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Fully Asynchronous Push-Sum With Growing Intercommunication
Intervals”

Alex Olshevsky, Ioannis Ch. Paschalidis® and Artin Spiridonoffi

Abstract— We propose an algorithm for average consensus
over a directed graph which is both fully asynchronous and
robust to unreliable communications. We show its convergence
to the average while allowing for slowly growing but potentially
unbounded communication failures.

I. INTRODUCTION

Consider a set of agents, whose goal is to reach consen-
sus by exchanging information locally with their neighbors
through a directed graph. There is a large body of work on
consensus algorithms. Ordinary consensus has been shown
to converge asymptotically under various scenarios such as
growing intercommunicating intervals [1], presence of delays
and/or unbounded intercommunication intervals [2]. Another
problem of interest for which extensive research has been
carried out is average consensus. While most related works
study asymptotic convergence, [3] studies average consensus
in a finite number of steps. Push-sum is one of the many
algorithms for average consensus that was first proposed by
[4]. This algorithm has been widely used to develop protocols
that reach average consensus, under different assumptions
and scenarios; such as the presence of bounded delays [5],
time varying graphs [6][7], or asynchronous communication
[8].

Since reliable communication is a very restrictive assump-
tion in network applications, or expensive to enforce, recent
work has considered algorithms that reach consensus in a
setting where communication between agents is unreliable.
While in this case, push-sum might not converge to average,
exponential convergence still holds and the error between
the final value and the true average can be characterized
[9]. In [10], Vaidya et al. introduce the technique of running
sums (counters) and modify push-sum to overcome possible
packet drops and imprecise knowledge of the network in
a synchronous communication setting. They prove almost
surely convergence of their algorithms using weak ergodicity.
Inspired by [10], [11] takes this further and develops an
asynchronous algorithm for average consensus, which is
robust to unreliable communication. This algorithm uses a
broadcast asymmetric communication protocol; that is, at
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each iteration only one node is allowed to wake up and trans-
mit information to its neighbors. Exponential convergence
of this algorithm is proved under bounded consecutive link
failures and nodes’ update delays.

Consensus and average consensus have a lot of appli-
cation in other algorithms as well; they can be used as a
building block to develop distributed optimization algorithms
[12][13]. For example, in [14] the authors use a robust
version of push-sum as a building block to develop an asyn-
chronous Newton-based distributed optimization algorithm,
robust to packet losses.

A lot of available works in the literature assume bounded
intercommunication intervals; which motivated us to study
and explore sufficient connectivity conditions which allow
intercommunication intervals to slowly grow and potentially
be unbounded. We propose logarithmically growing upper
bounds which guarantee convergence.

Distributed synchronous systems require coordination be-
tween the agents. Asynchronous systems, in contrast, do
not depend on global clock signals. This can save power
as agents do not have to perform computation and commu-
nication at every iteration. However, it might require more
iterations to converge. While existing works on push-sum
in the presence of link failures assume synchronous [10] or
broadcast asymmetric [11] communication setting, our major
contribution in this paper is to develop a fully asynchronous
robust push-sum algorithm that allows the successive link
failures to grow to infinity.

The rest of the paper is organized as follows. In Section II
we introduce our notation and define the problem. In Sections
III and IV we study ordinary consensus and push-sum
algorithms, respectively, and state our convergence results. In
Section V, we propose an asynchronous push-sum algorithm
which is robust to unreliable communication links, followed
by concluding remarks in Section VI.

II. PROBLEM FORMULATION
A. Notations and Definitions

Suppose A is a matrix, by A,; we denote its (¢, j) entry. A
matrix is called (row) stochastic if it is non-negative and the
sum of the elements of each row equals to one. Similarly, a
matrix is column stochastic if its transpose is stochastic. A
matrix is called doubly stochastic if it is both column and
row stochastic.

To a non-negative matrix A € R"™ ™ we associate a
directed graph G, with vertex set N’ = {1,2,...,n} and
edge set o = {(4,)|A4;; > 0}. Note that the graph might
contain self-loops.



By [A]o we denote the rhresholded matrix obtained by
setting every element of A smaller than « to zero.

