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ABSTRACT

The performance of a product varies with respect to time and space if the associated limit-state function
involves time and space. This study develops an uncertainty analysis method that quantifies the effect of
random input variables on the performance (response) over time and space. The combination of the first
order reliability method (FORM) and the second order reliability method (SORM) is used to approximate
the extreme value of the response with respect to space at discretized instants of time. Then the response
becomes a Gaussian stochastic process that is fully defined by the mean, variance, and autocorrelation
functions obtained from FORM and SORM, and a sequential single loop procedure is performed for spatial
and random variables. The method is successfully applied to the reliability analysis of a crank-slider

mechanism, which operates in a specified period of time and space.
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1. INTRODUCTION

Uncertainty, which is a gap between the present state of knowledge and the complete knowledge [1],
exists in all stages of product development and operation [2]. Examples of uncertainty include random
material properties, random loading, random operation conditions; they also include random
manufacturing imprecision, as well as the lack of knowledge, such as ignorance, assumptions, and
simplifications [1]. Numerous applications and studies have shown that not considering uncertainty
properly during the design stage can lead to serious problems, such as low reliability, low robustness, low
customer satisfaction, high risk, and high lifecycle cost [1, 3-5].

Reliability methods provide useful tools for uncertainty quantification and management. This is
because reliability is not only an important quality characteristic of a product, but also related to other
characteristics such as robustness, risk, safety, maintainability, and cost. Reliability is usually quantified
by the probability that a product performs its intended function over a specified period of time and under
specified service conditions [6]. Reliability problems can be roughly grouped into four categories: (a)
time- and space-independent (TSI) problems, (b) space-dependent (SD) problems, (c¢) time-dependent (TD)
problems, and (d) time- and space-dependent (TSD) problems. It is obvious that TSD problems belong to
the most general category since other three types are just special cases of the TSD category.

TSI problems are the most traditional problems. They involve only time- and space-independent
random variables, such as the geometry or material properties of a structure and applied loads. The
responses are also random variables. Reliability methods for TSI problems include, but are not limited to,
analytical methods, surrogate model methods, moment methods, and simulation methods. Typical
analytical methods include the first-order reliability method (FORM) and the second-order reliability
method (SORM) [7-12]. FORM and SORM simplify a limit-state function, which specifies a functional

relationship between a response and random input variables, using the first and second order Taylor series
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expansions, respectively, at the so-called most probable point (MPP) [13]. Surrogate model methods [14-
16] use simplified models, which are generally obtained from the design of experiments or variable
screening by means of sensitivity analysis, to improve the computation efficiency. Moment methods [13,
17] calculate the moments of the limit-state function and then approximate its distribution with the
moments; and then the distribution is used to obtain the reliability. Simulation methods include the direct
Monte Carlo simulation (MCS) [18], quasi-Monte Carlo simulation [19], importance sampling [20], and
subset simulation [21]. Usually, simulation methods are accurate but computationally expensive.

SD problems have responses that are space dependent. This happens when either input variables are
spatially distributed with random fields [22] or the response is a function of spatial variables. Structural
reliability analysis for this kind of problems usually requires stochastic finite element methods [22, 23].

Another dimension on which the uncertainty may depend is time. This happens when the response is
a function of time or input variables, such as material properties and loads, which are time-variant
stochastic processes. For these TD problems, many methodologies are available, including upcrossing rate
methods [24-26], surrogate model methods [27-30], simulation methods [31, 32], probability density
evolution method [33], envelope function method [34], failure process decomposition based method [35],
and extreme value moment method [36]. Generally speaking, upcrossing rate methods are the most
dominant methods, surrogate methods can obtain accurate results if the surrogate models are well trained,
and simulation methods are also accurate but computationally expensive.

The combination of an SD problem and a TD problem leads to a TSD problem where the response is
dependent on both space and time. For TSD problems, only a few methods are available in the literature.
Hu and Mahadevan [37, 38] developed a method based on adaptive surrogate modeling. Shi et al. [39]
proposed two strategies. One strategy is combing sparse grid technique with the fourth-moment method.

And the other is combining the dimension reduction and maximum entropy method. Shi et al. [40]
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developed a transferred limit-state function technique to transform the TSD problem into a TSI counterpart.
These methods still have limitations for wider applications. Efficiently and accurately dealing with TSD
problems remains a challenging issue. There is a need to develop efficient, accurate, and robust methods
for TSD problems.

