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Abstract— To improve processor performance, computer 

architects have adopted such acceleration techniques as 
speculative execution and caching.  However, researchers have 
recently discovered that this approach implies inherent security 
flaws, as exploited by Meltdown and Spectre. Attacks targeting 
these vulnerabilities can leak protected data through side 
channels such as data cache timing by exploiting mis-speculated 
executions. The flaws can be catastrophic because they are 
fundamental and widespread and they affect many modern 
processors. Mitigating the effect of Meltdown is relatively 
straightforward in that it entails a software-based fix which has 
already been deployed by major OS vendors.  However, to this 
day, there is no effective mitigation to Spectre. Fixing the 
problem may require a redesign of the architecture for 
conditional execution in future processors. In addition, a Spectre 
attack is hard to detect using traditional software-based antivirus 
techniques because it does not leave traces in traditional log files. 
In this paper, we proposed to monitor microarchitectural events 
such as cache misses, branch mispredictions from existing CPU 
performance counters to detect Spectre during attack runtime.  
Our detector was able to achieve 0% false negatives with less 
than 1% false positives using various machine learning classifiers 
with a reasonable performance overhead.  

Keywords— security, malware detection, microarchitectural 
features 

I. INTRODUCTION 
Information can be leaked to unprivileged parties through 

unintended side channels. It is important to protect information 
from unauthorized access to ensure security. In 
microarchitectural side-channel attacks, malicious processes 
attempt to interfere with the victim through shared 
microarchitectural resources.  The interference pattern such as 
cache timing [1-4], branch prediction history [5,6], or Branch 
Target Buffers [7,8] can then be exploited to infer secrets. 

Speculative execution improves performance by executing 
the predicted path prematurely before the actual path is known 
definitively. Spectre attacks [9, 10] exploit speculative 
execution by tricking the processor into taking the wrong 
branch, while instructions associated with the malicious branch 
execution path can be carefully crafted to leak the victim’s 
memory or register content through microarchitectural side 
channels. Kocher et al. [10] demonstrated the use of cache side 
channel for their attack implementation. It should be noted that 
the KAISER software patch [11] to mitigate Meltdown attack 
cannot defend against Spectre attacks.  

Traditional antivirus (AV) software scans suspicious 
instructions in binaries or traces in system logs files statically 
to detect malicious attacks. Unfortunately, Spectre usually does 
not leave traces in system log files. Thus, it is difficult to detect 
Spectre with a static analysis. However, recent research has 
shown that malicious software and attacks can be detected 
using dynamic microarchitectural execution patterns from 
widely available hardware performance counters (HPC) in 
modern processors [12]. This is done by adopting offline 
analysis based on various supervised machining learning 
algorithms to show that malware classification is possible 
using complete trace of the program behavior after execution.  

In this paper, we propose to use microarchitectural features 
to detect Spectre while the attack is in progress. The hardware 
performance counter-based detection approach allows for the 
monitoring of the dynamic behavior of the system at the 
hardware level with low overhead and allows the system 
administrator to effectively catch Spectre in real time. Our 
methodology consists in collecting microarchitectural traces in 
a clean desktop environment and in a system under attack 
respectively, then use machine learning methods to train and 
test classifiers to detect the attack. Unlike previous offline 
detection method using the entire program traces after attack 
[12], we propose to use the Weighted Moving Average 
(WMA) of the time series data from the output of classifier to 
make successive decisions over sliding windows of program 
execution in real time. In our experiment, the online detector 
can catch 100% of the attacks with 0.77% false positives. 

The rest of the paper is organized as the follows. We first 
explain how Spectre attacks work in section II. In section III, 
we introduce our proposed online detection approach. In 
section IV, detailed experimental setup is described. The 
detection performance results are presented in section V. 
Finally, we conclude this paper in section VI. 

