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ABSTRACT

Driven by the development of freeform imaging systems, we have combined several concepts and techniques from the
literature to analytically generate unobscured freeform starting point designs that are corrected through the third-order
image degrading aberrations. The surfaces used in these starting point designs are described as a base off-axis conic that
images stigmatically for the central field point, also known as a Cartesian reflector, with an aspheric departure “cap”
(quartic with the aperture) added to the base off-axis conic to correct for the third-order image degrading aberrations.
Once the aspheric caps are added to the surfaces, the system is then optimized using higher order freeform terms while
leaving second-order terms frozen to preserve the focal length of the system during optimization. This technique is used
to survey the three-mirror freeform imager solution space. Several systems that are the result of this technique are
shown, with different numbers of internal images, internal pupil conjugates and folding geometries.
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1. INTRODUCTION

Using a combination of techniques from the literature, we analytically generate unobscured freeform starting point
designs that are corrected through the third-order image degrading aberrations. These are systems with the object at
infinity with a finite image conjugate. This method is used to automatically survey the 5-dimensional solution space of
flat-field three-mirror freeform imagers. We evaluate the performance of the starting points using real raytraces and
select the best performing systems for further optimization. In Section 2 we discuss the constraints that were applied to
reduce the number of dimensions in the solution space. In Section 3 we show the best systems to come out of a survey
run with a slower etendue, and a survey run with a larger etendue.

The sag of the analytically designed freeform surfaces generated here can be decomposed into the base Cartesian
reflector sag, and the aspheric cap (quartic with the aperture). Cartesian reflectors are off-axis conics that are used about
the conic foci, such that for the central field point along the optical-axis-ray (OAR), or base ray, there is stigmatic
imaging. A chain of Cartesian reflectors creates a system of confocal conics, where the conic focus coming out of one
surface is coincident with the conic focus going into the next surface. Confocal conic systems do not have spherical
aberration of any order, nor any other field-constant aberration of any order because there is always a node at the center
of every aberration field. Confocal conic systems are not anamorphic [1].

In a rotationally-symmetric system, conics are often described by the parameters R and &, where R is the radius of
curvature about the vertex and k is the conic constant. For Cartesian reflectors being used at a non-zero angle of
incidence. It is convenient to describe the surface shape in terms of the distances to the stigmatic imaging points, the
object distance and image distance, and the angle of incidence with respect to a local coordinate system where the sag
and slope of that surface is zero at the origin of the local coordinate system. The analytically designed systems have
surfaces that can be described by

Sag(x,y) = Sagcartesian Reflector(lo' l;,0,x,y) + A(xz + yz)za (1)

where Sag(x,y) is the total sag of the surface in the local coordinate system as a function of local coordinates x and y.
Sagcartesian refiector (Lo, Ly 0, %, ) is the sag of the Cartesian reflector as a function of object and image distances, [,
and [;, angle of incidence of the OAR, 6, and the local coordinates x and y. The aspheric cap coefficient, A specifies the
magnitude of the surface term that is quartic with radial coordinate of the surface. Figure 1 shows raytraces for the three
different Cartesian reflectors. Note that the aspheric cap is centered about the origin of the local coordinate system and
not the axis of rotational symmetry for the conic; this breaks the rotational symmetry, making the surface a freeform
surface [2].
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Figure 1. The local coordinate systems of the Cartesian reflectors, with the z axis normal to the surface. The conjugate
distances for the object and image are labelled as /, and /;, respectively. The angle of incidence of the OAR is labelled as 6.
(a) parabolic Cartesian reflector, (b) hyperbolic Cartesian reflector, and (c) elliptical Cartesian reflector.

2. CONSTRAINTS TO REDUCE THE DEGREES OF FREEDOM

The three-mirror systems we are generating analytically are described by 15 parameters. To reduce the number of
dimensions of the solution space, we constrain some of the parameters to meet first-order specifications, as well as
second and third-order image degrading aberration constraints. Figure 2(a) illustrates the 15 parameters, and Figure 2(b)

illustrates which 10 parameters are constrained, and which five are free.
Mirror 1 Mirror 2 Mirror 3 Mirror 1 Mirror 2 Mirror 3

® | @
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(a (b)
Figure 2. (a) diagram of a three-mirror optical system with all the parameters of that system: thicknesses after mirrors,
mirror powers, mirror tilts, mirror conic constants, and mirror aspheric cap coefficients. There are 15 parameters. (b) the
same diagram with constrained parameters crossed out, leaving five parameters that are needed to define the optical system.

