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Abstract— We propose an algorithm for average consensus
over a directed graph which is both fully asynchronous and
robust to unreliable communications. We show its convergence
to the average while allowing for slowly growing but potentially
unbounded communication failures.

I. INTRODUCTION

Consider a set of agents, whose goal is to reach consen-
sus by exchanging information locally with their neighbors
through a directed graph. There is a large body of work on
consensus algorithms. Ordinary consensus has been shown
to converge asymptotically under various scenarios such as
growing intercommunicating intervals [1], presence of delays
and/or unbounded intercommunication intervals [2]. Another
problem of interest for which extensive research has been
carried out is average consensus. While most related works
study asymptotic convergence, [3] studies average consensus
in a finite number of steps. Push-sum is one of the many
algorithms for average consensus that was first proposed by
[4]. This algorithm has been widely used to develop protocols
that reach average consensus, under different assumptions
and scenarios; such as the presence of bounded delays [5],
time varying graphs [6][7], or asynchronous communication
[8].

Since reliable communication is a very restrictive assump-
tion in network applications, or expensive to enforce, recent
work has considered algorithms that reach consensus in a
setting where communication between agents is unreliable.
While in this case, push-sum might not converge to average,
exponential convergence still holds and the error between
the final value and the true average can be characterized
[9]. In [10], Vaidya et al. introduce the technique of running
sums (counters) and modify push-sum to overcome possible
packet drops and imprecise knowledge of the network in
a synchronous communication setting. They prove almost
surely convergence of their algorithms using weak ergodicity.
Inspired by [10], [11] takes this further and develops an
asynchronous algorithm for average consensus, which is
robust to unreliable communication. This algorithm uses a
broadcast asymmetric communication protocol; that is, at
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each iteration only one node is allowed to wake up and trans-
mit information to its neighbors. Exponential convergence
of this algorithm is proved under bounded consecutive link
failures and nodes’ update delays.

Consensus and average consensus have a lot of appli-
cation in other algorithms as well; they can be used as a
building block to develop distributed optimization algorithms
[12][13]. For example, in [14] the authors use a robust
version of push-sum as a building block to develop an asyn-
chronous Newton-based distributed optimization algorithm,
robust to packet losses.

A lot of available works in the literature assume bounded
intercommunication intervals; which motivated us to study
and explore sufficient connectivity conditions which allow
intercommunication intervals to slowly grow and potentially
be unbounded. We propose logarithmically growing upper
bounds which guarantee convergence.

Distributed synchronous systems require coordination be-
tween the agents. Asynchronous systems, in contrast, do
not depend on global clock signals. This can save power
as agents do not have to perform computation and commu-
nication at every iteration. However, it might require more
iterations to converge. While existing works on push-sum
in the presence of link failures assume synchronous [10] or
broadcast asymmetric [11] communication setting, our major
contribution in this paper is to develop a fully asynchronous
robust push-sum algorithm that allows the successive link
failures to grow to infinity.

The rest of the paper is organized as follows. In Section II
we introduce our notation and define the problem. In Sections
III and IV we study ordinary consensus and push-sum
algorithms, respectively, and state our convergence results. In
Section V, we propose an asynchronous push-sum algorithm
which is robust to unreliable communication links, followed
by concluding remarks in Section VI.

II. PROBLEM FORMULATION

A. Notations and Definitions

Suppose A is a matrix, by Aij we denote its (i, j) entry. A
matrix is called (row) stochastic if it is non-negative and the
sum of the elements of each row equals to one. Similarly, a
matrix is column stochastic if its transpose is stochastic. A
matrix is called doubly stochastic if it is both column and
row stochastic.

To a non-negative matrix A ∈ Rn×n we associate a
directed graph GA with vertex set N = {1, 2, . . . , n} and
edge set EA = {(i, j)|Aji > 0}. Note that the graph might
contain self-loops.
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By[A]α wedenotethe thresholdedmatrixobtainedby
settingeveryelementofAsmallerthanαtozero.

Givenasequenceof matricesA0,A1,A2,...,wedenote
byAk2:k1,k2≥k1,theproductofelementsk1tok2ofthe
sequence,inclusive,inthefollowingorder:

Ak2:k1 =Ak2Ak2−1···Ak1.