II. BACKGROUND 
Meltdown and Spectre exploit critical modern processor 

design flaws to allow attackers to steal sensitive information 
from users’ devices through microarchitectural side channels. 
Mitigation of Meltdown involves changes in kernel code to 
further isolate the kernel memory from user-mode processes.  
Such remedies have been released by OS vendors through 
software kernel patches. 
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A. Spectre 
However, there are still no efficient software patches for 

Spectre attacks until now. As reported in [9, 10], the attack has 
two variants: bounds check bypass and branch target injection. 
The first variant exploits conditional branch mispredictions and 
the second targets indirect jump target predictions. For 
example, the victim function in Listing 1 receives integer x 
from an untrusted source. The function does a bound check on 
x to prevent the process from reading unauthorized memory 
outside array1 to ensure security. However, speculative 
execution can lead to out-of-bounds memory reads. Suppose 
the attacker makes several calls to victim_function() to train the 
branch predictor to expect taking the branch by feeding it with 
valid values of x, then calls the same function with an out-of-
bound x that points to a target byte in the victim’s protected 
memory.  

void victim_function (size_t x) { 
if (x < array1_size) { 

temp &= array2[array1[x] * 512]; 
} 

} 
Listing 1: Conditional Branch Example 

A Spectre attack usually consists of three phases. It starts 
with the setup phase where the attacker prepares the side 
channel to leak the victim’s sensitive information, and other 
necessary pre-requisites such as mis-training the branch 
predictor to take the erroneous execution path, etc.  In the 
following phase, the attacker diverts confidential information 
from the victim’s context to a microarchitectural side channel 
through speculative execution. Then during the final phase, the 
attacker gains access to the secret data through the side channel 
prepared in the previous stages. 

B. Detection of Spectre 
It is important to proactively detect a malicious attack and 

stop it at the earliest possible stage. For the example in Listing 
1, the attacker calls the victim function multiple times that 
causes the condition to be true. Therefore, we speculate that the 
branch misprediction rate will be reduced during an attack. In 
addition, the secret data are leaked through cache side channel. 
For this, the attacker needs to flush the cache constantly, so the 
cache miss rate is likely to be increased. By monitoring the 
deviation of these two microarchitectural behaviors, it may be 
possible to detect an attack.  

To further validate our hypothesis, we set up experimental 
attacks based on the proof of concept code in [10] and 
collected microarchitectural traces from HPC to analyze the 
results, as shown in the subsequent sections. 

III. PROPOSED ONLINE DETECTION APPROACH 
In our proposed detection approach, we first collect 

microarchitectural features from HPC every t second, where t 
is the sampling period. For the variant of Spectre attack 
discussed in the previous section using a conditional branch, 
we choose to monitor 4 events including cache references, 
cache misses, branch instructions retired and branch 
mispredictions. The data are respectively collected in a clean 
environment and in an environment under Spectre attack. The 

data are then labeled to train the machine learning classifier to 
classify the input data for each sampling period t. At runtime, 
the output classification time series is fed into the online 
detection mechanism to decide whether the system is under 
attack. This section describes in detail the machine learning 
algorithms we used to train the classifier and our proposed 
online detection approach. 

A. Machine Learning Classifiers 
Machine learning (ML) can be used to train classifiers that 

determine the class to which a given data set belongs. We use 
supervised learning [13] to train the detector with a set of pre-
labeled samples. We choose machine learning algorithms such 
as Logistic Regression (LR), Support Vector Machine (SVM), 
and Artificial Neural Networks (ANN) (also known as 
Multilayer Perceptron (MLP)), to build classifiers of increasing 
complexity. We collect data in 10 independent runs and use the 
same number (1200) of samples from both classes to avoid any 
bias. Then we randomly divide the collected data into training 
(80%) and test (20%) data, then separate training data into 
training (80%) and validation (20%) data. 

B. Online Attack Detection 
We propose to use online classification method to detect 

malicious behavior during attacks. We periodically collect 
microarchitectural features. The multidimensional data are then 
feed to a machine learning classifier to make consecutive 
decisions as to maliciousness. The problem of detecting 
malicious attacks in real time is essentially to make decisions 
according to the time series generated from the base classifier. 

To smooth the fluctuated time series data, a Weighted 
Moving Average (WMA) is used to filter out noise for better 
decision making by assigning a weight factor to each element 
in the time series. Then we segment the data using a sliding 
window [14] to calculate the average of consecutive decisions 
within the current window. If the average is above a certain 
threshold, we consider it a malicious attack. For our 
experiments, we chose the window size to be 10 and the 
sampling period to be 0.1 second, which means our detector 
makes a decision every second. Note that these parameters 
should be tuned for different hardware systems. In general, a 
larger window size and smaller sampling period may give 
better detection accuracy but a larger performance overhead. 
For our system, we choose the above numbers so as to reach a 
satisfiable detection accuracy without incurring a major 
slowdown of the system.  

