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ABSTRACT 

The performance of a product varies with respect to time and space if the associated limit-state function 

involves time and space. This study develops an uncertainty analysis method that quantifies the effect of 

random input variables on the performance (response) over time and space. The combination of the first 

order reliability method (FORM) and the second order reliability method (SORM) is used to approximate 

the extreme value of the response with respect to space at discretized instants of time. Then the response 

becomes a Gaussian stochastic process that is fully defined by the mean, variance, and autocorrelation 

functions obtained from FORM and SORM, and a sequential single loop procedure is performed for spatial 

and random variables. The method is successfully applied to the reliability analysis of a crank-slider 

mechanism, which operates in a specified period of time and space. 
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1. INTRODUCTION 

Uncertainty, which is a gap between the present state of knowledge and the complete knowledge [1], 

exists in all stages of product development and operation [2]. Examples of uncertainty include random 

material properties, random loading, random operation conditions; they also include random 

manufacturing imprecision, as well as the lack of knowledge, such as ignorance, assumptions, and 

simplifications [1]. Numerous applications and studies have shown that not considering uncertainty 

properly during the design stage can lead to serious problems, such as low reliability, low robustness, low 

customer satisfaction, high risk, and high lifecycle cost [1, 3-5].  

Reliability methods provide useful tools for uncertainty quantification and management. This is 

because reliability is not only an important quality characteristic of a product, but also related to other 

characteristics such as robustness, risk, safety, maintainability, and cost. Reliability is usually quantified 

by the probability that a product performs its intended function over a specified period of time and under 

specified service conditions [6]. Reliability problems can be roughly grouped into four categories: (a) 

time- and space-independent (TSI) problems, (b) space-dependent (SD) problems, (c) time-dependent (TD) 

problems, and (d) time- and space-dependent (TSD) problems. It is obvious that TSD problems belong to 

the most general category since other three types are just special cases of the TSD category.  

TSI problems are the most traditional problems. They involve only time- and space-independent 

random variables, such as the geometry or material properties of a structure and applied loads. The 

responses are also random variables. Reliability methods for TSI problems include, but are not limited to, 

analytical methods, surrogate model methods, moment methods, and simulation methods. Typical 

analytical methods include the first-order reliability method (FORM) and the second-order reliability 

method (SORM) [7-12]. FORM and SORM simplify a limit-state function, which specifies a functional 

relationship between a response and random input variables, using the first and second order Taylor series 
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expansions, respectively, at the so-called most probable point (MPP) [13]. Surrogate model methods [14-

16] use simplified models, which are generally obtained from the design of experiments or variable 

screening by means of sensitivity analysis, to improve the computation efficiency. Moment methods [13, 

17] calculate the moments of the limit-state function and then approximate its distribution with the 

moments; and then the distribution is used to obtain the reliability. Simulation methods include the direct 

Monte Carlo simulation (MCS) [18], quasi-Monte Carlo simulation [19], importance sampling [20], and 

subset simulation [21]. Usually, simulation methods are accurate but computationally expensive. 

SD problems have responses that are space dependent. This happens when either input variables are 

spatially distributed with random fields [22] or the response is a function of spatial variables. Structural 

reliability analysis for this kind of problems usually requires stochastic finite element methods [22, 23]. 

Another dimension on which the uncertainty may depend is time. This happens when the response is 

a function of time or input variables, such as material properties and loads, which are time-variant 

stochastic processes. For these TD problems, many methodologies are available, including upcrossing rate 

methods [24-26], surrogate model methods [27-30], simulation methods [31, 32], probability density 

evolution method [33], envelope function method [34], failure process decomposition based method [35], 

and extreme value moment method [36]. Generally speaking, upcrossing rate methods are the most 

dominant methods, surrogate methods can obtain accurate results if the surrogate models are well trained, 

and simulation methods are also accurate but computationally expensive. 

The combination of an SD problem and a TD problem leads to a TSD problem where the response is 

dependent on both space and time. For TSD problems, only a few methods are available in the literature. 