Nodeiisanin-neighborofnodej,ifthereisadirected
linkfromitoj.Hencejwouldbeanout-neighborofnodei.
Wedenotethesetofin-neighborsandout-neighborsofnode
iattimekwith N−,k

i andN+,k
i ,respectively. Moreover,

wedenotethenumberofin-neighborsandout-neighborsof
nodeiattimekwithd−,k

i andd+,k
i ,asitsin-degreeand

out-degree,respectively.Ifthegraphisfixed,wewillsimply
droptheindexkintheaforementionednotations.

By xmin andxmax wedenote minixi andmaxixi,
respectively,unless mentionedotherwise. Wealsodenotea
n×1columnvectorofallonesby1n,or1whenitssizeis
clearfromthecontext.

Wesometimesusethenotionof masstodenotethevalue
anagentholds,sendsorreceives. Withthatinmind,wecan
thinkofavaluebeingsentfromonenode,asamassbeing
transferred.

B.ProblemFormulation

Considerasetof nagentsN = {1,2,...,n}, where
eachagentiholdsaninitialscalarvaluex0

i.Theseagents
communicatewitheachotherthroughasequenceofdirected
graphs.Ourgoalistodevelopprotocolsthroughwhichthese
agentscommunicateandupdatetheirvaluessothatthey
reachconsensus.Throughoutthispaper weusetheterms
agentsandnodesinterchangeably.

Ordinaryconsensusandpush-sumaretwo mainalgo-
rithmsproposedforthispurpose.Inordinaryconsensus,each
nodeupdatesitsvaluebyformingaconvexcombination
ofthevaluesofitsin-neighbors.Inpush-sum,average
consensusisreachedbyrunningtwoparalleliterationsin
which,eachnodesplitsandsendsitsvaluetoitsout-
neighborsandupdatesitsownvaluebyformingthesum
ofthemessagesthatithasreceived.

III. ORDINARYCONSENSUS

Althoughthe maintargetofthispaperispush-sum,in
thissectionwestateandprovesimilarresultsforordinary
consensus.Comparableresultscanbefoundin[1],however
theproofsprovidedherearenecessarytounderstandthe
methodsusedinthefollowingsections.

Linearconsensusisdefinedas,

xk+1 =Akxk, k=0,1,..., (1)

wherethe matricesAk arestochasticandxk isconstructed
bycollectingallxk

iinacolumnvector.Underthefollowing
conditions,theiteration(1)resultsinconsensus,meaningall
thexk

i convergetothesamevalueask→ ∞.
Thefollowingassumptionensuressufficientconnectivity

ofthegraphs.

Assumption1. Thereexistasequenceb1,b2,...ofpositive
integerssuchthatwhenwepartitionthesequenceofgraphs
G0,G1,G2,...toconsecutiveblocksoflengthbk,k =
1,2,...,thegraphconstructedbytheunionoftheedges
ineachblock,isstronglyconnected.AlsoeachgraphGk

hasaself-loopateverynode.

Letusdefineµ0=λ0=0,andfork≥1:

µk=
k

j=1

bj, (2)

λk=
kn

j=(k−1)n+1

bj=µkn−µ(k−1)n. (3)

Thefollowingpropositionstatessufficientconditionsfor
theconvergenceofordinaryconsensuswithgrowinginter-
communicationintervals.

Proposition 1. Supposethereexistsomeα > 0such
thatthesequenceofgraphsG[A0]α,G[A1]α,G[A2]α,...satisfies
Assumption1.IfthereexistsomeK ≥1,T≥0,suchthat
λk≤−ln(k+T)

ln(α) forallk≥K,thenxk convergestoalimit

inspan{1}.

Beforeprovingtheproposition, weneedthefollowing
lemmas.

Lemma1. Supposethereexistssomeα > 0suchthat
thesequenceofgraphsG[A0]α,G[A1]α,G[A2]α,...satisfies

Assumption1.Thenfor l≥ 0,Aµl+n−1:µl isastrictly
positivematrix,withitselementsatleastαµl+n−µl.

Thislemmaisprovedin[15].

Lemma2. SupposeAisastochasticmatrixwithentriesat
leastβ>0.Ifv=Authen,

vmax −vmin ≤(1−nβ)(umax −umin). (4)

Thislemmaisprovedin[16,Theorem3.1 &Exercise
3.8].

Lemma3. SupposeAisastochasticmatrixandv= Au.
Thenforalli,

umin ≤vi≤umax. (5)

Thislemmaholdstruebecauseeach vi isaconvex
combinationofelementsofu.

