
Current Biology

Review
Selfish Mitonuclear Conflict
Justin C. Havird1,*, Evan S. Forsythe2, Alissa M. Williams2, John H. Werren3, Damian K. Dowling4, and Daniel B. Sloan2
1Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
2Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
3Department of Biology, University of Rochester, Rochester, NY 14627, USA
4School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
*Correspondence: jhavird@utexas.edu
https://doi.org/10.1016/j.cub.2019.03.020

Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite bil-
lions of years of cooperative coevolution— in what is arguably themost important mutualism in the history of
life— the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus.
Becausemitochondrial genomes are present in numerous copies per cell, they are subject to bothwithin- and
among-organism levels of selection. Accordingly, ‘selfish’ genotypes that increase their own proliferation
can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental
(often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing
within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates
conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual
antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have
the side-effect of being harmful to males (i.e., ‘mother’s curse’). Here, we review recent advances in under-
standing selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mech-
anisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and
bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eu-
karyotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the
diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Introduction
Mitochondria are a key feature of eukaryotic life, and their persis-

tence represents one of the most enduring biological unions, as

mitochondria are the descendants of ancient bacterial endosym-

bionts that were acquired prior to the last eukaryotic common

ancestor [1]. Remarkably, mitochondria still maintain indepen-

dent genomes in nearly all eukaryotic lineages. Coevolution

between mitochondrial and nuclear genomes is generally

considered to be mutualistic, because precise interactions be-

tween mitochondrial- and nuclear-encoded gene products are

necessary for fundamental cellular functions [2]. The importance

and near ubiquity of mitochondria has led to hypotheses that

implicate mitonuclear coevolution in nearly all aspects of eukary-

otic biology— from speciation to the origins of sex (Box 1) [3–11].

Despite their longstanding symbiosis, the presence of inde-

pendently replicating mitochondrial genomes in eukaryotes cre-

ates the opportunity for selfish conflict between mitochondrial

and nuclear genes. The term conflict can be used in different

ways, but here we mean more than simple genetic incompatibil-

ities that arise due to disruption of coadapted mitonuclear geno-

types during hybridization and genetic admixture [5,12–14].

Rather, we are referring to cases in which opposing selection

pressures act on mitochondrial and nuclear genomes such that

their evolutionary ‘interests’ are at odds with each other [15].

For example, mutations that benefit the transmission of mito-

chondrial genomes but reduce the transmission of nuclear ge-

nomes create mitonuclear conflict. Such opposing selection

pressures were likely much more prominent early in eukaryotic

evolution when mitochondria had larger genomes and greater
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independence from the nucleus. However, in the billions of years

since the origin of mitochondria, the control of nearly all mito-

chondrial functions has been transferred to the nucleus in a

process of cytonuclear integration that is sometimes termed

‘domestication’ [16–19].

Mitochondrial domestication likely eliminatedmany sources of

mitonuclear conflict, but not all of them. The only lineages that

have completely lost their mitochondrial genomes lack electron

transport systems and survive as parasites on the cellular energy

of other eukaryotes [1,20,21]. There is active research into the

classic question of whether mitochondrial genomes have been

maintained due to adaptive processes or functional constraints

[17,22–25]. Regardless of the answer, the persistence of mito-

chondrial genomes over billions of years has made mitonuclear

conflict an enduring feature of eukaryotic evolution.

Although there has been longstanding interest in mitonuclear

conflict and similar selfish interactions involving plastids (e.g.,

chloroplasts) and other endosymbionts [15,26–32], recent

work across diverse eukaryotes has employed genomic and

modeling-based approaches to yield new insights into the

molecular mechanisms of mitonuclear conflict and how such

conflict is ameliorated. Here, we review this literature under the

two broad themes of selfish mitochondrial replication and sexual

antagonism, while drawing parallels and contrasts with cytonu-

clear conflict in plastids and endosymbionts.

Mitochondrial Genomes as ‘Selfish Little Circles’
‘‘.evolution might be determined not by which plasmon form

furthered the organism in which it occurred, but by which
Ltd.
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Box 1. The role of mitonuclear conflict in key eukaryotic transitions.

The acquisition of the mitochondrial endosymbiont and the resulting establishment of mitonuclear interactions has been sug-

gested as a driving force for the evolution of nearly every feature that distinguishes eukaryotes from prokaryotes. Organismal

complexity, genome complexity, speciation processes, sexual reproduction, the presence of two sexes, sexual selection,

apoptosis, aging, the sequestered germline, the nuclear membrane, and introns have all been argued to have arisen at least in

part due to mitochondria [3–11].

Many of these hypotheses assume mutualistic coevolution between mitochondrial and nuclear genomes, but mitonuclear conflict

could provide insights into these key transitions as well. For example, genomic and organismal complexity has been hypothesized

to have arisen due to increased energy supplied by the mitochondrial endosymbiont [2,11]. However, mechanisms of selfish repli-

cation in mitochondrial genomes may have selected for novel genes and functions in nuclear genomes to combat selfishness,

which would have also increased complexity. Reproductive isolation between populations has been attributed to breaking up

coadapted mitonuclear complexes in offspring, resulting in reduced hybrid fitness [5,40,192]. However, in angiosperms, CMS

is often manifested in hybrids, not because mutualistically coadapted complexes are disrupted, but because selfish mitochondrial

variants are placed against a naı̈ve nuclear background that lacks the proper counteradaptations. Finally, in a recent hypothesis on

sexual selection, male ornaments were proposed to act as a signal of howwell mitochondrial and nuclear genomes are coadapted

to one another, resulting in greater oxidative phosphorylation efficiencies andmore attractive ornaments with greater coadaptation

[193]. Another view might be that male ornaments can only be maintained when selfish mitochondrial genomes are brought under

control by nuclear responses.