Hu and Mahadevan [37, 38] developed a method based on adaptive surrogate modeling. Shi et al. [39] 

proposed two strategies. One strategy is combing sparse grid technique with the fourth-moment method. 

And the other is combining the dimension reduction and maximum entropy method. Shi et al. [40] 
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developed a transferred limit-state function technique to transform the TSD problem into a TSI counterpart. 

These methods still have limitations for wider applications.  Efficiently and accurately dealing with TSD 

problems remains a challenging issue. There is a need to develop efficient, accurate, and robust methods 

for TSD problems.  

In this work, we aim at developing an efficient and accurate method for a special TSD problem where 

the response is a function of temporal and spatial variables, as well as random variables. As a result, the 

response is a time-dependent random field. The main idea is to approximate the extreme value of the 

response with respect to space at discretized instants of time using the combination of FORM and SORM, 

thus transforming the TSD response into an equivalent Gaussian stochastic process. The transformation 

is performed by a sequential single loop procedure [7, 41-43] so that high efficiency is maintained. The 

Kriging method [44] is also employed. Then MCS is employed to estimate the reliability by sampling the 

Gaussian process. 

The rest of the paper is organized as follows: Section 2 discusses the problem addressed in this study, 

and Section 3 provides an overview of the proposed method followed by the extreme value analysis and 

the general process in Sections 4 and 5, respectively. Two examples are given in Section 6, and 

conclusions are made in Section 7. 

2. PROBLEM STATEMENT 

In this work, we focus on a response that is a function of temporal variables, spatial variables, and 

random variables. The limit-state function is defined by 

 , ,Y g t X S                                                                           (1) 

where Y  is the response,  1 2, ,..., T
mX X XX  is an m-dimensional input random vector, 

1 2, ,...,
n

T
S S S   S  is an n-dimensional spatial variable vector bounded on ,  S S  , and t  is the time 

bounded on  ,t t . 
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When 0Y  , a failure occurs. The reliability in the space ,  S S  and time span  ,t t  is then defined 

by 

    Pr , , 0,  , , ,R g t t t t       X S S S S                                             (2) 

where means “for all”. 

Since the response is a function of random variables and time, Y  is a stochastic process, and it is also 

a random field because it is a function of random variables and space. As a result, Y  is a general time-

dependent random field. This kind of TSD problem is commonly encountered in engineering applications. 

For example, the performance of a mechanism, such as the motion error, is a stochastic process due to 

random mechanism dimensions and joint clearances. The mechanism may also operate in different 

locations, and the mechanism performance is also space dependent. 

This kind of reliability problem is usually more complicated than TSI, SD, and TD problems since it 

involves both spatial and temporal variables. In this work, we develop a method to effectively perform 

uncertainty analysis for TSD problems.  

3. OVERVIEW 

As mentioned in Section 1, the main idea of the proposed method is to approximate the extreme value 

of the response with respect to space at discretized instants of time using FORM and SORM, thus 

transforming the TSD response into an equivalent Gaussian stochastic process. Eq. (2) is converted into 

      n ,miPr , min  , , 0,  ,R Y t g t t t t
  

    
S S S

X X S                                               (3) 

where  min ,Y tX  is the minimum value of  , ,g tX S  with respect to S .  min ,Y tX  is a general stochastic 

process, and Eq. (3) can be therefore regarded as the reliability of a TD problem. Since it is nearly 
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impossible to simulate the stochastic process  min ,Y tX  directly, we need to convert it into an equivalent 

Gaussian process  H t  such that [45] 

      
    

mi ,nPr , min  , , 0,  ,

Pr 0, ,

R Y t g t t t t

H t t t t

  

    

   

S S S
X X S

                                      (4) 

A possible way to convert  min ,Y tX  into  H t is to employ FORM at every instant of time on  ,t t  

as FORM is capable of transforming a non-Gaussian random variable into a Gaussian random variable 

[45]. However, FORM may result in poor accuracy when  min ,Y tX  is highly nonlinear. A better idea is 

to employ SORM to improve the accuracy, but SORM does not transform a non-Gaussian random variable 

into a Gaussian one, as what FORM does. To address this problem, we inversely convert the instantaneous 

reliability obtained by SORM to its equivalent reliability index with which an equivalent Gaussian 

variable, which is needed for  H t , can be constructed. However, SORM is less efficient than FORM, 

especially when the dimension of X  is large. To balance the accuracy and efficiency, we use SORM only 

at time instants where the corresponding instantaneous reliability is relatively small because the accuracy 

of the instantaneous reliability at those instants is more important. 

