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A Distributionally Robust Optimization Approach for Outlier
Detection *
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Abstract— We consider the outlier detection problem in a lin-
ear regression setting. Outlying observations can be detected by
large residuals but this approach is not robust to large outliers
which tend to shift the residual function. Instead, we propose
a new Distributionally Robust Optimization (DRO) method ad-
dressing this issue. The robust optimization problem reduces to
solving a second-order cone programming problem. We prove
several generalization guarantees for our solution under mild
conditions. Extensive numerical experiments demonstrate that
our approach outperforms Huber’s robust regression approach.

I. INTRODUCTION

Outlier detection has attracted a lot of attention in re-
cent years due to its extensive use in a wide variety of
applications. Recent examples include CT radiation over-
dose detection, abnormal traffic jam detection and computer
intrusion detection. Many techniques have been developed
for detecting outliers, including both direct and indirect
procedures. The authors in [1] have performed an exten-
sive simulation study to evaluate and compare numerous
outlier detection methods that use linear regression. Indirect
procedures rely on the residuals or weights from robust
regression estimates. Different from ordinary least squares
regression, robust regression is less influenced by outliers
through downweighting or ignoring aberrant data points.
Some commonly used robust estimators are presented in [2].

In addition to the traditional robust estimators, researchers
have also been trying to build a connection between robust
regression and robust optimization. [3] formulates robust
linear regression with feature-wise disturbance as a min-
imization of the worst-case error norm and shows that
this recovers the LASSO (Least Absolute Shrinkage and
Selection Operator) as a special case. [4] considers noise
in both features and responses and solves the corresponding
robust optimization problem in polynomial-time. [5] studies
a distributionally robust least squares problem which hedges
the worst-case square norm of the error over a probabilistic
ambiguity set of the disturbances.
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Our approach also adopts a Distributionally Robust Opti-
mization (DRO) formulation in a linear regression setting but
is different from existing methods in the literature in three
important aspects. First, instead of minimizing the worst case
{5 norm of the error, we use an ¢; loss function which is
less sensitive to outliers. Second, a Wasserstein probabilistic
ambiguity set centered at the empirical distribution of the
data is used, which is rich enough to contain the true data-
generating distribution with high confidence. Moreover, we
are able to control the conservativeness of our formulation
through adjusting the radius of the Wasserstein set. This
ambiguity set is easy to construct from data and yields
a second-order cone programming problem which can be
solved very efficiently. Third, our formulation has the flex-
ibility of incorporating sparsity constraints, which makes it
possible to combine robust regression with the LASSO and
is particularly useful in practical applications.

The rest of the paper is organized as follows. In Sec. 1I
we derive the Wasserstein DRO formulation in a linear
regression framework. Sec. III establishes out-of-sample per-
formance guarantees. The numerical experimental results are
presented in Sec. IV. We conclude the paper in Sec. V.

Notational conventions: We use boldfaced lowercase
letters to denote vectors, ordinary lowercase letters to denote
scalars, and calligraphic capital letters to denote sets. E
denotes expectation and IP probability of an event. All vectors
are column vectors. For space-saving reasons, we write
X = (Z1,. .., Zgim(x)) to denote the column vector x, where
dim(x) is the dimension of x. We use prime to denote
transpose, |- || for the ¢5 norm, and ||-||; for the ¢; norm.

II. WASSERSTEIN DRO FORMULATION

Consider a generic DRO problem expressed as follows:

Jpro := inf sup E¢[h(a, z)],
acAQeB
where « is the decision variable taking values in the set A4;
z is a vector of uncertain parameters whose distribution Q
is unknown and can only be observed through a finite set
of samples; B is the probabilistic ambiguity set for z; and
h(-,-) is the loss function we seek to minimize.