Given a sequence of matrices AD,AI,AQ.. ..., we denote
by A¥?*1 L, > ky, the product of elements k; to ks of the
sequence, inclusive, in the following order:

Aﬁ‘:g:kl _ Akgﬁkg—l . .Akl_

Node i is an in-neighbor of node j, if there is a directed
link from i to j. Hence j would be an our-neighbor of node 1.
We denote the set of in-neighbors and out-neighbors of node
i at time k with N:‘k and N;" * respectively. Moreover,
we denote the number of in-neighbors and out-neighbors of
node i at time k with d;°* and ¥, as its in-degree and
out-degree, respectively. If the graph is fixed, we will simply
drop the index k in the aforementioned notations.

By Tmin and zp., we denote mingr; and max; Ty,
respectively, unless mentioned otherwise. We also denote a
n % 1 column vector of all ones by 1, or 1 when its size is
clear from the context

We sometimes use the notion of mass to denote the value
an agent holds, sends or receives. With that in mind, we can
think of a value being sent from one node, as a mass being
transferred.

B. Problem Formulation

Consider a set of n agents N' = {1,2,...,n}, where
each agent i holds an initial scalar value r”. These agents
communicate with each other through a sequence of directed
graphs. Our goal is to develop protocols through which these
agents communicate and update their values so that they
reach consensus. Throughout this paper we use the terms
agents and nodes interchangeably.

Ordinary consensus and push-sum are two main alpo-
rithms proposed for this purpose. In ordinary consensus, each
node updates its value by forming a convex combination
of the values of its in-neighbors. In push-sum, average
consensus is reached by running two parallel iterations in
which, each node splits and sends its value to its out-
neighbors and updates its own value by forming the sum
of the messages that it has received.

III. ORDINARY CONSENSUS
Although the main target of this paper is push-sum, in
this section we state and prove similar results for ordinary
consensus. Comparable results can be found in [1], however
the proofs provided here are necessary to understand the
methods used in the following sections.
Linear consensus is defined as,

L k=0,1,..., (1)

where the matrices A® are stochastic and x* is constructed
by collecting all =¥ in a column vector. Under the following
conditions, the iteration (1) results in consensus, meaning all
the =¥ converge to the same value as k — oo.

The following assumption ensures sufficient connectivity

of the graphs.

xEHL g kyk

Assumption 1. There exist a sequence by, ba, . .. of positive
integers such that when we partition the sequence of graphs
G°.G'. G2, ... to consecutive blocks of length by, k —=
1,2,..., the graph constructed by the union of the edpes
in each block, is swrongly connected Also each graph G*
has a self-loop at every node.

Let us define puy = Ay =0, and for k = 1:

B
i =Y by, @
j=1
kn
A = Z by = pgn — pik—1)n- (3)
J=(k—Tjn+1

The following proposition states sufficient conditions for
the convergence of ordinary consensus with growing inter-
communication intervals.

Proposition 1. Suppose there exist some o = 0 such
that the sequence of graphs Gio)_, Gy, Gus). , - - - Sarisfies
Assumption 1. If there exist some K > 1,T = 0, such that
M < —ml'g"[z?} for all k > K, then =* converges to a limit

in span{l }.

Before proving the proposition, we need the following
lemmas.

Lemma 1. Suppose there exists some o > 0 such that
the sequence of graphs Gyo),,Gu1).,Gu2).,. .. sarisfies
Assumption 1. Then for | = 0, A¥*~V8 j5 a swicely
positive matrix, with its elements at least oft+=—Hr,

This lemma is proved in [15].

Lemma 2. Suppose A is a stochastic matrix with entries at
least 5 = 0. If v = Au then,

Umax — Pmin = {1 - ﬂ.B} {uma:t - umin} . (4)

This lemma is proved in [16, Theorem 3.1 & Exercise
3.8].

Lemma 3. Suppose A is a stochastic marrix and v = An.
Then for all 1,

Umin = Uy = Umax. (5)

This lemma holds true because each v»; is a comvex
combination of elements of w.

Lemma 4. Suppose 0 < ap < 1 for k = 1,...,00, then
[Toey (1 —ex) =0 if and only if 3 5 | o = 0o

This lemma is proved in [17, Appendix: Theorem 1.9] and
we will skip the proof here.