In this work, we aim at developing an efficient and accurate method for a special TSD problem where
the response is a function of temporal and spatial variables, as well as random variables. As a result, the
response is a time-dependent random field. The main idea is to approximate the extreme value of the
response with respect to space at discretized instants of time using the combination of FORM and SORM,
thus transforming the TSD response into an equivalent Gaussian stochastic process. The transformation
is performed by a sequential single loop procedure [7, 41-43] so that high efficiency is maintained. The
Kriging method [44] is also employed. Then MCS is employed to estimate the reliability by sampling the
Gaussian process.

The rest of the paper is organized as follows: Section 2 discusses the problem addressed in this study,
and Section 3 provides an overview of the proposed method followed by the extreme value analysis and
the general process in Sections 4 and 5, respectively. Two examples are given in Section 6, and

conclusions are made in Section 7.

2. PROBLEM STATEMENT
In this work, we focus on a response that is a function of temporal variables, spatial variables, and

random variables. The limit-state function is defined by

Y=g(X,S,1) (D)

. 7 . . . .
where Y is the response, X=[X,X,,..,X,] is an m-dimensional input random vector,

S:[SI,SZ,...,Sn ]T is an n-dimensional spatial variable vector bounded on [§,§} , and ¢ is the time

bounded on [#,7].
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When Y <0, a failure occurs. The reliability in the space [§,§] and time span [ t ,t_] is then defined
by

R:Pr{g(X,S,t)>0, VSe[§,§J,We[L,t_]} )

where V means “for all”.
Since the response is a function of random variables and time, Y is a stochastic process, and it is also

a random field because it is a function of random variables and space. As a result, I is a general time-
dependent random field. This kind of TSD problem is commonly encountered in engineering applications.
For example, the performance of a mechanism, such as the motion error, is a stochastic process due to
random mechanism dimensions and joint clearances. The mechanism may also operate in different
locations, and the mechanism performance is also space dependent.

This kind of reliability problem is usually more complicated than TSI, SD, and TD problems since it
involves both spatial and temporal variables. In this work, we develop a method to effectively perform

uncertainty analysis for TSD problems.

3. OVERVIEW
As mentioned in Section 1, the main idea of the proposed method is to approximate the extreme value
of the response with respect to space at discretized instants of time using FORM and SORM, thus

transforming the TSD response into an equivalent Gaussian stochastic process. Eq. (2) is converted into

R=Pr{Y . (X,t)= min g(X,S,)>0, Vie[t,7] 3)

Sq s8]

where Y (X, t) is the minimum value of g (X, S, t) withrespectto S. Y. (X, t) is a general stochastic

min

process, and Eq. (3) can be therefore regarded as the reliability of a TD problem. Since it is nearly
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impossible to simulate the stochastic process Y, (X,t) directly, we need to convert it into an equivalent

min

Gaussian process H (t) such that [45]

R=Pr{Y

min

(X,t)zsrel[g%] g(X,S,t)>0, Vi e[t,7] @

zPr{H(t)>O,Vte[£,7]}

A possible way to convert Y. (X, t) into H (t) is to employ FORM at every instant of time on [ t, t_]

min
as FORM is capable of transforming a non-Gaussian random variable into a Gaussian random variable

[45]. However, FORM may result in poor accuracy when Y, (X,t) is highly nonlinear. A better idea is

to employ SORM to improve the accuracy, but SORM does not transform a non-Gaussian random variable
into a Gaussian one, as what FORM does. To address this problem, we inversely convert the instantaneous

reliability obtained by SORM to its equivalent reliability index with which an equivalent Gaussian

variable, which is needed for H (t) , can be constructed. However, SORM is less efficient than FORM,

especially when the dimension of X is large. To balance the accuracy and efficiency, we use SORM only
at time instants where the corresponding instantaneous reliability is relatively small because the accuracy

of the instantaneous reliability at those instants is more important.