The most fundamental problem in DRO is how to choose a
proper ambiguity set B. There have been some works focus-
ing on moment ambiguity sets, which contain all distributions
that satisfy certain moment constraints, see [6, 5]. Another
option is to define B as a ball of distributions using some
probability distance functions. [7] adopts this approach using
the Kantorovich distance while [8] considers the Kullback-
Leibler divergence. Apparently, the distance function is a



key element in this kind of DRO model. In this paper, we
use the Wasserstein metric as in [9] to construct such a ball
ambiguity set. Specifically, B is defined as:

B:={Qe M(2):dy(Q, Py)<e}, (1)

where Z is the set of possible values for z; M(Z) is the
space of all probability distributions supported on Z; Py is
the discrete empirical distribution constructed based on N
independently and identically distributed (i.i.d.) samples of
z; € is a pre-specified radius of the Wasserstein ball; and
dw (Q, I@’N) is the Wasserstein distance between Q and Py

defined as:
(@, ) £ ( [ 1(2) Q(e) ~ [ 1(2) Bv(am).
(2

with £ being the space of all Lipschitz continuous functions
satisfying |f(z1) — f(z2)| < ||z1, zZy € Z.

Compared to other distance functions, the Wasserstein
metric is advantageous in two important aspects. First, the
Wasserstein ambiguity set is rich enough to contain both
discrete and continuous distributions [9], while the Kullback-
Leibler ambiguity set centered at Py fails to include the
continuous ones. Second, the measure concentration results
in [10] ensure that the Wasserstein ambiguity set contains
the true data-generating distribution with a high probability,
under a light tail assumption. Moreover, as proven in [9]
under the same assumption, any sequence of distributions in
the Wasserstein set converges weakly to the true distribution
as the sample size grows to infinity.

Now let us return to the outlier detection problem. Suppose
we have N i.i.d. samples (x1,¥1),.-., (XN, yn), where y; is
the i-th response variable and x; is a d-dimensional vector of
features. Each sample is drawn with probability p from the
outlying distribution P,,; and with probability 1 —p from the
true distribution P (clean data). ﬁ”N is the discrete uniform
distribution over these N samples. The ambiguity set B is
constructed as in (1). Our goal is to first obtain an accurate
estimate of the regression coefficients determined by the
clean data and then detect outliers based on this estimation.
Consider an ¢; loss function in the linear regression setting.
Using (x,y) to denote the feature and response variables,
our Wasserstein DRO problem is formulated as:

Q / — Q1,3
dnf sup B2 {Jy —x'B] = inf sup EX[|2'B),  (3)
where 3 is the regression coefficient vector that belongs to
some set D; B £ (-B,1); z £ (x,y); Q is the probability
distribution of z belonging to some set 53 as defined in (1);
and D= {B:8 € D}. Dcouldbe R, or D = {B: 8] <
[} for some [, if we wish to induce sparsity.

To convert (3) into a tractable optimization problem, we
apply a key result in [9] [Theorem 6.3] which states that
when the set Z is closed and convex, for any € > 0,

ﬁmEQWﬁH<nekf§:hﬁ\ )

QeB

353

where z; is the ith sample of z; € is defined as in (1); kK =
sup{[|0||. : 2*(0,8) < oo}; |||« is the dual norm of the
norm used in characterizing the Lipschitz continuity of func-
tions used in (2), which is defined as ||@]|. = SUD| | <1 0'z;
and h*(-,-) is the conlugate function of the loss h(3,z) =
|z’ 3| defined as h*(0,8) £ sup,{6'z — h(B,z)}. Note that
K is a function of 3. Through (4), we can relax problem (3)
by minimizing the right hand side of (4) instead of the worst-
case expected loss. Moreover, as shown in [9], (4) becomes
an equality when Z = Rt

What remains is then how to compute «. In the following
theorem we show that x is equal to the ¢ norm of B.

Theorem IL1. Define v = sup{||0]. : h*(OJB) < oo}
When the loss function h(B,z) = |2'3|, & = ||B]|-

Proof. First rewrite x as:

k=sup{[10]l.: sup {(6-B)z} <,
z|z’' B3>0
sup {(0+ B)'z} < oo}.
z\z’,@SO

Consider now the two optimization problems A and B.

Ay

Problem A: fax (?~ B)'z
st. z/3>0.

) max (0 + 3)'z
Problem B: st. 2B<0.