Proaf of Proposition 1. By Lemma 1, we have for k = 1,
[Af-"in_l:f-"[i 1].:;]’:;f > pfhn T m g M

Applying Lemma 2, we get,
it — T < (1 —na™) (zhii U™ — 25l 7). (6)

min min
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[ we obtain,

) ( )-

_miET) forall k> K. It

Hence, using (6) for k=1,...,

0

Tmace n

— Tmin

i
— i < [ (1 - na
k=1

We have 0 <o < 1 and Ay <

Infix)
follows,
S > 3 na > 3 o
k=K
i 1 In{k+T)
=Z”(‘1'°[") _Zk+T

k=K

Using Lemmas 3 and 4 and (6) we conclude that Proposition
1 holds. O

Proposition 1 proves the convergence of =7's to a value
which is not necessarily the total average and depends on the
sequence of matrices. However if the matrices A* are doubly
stochastic, the sum of the values of all nodes (agents) is
preserved and therefore the algorithm converges to average
CONSENsUs.

Slight modifications to Example 1.2, Chapter 7 of [18]
shows that if intercommunication intervals grow logarithmi-
cally in time, ordinary consensus fails to reach consensus.

IV. PusH-SUM

Push-sum is an algorithm that reaches average consensus
and does not require doubly stochastic matrices, as opposed
to ordinary average consensus. Here, we assume each node
knows its out-degree at every iteration. Under this assump-
tion, it turns out that average consensus is possible and may
be accomplished using the following iteration,

k
k+1 _ Iy
I‘l- d—l-‘k’
jeN, * 1
k
k1 _ Yy
Yy Z & ™
JEN; * 1
k+1
S Iy
%y EElt
i

where the auxiliary variables y, are initialized as y? =
and are collected in a column vector y. This iteration is
implemented in a distributed way using two steps. First each
node i broadcasts =¥ /d;** to its out-neighbors. Next, every
node sets =~ to be the sum of the incoming messages.
Variables y* follow the same evolution. z* may be thought
of as node i's estimation of the average.

We define W* to be the matrix such that iteration (7) may
be written as,

k+1 _ pykyk
+1 _ Whyk

Next, we will state a proposition regarding the sufficient
conditions for the push-sum algorithm to converge.

Proposition 2. Suppose the sequence of graphs
Gwo, Gwr, Gw=, ..., satisfies Assumption 1. If there exist
some K > 1,T > 0, such that A < 5540 for all k > K,

TE(E%

by lmpfemmfmg ffu: push-sum algorit it follows
lim z¥ = Ej:lzj .
k— oo T

This proposition is proved in [15].
V. ROBUST ASYNCHRONOUS PUSH-SUM

Here we describe and study another algorithm for av-
erage consensus, in which the communication system is
asynchronous and unreliable. In an unreliable setting, com-
munication links might fail to transmit data packets and
information might get lost.

This algorithm is originally inspired by the algorithm
proposed by [10], but under asynchronous communication.
As the algorithm in [10], this algorithm is also based on
the push-sum consensus. [11] has proved exponential con-
vergence of this algorithm for the case when at each iteration
only one node wakes up and transmits. Here we modify the
algorithm presented by [11] and show that average consensus
still holds while allowing for any subset of nodes to perform
updates at each iteration.

In this algorithm, as opposed to the previous ones, we
assume nodes do not have self-loops.

Algorithm 1 Robust Asynchronous Push-5um

t: Initialize the algorithm with y° = 1, R L |
Vi€ {1,...,n} and pj;" = pii” =0, ¥(i,j) € £.

2 At every iteration k, for every node 1

3 if node 1wakes upthen

A

ke+1 e :

s oot =ﬂ’?' +d:ij‘-i-1;

. k+1 _ _xE

6 T, Tl

. E+1 ue .