Lemma4. Suppose0<αk < 1fork=1,...,∞,then
∞
k=1 (1−αk)=0ifandonlyif

∞
k=1 αk=∞.

Thislemmaisprovedin[17,Appendix:Theorem1.9]and
wewillskiptheproofhere.

ProofofProposition1.ByLemma1,wehavefork≥1,

Aµkn−1:µ(k 1)n

ij
≥αµkn−µ(k 1)n =αλk.

ApplyingLemma2,weget,

xµkn
max −xµkn

min ≤ 1−nαλk x
µ(k 1)n
max −x

µ(k 1)n

min . (6)
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Hence,using(6)fork=1,...,lweobtain,

xµlnmax−x
µln
min≤

l

k=1

1−nαλk x0max−x
0
min .

Wehave 0<α<1andλk≤−
ln(k+T)
ln(α) forallk≥K.It

follows,

∞

k=1

nαλk≥
∞

k=K

nαλk≥
∞

k=K

nα−
ln(k+T)
ln(α)

=
∞

k=K

n α
1

ln(α)

−ln(k+T)

=
∞

k=K

n

k+T
=∞.

UsingLemmas3and4and(6)weconcludethatProposition
1holds.

Proposition1provestheconvergenceofxki’stoavalue
whichisnotnecessarilythetotalaverageanddependsonthe
sequenceofmatrices.HoweverifthematricesAkaredoubly
stochastic,thesumofthevaluesofallnodes(agents)is
preservedandthereforethealgorithmconvergestoaverage
consensus.
SlightmodificationstoExample1.2,Chapter7of[18]

showsthatifintercommunicationintervalsgrowlogarithmi-
callyintime,ordinaryconsensusfailstoreachconsensus.

IV.PUSH-SUM

Push-sumisanalgorithmthatreachesaverageconsensus
anddoesnotrequiredoublystochasticmatrices,asopposed
toordinaryaverageconsensus.Here,weassumeeachnode
knowsitsout-degreeateveryiteration.Underthisassump-
tion,itturnsoutthataverageconsensusispossibleandmay
beaccomplishedusingthefollowingiteration,

xk+1i =

j∈N ,k
i

xkj

d+,kj
,

yk+1i =

j∈N ,k
i

ykj

d+,kj
, (7)

zk+1i =
xk+1i
yk+1i

,

wheretheauxiliaryvariablesyiareinitializedasy
0
i=1

andarecollectedinacolumnvectory.Thisiterationis
implementedinadistributedwayusingtwosteps.Firsteach
nodeibroadcastsxki/d

+,k
i toitsout-neighbors.Next,every

nodesetsxk+1i tobethesumoftheincomingmessages.
Variablesykifollowthesameevolution.z

k
imaybethought

ofasnodei’sestimationoftheaverage.
WedefineWktobethematrixsuchthatiteration(7)may

bewrittenas,

xk+1=Wkxk,

yk+1=Wkyk.

Next,wewillstateapropositionregardingthesufficient
conditionsforthepush-sumalgorithmtoconverge.

Proposition 2. Suppose the sequence of graphs
GW0,GW1,GW2,...,satisfiesAssumption1.Ifthereexist
someK≥1,T≥0,suchthatλk≤

ln(k+T)
2ln(n) forallk≥K,

byimplementingthepush-sumalgorithm(7),itfollows

lim
k→∞

zki=

n
j=1x

0
j

n
.

Thispropositionisprovedin[15].

V.ROBUSTASYNCHRONOUSPUSH-SUM

Herewedescribeandstudyanotheralgorithmforav-
erageconsensus,inwhichthecommunicationsystemis
asynchronousandunreliable.Inanunreliablesetting,com-
municationlinks mightfailtotransmitdatapacketsand
informationmightgetlost.
Thisalgorithmisoriginallyinspiredbythealgorithm

proposedby[10],butunderasynchronouscommunication.
Asthealgorithmin[10],thisalgorithmisalsobasedon
thepush-sumconsensus.[11]hasprovedexponentialcon-
vergenceofthisalgorithmforthecasewhenateachiteration
onlyonenodewakesupandtransmits.Herewemodifythe
algorithmpresentedby[11]andshowthataverageconsensus
stillholdswhileallowingforanysubsetofnodestoperform
updatesateachiteration.
Inthisalgorithm,asopposedtothepreviousones,we

assumenodesdonothaveself-loops.