X R—

In Figure 3, a block diagram shows how the parameters are solved for, and which constraints are applied. For first-order
specifications, given the thicknesses after each mirror as inputs and the effective focal length and flat field applied as
constraints, the power of all three mirrors are solved for. With the first-order parameters determined, they become the
inputs that are needed to solve for the magnitude of the aspheric caps on all three mirrors, applying the constraints that
third-order spherical aberration, field-linear coma, and field-quadratic astigmatism are zero. The first-order parameters
as well as the tilts on the first two mirrors are used as inputs to solve for the tilt on the third mirror, applying the
constraint that the second-order aberration field-linear astigmatism is zero.
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Figure 3. Block diagram demonstrating how constraints are applied to solve for certain system parameters.
2.1 First-order constraints

We have chosen to use the thickness after each mirror and the tilts on the first two mirrors as the five free parameters.
This allows the designer to directly manipulate the package size and folding geometry while holding the effective focal
length constant. The third mirror power, denoted ¢3, is constrained to hold the back focal length, the thickness from the
last mirror to the image plane, at the value set by the designer:

—efl(1+¢q t1)—ta+t
$3(P1, ty, ty, 3, ef ) = tzlt: =, (2)
where ¢, is the power on the first mirror, t; is the thickness after the first mirror to the second mirror, t, is the thickness
after the second mirror to the third mirror, t5 is the thickness after the third mirror to the image plane, and efl is the
effective focal length of the system. The second mirror power, denoted by ¢,, along with the third mirror power, is
constrained to hold the effective focal length of the system at the value set by the designer:

1+efl (¢1+¢3+¢1 b3 (fl—fz))
efl (1+¢q t1)(¢3 t2—1)

¢)2(¢1’ ¢3,t1,t2,€fl) = (3)
The powers of the second and third mirrors are functions of the power on the first mirror. To ensure that the solution is
flat-field, the mirror powers must be balanced to eliminate Petzval field curvature. The first mirror power is constrained
to be equal to the negative of the sum of the second and third mirror powers, and the first mirror power is solved for:

2 efl+ty—2 rgij(e;lzt )(efz t1 tataeflts (efl—ti+tx)—4efl (2 t32—t3%))
1

d)l(tl’ iy, t3, efl) = - (4)

2 (eflty—tat3)
The constraint was a quadratic equation with two roots. The solution with the positive sign in front of the square root
will be referred to as flat field solution 1, and the solution with the negative sign in front of the square root will be
referred to as flat field solution 2.

2.2 Second-order constraints

Nodal aberration theory predicts that it is possible to find tilted/decentered systems that exhibit aberrations of the
“ordinary” kind, meaning that the two astigmatism nodes collapse to one node in the center of the field, which is also
coincident with the coma node [3,4]. In the case of confocal conic systems, the only aberration that is not “ordinary” is
field-asymmetric field-linear astigmatism; which can be eliminated by constraining the tilt on the last mirror [1]. From
the literature there is a condition for zero field-linear astigmatism in a system of confocal conics [5], given each mirrors
magnification and tilt angle, which is also the angle of incidence of the OAR that satisfies

INZH(1+my) tani, [1)-p41mg| + (1 4+ my) taniy = 0, (5)
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where m,, is the magnification of the p" mirror, i, is the tilt of the p" mirror, mg is the magnification of the ¢" mirror,
my is the magnification of the last mirror, and iy is the tilt of the last mirror. Using Equation 5, the tilt on the last mirror
is constrained to keep field-linear astigmatism at zero. To determine the third mirror tilt, it is necessary to have the first-
order specifications and first two mirror tilts set, as seen in Figure 3.