T y-l. - E;F.ﬁs

% Node i broadcasts o' and +¥**! to its out-

neighbors: N+
o end if
10: if node i receives o}’ *+ and o ""”“‘H from j € N, then
. r k+1 r k4T,
11: I’Jij = 0oy :
: vkl Bk,
o ol Tl ek
1_ _k+l Tkt z,
13: + = I=+ + st& ' - P‘!j&’
R et

14 5"1+ = y1+ +PY:I —p,j H
15: end if

16: Other variables remain unchanged.
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The impressive idea proposed by [10] that allows us
to overcome the issue of unmeliable of links, is that of
introducing the counters: in particular each node i has a
counter 7% (¥ respectively) to keep track of the total
z-mass (y-mass) sent by itself to its neighbors from time 0
to time k, and counters pfj’"’ {pf;;k respectively) ¥j € N,



to take into account the total z-mass (y-mass) received from
its neighbor j from time 0 to time k.

While in reality, nodes will perform computations when
they wake up; to make the analysis easier, we assume nodes
perform computations (but no transmission) when they are
not awake.

Next, we state and prove the main theorem of this pa-
per, which shows that the algorithm above reaches average
consensus under sufficient connectivity assumptions.

Theorem 1. Suppose we apply the Robust Asynchronous
Push-Sum algorithm to a set of agents communicating with
each other through a strongly connected graph G = (N, £),
where £ does not have self-loops. Let G°, G, ..., be the
sequence of graphs G' = (N, E*), £ C £, containing only
the links which transmit successfully at iterarion i. Alse,
suppose there is another sequence by, ba,..., of positive
integers such that, if we split the sequence of G°,G',

to consecutive blocks of length by, the muﬂn af graphs f.rf
each block is equal to G; ie, UZ;'" et — EVE > 0,
where . and Ay are defined in (2) and f3). Suppase that

there exists some K = 1,T = 0, such thar A, < %
Yk = K. Then, zF = =¥ /yF converges to the average of x",
Le.,
L
lim z = Ej:lzj .
k— oo T

Proaf. Similar to the proofs of the previous propositions,
here we first rewrite the evolution of x* and y* in a matrix
form. We show these matrices are column stochastic. Then
we write the evolution of the agents’ estimate of the average,

¥ in matrix form. Finally, we exploit thf: properties of these
matrices to show the convergence of z* to one limit which
turns out to be the average.

Before we rewrite the iteration in a matrix form, we
introduce the indicator variables ¥, fori = 1,2,...,n, and
o5, for (i,5) € £ 7f is equal to 1 if node i wakes up at
time &, and is 0 otherwise. Likewise Tsi; is 1 whenever node
i wakes up at time k, j € N;" and the edge (i, j) is reliable,
while it is 0 otherwise.

Let us introduce the following variables:

“fj = 'ﬂ':: g P_::ik'. ¥(i,j) € £,
W(i,j) €&,

vy, nya

1 = ‘5"1
which are, intuitively, the total r-mass and y-mass, respec-
tively, that has been sent by node i but due to link failures
has not been delivered to node j yet. The evolution of y-mass
is exactly the same as r-mass; hence to avoid repetition, we
only analyze the evolution of x* and uf,. We can write the
update equations:

Iﬁ:
WEH (1 rhek) (urj = 1) . ®
Iir
I:H-l Z (d-+—i ] + “:frt) T;Tj‘ki

JEN, 1
Tir

+zk (I—T,*+d+—‘ﬂ). (9)
i

Let us introduce the column vectors u® and v* which
collect all different uf, and vf;, respectively. Moreover, let
us introduce the column vectors ¢ (k) = [(x*)T, {u"]lT]T
dW(k) = [(y5)T,(v*)T]" € R™*™, where m — |£|. Using
(8) and (9) we can rewrite the algorithm in the following
matrix form:

¥

¢ (k+1) = M ¢ (k), (10)
Wk +1) = M W) (k). (11)

Lemma 5. M is column stochastic and each positive element
of it is ar least 1/(max,{d]} + 1). Also we have for 1 <

1
1,
k ¥
M:: = { 1
I

Proof of this lemma can be found in [15].

Let us augment the graph G* to H* = Gy« by adding
auxiliary nodes by, ¥(i,j) € £. Note that by Lemma 5,
node i € {1,...,n} has self-loop all the time and node by,
has self-loop unless the link (i, j) transmits reliably. Let us
call nodes by; buffers and assign values uf; and vf, to them.