While such hypotheses for mitonuclear conflict in key eukaryotic features are speculative, researchers investigating the implica-

tions of mitonuclear interactions would do well to consider the role of antagonistic, as well as mutualistic, coevolution between the

genomes.
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furthered itself most in competition with other plasmon fac-

tors.’’ Grun 1976 [29]

Selection among and within Individuals

An individual eukaryote may possess up to trillions of cells, each

of which may contain hundreds of mitochondria, which in turn

may each contain many mitochondrial genomes [33,34]

(Figure 1). Even unicellular eukaryotes that possess only one or

a handful of mitochondria can have many copies of the mito-

chondrial genome [35,36]. Due to their multicopy nature, selec-

tion on mitochondrial genomes operates both among and within

individuals [37–40] (Figure 1). Consequently, mitochondrial ge-

nomes that harm the organism can outcompete beneficial mito-

chondrial genomes and rise to high frequencies within an individ-

ual because the strength of selection on individual mitochondrial

genomes for cellular function can be weak compared to the

strength of selection to replicate. Haig [30] referred to this as

the ‘‘tragedy of the cytoplasmic commons’’ because mitochon-

drial replication benefits the individual genome, while efficient

cellular function benefits all the genomic inhabitants of the cell

and is therefore a ‘public good’. In such situations, the self-inter-

est of individuals (mitochondrial genomes) can result in the

decay of public goods (cellular function) [41].

Mitochondrial and nuclear selection pressures will generally

remain aligned unless there is variation amongmitochondrial ge-

nomes for selection to act on. Organisms that possess a hetero-

geneous population of mitochondrial genomes are termed heter-

oplasmic and are commonly observed. For example, even with

low sensitivity detection methods, heteroplasmic females pos-

sessing mitochondrial genomes that differ by �3% have been

found to occur naturally at frequencies of up to 12% in

Drosophila individuals [42]. Most individuals will be heteroplas-

mic at some point in their life cycle as a result of mutations in in-

dividual mitochondrial genome copies [43–45]. Mitochondrial

mutation rates are elevated compared to nuclear rates in some

eukaryotic lineages [46–49], and all mitochondrial variants that
are fixed between populations or species began as heteroplas-

mic variants within an individual. Because multiple copies of

the mitochondrial genome are also transmitted across genera-

tions (albeit often in reduced or ‘bottlenecked’ numbers — see

‘Nuclear Responses to Suppress Selfish Replicators’ below),

offspring can inherit heteroplasmies [50]. In such heterogenous

populations of mitochondrial genomes, copies that over-repli-

cate have the potential to spread even if they have harmful

effects on organismal fitness. The frequencies of these selfish

replicators will be shaped by a balance between the different

processes of mutation, multilevel selection, and drift (e.g., due

to transmission bottlenecks).

Several elegant studies have experimentally manipulated

organismal population sizes to examine selfish mitochondrial

transmission and illustrate the conflicting levels of selection in

systems such as yeast and nematodes [51–53]. Such experi-

ments reduce the efficacy of selection among individuals by

lowering the effective population size. However, reducing the

number of organisms has no effect on the number of mitochon-

drial genome copies within each organism, so selection remains

strong among mitochondrial genome copies within individuals.

These studies have generally confirmed that reducing organ-

ismal selection ‘tilts the balance’ toward the proliferation of self-

ish mitochondrial elements (Figure 1).

Mechanisms of Selfish Replication

Several examples and mechanisms of mitochondrial selfish

replication have been identified or hypothesized. Here, we

describe six different processes thatmay lead to over-replication

of otherwise deleterious mitochondrial genomes (Table 1). First,

sequence variants inmitochondrial genomes can directly reduce

genome replication time [54]. Smaller mitochondrial genomes

arising via deletions are expected to replicate faster and spread

within an individual, even though deletions of key genes can

have major effects on oxidative phosphorylation activity and

organismal fitness. Mitochondrial variants in Caenorhabditis
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Figure 1. The balance of selection among different levels of organization.
Mitochondrial genomes that have a replication advantage can spread within an organism even if they confer deleterious effects on organismal function because
selection on mitochondrial genomes acts both among and within individuals.
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nematodes with large deletions in NAD5 may serve as an

example, as they have a replication advantage but compromise

organismal energetics [54–56]. Sequence variants that preferen-

tially recruit replication machinery may also accelerate DNA

replication and increase in frequency within a variable mitochon-

drial population. For example, petite mutants in baker’s yeast

(Saccharomyces cerevisiae) arise spontaneously at high fre-

quencies, often via large deletions in the mitochondrial genome.

Therefore, growth is slowed due to compromised respiration, re-

sulting in a small or ‘‘petite’’ colony phenotype [57]. Petite mu-

tants also have duplicated ORI sequences in their mitochondrial

genomes, which are thought to promote replication and may act

as an origin of mitochondrial replication (but see [58]), giving

them an additional replication advantage [59]. Enhanced or

expanded origins of replication may also explain evidence in

the fruit flyDrosophilamelanogaster that largermitochondrial ge-

nomes can have a within-individual replication advantage [60]. In

Drosophila where a foreign mitochondrial genome has been

introduced to compete with the native variant, it was shown

that the noncoding region of the genome (containing the origin

of replication) governs selfish transmission [40]. In facultative

aerobes such as yeast, selfishmitochondrial variants with defec-

tive oxidative phosphorylation can rise to fixation (homoplasmy)

when the yeast are in an anaerobic phase, because countervail-

ing selection against them at the individual level is weak.

However, in species such as nematodes where respiration

is critical, selfish mitochondrial variants will rise in frequency
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(heteroplasmy), but this process will be counterbalanced by se-

lection on organismal function.

The multicopy nature of mitochondrial genomes can some-

times be extreme. In one remarkable example, the amoeba

endosymbiont Perkinsela has a single mitochondrion and amito-

chondrial genome that encodes only six proteins; nevertheless,

this endosymbiont has so many mitochondrial genome copies

that it has more DNA in its single mitochondrion than is present

in the nuclear genomes of either the endosymbiont or the host

[61,62]. This raises questions as to whether highly multicopy

mitochondrial genomes, which are common across eukaryotes,

are beneficial for organismal fitness ormay have arisen at least in

part due to selfish replication.