Form the dual problems using dual variables r4 and rp,
respectively.

min 0-7ry4

Dual-A: st. Bra=60-3,
ra <O0.
min 0-rp
Dual-B: st. Brg=0+0,
B > 0.

We want to find the set of 8 such that the optimal values
of problems A and B are finite. Then, Dual-A and Dual-B
need to have non-empty feasible sets, which implies:

Jra<0, st Bra=6-2, (5)
Brs =0+ p. (6)

For all i with 8; < 0, (5) implies 6; — B; > 0 and (6) implies
0; < ,81 On the other hand, for all j with ﬂ] >0, (5) and
(6) imply ﬁj <6; < 5; It is not hard to conclude that:

drg >0, st

10;] < |Bil, V.

In a finite dimensional space, the dual norm of the /5 norm
is the ¢ norm. It follows,

k= sup{||0]| : 0:] < |Bil, Vi} = ||



Now we are ready to reformulate the Wasserstein DRO
problem (3). When Z = R%t!, (3) is equivalent to the
following optimization problem:

1L
NZ |2;0]-
=1

Remark 2.1 The /5-norm regularizer in (7) is related to
the growth rate of the {1 loss function [11]. The reduction
to (7) can be attributed to the structure of the Wasserstein
metric. It is possible to generalize such a relaxation to other
loss functions with a bounded and fixed growth rate.

Remark 2.2 The parameter e controls the conservativeness
of our formulation, whose selection depends on both the
sample size and the confidence that the Wasserstein ball
contains the true distribution (see Eq. (8) in [9]). Roughly
speaking, when the sample size is large enough, for a fixed
confidence level, € is inversely proportional to N*/(d+1),

Remark 2.3 (7) is a second-order cone programming
problem which can be solved to optimality very efficiently.
Although it is the same with the ¢y regularized Least Ab-
solute Deviation (LAD) [12, 13], there exist two essential
differences that manifest the value and novelty of (7). First,
in the LAD literature, the regularization term (usually an
{1-regularizer) is introduced to resolve the issue of ill-
conditioned design matrix and to recover a sparse coefficient
vector. By contrast, the /5-regularizer in (7) is a control over
the amount of ambiguity in the data, whose existence is not
decided by the sparsity of the coefficient or the correlation
among predictors. More importantly, (7) is theoretically
rooted and derived from DRO, of which the ¢5-regularizer is
an indispensable ingredient that reveals the reliability of the
contaminated samples. Second, the regularization coefficient
in (7) is the radius of the Wasserstein ball, which offers an
intuitive interpretation and provides guidance on how to set
it. This connection is not present in the regularized LAD
literature, which starts from the regularized problem rather
than deriving it from a more fundamental DRO formulation.

inf ||B]le + (7)
BeD

III. OUT-OF-SAMPLE PERFORMANCE GUARANTEES

In this section we will prove that the performance of
the solution to (7) on new, future data is similar to its
performance on the observed samples. The proof is mainly
based on a concept called Rademacher complexity [14],
which is a measurement of the complexity of a class of
functions. [14][Theorem 8] bounds the expected loss in terms
of the Rademacher complexity. We apply this result to our
specific loss function and derive the performance guarantees.
Several mild assumptions are needed in this section.

Assumption A. The uncertainty parameter z falls within a
ball of radius R almost surely.

Assumption B. The {5 norm of B is bounded above within
the feasible region by B.

We would like to bound the expected loss under these two
assumptions. Remember that [14] provides such a bound in
the form of Rademacher complexity. A natural idea is then to
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first bound the Rademacher complexity. The following two
lemmata achieve this goal and are helpful in establishing the
performance guarantees.
Lemma III.1. For every feasible B, it follows

1z'B| < BR, almost surely.

The proof of Lemma III.1 uses the Cauchy-Schwarz
inequality. Now consider the class of functions

F={z+— h(B,z): h(B,z) = |2'8|, BeD}.
We next establish a result for the empirical Rademacher

complexity of this class of functions, denoted by Ry (F)
and defined as:

N
N -
Rn(F)=E sup — oih(B,z:)||z1,- - ,zN |,
heF —
i=1
where 01,...,0n are ii.d. uniform random variables on

{1,—1}. The proof is similar to the proof of Lemma 3
in [15].