Calculating  min ,Y tX  and performing FORM and SORM at every instant of time is impractical. We 

therefore create surrogate models to reduce the number of extreme value analyses and executions of 

FORM and SORM. Details will be given in Section 5.   

After  H t  is numerically obtained, MCS will be implemented to estimate R  or the corresponding 

probability of failure 

1fp R                                                                           (5) 

It is worth mentioning that Eq. (2) can also be rewritten as 
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 
  , , ,

Pr min  , , 0
t t t

R g t
   

 
S S S

X S                                                       (6) 

which means that the TSD problem can also be transformed into a TSI one, with the minimum value of 

 , ,g tX S  with respect to both spatial and temporal variables. But we do not do so for two reasons. First, 

in many engineering problems, the response  , ,g tX S  fluctuates significantly with respect to t  and may 

not be a convex function of t . Thus, calculating the minimum value of  , ,g tX S  with respect to t  will 

involve global optimization, which is in general less computationally efficient. Second, even if 

 
 

, , ,
min  , ,

t t t
g t

   S S S
X S  can be obtained, the reliability function with respect to t  may not be generated, and 

only the reliability at the end of the period of time under consideration can be obtained. The proposed 

method can easily produce the reliability function for the entire period of time. Details will be given in 

Section 6. 

4. EXTREME VALUE ANALYSIS AT AN INSTANT OF TIME 

In this section, we provide details about how to obtain    , ,H t t   . As mentioned in Section 3, to 

obtain  H  , we need to calculate  min ,Y X  and perform FORM and SORM. In Subsection 4.1, the 

extreme value analysis using FORM will be given and then in Subsection 4.2 details on how to adaptively 

update the analysis result using SORM will be described. 

4.1 Extreme value analysis using FORM 

The extreme value analysis at time instant  using FORM can be modelled as the following 

optimization problem [7, 42, 43, 46]: 

  
,

min

. . min  , , 0s t g T 
  



 
 S S S

U

U S
                                                        (7) 
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where U  is the vector of standard Gaussian variables transformed from X , and  T  stands for the 

transformation. Eq. (7) indicates a two-layer optimization problem whose solution usually requires a 

double-loop optimization process. The outer loop is the FORM analysis, and the inner loop is the extreme 

value analysis. Usually, the double-loop optimization can lead to low efficiency. To improve the efficiency, 

Du et al.[7, 42, 43] developed a sequential single-loop (SSL) approach to decouple the two loops to a 

sequential single-loop process. The flow chart of employing SSL to solve the optimization problem in Eq. 

(7) is shown in Fig. 1. 

 

Fig. 1 Flow chart of SSL 



Xiaoping Du 11 Copyright © 2018 by ASME 

Step 5 involves major equations for the MPP search.   and   are the reliability index and sensitivity 

vector, respectively, and both are dependent on the specific instant of time . Obviously, once both  t  

and    , ,t t t t , are obtained,  H t  is available and can then be used for the MCS process to estimate 

the reliability or the probability of failure. 