Functional transfer of mitochondrial genes to the nucleus may

buffer the effects of mitochondrial gene deletions. In this sce-

nario, an intracellular gene transfer duplication occurs such

that a mitochondrial gene is present and functional in both the

mitochondrial genome and the nuclear genome (e.g., [63]).

Because the mitochondrial and nuclear gene copies are

functionally redundant, one copywill likely be lost. Several evolu-

tionary hypotheses have been presented detailing why mito-

chondrial genes are transferred to the nucleus [19,64,65]. One

possibility is that mitochondrial variants in which the transferred

gene is deleted might have a replication advantage over intact

mitochondrial genomes. As such, variants with deletions would

spread and preferentially result in the loss of the mitochondrial

copy and retention of the nuclear copy, completing nuclear



Table 1. Six possible mechanisms of selfish mitochondrial replication and six possible nuclear responses.

Mechanism Details Example taxa Citations

Selfish replication

1. Faster replication Via deletions and preferential recruitment

of replication machinery

Humans, nematodes, Drosophila,

yeast

[40,51,53–55,57,59,

190,191]

2. Moral hazard hypothesis Poor organelles result in increased DNA

replication

Nematodes (and simulations) [67–70]

3. Selfish organelle growth

and division

Genome variation causes replication of

organelles, not DNA

Plastids in evening primrose? [72]

4. Epigenetic tagging Replication and transcription may be

mutually exclusive

Mammals, possibly in copepods [73–75]

5. Organelle inheritance bias Variants causing organelles to move

into germline

None, relevant mechanisms

proposed in bivalve molluscs

[76]

6. Warfare Organelles producing toxins to disrupt

competing organelles

None, relevant observations in

heteroplasmic mice

[79]

Nuclear responses

1. Gene transfer Functional movement of genes from the

mitochondrial to the nuclear genome

Mitochondrial replication — all

eukaryotes; dNTP levels — yeast

[1,80]

2. Organelle selection Selective mitophagy aided by

mitochondrial fusion/fission cycles

Characterized most extensively

in mammals

[6,70,81–83,87]

3. Cell selection Mitochondrial function in germline selective

sieves and apoptosis

Characterized most extensively

in mammals

[89–91,93]

4. Sexual recombination Sex may counteract the parasitic nature

of selfish replication

None; modeling studies contrarily

suggest sex evolved after

mitochondrial control

[4,32,97–99]

5. Germline bottlenecks Reduces heteroplasmy Mammals; parallels in young

endosymbionts

[100,101,105,106]

6. Uniparental inheritance Reduces heteroplasmy Figure 2 [96,107]
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gene transfer [66]. Under this hypothesized mechanism, the

inherent selfishness of multicopy organelle genomes may actu-

ally have acted to strip them of much of the very genetic content

that allowed them to function in a selfish fashion to begin with

(e.g., mitochondrial replication machinery).

A second potential mechanism of selfish replication involves

variants that compromise mitochondrial function but do not

result directly in shorter DNA replication times. One hypothe-

sized cellular response to under-performing mitochondria that

harbor such defective genome copies is to increase the replica-

tion of all mitochondrial DNA (mtDNA) within such organelles,

including both functional and defective variant copies [15,67].

The result over time would be a mitochondrial moral hazard

that rewards ‘bad behavior’ and produces a large population

of poor-performing mitochondrial genomes that hitchhike along

with upregulated mtDNA replication in their compartments. In

other words, the very response of the cell to the defective

genome results in the spread of the defective genome. The over-

all result is a snowball effect in which cellular function continues

to decline as more dysfunctional genomes accumulate.

Modeling studies provide some evidence for this, with implica-

tions for why mitochondrial-associated diseases caused by het-

eroplasmy are manifested later in life [68–70]. There is also

empirical evidence that a mutant mitochondrial haplotype in

C. elegans that has a 3.1 kb deletionmay proliferate by exploiting

the regulatorymachinery thatmaintains the necessary number of

wild-type genome copies [67]. These observations provide an
alternative (or complementary) interpretation for the role of dele-

tions in selfish over-replication.

Importantly, the potential for spread of selfish mitochondrial

genome copies within a cell may be shaped by the fact that mito-

chondria undergo cycles of fusion and fission [71]. In the

absence of mitochondrial fusion, a selfish mitochondrial variant

that spreads to fixation within a mitochondrion would still require

that mitochondrion to proliferate within the cell in order to spread

further. Modeling work suggests that fusion/fission makes it

possible for defective mtDNA copies to spread among mito-

chondria and outcompetewild-type copieswithin each organelle

[70]. This is in contrast to the apparent lack of regular fusion in

many plastids and younger endosymbionts, which traps genome

copies inside a single organelle or bacterium.

A third mechanism of selfish replication may take place at the

organelle level rather than the genome level. Some of the earliest

ideas about intracellular competition among organelles were

developed based on observations of plastids rather than mito-

chondria [27,29]. In particular, in the evening primrose (Oeno-

thera) certain plastid genotypes are known to consistently

outcompete others when they are present in a heteroplasmic

state. In one recent study, specific variants in plastid-encoded

genes were implicated in a mechanism for preferential replica-

tion of these ‘strong’ plastids [72]. The authors did not detect

differences in genome copy number across plastid types,

suggesting that rates of DNA replication were not a primary

driver. Instead, variation in the plastid-encoded subunit of the
Current Biology 29, R496–R511, June 3, 2019 R499
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acetyl-CoA carboxylase (accD) was shown to correlate with

plastid competitive success and underlie variation in fatty acid

production, which the authors hypothesize is rate-determining

for plastid membrane growth and plastid division. Although there

is no evidence that rapid plastid division is inherently harmful

to organismal fitness, these strong plastids are able to spread

even when introduced onto genetically incompatible nuclear

backgrounds, resulting in loss of photosynthetic function.

Thus, they clearly create opportunities for conflicting levels of

selection.