Calculating Y, (X, t) and performing FORM and SORM at every instant of time is impractical. We

min
therefore create surrogate models to reduce the number of extreme value analyses and executions of

FORM and SORM. Details will be given in Section 5.
After H (t) is numerically obtained, MCS will be implemented to estimate R or the corresponding
probability of failure
p,=1-R ®))

It is worth mentioning that Eq. (2) can also be rewritten as
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Se[§,S:|,te[L,t ]

R=Pr{ min g(X,S,/)>0 (6)

which means that the TSD problem can also be transformed into a TSI one, with the minimum value of

g (X, S, t) with respect to both spatial and temporal variables. But we do not do so for two reasons. First,
in many engineering problems, the response g (X, S, t) fluctuates significantly with respect to { and may

not be a convex function of {. Thus, calculating the minimum value of g(X,S,t) with respect to ¢ will

involve global optimization, which is in general less computationally efficient. Second, even if

. [Sr%l]in[ . g(X,S,7) can be obtained, the reliability function with respect to 1 may not be generated, and
el S,S |, te[t,7

only the reliability at the end of the period of time under consideration can be obtained. The proposed
method can easily produce the reliability function for the entire period of time. Details will be given in

Section 6.

4. EXTREME VALUE ANALYSIS AT AN INSTANT OF TIME

In this section, we provide details about how to obtain H (T), TE [ t ,t_] . As mentioned in Section 3, to

obtain H(7), we need to calculate Y, (X,7) and perform FORM and SORM. In Subsection 4.1, the

extreme value analysis using FORM will be given and then in Subsection 4.2 details on how to adaptively
update the analysis result using SORM will be described.
4.1 Extreme value analysis using FORM

The extreme value analysis at time instant 7 using FORM can be modelled as the following
optimization problem [7, 42, 43, 46]:
min||U||

st. min g(T(U),8,7)=0

Se[s.S]

(7)
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where U is the vector of standard Gaussian variables transformed from X, and T (-) stands for the

transformation. Eq. (7) indicates a two-layer optimization problem whose solution usually requires a
double-loop optimization process. The outer loop is the FORM analysis, and the inner loop is the extreme
value analysis. Usually, the double-loop optimization can lead to low efficiency. To improve the efficiency,
Du et al.[7, 42, 43] developed a sequential single-loop (SSL) approach to decouple the two loops to a
sequential single-loop process. The flow chart of employing SSL to solve the optimization problem in Eq.

(7) is shown in Fig. 1.

Step 1
Initial Uand S
k=1

v

Step 2
min g(T(U(“),S,r)

st.Se [§, §]

S(k)
Ste;;S

min |U| k=k+1

s1.g(T(U),8",7)=0

Step 4 No

~Converge?

Yes\

Step 5
§'(r)=8".U"(r)=U", g(r) =|U’
a(r)=U"/B(r),H(r)=p(r)+a' (7)U

Fig. 1 Flow chart of SSL
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Step 5 involves major equations for the MPP search. f and o are the reliability index and sensitivity
vector, respectively, and both are dependent on the specific instant of time z . Obviously, once both (t)
and a (t) NAS [ t, t_] , are obtained, H (t) is available and can then be used for the MCS process to estimate

the reliability or the probability of failure.

Because ||oc(t)|| =1 and U is a vector of standard Gaussian variables, the mean of H (t) is f (t) ,
the standard deviation of H () is constantly 1, and the autocorrelation of H (¢) is [26, 45]

p(t.t)=a"(¢)a(t,) (8)

Note that although p(tl,tz) is an important statistical characteristic of H (t), it is not necessary for

sampling of H (t) . In fact, what we need are only the samples of U , and the samples of H (t) can be

easily obtained via the following equation
H(t)=p(1)+a’ (1)U ©)

4.2 Extreme value analysis using SORM
To improve the accuracy of Eq. (9), we also use SORM to update f (t) if necessary. Since it is
impossible to perform extreme value analyses at all time instants on [ 1, t_] ,we only dosoat N instants
of time denoted by t= (tl,tz,...t....,tN) , and hence what we need to wupdate is
ﬂ(t) = (ﬁ(tl ) ,,8(12 ) ,...,B(ti ) ,...,,B(IN )) . However, SORM is more computationally expensive than
FORM, especially when the number of dimension of X is large. Therefore, we propose to update only
some key elements of (t) that influence the target reliability R more than other elements. It is reasonable

that those key elements have smaller values than others, because a smaller instantaneous reliability index