Because   1t   and U  is a vector of standard Gaussian variables, the mean of  H t  is  t , 

the standard deviation of  H t  is constantly 1, and the autocorrelation of   H t  is [26, 45] 

     1 2 1 2, Tt t t t                                                                     (8) 

Note that although  1 2,t t  is an important statistical characteristic of  H t , it is not necessary for 

sampling of  H t . In fact, what we need are only the samples of U , and the samples of  H t  can be 

easily obtained via the following equation 

     TH t t t  U                                                                 (9) 

4.2 Extreme value analysis using SORM 

To improve the accuracy of Eq. (9), we also use SORM to update  t  if necessary. Since it is 

impossible to perform extreme value analyses at all time instants on  ,t t , we only do so at N  instants 

of time denoted by  1 2, ,... ...,i Nt t t tt , and hence what we need to update is 

          1 2, ,... ,...,i Nt t t t    t . However, SORM is more computationally expensive than 

FORM, especially when the number of dimension of X is large. Therefore, we propose to update only 

some key elements of   t  that influence the target reliability R  more than other elements. It is reasonable 

that those key elements have smaller values than others, because a smaller instantaneous reliability index 

 it  contributes more to the failure event than a larger one.  
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Fig. 2 shows the procedures to select the key elements of    t  and update them using SORM. In 

Step 1,           1 2, ,... ...,i Nt t t t    S t S S S S ,           1 2, ,... ...,i Nt t t t    U t U U U U , and 

          1 2, ,... ...,i Nt t t tt     . In Step 3, p  represents the p -th percentile of   t . For 

example, if 30p  ,  at 30% of the time instants SORM will be performed. Generally speaking, the larger 

is the value of p , the more accurate will R  be, but with lower efficiency. In Step 4, since  it
S ,  it

U , 

and  it  are already available from FORM in the SSL procedure, it is quite straightforward to calculate 

the corresponding instantaneous probability of failure  f ip t  using SORM without searching for the 

MPP  it
U .  

 

Fig. 2 The procedure of updating   t  using SORM 
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5. PROCEDURE 

In this section, the complete procedure of the proposed method is detailed. Overall, there are three 

main stages in the procedure. Stage 1 is the SSL procedure discussed in Subsection 4.1. Stage 2 updates 

  t  using SORM, as detailed in Subsection 4.2. Stage 3 calculates  t  and    , ,t t t t  with the 

employment of Kriging models. In the last stage, MCS is implemented to sample  H t  and then estimate 

the probability of failure.  

The flow chart is shown in Fig. 3, and explanations are given in Table 1. In Fig. 3, Steps 1, 2, and 6 

are grouped into Stage 1; Steps 3, 8, and 9 are grouped into Stage 2; Stage 3 contains Steps 4 and 5; Stage 

4 involves only Step 10. Since Stages 1 and 2 have been discussed in Section 4, and Stage 4 (i.e. the MCS 

procedure) is straightforward, herein we discuss mainly Stage 3, or the use of Kriging model to 

approximate  t  and    , ,t t t t . 

The Kriging model can provide not only predictions, but also probabilistic error 2  (or the mean 

square error) of the predictions [44, 45]. Therefore, we can judge if the model is well trained with the error 

information. For a to-be-approximated function  F v , the Kriging model is expressed as 

     F̂ f  v v v                                                              (10)                    

where  f v  includes polynomial terms with unknown coefficients, and   v  is the error term assumed 

to be a Gaussian stochastic process with mean zero and variance 2 [44]. For the problem in this work, 

 F v  may be  t  or ( )t , and v  is t . This means that we build Kriging surrogate models for  t  

and ( )t  with respect to time. The Kriging models are denoted by  ˆ t  and  ˆ t . We do not provide 

details about how to create the models, and interested readers can refer to reference [44].  
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Fig. 3 Flow chart of the complete procedure 
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Table 1 Explanations for the complete procedure 

Steps Explanations 
1 

1 , Nt t t t  . 
2 The detailed procedure of SSL for a given instant of time is shown in Fig.1. Note that after 

 it
U  has been obtained, it will be treated as the initial point when searching for  1it



U . 

The reason is that usually  1it


U  is to some extent close to  it
U  and that taking  it

U  

as the initial point of  1it


U  may reduce the cost of searching for  1it


U . Similarly, 

 it
S  is also treated as the initial point of  1it



S . 
3 Details of this step is given in Fig. 2. 
4 Kriging models  ˆ t  and  ˆ t  are built. Additionally, the maximum prediction error 

coefficient max , and the instant newt of time corresponding to max are also obtained. 
5 If max  is larger than the allowable value allowable , the Kriging model is not well trained, and 

then a new training point at newt  is added. There is no rigorous method to determine the value 
of allowable , but experiments show that 410  is a good one. 