Three other mechanisms of selfish replication that have

received less attention include mitochondrial epigenetic modifi-

cations, organelle-level inheritance bias, and ‘warfare’ among

organelles. It has been proposed in mammals that mtDNA is

epigenetically tagged. Some evidence suggests that tagging

can direct the fate of a genome copy to either replication or tran-

scription of mtDNA, but not both [73,74]. In cytoplasmic hybrids

of themarine copepod Tigriopus californicus, mitochondrial tran-

scription and DNA copy number are negatively correlated [75],

possibly supporting this mechanistic tradeoff. In this context,

mitochondrial genome copies that are preferentially tagged for

replication will spread, but will not be transcribed, and therefore

are less likely to be screened for functionality. Meiotic drive, in

which certain alleles subvert Mendel’s laws of inheritance and

are preferentially transmitted to the next generation, is generally

considered only in the context of heterozygous nuclear genes

because mitochondria do not undergo meiosis. However, an

analogous process of inheritance bias could exist among organ-

elles if particular mitochondria have the ability tomove into germ-

line cells during development. Recent evidence in molluscs

provides a possible mechanism as mitochondrial-encoded ge-

netic products were suggested to affect microtubule motors

[76], and cytoskeletal elements play a role in partitioning mito-

chondria during cell division [77]. Finally, warfare could occur

among organelles. Many bacteria are characterized by toxin–

antitoxin systems, which themselves can be selfish genetic ele-

ments [78]. Endosymbionts could encode similar systems to

destroy competing endosymbionts, possibly at the expense of

organismal function. To our knowledge, no examples of such

systems have been described in organelles, but we would pre-

dict them to occur more frequently in young endosymbionts

that retain larger genomic repertoires. Theymay also be possible

in some lineages where ‘non-functional’ (and putatively selfish)

mtDNA is common.

Interestingly, recent studies in heteroplasmic mice found dele-

terious effects even though individuals that were homoplasmic

for either mitochondrial variant showed no such effects (i.e.,

underdominance) [79]. To put it differently, mitochondrial ge-

nomes that are seemingly fine in isolation can be deleterious in

combination. One possible explanation is that active competition

between the variants through one or more of the mechanisms

described above causes reduced organismal fitness.

Nuclear Responses to Suppress Selfish Replicators

Selfish replication in mitochondrial genomes is curtailed by

several mechanisms, six of which we outline here (Table 1). First

is the transfer of the majority of mitochondrial genes and control

of mitochondrial functions to the nucleus during the billions of

years since the endosymbiotic origin of eukaryotes [19]. While

nuclear gene transfer is often thought to be adaptive because
R500 Current Biology 29, R496–R511, June 3, 2019
nuclear genes benefit from sexual recombination while mito-

chondrial genes do not [65], there are also neutral reasons

why gene transfer should be asymmetrical between the ge-

nomes [64], and this remains an active area of research

[22,23]. Ironically, according to the logic described in the previ-

ous section, selfish replication in mitochondrial genomes may

also predispose genes to nuclear transfer [66]. Regardless of

the cause, nuclear gene transfer likely provided the nucleus

with a novel set of genes that may have played roles in

combating selfish mitochondrial replication, while stripping

mitochondrial genomes of most of their weapons for selfish

replication. Perhaps most importantly, the machinery that actu-

ally controls mtDNA replication is nuclear-encoded in all eukary-

otes [1]. The ability to selfishly replicate is presumably more

limited in a genome that does not control its own replication.

There is also recent evidence that nuclear control over dNTP

levels may act to regulate selfish mitochondrial genomes in

yeast [80].

Secondly, mitochondria may be ‘screened’ to eliminate poor-

performing organelles that possess selfish genomes [6,81–83].

Mitophagy, which was once thought to be largely random, is

now known to selectively eliminate underperforming mitochon-

dria, likely as a form of quality control [84–86]. Fusion/fission

cycles also act to segregate underperforming organelles with

lowered membrane potential from the rest of the mitochondrial

population [70,87], allowing them to be selectively eliminated

via mitophagy.

Thirdly, the entire cell can be vetted based on the performance

of its mitochondria, which may be especially important during

germline development [88]. For example, in a 20-week old hu-

man female fetus, �7 million ovarian follicles are present, but

only a few hundred will eventually undergo ovulation [89] —

amounting to a very effective potential selective sieve during

this process (known as atresia). Importantly, recent studies sug-

gest mitochondrial function is especially important during early

primordial germ cell development [90,91] and may also be under

selection during later stages of egg development [92]. The

central role of mitochondria in apoptosis across cell types also

suggests that cells with poor performing mitochondria will be

effectively eliminated [93]. Indeed, the role of mitochondria in

apoptosis may have initially evolved as a mechanism to regulate

poorly functioning and selfish mitochondria.