p (ti) contributes more to the failure event than a larger one.
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Fig. 2 shows the procedures to select the key elements of ,B(t) and update them using SORM. In
Step 1, S (t):(S*(tl),S*(tz),...S*(ti)...,S* (tN)) , U*(t):(U*(tl),U* (2,),..0"(¢,)...,U" (tN)) , and
a(t) :((x(tl),a(tz),...(x(tl.)...,(x(tN )) . In Step 3, B, represents the p -th percentile of S(t). For
example, if p =30, at 30% of the time instants SORM will be performed. Generally speaking, the larger

is the value of p, the more accurate will R be, but with lower efficiency. In Step 4, since S (tl.), U’ (ti ) ,
and o (ti) are already available from FORM in the SSL procedure, it is quite straightforward to calculate
the corresponding instantaneous probability of failure p, (t,.) using SORM without searching for the

MPP U (1,).

Step 1
Get §"(t),U"(t),a(t) and B(t)
from the SSL procedure;seti =1

v

Updated ()« oba =il
SfisN o

Yes ¢
1f Pt)< ﬁﬁ —p
Yesy
Step 4
Calculate p, (1,) based on
S"(#,). U (1) and a(,)
using SORM

l p, (1)

Step 5
Update g (t,):
p(1)=a" (l_ Pt ))

Fig. 2 The procedure of updating (t) using SORM
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5. PROCEDURE
In this section, the complete procedure of the proposed method is detailed. Overall, there are three

main stages in the procedure. Stage 1 is the SSL procedure discussed in Subsection 4.1. Stage 2 updates

B(t) using SORM, as detailed in Subsection 4.2. Stage 3 calculates B(¢) and a(¢),t €[¢,7] with the

employment of Kriging models. In the last stage, MCS is implemented to sample H (¢) and then estimate
ploy ging g p p

the probability of failure.

The flow chart is shown in Fig. 3, and explanations are given in Table 1. In Fig. 3, Steps 1, 2, and 6
are grouped into Stage 1; Steps 3, 8, and 9 are grouped into Stage 2; Stage 3 contains Steps 4 and 5; Stage
4 involves only Step 10. Since Stages 1 and 2 have been discussed in Section 4, and Stage 4 (i.e. the MCS

procedure) is straightforward, herein we discuss mainly Stage 3, or the use of Kriging model to
approximate 3() and a(t),t €[¢,7].

The Kriging model can provide not only predictions, but also probabilistic error o (or the mean

square error) of the predictions [44, 45]. Therefore, we can judge if the model is well trained with the error

information. For a to-be-approximated function (V) , the Kriging model is expressed as
ﬁ(v):f(v)+8(v) (10)
where f (V ) includes polynomial terms with unknown coefficients, and e(v) is the error term assumed

to be a Gaussian stochastic process with mean zero and variance o’ [44]. For the problem in this work,

F(V) may be (x(t) or f(t), and v is t. This means that we build Kriging surrogate models for (x(t)

and S(¢r) with respect to time. The Kriging models are denoted by ﬁ(t) and d(t). We do not provide

details about how to create the models, and interested readers can refer to reference [44].
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Step 1
Evenly generate N samples of ¢:
t=(t,0,00y.7)

A 4
Step 2
N times of SSL procedure

S (1).U°(0).8(0).a(1),

Step 3
Update S3(t) using SORM
ﬂ(t),ﬂ.(t) v
Step 9
Step 4 B(t),a(t) Uoda ep _
4
Kriging prediction 3 pdate / ([”e“') using
SORM
A
No P Yes
Step 8
If ﬁ(tuew) < ﬁp
-
Step 7
B(t)=(B(t). B(t,0.))-(t) =(ax(t).(z,.,))
Update 3,
B (t) N d(t), ?/mux 5 fncw v S (tncw ) L4 lJ (tn('w )
. . ﬁ(t"t’“' ) ? a (r"(’“' )
Step 5 ton Step 6
Vaew = Valtowabie Yes g SSL procedure

Py

Fig. 3 Flow chart of the complete procedure
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Table 1 Explanations for the complete procedure

Steps Explanations
1 t=t,t,=1.
2 The detailed procedure of SSL for a given instant of time is shown in Fig.1. Note that after
U” (#,) has been obtained, it will be treated as the initial point when searching for U"(z,,,).
The reason is that usually U"(7,,) is to some extent close to U* (¢, ) and that taking U" (z,)
as the initial point of U” (tm) may reduce the cost of searching for U (tm) . Similarly,
S*(¢,) is also treated as the initial point of $*(,,,).