The algorithm is equivalent to the following process:
Suppose node ¢ wakes up. If the link (4, j) works properly,
node i sends some mass (zf/(d} + 1) and y¥/(d] + 1))
to node j and also node by; sends all of its mass (uﬂ
t’f}} to node j and becomes zero. Otherwise, the mass is sent
from node ¢ to node by; instead of j. Then all the mass gets
accumulated at node by; because of its self-loop, until the
link (i, ) transmits reliably.

Lemma 6. The first n rows of MM+=—1# are swicely
positive, | = 0. The positive elements of this matrix are at
least (1/n)"+="M,

-0,
1 (12)

This lemma is proved in [15].
Define W5 = M¥e+u=—1#en b = ) which has positive
elements of at least a**+* where a = 1/n. Then we have:

XH(k+1)n E xHEn
|:|_|P.:k+1]n:| =W |: kn] ¥ (13)
Fj-l.:k+1]n ke Ff-ikn
|:‘rf-"l:k+1]n:| =W [‘rmn] . (14)
Let us split the matrix W* to four sub-matrices as follows:
AF BF
W= [Ck Dk] , (15)

where A¥ € R, B¥ € R, CF € R™*™ and D* €
B™*™ By Lemma 6 we know that matrices A* and B* are

strictly positive.
For h =1,...,m define rf as follows:
k .
x_ [ iAo,
0, ifuvk=0.

Lemma 7. uf, = 0 whenever vf, = 0.

Proof of this lemma can be found in [15].
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Therefore, the following always holds for h =1,...,m:
uf =rruk, (16)

Define x5 = xten | §5 = yHen 0F = ghen, §% = yHien,
z¥ — g##~ and * = r**~. Using (13) and (15) we obtain:

b}
ghHightl _ gkt k
by = AGIT + Z By
j=1
b} m

b —k—k

=D Abzigy + ) BTl
j=1 j=1

Hence,

-1
=" Ejﬂﬁﬁﬂ E:Eﬁﬁw:

- (Y'Hi)‘l kykgk 4 (YR B*v"r".,

where Y* = diag (7*) and V* = diag (v*). Note that y* is
strictly positive. Similarly, using (14)-(16) we have,
n
_;.:+1 k gk k ok
Z Cy T Z Dyyuy
j=1

=1

_a:+1

Ff“ ﬁir.:+1
i m

— > Ok 4> Dol

Here ¥*, as opposed to ¥*, is.l not necessarily strictly positive.

Therefore instead of (V¥) ~, we define the following:

ﬁ_{#1ﬁﬂ%m

v =

o =k
0, ifok—0.
It follows:
b} m
—k+1 _ k41 k -k -k ~k+1 kb —k_—k
rett =ty Ol + Ot ) Do)
j=1 j=1

+1_ it pkykgk | gFH plykpk

where V* = diag(#*). Thus,

k+1 k
[;H] =P"[§;= : an
where,
Yk+1 -1 AkYk Yl’-+1 -1 Bﬁ‘:‘rﬁ‘:
P* = [{ irﬂ}lckw {,;,H}ln,,vk l (18)

Now we show that the sum of the elements of each row 1
to n of P¥ is equal to 1, but for the rest of the rows they
either sum to 1 or they are all zeros.

i [1n [(ver) 7 (AkgE 4+ BE®
[11'“] I (C"y"+l}"v’“)

I Yk+1}_1 yr+l {] :I: D-|

| gEtlgee - : :
) lor0

The (n + h)*" row of P* is zero if and only if u""‘l is zero.

Lemma 8 For k> 0and 1 <i < n we have:

a* < gk <n (19}
Moreover, for 1 < h < m and k > 1 we have either o =0
or

aJl-k+Jlk 1 ":_:ﬁ;: <n

(20)

This lemma is proved in [15].
Now we are able to find a lower bound on positive
elements of P*. Let us divide P* to four sub-matrices as

E* F*
Pk = I:Gir- Hﬁ‘::l 3

where E¥ € R™™ F* ¢ R™™, G* ¢
H* = B™*™ gre defined as in (18).

R™" and

By construction, positive elements of E¥ and G* are at
least Loterigh = glentAtl Similarly, positive ele-
ments of F* and H* are at least a*s+1+*«+% 1+1 Hence
we can define the following lower bound for all positive
elements of P*:

B = e tAe Ay 1+l (21)
We note the following facts by observing (18):
« EF 15 strictly positive.
s if oF is positive, the h*® column of F* is strictly positive.