6 Details are given in Fig. 1. 
7 The set of training points is updated. 
10 

sN  samples of U are generated first, and then sN  samples of  H t  are obtained with 

     ˆˆ ˆ TH t t t U  . During the process,  ,t t  is evenly discretized into tN  points 

 2 1, ,..., ,
tN

t t t t .  

 

Some initial samples of  t  and  t  are generated after the SSL procedure has been performed at 

instants  2 1 , ,..., ,Nt t t tt . Then the samples of   t  and  t  are used to train Kriging models, 

which are then used to approximate or predict  T t  and  t at  2 1 , ,..., ,
tp Nt t t tt . Since the 

dimension of     ,
TT t t is 1m   , with the Kriging prediction, a prediction matrix   and prediction 

error matrix 2  , whose dimensions are both ( 1)tN m  , can be obtained. Then the prediction error 

coefficients   are calculated by 

/                                                                               (11)   
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where “ / ” denotes an elementwise vector division. To make sure the Kriging models are well trained, 

the maximum max  of   should be smaller than the allowable value allowable .  If max allowable  , a new 

instant newt  of time is selected through 

 2 1arg  max  , ,..., ,
tnew p Nt t t t t t                                                  (12)                    

and  newt  and  newt  are added to the training point set to refine the Kriging models. Usually, a smaller 

allowable  leads to higher accuracy of fp  , but more training points are needed, thus resulting in lower 

efficiency. 

6. EXAMPLES 

In this section, two examples are used to demonstrate the proposed method. MCS is employed to 

provide accurate solutions for the accuracy comparison.  

6.1 A mathematical example 

In this mathematical example, the limit-state function is defined by 

  2
1 2 1 2 1 2 1

2
2

, , 8 10 12 0.1

                 0.2 cos( / 2) sin( )

g t x x x x s s x

x t t

    

  

X S
                                                 (13) 

where 1 2( , )Tx xX  is the vector of two independent random variables 2(0,0.2 ),  1,2ix N i  , 

1 2( , )Ts sS  , where [1.5,2.5]is  , 1,2i  , is the spatial variable vector, and [0,2 ]t   rad is the temporal 

variable. 

The probability of failure is computed over different time intervals with both MCS and the proposed 

method. In this example, the 50th percentile (i.e. 50p  ) of   t  is used to determine which  it  

should be updated using SORM, the allowable maximum prediction error coefficient is 410allowable  , 

the initial value of N  is 5 (for Kriging models),  the number of simulations for  H t  is 610sN  , and the 
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number of discretized instants of time is 126tN  , which gives a step size of the time 0.05. The number 

of simulations of MCS MCSN  is set to 610 , which is the same as sN .  

Theoretically, in MCS, for every given realization s  of S , we need to generate MCSN  samples of 

stochastic process  , ,g tX s , leading to a heavy computational burden. In this example, however, for 

every given realization x  of X ,  
2[1.5,2.5] , [0,2 ]

min , ,
t

g t
 S

x S  can always be obtained analytically, and so we 

use     
2[1.5,2.5] , [0,2 ]

min , ,
t

g g t
 


S

X X S  to replace the limit-state function shown in Eq. (2) and then perform 

MCS to get accurate results. Results from the proposed method and MCS are listed in Table 2 and plotted 

in Fig. 4. 

As Table 2 and Fig. 4 show, the proposed method has good accuracy. The error is mainly caused by 

the nonlinearity of the limit-state function. In addition, the number of limit-state function calls by the 

proposed method is 217, far less than 633 10 , which is the total number of limit-state function calls by 

MCS, showing that the proposed method is quite efficient. 