Fourthly, one advantage of sexual reproduction may be to

counteract the physiological consequences of selfish mitochon-

drial genomes. Eukaryotic sex is often viewed as an adaptation

to respond to changing environments or parasites [94,95], and

selfishmitochondrial replication can be viewed as a form of para-

sitism [96]. It was recently proposed that sexual recombination

provided the genetic variation for early eukaryotes to respond

to mitochondrial mutations [4], and a logical extension is that

sex allowed a more efficient response to selfish mitochondrial

replication. Several related hypotheses have suggested a role

for mitochondria in the evolution of eukaryotic sexual reproduc-

tion [97–99]. Interestingly, one modeling study came to an oppo-

site conclusion regarding selfish mitochondrial replication. It

suggested that selfish endosymbionts may actually spread un-

der sexual reproduction, leading to the conclusion that selfish

mitochondria were brought under control before the evolution

of sex [32], not as a result of it.
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Figure 2. Variation in mitochondrial
inheritance.
(A) Representations of different modes of mito-
chondrial inheritance, including the doubly unipa-
rental inheritance system in some bivalve molluscs
[194,195]. (B) Summary of studies of mitochondrial
inheritance in major eukaryotic groups. (Left)
Phylogenetic relationships of major eukaryotic
clades as summarized by [1] and [196]. (Right) Grid
of four columns (1–4, left to right) displaying in-
formation about our knowledge of mitochondrial
inheritance in each group. (Col. 1) The number of
studies pertaining to mitochondrial inheritance in
each group. Few: 1–10 studies; Many: >> 10
studies. (Col. 2) The most common pattern of in-
heritance in each group based on current litera-
ture. Multiple colors per box indicate uncertainty
about which pattern is most common. (Col. 3)
Alternative patterns observed in the group. Strictly
Uni.: Inheritance was found to be strictly unipa-
rental and maternal; Bi. observed: Rare (<1% of
individuals) cases of biparental inheritance were
observed; Bi. common: biparental inheritance was
observed in >1% of individuals. (Col. 4) A non-
exhaustive list of references for mitochondrial in-
heritance in each group [110,194,197–234]. (C)
Non-maternal organelle inheritance in vascular
plants. (Left) Phylogenetic relationships of major
vascular plant clades as summarized by [235]. The
double line for conifers represents possible non-
monophyly [236]. (Right) Cases of mitochondria
and plastid inheritance that depart from strictly
maternal transmission including selected exam-
ples of genera in which these observations were
made. Blank boxes indicate strict maternal inher-
itance. ‘No data’ indicates groups in which plastid/
mitochondrial transmission is unknown. Modes of
inheritance are abbreviated: P, paternal; PL,
paternal leakage (similar to Bi. observed in panel
(B); B, biparental. References used to populate (C)
include [27,96,117,215,237–246].
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The final two mechanisms of nuclear suppression both act to

limit the amount of mitochondrial heteroplasmy and, thus, the

opportunity for intracellular competition. Germline bottlenecks

in females may serve to reduce variation among mitochondrial

genome copies. Primordial germ cells in human females undergo

a massive bottleneck in the number of mitochondrial genomes

per cell, dropping to 10 or fewer mitochondria and�200 or fewer

mitochondrial genome copies during germ line development

[100,101]. Somatic cells induced to form pluripotent stem cells

that mimic primordial germ cells also show a large reduction in

mtDNA copy number [102,103]. The mitochondrial genomes

that survive this bottleneck then undergo a rapid expansion to

�200,000 copies per mature oocyte [104]. Such bottlenecking

reduces heteroplasmy in the mature oocyte and embryo, thus

restricting the possibility for intracellular competition early in

development. Enforcing small inoculum sizes during transmis-

sion of younger endosymbionts may serve the same purpose

[105,106]. It is important to note that any selfish mitochondrial

genomes that survive such bottlenecks could lead to drastic het-

eroplasmy after subsequent proliferation of mitochondrial

genomes.

Finally, one of the most widely hypothesized mechanisms to

bring selfish mitochondrial replication under control is the evolu-

tion of uniparental inheritance [27–29,96]. If mitochondria are

transmitted though only a single parent (Figure 2A), it is much

more likely that offspring will receive a homogenous population
of mitochondrial genomes, reducing the opportunity for intracel-

lular selection. Widespread observations of maternal inheritance

in plants and animals have motivated this hypothesis. Uniparen-

tal inheritance occurs via many active and often redundant

mechanisms that ensure paternal mtDNA is excluded during

fertilization or is destroyed shortly thereafter, including prezy-

gotic exclusion/degradation of mitochondria in sperm, preven-

tion of paternal organelles from entering the developing zygote,

and degradation of paternal organelles in the zygote [96,107]. In

Drosophila, when a second, deleterious mitochondrial genome

was introduced to compete with the native genome, the delete-

rious genome prevailed only when the two genomes were

distantly related [40]. This suggests that heteroplasmy arising

via mutation within an individual may be relatively harmless

compared to the possible divergent heteroplasmies created via

biparental inheritance [40]. However, it is important to note that

it is an oversimplification to assume that uniparental inheritance

of mitochondrial genomes is standard. Indeed, for many of the

major eukaryotic lineages, there are few or no studies of mito-

chondrial inheritance (Figure 2B). Moreover, studies of cyto-

plasmic inheritance in well-sampled groups (e.g., vascular

plants) have revealed that it is a strikingly labile trait, with many

independent lineages showing evidence of at least episodic

biparental inheritance (Figure 2C). In such taxa, mitochondria

may have selfishly escaped the mechanisms that ensure unipa-

rental inheritance. Even in species such as humans, biparental
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Figure 3. Mechanisms of reproductive manipulation in cytoplasmic genomes.
Four mechanisms of reproductive parasitism of arthropods have been described in younger endosymbionts such as Wolbachia: male killing/harm eliminates or
reducesmale functions, parthenogenesis results in asexual production of exclusively females, feminization causesmales to develop as females, and cytoplasmic
incompatibility prevents males with the selfish variant from mating with wild-type females [247–253]. However, mitochondrial genomes have only been docu-
mented to cause male harm/killing (not the other mechanisms), and evidence for plastids causing reproductive manipulation is scarce.

Current Biology

Review
inheritance may be more common than previously appreciated

[108–110].

Antagonistic Sexual Selection Due to Uniparental
Inheritance
‘‘In males, cytoplasmic genes in outbreeding species will have

no selection on them at all to function properly.’’ Cosmides and

Tooby 1981 [28]

Although uniparental inheritance may have evolved to reduce

the spread of selfish mitochondrial haplotypes, it results in a new

arena for conflict between the cytoplasmic and nuclear ge-

nomes. Whereas nuclear genes are usually inherited through

both sexes, mitochondrial genes are often inherited through

the maternal lineage (Figure 2). In these cases, males acquire

mitochondria from their mothers, but they do not pass them on

to succeeding generations. This uniparental inheritance has

two consequences. First, it invokes cytonuclear genetic conflict

over sex determination [28,111] due to active selection on cyto-

plasmic elements to distort sex determination and sex ratios to-

wards females. Second, because mitochondria are not actively

selected to maintain functions in males, variants that reduce

male fitness can increase in frequency within populations

[28,112,113]. We briefly outline these concepts in the next two

sections.
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Cytonuclear Conflict and Reproductive Manipulation

Mitochondrial variants (as well as plastids and heritable mi-

crobes) that increase the number or fitness of females by

reducing the number or fitness of males will be selectively

favored, and nuclear suppressors of such ‘rogue’ elements will

be selected for, resulting in cytonuclear conflict. Among the

best examples of this are cytoplasmic male sterility (CMS) in

plants [114,115] and sex ratio distorting cytoplasmic microor-

ganisms in many animals [31,111].