2.3 Third-order constraints

Once field-linear astigmatism is eliminated, the remaining image degrading aberrations are field-linear coma and field-
quadratic astigmatism [1,6]. These aberrations can be eliminated by introducing and canceling spherical aberration at the
surfaces in the right combination. This is accomplished by adding the aspheric caps, centered about where the OAR
intersects the surface and not the axis of rotational symmetry of the conic. Solving for the magnitude of the aspheric caps
is a system of linear equations [7]:

1 1
4(Z) 4D 42 AWoso, | = |aWs5,
AWZZZ

) 4 ()|l

A (173) AWoao, [AWMOI, ©

where y; is the height of the paraxial chief ray on surface 1, y, is the height of the paraxial marginal ray on surface 1,
AW, 40, is the spherical aberration introduced by the aspheric cap on surface 1, AW, is the total change in spherical

aberration for the system, AW, 3, is the total change in field-linear coma for the system, AW,,, is the total change in
field-quadratic astigmatism for the system, AW;,; is the total change in field-cubic distortion for the system. The vector
on the right-hand side is replaced with the negative of the aberration coefficients in the first-order, layout made of
Cartesian reflectors. This system is solved for the vector on the left-hand side to get the amount of spherical aberration
needed at each surface, and thus the amount of aspheric deviation needed at each surface. The paraxial ray data is
obtained from a thin lens equivalent system with the same powers and mirror separations as the system of Cartesian
reflectors.

The aspheric caps are necessary because a system of only Cartesian reflectors cannot have zero field-linear coma and
field-quadratic astigmatism, unless the system is afocal or has a magnification with an absolute value of 1 [8].

2.4 Sign convention of tilts

To classify the folding geometries of the systems in the survey, a sign convention is adopted where a counter-clockwise
tilt from normal incidence of the OAR is referred to as “P” for positive, and a clockwise tilt from normal incidence of the
OAR is referred to as “N” for negative. A three-letter sequence is used to denote the tilts of the first, second, and third
mirrors respectively. Figure 4 shows a “PNP” system.

Counter-
— Clockwise

is Positive, “P”

Clockwise =
is Negative, “N”

Figure 4. Three-mirror system to illustrate the sign convention used to describe the direction of tilt in this work.
2.5 Checking for obstruction with polygons

To save computation time in the automated survey, systems that are obstructed were not analyzed with real raytraces,
which are the most computationally expensive part of the process. To determine which systems are obstructed, a set of
either one, two, or three polygons is used to enclose the set of rays between surfaces, which are drawn with thick black
lines in Figure 5: what is needed is one polygon if there is no internal pupil nor an internal image, two polygons if there
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is one internal pupil or one internal image, and three polygons if there are both an internal pupil and an internal image.
For each surface, which includes all the mirrors plus the image plane, it is determined if the surface is inside of any the
polygons, excluding polygons characterizing the set of rays going into or out of the surface under consideration. In
Figure 5, the image plane is obstructing the system.

Internal Pupil or Internal Image
No Internal Pupil 2 Polygons
nor Internal Image

1 Polygon
Internal Pupil and Internal Image

3 Polygons

Figure 5. Three-mirror system to illustrate how it is determined that a system is obstructed.

3. SURVEY RUNS

3.1 Possible cases and sampling of solution space parameters

One can enter either a positive or negative focal length into Equations 2, 3, and 4. Additionally, one can choose either
flat field solution 1 or flat field solution 2, resulting in four different first-order layouts. For this survey we focused on
systems with the aperture stop at the first mirror, but including configurations with the aperture stop on the second and
third mirror, there are then 12 different possibilities. The surveys use five nested for loops to cycle through different
values of the five input parameters, illustrated in Figure 6.

Inputs (5)
Thickness Mirror 1 3

Thickness Mirror 2 3 » 9 Nested For Loops through Inputs
Thickness Mirror 3 & 12 Different Possibilities

DTk :
oTit2 :

+ Effective Focal Length - Effective Focal Length

Flat Field Soln. 1 Flat Field Soln. 2 Flat Field Soln. 1 Flat Field Soln. 2

Stop e D A e R R G R B .
Locations &

-

Collect Performance Metric for Unobstructed Solutions,
Max RMS Spot Size (performance at worst field point)

Figure 6. Tree of the possible first-order configurations that will require separate survey runs.