3 Details of this step is given in Fig. 2.

4 Kriging models ﬁ (t) and &(t) are built. Additionally, the maximum prediction error

coefficient },,, , and the instant £, of time corresponding to y, _are also obtained.

5 If y, .. is larger than the allowable value y .., the Kriging model is not well trained, and
then a new training point at ¢, is added. There is no rigorous method to determine the value
of 7., » DUt experiments show that 10~ is a good one.

6 Details are given in Fig. 1.

7 The set of training points is updated.

10

N, samples of U are generated first, and then N_ samples of H (t) are obtained with
H(t)=p(¢)+&" (¢)U. During the process, [£,7] is evenly discretized into N, points

(Lotyomsty 7).

Some initial samples of S (t) and (x(t) are generated after the SSL procedure has been performed at

instants t=(£,t2,...,t,\,_1,t_). Then the samples of ﬂ(t) and (x(t) are used to train Kriging models,

which are then used to approximate or predict a’ (t) and ,B(t) at t, =(L,t2,...,tNl_l,t_). Since the

dimension of ((xT (t), B (t))T is m+1 , with the Kriging prediction, a prediction matrix p and prediction

error matrix ¢’ , whose dimensions are both N, x(m+1), can be obtained. Then the prediction error

coefficients y are calculated by

Yy=o./pn (11)
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where “./” denotes an elementwise vector division. To make sure the Kriging models are well trained,

the maximum y,__ of y should be smaller than the allowable value 7, . .oc- I Ziax > Vatiowabe » @ NEW

instant ¢ of time is selected through

t,, =arg maxy( t, =£,tz,...,tNFl,t_) (12)

and [ (t ) and a (tnew) are added to the training point set to refine the Kriging models. Usually, a smaller

Vatowane 1€ads to higher accuracy of p, , but more training points are needed, thus resulting in lower

efficiency.

6. EXAMPLES

In this section, two examples are used to demonstrate the proposed method. MCS is employed to
provide accurate solutions for the accuracy comparison.
6.1 A mathematical example

In this mathematical example, the limit-state function is defined by

2(X,S,t) =8+10x, +12x, + x,x, +0.1s,5,; )

—0.2x3 cos(t + 7z / 2) +sin(t)
where X=(x,x,)" is the vector of two independent random variables x, ~N(0,0.2%),i=1,2 ,
S =(s,,5, )", where s, €[1.5,2.5], i =1,2, 1s the spatial variable vector, and ¢ €[0,27] rad is the temporal

variable.

The probability of failure is computed over different time intervals with both MCS and the proposed
method. In this example, the 50" percentile (i.e. p=50) of S (t) is used to determine which f (tl.)
=107,

should be updated using SORM, the allowable maximum prediction error coefficient is y,, ..

the initial value of N is 5 (for Kriging models), the number of simulations for A (t) is N, =10°, and the
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number of discretized instants of time is N, =126, which gives a step size of the time 0.05. The number
of simulations of MCS N, is set to 10°, which is the same as N, .

Theoretically, in MCS, for every given realization s of S, we need to generate N, ., samples of
stochastic process g(X,s,t) , leading to a heavy computational burden. In this example, however, for

every given realization x of X, min g(x, S,t) can always be obtained analytically, and so we
Se[1.5,2.51 ,t€[0,27]

use g(X)=  min  g(X,S,7) toreplace the limit-state function shown in Eq. (2) and then perform
Se[1.5,2.5T,t€[0,27]

MCS to get accurate results. Results from the proposed method and MCS are listed in Table 2 and plotted
in Fig. 4.

As Table 2 and Fig. 4 show, the proposed method has good accuracy. The error is mainly caused by
the nonlinearity of the limit-state function. In addition, the number of limit-state function calls by the
proposed method is 217, far less than 33x10°, which is the total number of limit-state function calls by

MCS, showing that the proposed method is quite efficient.