Algorithm1RobustAsynchronousPush-Sum

1:Initializethealgorithmwithy0=1,σx,0i =σy,0i =0
∀i∈{1,...,n}andρx,0ji =ρ

y,0
ji =0,∀(i,j)∈E.

2:Ateveryiterationk,foreverynodei:
3:ifnodeiwakesupthen

4: σx,k+1i =σx,ki +
xki
d+i+1

;

5: σy,k+1i =σy,ki +
yki
d+i+1

;

6: xk+1i =
xki
d+i+1

;

7: yk+1i =
yki
d+i+1

;

8: Node ibroadcastsσx,k+1i andσy,k+1i toitsout-
neighbors:N+i

9:endif
10:ifnodeireceivesσx,k+1j andσy,k+1j fromj∈N−i then

11: ρx,k+1ij =σx,k+1j ;

12: ρy,k+1ij =σy,k+1j ;

13: xk+1i =xk+1i +ρx,k+1ij −ρx,kij;

14: yk+1i =yk+1i +ρy,k+1ij −ρy,kij;
15:endif
16:Othervariablesremainunchanged.

Theimpressiveideaproposedby[10]thatallowsus
toovercometheissueofunreliableoflinks,isthatof
introducingthecounters:inparticulareachnodeihasa
counterσx,ki (σy,ki respectively)tokeeptrackofthetotal
x-mass(y-mass)sentbyitselftoitsneighborsfromtime0
totimek,andcountersρx,kij (ρ

y,k
ij respectively)∀j∈N

−
i,
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totakeintoaccountthetotalx-mass(y-mass)receivedfrom
itsneighborjfromtime0totimek.

Whileinreality,nodeswillperformcomputationswhen
theywakeup;tomaketheanalysiseasier,weassumenodes
performcomputations(butnotransmission)whentheyare
notawake.

Next, westateandprovethe maintheoremofthispa-
per,whichshowsthatthealgorithmabovereachesaverage
consensusundersufficientconnectivityassumptions.

Theorem1. Suppose weapplytheRobustAsynchronous
Push-Sumalgorithmtoasetofagentscommunicatingwith
eachotherthroughastronglyconnectedgraphG=(N,E),
whereEdoesnothaveself-loops.LetG0,G1,...,bethe
sequenceofgraphsGi=(N,Ei),Ei⊂E,containingonly
thelinks whichtransmitsuccessfullyatiterationi.Also,
supposethereisanothersequenceb1,b2,...,ofpositive
integerssuchthat,ifwesplitthesequenceofG0,G1,...,
toconsecutiveblocksoflengthbi,theunionofgraphsof
eachblockisequaltoG;i.e.,∪

µk+1−1
i=µk

Ei = E,∀k≥ 0,
whereµk andλk aredefinedin(2)and(3).Supposethat
thereexistssomeK ≥ 1,T≥ 0,suchthatλk ≤ ln(k+T)

6ln(n),

∀k≥K.Then,zk
i=xk

i/yk
i convergestotheaverageofx0,

i.e.,

lim
k→∞

zk
i=

n
j=1 x0

j

n
.

Proof.Similartotheproofsofthepreviouspropositions,
herewefirstrewritetheevolutionofxk andyk inamatrix
form. Weshowthese matricesarecolumnstochastic.Then
wewritetheevolutionoftheagents’estimateoftheaverage,
zk,inmatrixform.Finally,weexploitthepropertiesofthese
matricestoshowtheconvergenceof zk

i toonelimitwhich
turnsouttobetheaverage.

Before werewritetheiterationina matrixform, we
introducetheindicatorvariablesτk

i,fori=1,2,...,n,and
τk

ij,for(i,j)∈E.τk
i isequalto1ifnodeiwakesupat

timek,andis0otherwise.Likewiseτk
ijis1whenevernode

iwakesupattimek,j∈N+
i andtheedge(i,j)isreliable,

whileitis0otherwise.
Letusintroducethefollowingvariables:

uk
ij=σx,k

i −ρx,k
ji , ∀(i,j)∈E,

vk
ij=σy,k

i −ρy,k
ji , ∀(i,j)∈E,

whichare,intuitively,thetotalx-massandy-mass,respec-
tively,thathasbeensentbynodeibutduetolinkfailures
hasnotbeendeliveredtonodejyet.Theevolutionofy-mass
isexactlythesameasx-mass;hencetoavoidrepetition,we
onlyanalyzetheevolutionofxk anduk

ij. Wecanwritethe
updateequations:

uk+1
ij = 1−τk

iτk
ij uk

ij+τk
i

xk
i

d+
i +1

, (8)

xk+1
i =

j∈Ni

xk
j

d+
j +1

+uk
ji τk

jτk
ji

+xk
i 1−τk

i+
τk

i

d+
i +1

. (9)