Lemma II1.2. Under Assumptions A and B, it holds that,
2BR
~

RN(]:) <

Proof. By Lemma III.1, we have:

RN(F) <

IA

O

We are now ready to state the main result guaranteeing
out-of-sample performance in the following theorem. Let
,@* = (—B",1) be an optimal solution to (7), obtained using
the samples z;, ¢ = 1,...,N. Suppose we draw a new
i.i.d. sample z = (x,y). We establish bounds on the error
ly —x'B").

Theorem IIL.3. Under Assumptions A and B, for any 0 <
0 < 1, with probability at least 1 — § with respect to the
sampling,

8log(2/d
E[l8"]) < Zl’ﬁwaR Sos2/0) g)
2BR 5 8log(2/4)
andforanyC>W+BR\/T,
LN
;5 ;5
P(w \zﬁDziﬁ +<)
N
2l B|+ 238 + BR\/2es20)
< = )

#;IZ;BIH



Proof. Applying Lemma 1 from [15], which is a specializa-
tion of Theorem 8 in [14], using h(B3,z) = |z/3| and the
bound on Ry (F) presented in Lemma III.1, we are able to
prove the bound on the expected loss. Eq. (9) can be proved
using Markov’s inequality. O

Remark 3.1 There are two probability measures in the
statement of Theorem III.3. One is related to the new data
z, while the other is related to the samples z1,--- ,zy. The
expectation in (8) (and the probability in (9)) is taken w.r.t
the new data z. For a fixed set of samples, (8) (and (9)) holds
with probability at least 1 — § w.r.t. the measure of samples.
Theorem III.3 essentially says that given typical samples,
the expected loss on new data using our Wasserstein DRO
estimator could be bounded above by the average sample loss
plus extra terms that are proportional to 1/ V/N. Since a term
of (7) minimizes the sample average loss, it is ensured that
our estimator achieves a good out-of-sample performance.

Next we will show two corollaries that provide a guidance
on how many samples are needed to achieve satisfactory
performance.

Corollary II1.4. For a fixed confidence level § and some
threshold parameter T > 0, to guarantee that the percentage
difference between the expected absolute loss and the sample
average loss is less than T, that is,

~ % N ~ %
E[lz8 || - % ;IZQﬂ |

BR
the sample size N must satisfy

N> [%HW)F

<rT

)

(10)

Corollary IIL5. For a fixed confidence level §, some T €
(0,1) and v > 0, to guarantee that
~ % 1 N ~ %
2’8 | =« 2 28 |
i=1

P _
( BR

the sample size N must satisfy

2(1+ /2Tog(2/9) )

T-y+1—-1

27>§7,

I

IV. SIMULATION EXPERIMENTS

N > [ (1)

provided that T-v+717—1>0.

In this section we apply our Wasserstein DRO approach to
a number of synthetic datasets and compare its performance
with a traditional robust regression method ()M -estimation)
due to Huber [16, 17]. The experimental scenarios are
designed according to [1]. Specifically, we consider interior
x-space outliers, which are observations that are abnormal
only in the y direction, but have x values that are within the
normal range. Our approach will be tested in three different
scenarios differentiated by the location of outliers.

The datasets are constructed based on a linear regression
model. Specifically, suppose there are K predictors; the
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response y for clean observations is obtained through: y =
Bo+ Brx1+ -+ Brxxk +n, where 7 is the noise term nor-
mally distributed with mean 0 and variance 03,. The response
values for outlying observations are placed at a distance §r
off the regression plane: y = By + 121+ -+ Bx Tk + IR.

We set By = 03,51 = --- = Bx = 0.5 throughout
this section. For clean observations, all features x1,...,Tx
come from a normal distribution with mean 7.5 and standard
deviation 4.0. The experiments are conducted in different fac-
tor settings, where the factors considered are: percentage of
outliers p: 20%, 30%; outlying distance Og: 30y, 40,,50,;
the number of regressors K: 6,30.