Table 2 Probability of failure over different time intervals

[0,7] p,(proposed) p, (MCS) E(I;(;r

(107) (107)

[0,3.0] 4.636 4.663  0.58
[0,3.5] 6.602 6.617 0.23
[0,4.0] 9.579 9.566 0.14
[0,4.5] 11.666 11.581 0.73

[0,27] 11.902 11.808 0.80

Xiaoping Du 17 Copyright © 2018 by ASME



%107

121 Proposed method
o) MCS
=
& 107
©
2
5 8
©
el
e
0o g¢f
4 1 1 1 L L I
0 1 2 3 4 5 6

Time interval [0,{]
Fig. 4 Probability of failure over different time intervals

6.2 A slider mechanism

Fig. 5 A slider mechanism
Shown in Fig. 5 is a slider mechanism. It is used for difference applications (locations). The locations

or spatial variables are the offset ~# and the initial angle 6, with the following ranges: 4 €[14.9,15.1] m
and 6, €[0°,5°]; the spatial variable vector is then S=(%,6,)" . The random variable vector is
X=(L,L,)" , which includes two independent random link lengths L, ~N(15,0.15°) m and
L, ~ N(35,0.35") m. The time span is ¢ €[0,0.27]s . The limit-state function is defined by

X

g = 1 1 - (xactual - ”E‘qui”ed) (14)

in which the actual position x,,,, and the required position x,,,,,., of the slider are

Xiaoping Du 18 Copyright © 2018 by ASME



= L, co8(6, + 1) + | 2 = (h+ L, sin(6, + @1))’ (15)

xactual

Xogures = 15C08(08) ++/35% —(15+15sin(ar))’ (16)

required
respectively, where @ =1rad/s is the angular velocity.
The probability of failure is computed over different time intervals with both MCS and the proposed

method. In this example, p =50, =107, N, =N, =10°, N, =40 (i.e., the time step of the

allowable

discretization of H (t) is 0.0057 ), and the initial value of N is 7.
Results from the proposed method and MCS are listed in Table 3 and are plotted in Fig. 6. The
proposed method obtains accurate results. As for the efficiency, the proposed method evaluates the limit-

state function 214 times while MCS approximately 40.6x10° . This indicates that the proposed method is
much more efficient.

Table 3 Probability of failure over different time intervals

[0,7] p, (proposed)  p (MCS) E(g;(;r
(0.017 s) (107 (107)
[0,5] 6.765 6.729 0.53
[0,10] 8.750 8.729 0.24
[0,15] 11.930 11.811 1.01

[0,20] 16.975 17.015 0.24
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0.02

Proposed method
MCS

0.015 ¢

0.01¢

Probability of failure

0.005 |

0 0.1 02 03 04 05 086
Time interval [0,{]

Fig. 6 Probability of failure over different time intervals

7. CONCLUSIONS

In this work, a combination of the first-order and the second-order methods (FORM and SORM) is
proposed to perform uncertainty analysis for a time- and space-dependent response with random input
variables. With the employment of FORM, SORM and the sequential single-loop method, we firstly
transform the time- and space-dependent response into an equivalent Gaussian stochastic process, thus
converting the time- and space-dependent reliability problem into an equivalent time-dependent reliability
problem. Then the equivalent Gaussian process is simulated to estimate the time- and space-dependent
probability of failure. To mitigate the computation burden, Kriging models are created to approximate the
characteristics of the equivalent Gaussian stochastic process.

Transforming the time- and space-dependent response into an equivalent Gaussian stochastic process
can avoid global optimization process which aims at obtaining the minimum value of the limit-state
function with respect to the temporal variable.

Numerical examples show that the proposed method has both good accuracy and efficiency. If the
limit-state function, however, is a nonconvex function with respect to spatial variables, the true extreme

value of the response may not be easily found, and in this case, the proposed method may result in large

Xiaoping Du 20 Copyright © 2018 by ASME



errors, or low efficiency, or both. The extreme value of a limit-state function may not be differentiable,
and in this case the MPP search for both FORM and SORM may not converge if a gradient-based MPP
search algorithm is used.

Future research may focus on two directions. The first direction is to develop efficient global
optimization methods for the minimum response with respect to both special and temporal variables, thus
transforming the time- and space-dependent problem into a traditional time- and space-independent
problem. And the second one is to investigate optimization-free methods to efficiently deal with general
problems where the limit-state function is highly nonlinear with respect to input random variables and

nonconvex with respect to both spatial and temporal variables.
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