CMS can result in gynodioecy (i.e., the presence of both her-

maphroditic and female individuals) in natural populations of

flowering plants and can be revealed through crosses [116]. In

these systems, mitochondrial genomic variants cause hermaph-

rodites to become male-sterile (see [114–116] for reviews). At

least in some cases, suppression of male function can increase

female fitness either through resource reallocation to female

functions [117–119], or through improved offspring quality via

forced outcrossing [120].

Processes of reproductivemanipulation includemale-killing (or

harming), parthenogenesis, feminization of males, and cyto-

plasmic incompatibility (CI)—all ofwhichcanpotentially increase

the abundance/fitness of females [31,111] (Figure 3). All of these

processes have been demonstrated in a class of bacterial endo-

symbionts known as reproductivemanipulators—epitomized by
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Wolbachia, a group of intracellular Alphaproteobacteria found in

numerous arthropod and nematode species [31]. Mitochondria

mayhaveamore restricted rangeofmechanisms for reproductive

manipulation. They have only been clearly shown to induce male

harm/sterility. One recent example from a book louse suggests

that certain highly divergent mitochondrial variants may cause

only daughters to be produced [26]. This could represent a case

of mitochondrial-induced sex ratio distortion, but the precise

mechanism has not been worked out, and there is as yet no

conclusive evidence of mitochondrial involvement. To our knowl-

edge, there are no identified cases of mitochondrial-mediated

parthenogenesis, feminization or CI. Evidence for plastid-medi-

ated reproductive manipulation is even more limited (Figure 3).

Therefore, beyond CMS in plants, clear cases of reproductive

manipulation by organelles remain to be established.

Mother’s Curse

Transmitting mitochondrial genomes through a single sex or

mating type will limit the effects of natural selection to that

parent. For example, maternal inheritance results in natural se-

lection being ‘blind’ to mitochondrial variation that is male-spe-

cific in its effect on phenotype. Mitochondrial variants that do

not incur costs to females, or which augment female fitness,

can therefore spread in a population, even if those variants are

deleterious to males. This concept has been expressed in the

literature for nearly 40 years [28,112] and is often referred to as

‘mother’s curse’ [113].

There is an important distinction to make regarding the role of

female fitness effects in mother’s curse. In a ‘weak form’ of

mother’s curse, a mitochondrial mutation with substantial dele-

terious effects on males may be neutral or nearly neutral in fe-

males. In this scenario, the lack of selection on males permits

the mitochondrial variant to accumulate to appreciable fre-

quencies under mutation-selection balance and potentially to

be fixed by genetic drift [112]. One such example is an identified

mutation in cytochrome c oxidase 2 (COX2) in Drosophila that

impairs male fertility with no apparent harm to female viability

or fertility [121]. In contrast, a ‘strong form’ of mother’s curse in-

volves sexually antagonistic mitochondrial variants that harm

males but have beneficial effects in females and, thus, would

actively spread by positive selection. One such example is a

CYTB mutation identified in Drosophila that increases in fre-

quency during experimental evolution trials due to increasing fe-

male fitness, and in spite of decreasing male fertility [122–124].

Only the strong form of mother’s curse would be considered

true selfish conflict, with the extreme example being the spread

of a mitochondrial variant that entirely eliminates male function

but nonetheless spreads because it confers just a slight fitness

advantage for females. In contrast, a nuclear-encoded variant

with comparable effects on male fitness would only be main-

tained by selection if it increased female fitness at least two-

fold [125].

Individual mitochondrial mutations resulting in male-specific

harm have been documented in humans [126,127], fruit flies

[121,122,128], mice [129], hares [130], and flowering plants

[114–116]. Moreover, mitochondrial variation was shown to

affect the expression of nearly 10% of all nuclear genes in male

Drosophila with few effects on gene expression in females

[131]. However, inmanyof these cases it is unclearwhether these

male-harming variants are beneficial to females (i.e., the strong
form of mother’s curse). Recent studies in Drosophila have ad-

dressed this shortcoming by measuring both male and female

fitness conferred by mitochondrial variants and documenting

sexually antagonistic effects on trait expression associated with

particular mitochondrial variants [132], or across whole mtDNA

haplotypes [123]. These studies indicate that mitochondrial mu-

tations with male-harming effects may have spread due to bene-

ficial female effects (sexual antagonism), not simply due to a lack

of selection in males.

Mechanisms of Male Fitness Reduction by Mitochondria

The physiological mechanisms underpinning how mitochondrial

variants can specifically harmmale function without impairing fe-

male fitness (or even while increasing it) are largely unknown.

Two possible mechanisms may act as common explanations

shared across multiple lineages. First, sperm are highly active,

and sperm motility may be particularly sensitive to ATP produc-

tion. Mitochondrial variants that only slightly compromise mito-

chondrial functionmay therefore show negative effects in sperm,

but not other tissues [15]. Some evidence in humans and

Drosophila supports this hypothesis, as certain mitochondrial

haplotypes confer reduced sperm motility leading to reduced

fertility, but no other obvious phenotypes [132,133]. Second,

the number of mtDNA copies in sperm is very limited compared

with eggs. As mentioned earlier, mature mammalian oocytes

contain�200,000mtDNA copies, whichmust pass through a se-

lective sieve. In contrast, mammalian sperm may contain fewer

than 100 mtDNA copies, which are not subject to a selective

sieve. The quantity of mitochondrial genomes in sperm may

therefore be limiting, resulting in mitochondrial variants that

produce mild phenotypes being detrimental only to sperm func-

tion. Detailed quantification of mtDNA copy number in sperm

versus eggs of other eukaryotes can test the generality of this

possibility.