For K = 6, 0, = 1; for K = 30, 0,, = 5. We compare our
approach with the commonly used robust regression method
called M-estimation with four cost functions — Tukey’s
Biweight [18, 19], Huber [16, 17], Talwar [20], and Fair
[21]. The performance metrics we use are: (i) |3 — 81,
where B is the estimated regression coefficient and 3 is the
true coefficient determined by the clean data; and (ii) the
Receiver Operating Characteristic (ROC) curve which plots
the true positive rate against the false positive rate.

In all experiments, the size of the training dataset is
N =60 for K = 6 and N = 300 for K = 30, including both
clean and outlying observations. The size of the test dataset
is M =36 for K = 6 and M = 180 for K = 30. We run
500 replications and take the average of the performance
metrics. The radius € is chosen to be inversely proportional
to N'/(4+1) by a factor decided based on the Area Under
the ROC Curve (AUC). Before providing the details of
the experimental results, we summarize our major findings
below.

1) In terms of AUC, all approaches have better perfor-
mance when p is lower, dp is larger, and K is smaller.
In terms of the ROC curve, our approach performs
better than M-estimation with the difference being
larger when the percentage of outliers p is lower and
the outlying distance g is larger, especially when the
number of features K is larger.

Increasing the size of the training dataset N could
greatly improve the performance of our approach.

2)

3)

For all scenarios, we will show ROC curves only for the most
challenging factor setting due to limited space. According
to the findings stated above, the most challenging factor
combination is p = 30%, dr = 30,,. The scalar performance
metrics for K = 30 are properly summarized in Tables I-III.

A. Randomly Scattered Outliers

In this subsection, we consider outliers that are randomly
scattered in the interior of the x-space. The feature variables
for outlying observations have the same distribution as that
of the clean data, but the response values are placed at a
distance dg off the regression plane.

The Wasserstein radius e is set to be proportional to
1/N'/(4+1) where the constant factor is chosen to maximize
the out-of-sample AUC. In Fig. 1 we plot the out-of-sample
AUC as the radius is changed. When ¢ is small, the Wasser-
stein ball contains the true distribution with low confidence



and thus AUC is low. On the other hand, too large ¢ makes
our solution overly conservative. It is clear that for N = 60,
the optimal € = 15.10. For N = 300, we set € = 21.08.

— Wasserstein DRO
—— Regularized LAD
5 10 15 20
Wasserstein ball radius / Regularization coefficient

25

Fig. 1: Out-of-sample AUC v.s. Wasserstein ball radius.

It is worth mentioning that our formulation (7), as well as
robust regression, only generates an estimated regression co-
efficient. The identification of outliers is based on the residual
and estimated standard deviation of the noise. Specifically,

YES,
NO,

. if |residual| > threshold x &,
Outlier = .
otherwise,

where & is the standard deviation of residuals in the entire
training set. ROC curves are obtained through adjusting the
threshold values. We note that for all tables, the numbers
in parentheses are the results from ¢;-regularized LAD,
M-estimation with Huber, Talwar, and Fair cost functions,
respectively, while the number outside parentheses is the
result from our approach.

TABLE I: ||3 — 3|, for randomly scattered outliers with 30
features.

[—Wasserstein DRO
|— Reguiarized LAD
|—Hober
—Tabwer

[—Wasserstein DRO
|— Reguiarized LAD
|—Hober
—Tabwer

True positive rate
True positive rate

Fair Fair

FTSR TR TR

ERCEE
False posiive rate

(b) K =30

FETSR TR TR

R
False posiive rate

(a) K=6

Fig. 2: ROC curves for randomly scattered outliers, where
P = 30%, 6R = 30'7,.

B. Outliers in A Cloud at the Centroid of the x-Space

In this subsection we consider outliers that are gathered
in a cloud at the centroid of the x-space. The features
for outlying observations are uniformly distributed on the
interval [7.375,7.625] since clean observations have features
centered around 7.5. The response values are still at a dg
distance off the regression plane.