 

Table 2 Probability of failure over different time intervals 

[0, ]t  
3

(proposed)

(10 )

fp


 

3

(MCS)

(10 )

fp


 

Error 
(%) 

[0,3.0]
 

4.636 4.663 0.58 

[0,3.5]
 

6.602 6.617 0.23 

[0, 4.0]
 

9.579 9.566 0.14 

[0, 4.5]
 

11.666 11.581 0.73 

[0, 2 ]
 

11.902 11.808 0.80 
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Fig. 4 Probability of failure over different time intervals 

6.2 A slider mechanism 

 

Fig. 5 A slider mechanism 

Shown in Fig. 5 is a slider mechanism. It is used for difference applications (locations). The locations 

or spatial variables are the offset h  and the initial angle 0  with the following ranges: [14.9,15.1]h  m 

and 0 [0 ,5 ]  ; the spatial variable vector is then 0( , )Th S . The random variable vector is 

1 2( , )TL LX , which includes two independent random link lengths 2
1 ~ (15,0.15 ) mL N  and 

2
2 ~ (35,0.35 ) mL N . The time span is [0,0.2 ]st  . The limit-state function is defined by 

 1.1 ( )actual requiredg x x                                                                     (14) 

in which the actual position actualx  and the required position requiredx  of the slider are 
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 2 2
1 0 2 1 0cos( ) ( sin( ))actualx L t L h L t                                               (15) 

 2 215cos( ) 35 (15 15sin( ))requiredx t t                                              (16) 

respectively, where 1 rad / s   is the angular velocity. 

The probability of failure is computed over different time intervals with both MCS and the proposed 

method. In this example, 50p  , 410allowable  , 610s MCSN N  , 40tN   (i.e., the time step of the 

discretization of   H t  is 0.005 ), and the initial value of N  is 7. 

Results from the proposed method and MCS are listed in Table 3 and are plotted in Fig. 6. The 

proposed method obtains accurate results. As for the efficiency, the proposed method evaluates the limit-

state function 214 times while MCS approximately 640.6 10 . This indicates that the proposed method is 

much more efficient. 

Table 3 Probability of failure over different time intervals 

[0, ]

(0.01  s)

t



 
3

(proposed)

(10 )

fp


 

3

(MCS)

(10 )

fp


 

Error 
(%) 

[0,5]  6.765 6.729 0.53 
[0,10]  8.750 8.729 0.24 
[0,15]  11.930 11.811 1.01 
[0, 20]  16.975 17.015 0.24 
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Fig. 6 Probability of failure over different time intervals 

7. CONCLUSIONS 

In this work, a combination of the first-order and the second-order methods (FORM and SORM) is 

proposed to perform uncertainty analysis for a time- and space-dependent response with random input 

variables. With the employment of FORM, SORM and the sequential single-loop method, we firstly 

transform the time- and space-dependent response into an equivalent Gaussian stochastic process, thus 

converting the time- and space-dependent reliability problem into an equivalent time-dependent reliability 

problem. Then the equivalent Gaussian process is simulated to estimate the time- and space-dependent 

probability of failure. To mitigate the computation burden, Kriging models are created to approximate the 

characteristics of the equivalent Gaussian stochastic process. 

Transforming the time- and space-dependent response into an equivalent Gaussian stochastic process 

can avoid global optimization process which aims at obtaining the minimum value of the limit-state 

function with respect to the temporal variable.  

Numerical examples show that the proposed method has both good accuracy and efficiency. If the 

limit-state function, however, is a nonconvex function with respect to spatial variables, the true extreme 

value of the response may not be easily found, and in this case, the proposed method may result in large 
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errors, or low efficiency, or both. The extreme value of a limit-state function may not be differentiable, 

and in this case the MPP search for both FORM and SORM may not converge if a gradient-based MPP 

search algorithm is used. 

Future research may focus on two directions. The first direction is to develop efficient global 

optimization methods for the minimum response with respect to both special and temporal variables, thus 

transforming the time- and space-dependent problem into a traditional time- and space-independent 

problem. And the second one is to investigate optimization-free methods to efficiently deal with general 

problems where the limit-state function is highly nonlinear with respect to input random variables and 

nonconvex with respect to both spatial and temporal variables. 
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