Both of these hypotheses assume that sperm or their precur-

sors are dependent on oxidative phosphorylation, because while

it is possible that mitochondrial genomic variants might affect

other mitochondrial functions, all protein-coding genes in

mammalian mtDNA are components of the oxidative phosphor-

ylationmachinery. Contrary to this assumption, there is now gen-

eral agreement that glycolysis provides the main source of ATP

in mammalian sperm while oxidative phosphorylation plays a

secondary role, if any [134–136]. Therefore, these two mecha-

nisms may serve as null or complementary hypotheses when

investigating additional mechanisms.

Although CMS in angiosperms is both widespread and agri-

culturally important [114], the physiological mechanisms under-

lying reduced male fitness are still unclear, even though the

genetic variation leading to it is well-characterized. Inmost cases

of CMS, the mitochondrial gene responsible for CMS (often a

chimeric open reading frame) is expressed in all tissues, whereas

phenotypic effects are confined to the anthers [116]. One pro-

posed explanation for these tissue-specific effects is that pollen

production is one of the most energetically expensive organ-

ismal functions [137,138], and mitochondrial variants that only

slightly diminish energetic efficiency might therefore only affect

pollen production [139]. However, this explanation has not

been explicitly tested. Some evidence in Nicotiana suggests

that CMS individuals do show altered mitochondrial function

but that mitochondrial deficiencies may not affect phenotypes
Current Biology 29, R496–R511, June 3, 2019 R503
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overall due to compensating nuclear factors [140]. If this is the

case, it is unclear why male phenotypes escape nuclear

compensation.

In many CMS species, dysfunction is thought to originate in

the tapetum— the specialized tissue surrounding the developing

pollen grain [114]. In sunflowers, the death of tapetal cells and

meiocytes associated with CMS has been shown to be due to

the initiation of a programmed cell death (PCD) pathway [139].

Given the importance of mitochondria in PCD [94] and the pre-

cise patterns of PCD necessary during pollen development

[141], it is possible that mitochondrial-mediated PCD could spe-

cifically target developing pollen but few other tissues, possibly

by interacting with anther-specific proteases found across an-

giosperms [139,142]. Investigating such targeted mechanisms

[143] in comparison and contrast with the more general mecha-

nisms outlined above should be a focus of future studies of sexu-

ally antagonistic mitonuclear coevolution.

Detailed mechanisms of male-specific harm are beginning to

be examined in younger endosymbionts. For example, recent

work on Spiroplasma endosymbionts in Drosophila found a sin-

gle locus in the endosymbiont (Spaid) that causes male-killing by

targeting the dosage compensation machinery on the male X

chromosome [144]. Recent studies of Wolbachia also identified

genes underlying cytoplasmic incompatibility (Figure 3), with

some evidence suggesting similar mechanisms in both lineages

[145–147]. Identifying how endosymbionts and mitochondria

induce sex-specific phenotypes remains a key arena for future

research.

The Relatively Limited Repertoire of Organelles as

Reproductive Manipulators

In theory, mitochondrial and plastid genomes should benefit

from any form of reproductive manipulation that enhances fe-

male fitness, so why have many of these mechanisms only

been found in younger endosymbionts such as Wolbachia

(Figure 3)? One answer may simply be that similar mechanisms

are common in mitochondria and plastids but have largely

eluded detection. For example, CMS in plants is often uncovered

in crosses between populations or lines, when the sterilizing

mitochondria and suppressing nuclear genotypes become de-

coupled [148]. Other forms of genetic conflict that involve antag-

onistic coevolution of selfish genetic elements and suppressors

are also often uncovered in interpopulation crosses [149].

Another possibility is that mitochondrial and plastid genomes

have been domesticated (e.g., genome reduction) to such an

extent that the possibilities for reproductive manipulation are

limited compared with younger endosymbionts [26]. The preva-

lence of CMS in angiosperms may serve as an example of how

genome architecture and content can dictate which pathways

are available. Unlike in animals, angiosperm mitochondrial ge-

nomes regularly undergo intragenomic recombination, gener-

ating structural rearrangements that act as the genetic fuel for

reproductive manipulation [114,115]. In bilaterian animals, the

mitochondrial genome is more streamlined and may have less

mutational fuel (i.e., structural variation) for selection to act on

[13]. Testing ideas about why reproductive manipulation is

more diverse in younger endosymbionts will require examining

cases that represent exceptions to these typical patterns. For

example, could reproductive manipulation via mitochondrial ge-

nomes be more common in nonbilaterian animals, which can
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possess radically different mitochondrial genomes than are

typical in bilaterians [48]?

Whereas studies of CMS in angiosperms have provided exten-

sive insight into sexual antagonism, it is less clear if and how

mitochondrial variation affects reproduction in hermaphroditic

animals. Previous studies of mother’s curse in animals have

focused solely on species with separate sexes. Hermaphroditic

nematodes show mitonuclear epistasis [150,151], maternal

mitochondrial inheritance [152], differences in lifespan between

males and hermaphrodites, and variation in lifespan due to mito-

nuclear interactions [153], making them an underutilized study

system to investigate mother’s curse [154]. In addition, exam-

ining sexual antagonism in organisms with paternal mitochon-

drial transmission would provide a corollary to mother’s curse

in which a ‘father’s curse’ would be expected (or by examining

isogamous species in which mitochondrial transmission is linked

to one mating type) [155,156].