Letusintroducethecolumnvectorsuk andvk which
collectalldifferentuk

ijandvk
ij,respectively. Moreover,let

usintroducethecolumnvectorsφ(x)(k)=(xk)T,(uk)T T
,

φ(y)(k)=(yk)T,(vk)T T
∈Rn+m,wherem =|E|.Using

(8)and(9) wecanrewritethealgorithminthefollowing
matrixform:

φ(x)(k+1)=Mkφ(x)(k), (10)

φ(y)(k+1)=Mkφ(y)(k). (11)

Lemma5.Miscolumnstochasticandeachpositiveelement
ofitisatleast1/(maxi{d+

i}+1).Alsowehavefor1≤
i≤n:

Mk
ii=

1, ifτk
i =0,

1
d+

i+1
, ifτk

i =1.
(12)

Proofofthislemmacanbefoundin[15].
LetusaugmentthegraphGk toHk = GMk byadding

auxiliarynodesbij,∀(i,j)∈E. NotethatbyLemma5,
nodei∈{1,...,n}hasself-loopallthetimeandnodebij

hasself-loopunlessthelink(i,j)transmitsreliably.Letus
callnodesbijbuffersandassignvaluesuk

ijandvk
ijtothem.

Thealgorithmisequivalenttothefollowingprocess:
Supposenodeiwakesup.Ifthelink(i,j)worksproperly,
nodeisendssome mass(xk

i/(d+
i +1) andyk

i/(d+
i +1))

tonodejandalsonodebijsendsallofits mass(uk
ijand

vk
ij)tonodejandbecomeszero.Otherwise,themassissent

fromnodeitonodebijinsteadofj.Thenallthemassgets
accumulatedatnodebijbecauseofitsself-loop,untilthe
link(i,j)transmitsreliably.

Lemma 6. Thefirstnrowsof Mµl+n−1:µl arestrictly
positive,l≥ 0.Thepositiveelementsofthismatrixareat
least(1/n)

µl+n−µl.

Thislemmaisprovedin[15].
DefineWk=Mµ(k+1)n−1:µkn,k≥0,whichhaspositive

elementsofatleastαλk+1 whereα=1/n.Thenwehave:

xµ(k+1)n

uµ(k+1)n
=Wk xµkn

uµkn
, (13)

yµ(k+1)n

vµ(k+1)n
=Wk yµkn

vµkn
. (14)

LetussplitthematrixWktofoursub-matricesasfollows:

Wk=
Ak Bk

Ck Dk , (15)

where Ak ∈Rn×n,Bk ∈Rn×m,Ck ∈Rm×n andDk ∈
Rm×m.ByLemma6weknowthatmatricesAkandBkare
strictlypositive.

Forh=1,...,mdefinerk
h asfollows:

rk
h=

uk
h

vk
h

, ifvk
h=0,

0, ifvk
h=0.

Lemma7. uk
ij=0whenevervk

ij=0.

Proofofthislemmacanbefoundin[15].
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Therefore,thefollowingalwaysholdsforh=1,...,m:

uk
h=rk

hvk
h, (16)

Definex̄k = xµkn,̄yk = yµkn,̄uk = uµkn,̄vk = vµkn,
z̄k=zµkn and̄rk=rµkn.Using(13)and(15)weobtain:

z̄k+1
i ȳk+1

i =̄xk+1
i =

n

j=1

Ak
ij̄x

k
j+

m

j=1

Bk
ij̄u

k
j

=
n

j=1

Ak
ij̄z

k
jȳk

j+
m

j=1

Bk
ij̄r

k
j̄vk

j.