We chose a system effective focal length of 100 mm. Table 1 lists the sampling of the five input parameters. Tilt 1 was
only sampled from 0 to 45 degrees instead of -45 to 45 degrees because having positive and negative values for the first
mirror is redundant. For this survey we consider tilt angles larger than 45 degrees to be too large. When the tilt on the
third mirror, which is solved for, exceeded 45 degrees the system was filtered out. The sampling from Table 1 results in
65,170 different input parameter combinations, which is repeated for four possible first-order configurations, meaning

Proc. of SPIE Vol. 10690 106901D-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



260,680 systems were considered in each survey. We ran two surveys, one with a smaller etendue and one with a larger

etendue.

Table 1. The boundary and sampling of the parameters of the solution space.

Parameter Minimum Maximum Step Size Number of Steps
Thickness 1 (mm) -150 -30 20 7

Thickness 2 (mm) 30 150 20 7

Thickness 3 (mm) -150 -30 20 7

Tilt 1 (deg.) 0 45 5 10

Tilt 2 (deg.) -45 45 5 19

3.2 Expected folding geometries

We expected the surveys to contain a variety of unobscured folding geometries, as illustrated in Figure 7. Figure 7
classifies the systems not only based on the signs of the tilts of the mirrors, but also where the mirrors and image plane
are located relative to each other qualitatively. The columns of Figure 7 represent different locations of the image plane.
The rows of Figure 7 represent different locations of the third mirror.

PNP

PPN

Figure 7. This figure qualitatively illustrates all the different folding geometries that are expected to be found within the
survey. Next to each geometry are the signs of the tilts of the mirrors denoted with the notation described in Section 2.4,
illustrated in Figure 4.

3.3 Smaller etendue survey run

The systems in the smaller etendue survey had an effective focal length of 100 mm, a full field of view of 2 degrees by 2
degrees, and an aperture of F/5. Looking through the unobscured systems that were generated, all the qualitative folding
geometries in Figure 7 were found except for the one in the first column, middle row. This is because we filtered out
solutions with mirror tilt angles greater than 45 degrees. By ignoring this filter, a system matching that geometry was
found manually by adjusting the systems free parameters. An example of each folding geometry from Figure 7 is found
within the smaller etendue survey and displayed in Figure 8.
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Figure 8. Examples of different folding geometries found within the survey, overlaid on top of the same table as Figure 7 to
demonstrate that the survey contains almost all the folding geometries. The system in the first column, middle row was
filtered out of the survey because the tilt angle on its third mirror exceeded 45 degrees.

The solutions with the smallest max RMS spot size from each of the four unique first-order layout branches, highlighted
with green circles in Figure 6, were selected and optimized further varying the planar symmetric 3" through 6™ order
XY polynomial freeform terms [9]. A histogram of the performance for the solutions in each branch and an optical
layout of the best solution from each branch are shown in Figures 9 through 12. The performance of the best solution
from each branch without aspheric caps, with aspheric caps, and optimized freeform terms is shown in Tables 2 through
5. The optical layouts in this manuscript were generated using paraxial approximations (rays are drawn to flat planes),

but the performance was evaluated using real raytrace data.
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Figure 9. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run with
an effective focal length of -100 mm, flat field solution 1, F/5, FFOV 2 degrees by 2 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 0.65 microns.
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Table 2. The maximum, minimum, and average RMS spot size over the field for the system in Figure 9(b); without aspheric
caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6™ order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using

higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized

Max RMS (um) 13.76 0.65 0.08

Min RMS (um) 0.00 0.23 0.03
Average RMS (um) 7.68 0.40 0.05

PPP PPN Max RMS: 0.65271 um

6 &, 150

5 5

:%4 :% 100

%2 § 50

€ €

= =,

0 0.5 1 0 0.5 1
Max RMS (mm) Max RMS (mm)
PNP PNN
» 1000 » 600
5 5
:% :%400
%5 500 %5
3 8200
€ €
2 0 2 0
0 05 1 0 0.5 1
Max RMS (mm) Max RMS (mm)

(a) (b)

Figure 10. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of -100 mm, flat field solution 2, F/5, FFOV 2 degrees by 2 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 0.65 microns.

Table 3. The maximum, minimum, and average RMS spot size over the field for the system in Figure 10(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6™ order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (pum) 10.30 0.65 0.06
Min RMS (um) 0.00 0.16 0.02
Average RMS (um) 6.18 0.35 0.04
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Figure 11. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of +100 mm, flat field solution 1, F/5, FFOV 2 degrees by 2 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 26.66 microns.