Comparing and contrasting the biology of mitochondria with

plastids may help us better understand sexual antagonism. For

example, in land plants, plastid genomes tend to be more stable

than mitochondrial genomes, undergoing fewer rearrangements

and thereby limiting the generation of selfish variants. In addition,

plastid function may also constrain the possibilities for sexual

antagonism compared to mitochondrial genomes. The major

role of the most abundant type of plastids, chloroplasts, is to

perform photosynthesis, which is not critical in male reproduc-

tive tissues. Mitochondrial respiration plays a more general role

for most male functions, including pollen production. It may

therefore not be surprising that sexual antagonism has rarely

been described in plastid–nuclear interactions, despite unipa-

rental inheritance being common in both mitochondria and plas-

tids (Figure 2C).Interestingly, the few plastid genes that have

been implicated in cytonuclear conflict play roles outside of

photosynthesis [157–160]. Such genes are also often implicated

as targets of positive selection [161]. In all of these cases, how-

ever, the role of plastids in selfish reproductive manipulation

remain speculative or incomplete.

Nuclear Responses to Sexual Antagonism

When sexually antagonistic and male-harming mitochondrial

variants spread to high frequency within a population, it is ex-

pected to create strong selection for nuclear responses that

counteract these effects. For example, there is a large body of

literature describing the nuclear restorer-of-fertility genes that

offset CMS caused by mitochondrial variants, including evi-

dence of strong positive selection on these nuclear loci that im-

plies an arms-race model of mitonuclear conflict [116,162–164].

Another potential consequence of sexual antagonism is the

evolution of tissue-specific paralogs, which have arisen repeat-

edly for metazoan nuclear-encoded oxidative phosphorylation

genes, particularly those in cytochrome c oxidase [165]. These

duplicate genes can be highly divergent from each other and

often show testis-specific expression. Although optimization in

response to tissue-specific metabolic demands may explain

the retention of these gene duplicates, one intriguing possibility

is that testis-specific paralogs are under positive selection to

counteract male-harming mitochondrial variants. Some evi-

dence for this hypothesis comes from Drosophila, in which

duplicates of mitochondrial-targeted genes preferentially show

testis-specific expression [166]. These duplicates often relocate
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far away from the parent gene and are underrepresented on the

X chromosome. Duplicates with testis-specific expression are

also frequently involved in energy production (e.g., oxidative

phosphorylation genes), are older than other duplicates in the

Drosophila genome, and have higher dN/dS ratios than other

gene duplicates (which can indicate positive selection) [166].

However, in humans, duplicated mitochondrial-targeted genes

do not exhibit this same enrichment in testis function and are

younger than other duplicates [167]. Testis-specific genes in

general have also been inferred to be evolving under relaxed se-

lection in humans [168]. An obvious area for future research is to

determinewhy nuclear-encoded oxidative phosphorylation gene

duplicates with testis-specific expression evolve under relaxed

or positive selection in different lineages, with the latter being

expected if their evolution has been shaped by selection for

counteracting mitochondrial variants that harm male-specific

functions.

Many studies investigate the additive effects of mitochondrial

variants on male function by placing variable mitochondrial

genomes from different populations on a common nuclear back-

ground [123,131,132,169–173]. However, this precludes exam-

ining whether nuclear genomes in local populations have

responded to selection to counteract male-harming mitochon-

drial variants (i.e., by examining the extent of mitochondrial

male harm in ‘home’ versus ‘away’ nuclear backgrounds). Recent

studies inDrosophila [174–177] andCallosobruchus seedbeetles

[178,179] have included multiple nuclear backgrounds as well,

with some results indicating sex-specific effects as predicted un-

der mother’s curse and others showing more complicated inter-

actions. It is clear from these studies that environment also plays

a role inmediating sex-specificmitonuclear effects (i.e., G xG xE

x sex effects). However, these studies are in their infancy and

more work is needed to understand the generality of mother’s

curse and the frequency of counteracting nuclear mutations.

Summary and Future Outlook
Although mitochondria are beneficial endosymbionts that have

played key roles in shaping eukaryotic evolution (Box 1), the

persistence of mitochondrial genomes across eukaryotes cre-

ates conflicting levels of selection on organismal function and

mitochondrial genome replication (Figure 1). Nuclear mecha-

nisms have evolved to counter the spread of selfish mitochon-

drial variants. However, what has been argued to be one of the

most widespread countermeasures, uniparental inheritance,

also creates the opportunity for sexual antagonism in mitochon-

drial genomes. Here, we have indicated several lines of future

research in cytonuclear conflict, including investigating underex-

plored mechanisms of selfish replication (Table 1), the role for

selfish mitochondrial genomes during nuclear gene transfer,

the prevalence of uniparental inheritance across the majority of

eukaryotic diversity (Figure 2), the reasons why mitochondrial

and plastid genomes appear to have a limited repertoire for

reproductive manipulation (Figure 3), and the physiological and

genetic mechanisms that organelle genomes use to induce

sex-specific harm. Importantly, studies investigating selfishness

in younger endosymbionts can provide key insights into mitonu-

clear conflict [105,180].

Mitonuclear conflict also has applied importance for agriculture

and health. CMS in crop species is an important tool for breeding
[114,115,181–183]. Determining how mitochondrial variants

cause male-specific harm in CMS could allow for the genetic

design of mitochondrial genomes that would cause CMS in spe-

cies of interest, possibly via new mitochondrial genomic

engineering techniques [184,185]. Such systems could also be

harnessed in metazoans to control pest species [124,186]. Mito-

chondrial replacement therapy is an emerging germline treatment

for mitochondrial diseases in which the cytoplasm of an egg from

a patient with the disease is replaced by the cytoplasm of a

healthy donor, resulting in an offspring that does not inherit the

mitochondrial disease [187,188]. However, recent studies have

shown that replacement can be imperfect, resulting in a hetero-

plasmic population of healthy and afflicted mitochondria [189].

Moreover, the mitochondrial variant responsible for the disease

can rise to fixation after replacement therapy, and drift has been

implicatedas theprimarycause [189].Determining the role of self-

ish replication in such dynamics could play a role in improving the

efficacy of this therapy andcontribute to a broader understanding

of the role of selfish genetic conflict in human health.
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