Hence,

z̄k+1
i = ȳk+1

i

−1
n

j=1

Ak
ij̄z

k
jȳk

j+ ȳk+1
i

−1
m

j=1

Bij̄r
k
j̄vk

j,

z̄k+1 = Yk+1 −1
AkYkz̄k+ Yk+1 −1

BkVkr̄k,

whereYk=diag ȳk andVk=diag v̄k .Notethat̄yk is
strictlypositive.Similarly,using(14)-(16)wehave,

r̄k+1
i v̄k+1

i =̄uk+1
i =

n

j=1

Ck
ij̄x

k
j+

m

j=1

Dk
ij̄u

k
j

=

n

j=1

Ck
ij̄z

k
jȳk

j+

m

j=1

Dk
ij̄r

k
j̄vk

j.

Herev̄k,asopposedtōyk,isnotnecessarilystrictlypositive.

Thereforeinsteadof Vk −1
,wedefinethefollowing:

ṽk
i=

1
v̄k

i

, if̄vk
i=0,

0, if̄vk
i=0.

Itfollows:

r̄k+1
i =̃vk+1

i

n

j=1

Ck
ij̄z

k
jȳk

j+̃vk+1
i

m

j=1

Dk
ij̄r

k
j̄vk

j,

r̄k+1 =Ṽ
k+1

CkYkz̄k+Ṽ
k+1

DkVkr̄k.

whereṼ
k

=diag(̃vk).Thus,

z̄k+1

r̄k+1 =Pk z̄k

r̄k , (17)

where,

Pk=
Yk+1 −1

AkYk Yk+1 −1
BkVk

Ṽ
k+1

CkYk Ṽ
k+1

DkVk
. (18)

Nowweshowthatthesumoftheelementsofeachrow1
tonofPk isequalto1,butfortherestoftherowsthey
eithersumto1ortheyareallzeros.

Pk 1n

1m
=




Yk+1 −1

Akȳk+Bkv̄k

Ṽ
k+1

Ckȳk+Dkv̄k





=
Yk+1 −1

ȳk+1

Ṽ
k+1

v̄k+1
=








1n

1or0
...

1or0








.

The(n+h)throwofPkiszeroifandonlyifvk+1
h iszero.

Lemma8. Fork≥0and1≤i≤nwehave:

αλk ≤ȳk
i≤n. (19)

Moreover,for 1≤h≤m andk≥1wehaveeitherv̄k
h=0

or,
αλk+λk 1 ≤v̄k

h≤n. (20)

Thislemmaisprovedin[15].
Now weareabletofindalowerboundonpositive

elementsofPk.LetusdividePk tofoursub-matricesas:

Pk=
Ek Fk

Gk Hk ,

where Ek ∈ Rn×n,Fk ∈ Rn×m,Gk ∈ Rm×n and
Hk∈Rm×m aredefinedasin(18).

Byconstruction,positiveelementsofEk andGk areat
least1

nαλk+1 αλk = αλk+1+λk+1.Similarly,positiveele-

mentsof Fk andHk areatleastαλk+1+λk+λk 1+1.Hence
wecandefinethefollowinglowerboundforallpositive
elementsofPk:

βk=αλk+1+λk+λk 1+1. (21)

Wenotethefollowingfactsbyobserving(18):
•Ek isstrictlypositive.
•if̄vk

h ispositive,thehthcolumnofFk isstrictlypositive.
Otherwisethewhole(n+h)thcolumnofPk iszero.
•ifv̄k+1

h ispositive,thehth rowofGk hasatleast
onepositiveentry. Thisistruebecauseduringthetime
µkn toµ(k+1)n−1,thecorrespondinglink(i,j),transmits
successfullyatleastonce,whichsetsthevaluesof̄vhand̄uh

to0.Thereforesincēvk+1
h ispositive,link(i,j)hasfailed

atleastonceafterthelastsuccessfultransmission. Hence,
Ck

hi ispositive,andthereforeGk
hi isalsopositive.

DefinetheindexsetIk={h|̄vk
h>0}.Ifh/∈Ikwehave

r̄k
h = v̄k

h =0,andalsothe(n+h)thcolumnofPk has
onlyzeroentries;hence,r̄k

h doesnotinfluenceanyvariable
oftimek+1. Wealsohaveforh/∈Ik+1 the(n+h)throw
ofPk hasonlyzeroentries.Thus,r̄k+1

h isformedbythe
sumofzeronumbers.Intuitively,thismeansthatforh/∈Ik,
r̄k

h iszeroandsoarethecoefficientsrelatedtoitin(17).
Thereforeitgivesusno meaningfulinformationanditcan
beignored.Fortherestoftheproof,weassumethatallthe
variablesr̄k

h consideredintheequationsaretheoneswith
h∈Ik.