Otherwise the whole (n + h)*® column of P* is zero.

o if o' is positive, the h** row of G* has at least
one positive entry. This is true because during the time
Hen 10 pip g1y, — 1, the corresponding link (i, j), transmits
successfully at least once, which sets the values of 7y and @,
to 0. Therefore since ﬁﬁ“ is positive, link (7, j) has failed
at least once after the last successful transmission. Hence,
CF, is positive, and therefore G¥, is also positive.

Define the index set I* = {h|z} > 0}. If h ¢ I* we have
7§ = of = 0, and also the (n + h)™ column of P* has
only zero entries; hence, 7¢ does not influence any variable
of time k+ 1. We also have for k ¢ I**! the (n 4+ h)'" row
of P* has only zero entries. Thus, 7 """'1 is formed by the
sum of zero numbers. Intuitively, this mf:ans that for h & I*,
fﬁ is zero and so are the coefficients related to it in (17).
Therefore it gives us no meaningful information and it can
be ignored. For the rest of the proof, we assume that all the
variables #F considered in the equations are the ones with
h € I¥.

We obtain:

Tt {.Hk_k +'[1_.Hk:| mﬂ{ffnn:":fnu}
z]frl < -Hi|= m“n{zmmi mln} + {1 - ﬁk} max{zma:t m:u}
Then,
max{Zhat, Thit} < B2k + (1
Similarly,

min{zht!, it} > ¥ 2k + (1

- ﬁkjm{ ma:[!lf::na:[}

- .Bk:l nli-n{z::nim kain}'



We also have:

_k+1 = 3’: Z {zmax:affnu}?

+ (1 —np*)

m-l;L :—:' Zzi +{1—ﬂﬁ }mm‘[zmlmrmm}

Thus,
shtl - 25l <
(1 — nf*) (max{zf .y, Fpae } — min{Zg;0, Trn}) -
Equivalently,
shHl gl 41—
i+ < (1 =

.Hk:lsk:
Ky k
nf”)s",
where s* = max{zF_ .75} — m.in{flf.jin,'i’fnin} and t* =
z* . — zE... Observing that 0 < t* < s*, we get

sk+:|. < Jﬂk{l _ nﬂk—l}sﬁ‘:—l + {1 _ 'Bk,}sk
< %1 — nfE 1)k 4 (1 — gF)s*-1
= (1—-ngfg" s L
Hence Limg..s®* = 0 if J[-, (1 —np*p2-1)

0, which, by Lemma 4, holds true if and only if
Yo, A% A%-1 = po. Using (21), we have:

o0 o0
Z ﬂﬂkﬂmﬂ—l _ Z a1 +2Aak+2Aak 1+Aak 242
k=1 k=1

In{2k4+ 14T
I':E_ Tal=

I
;"lul o
[z

-
1
=

1

1
n? & ‘2k+1+T

I

Hence max{zF, ., 75} — mjn{zmm,rmin} converges to 0
as k goes to infinity. Combining this with Lemma 3 we
obtain,
lim 2= lm =L
k—oa k—oo, helk

(22)

We have:
L L lim et e
koo 303 Bt + Y ohet "h
— lLm (21—1319': + 3 het T rﬁ:)

4 lim (E: (L — 2 }§F+EE=1':L—?E}5§)
(21—111 + 3 het “h)

= lim
]

4 lim > e (L — 20)gF + 2 pey (L — 7F)op
k—oo n

— ET=1 IE
—:n. 3

where in the last equality, we used (22), and the fact that
ﬁ,’f =0 for hg I*". O

V1. CoNCLUSION

In this paper we established sufficient conditions on
connectivity and link failures for consensus algorithms to
converge. We started by showing that ordinary consensus
and push-sum still work if intercommunication intervals do
not grow too fast. Then we moved on to our main result,
which is a fully asynchronous push-sum algorithm robust
to link failures. We proved its convergence while allowing
consecutive link failures to grow to infinity, as long as they
remain smaller than a logarithmically growing upper bound.

This work can be extended by improving the upper bounds
using ergodicity theory. It is also possible to use our results
to develop asynchronous distributed optimization algorithms
robust to packet losses.
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