Table 4. The maximum, minimum, and average RMS spot size over the field for the system in Figure 11(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6" order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (um) 26.62 26.66 1.36
Min RMS (um) 0.00 17.03 0.21
Average RMS (um) 11.49 21.07 0.63
PPP PPN Max RMS: 1.7204 um
& 3000 ,» 100
5 5
2 2000 2
G 5 50
& 1000 g
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Figure 12. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of +100 mm, flat field solution 2, F/5, FFOV 2 degrees by 2 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 1.72 microns.
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Table 5. The maximum, minimum, and average RMS spot size over the field for the system in Figure 12(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6" order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (um) 33.31 1.72 0.08
Min RMS (um) 0.00 0.13 0.01
Average RMS (um) 15.10 0.99 0.04

3.4 Larger etendue survey run

The systems in the larger etendue survey had an effective focal length of 100 mm, a full field of view of 4 degrees by 4
degrees, and an aperture of F/3. The solutions with the smallest max RMS spot size from each of the four unique first-
order layout branches, highlighted with green circles in Figure 6, were selected and optimized further varying the planar
symmetric 3™ through 6™ order XY polynomial terms. A histogram of the performance for the solutions in each branch
and an optical layout of the best solution from each branch are shown in Figures 13 through 16. The performance of the
best solution from each branch without aspheric caps, with aspheric caps, and optimized freeform terms is shown in
Tables 6 through 9.

Max RMS: 11.734 ym
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Figure 13. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of -100 mm, flat field solution 1, F/3, FFOV 4 degrees by 4 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 11.73 microns.

Table 6. The maximum, minimum, and average RMS spot size over the field for the system in Figure 13(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6" order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (um) 80.01 11.73 3.06
Min RMS (nm) 0.00 4.79 1.00
Average RMS (um) 42.12 7.21 1.72
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Figure 14. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of -100 mm, flat field solution 2, F/3, FFOV 4 degrees by 4 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 11.25 microns.

Table 7. The maximum, minimum, and average RMS spot size over the field for the system in Figure 14(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6" order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using

higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (um) 59.96 11.26 1.06
Min RMS (nm) 0.00 1.33 0.28
Average RMS (um) 34.89 4.70 0.68
; PPP ] PPN Max RMS: 235.598 um
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Figure 15. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of +100 mm, flat field solution 1, F/3, FFOV 4 degrees by 4 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 235.60 microns.
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Table 8. The maximum, minimum, and average RMS spot size over the field for the system in Figure 15(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6" order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms. This system could not be optimized due to raytracing failures.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (um) 164.08 235.60 Ray Failures
Min RMS (pum) 0.00 73.09 Ray Failures
Average RMS (um) 68.61 136.19 Ray Failures
PPP PPN Max RMS: 44.815 ym
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Figure 16. (a) Four performance histograms representing the four distinct tilt angle sign combinations for the survey run
with an effective focal length of +100 mm, flat field solution 2, F/3, FFOV 4 degrees by 4 degrees. The systems are binned
according to the worst field point RMS spot size. (b) An optical layout of the best performing, analytically designed system
from this survey run, along with its max RMS spot size of 44.82 microns.

Table 9. The maximum, minimum, and average RMS spot size over the field for the system in Figure 16(b); without
aspheric caps, with aspheric caps, and with optimization of planar symmetric XY polynomials terms 3™ through 6™ order.
Demonstrating the improvement of performance using analytically solved aspheric caps, and further improvements using
higher order freeform terms.

No Aspheric Caps Aspheric Caps | 3" through 6™ Order Optimized
Max RMS (pm) 305.28 4481 2.54
Min RMS (um) 0.00 0.99 0.77
Average RMS (um) 129.58 19.05 1.44
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3.5 Discussion of survey results

Comparing the smaller and larger etendue surveys, the distribution of the histograms in Figures 9(a) through 16(a) show
that the larger etendue analytically designed systems have a worse max RMS spot size, as is expected. Figure 17 shows
the best analytically designed systems from each unique first-order branch, and also the performance after optimizing the
3 through 6™ order surface terms.