Weobtain:

r̄k+1
max ≤βkz̄k

max +(1−βk)max{̄zk
max,̄rk

max},

z̄k+1
max ≤βkmin{̄zk

min,̄rk
min}+(1−βk)max{̄zk

max,̄rk
max}.

Then,

max{̄zk+1
max,̄rk+1

max}≤βkz̄k
max +(1−βk)max{̄zk

max,̄rk
max}.

Similarly,

min{̄zk+1
min ,̄rk+1

min }≥βkz̄k
min +(1−βk)min{̄zk

min,̄rk
min}.
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Wealsohave:

z̄k+1max ≤β
k
n

i=1

z̄ki+(1−nβ
k)max{̄zkmax,̄r

k
max},

z̄k+1min ≥β
k
n

i=1

z̄ki+(1−nβ
k)min{̄zkmin,̄r

k
min}.

Thus,

z̄k+1max−z̄
k+1
min ≤

(1−nβk)max{̄zkmax,̄r
k
max}−min{̄z

k
min,̄r

k
min}.

Equivalently,

sk+1≤βktk+(1−βk)sk,

tk+1≤(1−nβk)sk,

wheresk=max{̄zkmax,̄r
k
max}−min{̄z

k
min,̄r

k
min}andt

k=
z̄kmax−z̄

k
min.Observingthat0≤t

k≤sk,weget:

sk+1≤βk(1−nβk−1)sk−1+(1−βk)sk

≤βk(1−nβk−1)sk−1+(1−βk)sk−1

=(1−nβkβk−1)sk−1.

Hence limk→∞ s
k = 0 if

∞
k=1 1−nβ

2kβ2k−1 =
0, which, by Lemma 4, holdstrueifand onlyif
∞
k=1β

2kβ2k−1=∞.Using(21),wehave:

∞

k=1

β2kβ2k−1=

∞

k=1

αλ2k+1+2λ2k+2λ2k 1+λ2k 2+2

≥
1

n2

∞

k=K

α−
ln(2k+1+T)

ln(α)

=
1

n2

∞

k=K

1

2k+1+T
=∞.

Hencemax{̄zkmax,̄r
k
max}−min{̄z

k
min,̄r

k
min}convergesto0

askgoestoinfinity.CombiningthiswithLemma3we
obtain,

lim
k→∞

z̄ki= lim
k→∞,h∈Ik

r̄kh=L. (22)

Wehave:

L=Llim
k→∞

n
i=1ȳ

k
i+

m
h=1v̄

k
h

n
i=1ȳ

k
i+

m
h=1v̄

k
h

=lim
k→∞

n
i=1z̄

k
iȳ
k
i+

m
h=1r̄

k
h̄v
k
h

n

+lim
k→∞

n
i=1(L−z̄

k
i)̄y

k
i+

m
h=1(L−r̄

k
h)̄v

k
h

n

=lim
k→∞

n
i=1x̄

k
i+

m
h=1ū

k
h

n

+lim
k→∞

n
i=1(L−z̄

k
i)̄y

k
i+

m
h=1(L−r̄

k
h)̄v

k
h

n

=
n
i=1x

0
i

n
,

whereinthelastequality,weused(22),andthefactthat
v̄kh=0forh/∈I

k.

VI.CONCLUSION

Inthispaper weestablishedsufficientconditionson
connectivityandlinkfailuresforconsensusalgorithmsto
converge. Westartedbyshowingthatordinaryconsensus
andpush-sumstillworkifintercommunicationintervalsdo
notgrowtoofast.Thenwemovedontoourmainresult,
whichisafullyasynchronouspush-sumalgorithmrobust
tolinkfailures. Weproveditsconvergencewhileallowing
consecutivelinkfailurestogrowtoinfinity,aslongasthey
remainsmallerthanalogarithmicallygrowingupperbound.
Thisworkcanbeextendedbyimprovingtheupperbounds

usingergodicitytheory.Itisalsopossibletouseourresults
todevelopasynchronousdistributedoptimizationalgorithms
robusttopacketlosses.
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