.253 3.16 2.184 [2.155,2.213]
[45, 61] 2.615 2.03 2.563 [2.532, 2.595]
[45, 63] 2.694 1.32 2.659 [2.627,2.691]
[45, 65] 2.695 1.35 2.659 [2.627,2.691]
Table 6 Number of function calls
Time interval New Method MCS
[45, 50] 14685 5x108
[45, 55] 29370 10x108
[45, 57] 35244 12x108
[45, 59] 41118 14x108
[45, 61] 46992 16x108
[45, 63] 52866 18x108
[45, 65] 58740 20x108
Table 7 Parameters in Example 3
Variable Mean Standard deviation Distribution
v, 1.4GPa 0.02GPa Normal
o, 0.024 0.002 Normal
v, 1.4GPa 0.02GPa Normal
O, 0.024 0.002 Normal
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Table 8 System time-dependent probability of failure

Time New Method MCS
interval Pr.s (6, 0) (10%) ¢ (%) pf,s(eoa 0) (107
[0, 2] 0 0 0
[0, 4] 0.04 33 0.06
[0, 6] 0.25 16.7 0.30
[0, 8] 1.39 14.9 1.21
[0, 10] 1.39 14.9 1.21
[0, 12] 1.39 14.9 1.21
Table 9 Number of function calls
Time interval New Method MCS
[0, 2] 398 5%10°
[0, 4] 780 1x107
[0, 6] 1174 1.5%107
[0, 8] 1562 2x107
[0, 10] 1950 2.5%107
[0, 12] 2346 3x107
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Step 1: Parameter Initialization

v

Step 2: First Order Reliability Method (FORM)
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0 7\ 0 ¢V+ (t)
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outcrossing rate

v

Step 6: Solve for
pf,s(t()a ts)

Fig. 3 Flowchart of time-dependent system reliability analysis
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Fig. 4 A two-bar system
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Fig. 15. Geometry configuration of the turbine blade
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Fig. 16. Flowchart of the stress analysis for the turbine blade
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Fig. 17. Stress response of the turbine blade
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