Smaller Etendue Larger Etenduse

First Order Layout Max RMS {um) | Rank Layout Max RMS (uin} Rank

Spec Optimized Optimized
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Figure 17. The best analytically designed systems from each unique first-order branch for the smaller and larger etendue
survey. The performance after optimizing the 3™ through 6™ order surface terms is shown as well as the rank of the
performance relative to other systems in the survey after optimization.

It is interesting to note that the best analytical design form in the negative EFL, flat field solution 1 branch changed
folding geometry going from a smaller to a larger etendue, while the folding geometry for the negative EFL, flat field
solution 2 branch stayed the same going from a smaller to a larger etendue. The positive EFL, flat field solution 1 branch
performed poorly, having a low number of unobscured systems compared to the other branches and max RMS spot sizes
magnitudes of order worse than the other branches. This branch also did not improve with the introduction of aspheric
caps, which may be due to higher-order aberrations from the relatively fast F/# on the first mirrors, and large tilts.

4. SURVEY RUNS

The surveys contained a variety of design forms, which are similar to systems from the literature. In this section we
comment on the similarities.

4.1 Similarity to systems from literature [10]

In [Bauer, 2018] folding geometries where ranked by aberration correction potential for systems having a positive
primary mirror, as seen in Figure 18.

Tier4
— 150mm

Figure 18. Figure adapted from [10] ranking the aberration correction potential for different folding geometries. Tier 1
systems have the best potential, while tier 4 has the worst. The systems circled in red were found within the current survey.
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We found a similar system to the red circled tier 1 system in Figure 18 within the smaller etendue survey in the negative
EFL, flat field solution 1 branch. It is similar in the sense that it has the same mirror power sequence (positive negative
positive), as well as the same folding geometry. A system similar to the red circled tier 2 system in Figure 18 was found
within the larger etendue survey in the negative EFL, flat field solution 1 branch. It is similar in the sense that it has the
same mirror power sequence (positive negative positive), as well as the same folding geometry. It is interesting to note
that these were the best analytically designed systems within the negative EFL, flat field solution 1 branch.

4.2 Similarity to system from literature [11]

In [11] a freeform system with a negative primary mirror folded into a ball shape was designed. The optical layout of the
system can be seen in Figure 19(a).

(@) (b) (©)

Figure 19. Optical layout (a) originally from [11]. (b) from similar system in the smaller etendue survey. (c) of system with
parameters adjusted to match first-order specifications and to qualitatively match the form of the original system from [11].

Figure 19(b) shows a system found within the smaller etendue that has the same mirror power sequence (negative
positive positive) and the same mirror tilt signs (PPP) as the original system from [11]. The parameters of the system
from the survey were adjusted to have the same first-order specifications, and a qualitatively similar folding geometry.
After optimizing the 3™ through 6™ order surface terms the system in Figure 19(c) had the same performance as the
original system (average RMS wavefront over the field of 0.008 waves at a wavelength of 10 microns).

4.3 Similarity to system from literature [12]

In [12] a freeform system was designed with NURBS surfaces as seen in Figure 20(a).

Figure 20. Optical layout (a) originally from [12]. (b) of similar system after parameter adjustment.
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Figure 20(b) shows a system found within the smaller etendue survey that has been adjusted to have the same first-order
specifications (i.e. F/2, 10 degrees by 9 degrees FFOV, 357 mm focal length) that has the same mirror power sequence
(positive negative positive) and the same mirror tilt signs (PNP) as the original system from [12], and a qualitatively
similar shape and the aperture stop on the second mirror. A circular pupil was assumed for the system in Figure 20(b).
After optimizing the 2™ through 6™ order surface terms the system in Figure 20(b) had an average RMS spot size of 11
microns, compared to the original system’s performance of 14 microns average RMS spot size.

5. CONCLUDING REMARKS

Using analytically generated starting points, we automatically surveyed the three-mirror freeform imager solution space,
finding unobstructed solutions that are corrected through the third order image degrading aberrations. The survey
contained the expected folding geometries except for those with high tilt angles because they were filtered out in the
survey rules. In future work we plan to perform larger, higher resolution surveys of the three-mirror freeform solution
space with the stop on the second and third surfaces. We also plan on applying the methods in this work to a four-mirror
freeform imager solution space.
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