TABLE II: |3 — 3||1 for outliers in a centroid cloud with
30 features.

Outlying Percentage of outliers

distance 20% 30%
3 0.70 (1.24, 2.96, 2.83, 3.08) | 0.69 (1.45, 5.46, 4.87, 5.55)
4 0.70 (1.24, 3.71, 3.47, 3.87) | 0.69 (1.50, 7.22, 6.44, 7.36)
5 0.70 (1.22, 4.31, 4.13, 4.49) | 0.69 (1.50, 8.77, 7.76, 8.95)

—

[—Wassersien DRO
|— Reguiarized LAD

True positive rate

From the performance comparison results we see that
our approach consistently outperforms M-estimation with all
four cost functions. The Wasserstein DRO approach achieves
higher AUC and smaller |3 — 3|, in all factor settings.
Moreover, even in the most challenging cases, its ROC curve
still lies well above the ROC curves of M-estimation, among
which Fair’s cost slightly outperforms the other three cost
functions.

The superiority of our approach could be attributed to
the distributional robustness, which means we hedge against
a family of plausible distributions, including the true dis-
tribution with high confidence, when minimizing the cost.
By contrast, M-estimation adopts an Iteratively Reweighted
Least Squares (IRLS) procedure which assigns weights to
data points based on the residuals from previous iterations.
There is a chance of exaggerating the influence of outliers
while downplaying the importance of clean observations,
especially when the initial residuals are obtained through
Ordinary Least Squares (OLS).
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|/

Outlying Percentage of outliers 0 [tk 2.

distance 20% 30% Fai )
3 0.81 (1.63, 2.06, 2.04, 2.10) | 0.87 (1.81, 2.18, 2.16, 2.23) o w Fa‘sepas'm‘vm‘; ERC oo Fa‘seuasm‘vm;; CR
4 0.82 (1.80, 2.45, 2.42, 2.48) | 0.90 (2.14, 2.76, 2.73, 2.82)
5 0.82 (2.06, 3.06, 3.05, 3.06) | 0.90 (2.46, 3.41, 3.38, 3.50) (a) K=6 (b) K =30

Fig. 3: ROC curves for outliers in a centroid cloud, where
P = 30%751{ = 3077.

C. Outliers in A Cloud Randomly Placed in the Interior X-
Space

We now consider outliers concentrated in a cloud that is
randomly placed in the interior of the x-space. The features
for outlying observations are uniformly distributed on (u —
0.125, u + 0.125), where w is a uniform random variable on
(7.5 —3 x 4,7.5+ 3 x 4). The response values are at a g
distance off the regression plane.

V. CONCLUSIONS

We considered the problem of estimating the true regres-
sion plane when the dataset is possibly contaminated with
outliers and provided a novel formulation using a distri-
butionally robust optimization approach with a Wasserstein
ambiguity set. We established rigorous guarantees on the
ability of our solution to perform well out-of-sample. A host



TABLE III: || 3— 3|, for outliers in a randomly placed cloud
with 30 features.

Outlying Percentage of outliers

distance 20% 30%
3 0.88 (1.36, 1.77, 1.77, 1.77) | 0.92 (1.42, 1.80, 1.78, 1.80)
4 0.94 (1.54, 2.09, 2.09, 2.07) | 1.00 (1.62, 2.23, 2.22, 2.21)
5 0.97 (1.72, 2.56, 2.59, 2.52) | 1.08 (1.87, 2.73, 2.73, 2.72)

[—Wasserstein DRO
|— Regulaized LAD
|—Huber
—Tabwer

Fair

[—Wasserstein DRO
|— Regulaized LAD
|—Huber
—Tabwer

Fair

R
False posiive rate

(b) K =30

R
False posiive rate

(a) K=6

Fig. 4: ROC curves for outliers in a randomly placed cloud,
where p = 30%, dr = 30y,

of simulation experimental results suggest that our approach
outperforms the commonly used robust regression method
called M -estimation in terms of both outlier detection prob-
abilities and the accuracy of the estimated coefficients.
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