C. Evaluation of Detection Performance 
A key criterion to evaluate the detection performance is the 

accuracy of the model used to make decisions on previously 
unseen data. To characterize accuracy, we use metrics such as 
False Positives (FP) which is the percentage of misclassified 
malicious instances, and False Negatives (FN) which is the 
percentage of misclassified normal instances. A detection 
approach with good performance is expected to minimize both.  

To visualize the tradeoff between percentage of correctly 
identified malicious instances and the percentage of normal 
instances misclassified, we use Receiver Operating 
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Characteristic (ROC) graphs that plot True Positives (TP = 
100% - FN) against FP. In addition, to compare the 
performance of different models, we could compute and 
compare the area under the ROC curve for each model. The 
Area Under Curve (AUC) score (also known as c-index) 
provides a quantitative measurement of how well an attack 
detection approach performs (higher AUC value means better 
performance).    

IV. EXPERIMENTAL SETUP 
In this section, we describe the details of the 

microarchitectural data collection mechanisms, as well as the 
system settings under attack and in normal conditions.   

A. Data Collection Mechanism 
We run the attack on a typical personal laptop with Debian 

Linux 4.8.5 OS on Intel® Core™ i3-3217U 1.8 GHz processor 
with 3MB cache and 4GB of memory. The Intel processor 
contains a model-specific Performance Counter Monitor 
(PCM) and can be configured to count up to four different 
hardware events at the same time. According to the discussion 
on the nature of Spectre attacks in Section II, we choose 4 
available events for our system, which are Last-level cache 
reference events (LLC references), Last-level cache misses 
events (LLC misses), Branch instruction retired events 
(branches), and Branch mispredict retired events (branch 
mispredictions). We use the standard profiling infrastructure on 
Linux, perf tools, to obtain system-wide performance counter 
data.  

B. Test Environment Setup 
In the clean environment, we sought to create realistic 

scenarios by randomly browsing popular websites with 
FireFox in different orders, and streaming videos from browser 
plug-ins. In addition, we also ran a text editor to read and edit 
files.  For data collection when the system is under malicious 
attack, we launch the Spectre proof of concept attack on top of 
the normal running applications. System status is reset after 
each run to ensure the measurements are independent across 
different clean and exploit runs. We collect overall 
performance counter data across the system rather than 
individual process to make the classification problem more 
difficult and closer to real world setup.  

V. RESULTS 
In the experiment described in section III, we periodically 

collect data from the four performance counters at the same 
time. In this section, we first analyze the collected raw data to 
see if it is feasible to differentiate measurements in clean 
environment and those under attack by visualizing the 
distribution of data. Then we use different machine learning 
algorithms to train the classifier and build the real-time attack 
detector using sliding window approach discussed previously. 

A. Data Distribution Analysis 
Our data collection mechanism produces 4-dimensional 

time series data. Each sample contains event counts for branch 
mispredictions, LLC misses, branches, LLC references during 

the sampling period. We also calculate the branch miss rate (1) 
and the LLC miss rate (2) for each interval as defined below: 

 branch miss rate = branch mispredictions / branches (1) 

 LLC miss rate = LLC misses / LLC references (2) 

We analyze the feasibility to distinguish the data collected 
using more than one feature by plotting the sample points in 
3D graphs with each dimension corresponding to one feature. 
Fig. 1 shows the distribution of normal and malicious sample 
points using LLC references, LLC misses and branch miss rate. 
We can see the data points of two different classes distribute in 
two different regions and the boundary between the two is 
obvious. Therefore, we believe it is possible to use the chosen 
microarchitectural features to detect Spectre attacks. 

LLC References, LLC Misses, Branch Miss Rate (%) 

 

Fig. 1. Distribution of LLC references, LLC misses and branch miss rate 
features. 

B. Online Detection Performance  
We use 3 different machine learning algorithms to train the 

base classifier, then smooth the output time series with WMA, 
and finally build the online detector based on a sliding window 
approach.  

 

Fig. 2. ROC for online detectors using different classifiers 
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A simple model is first built with default parameters for 
each classifier. To further enhance the detection accuracy, 
different parameters are tuned for each ML model. We use a 
randomized search over different parameters to find the best 
combination, where each setting is sampled over a distribution 
over possible parameter values. Compared with an exhaustive 
search, it is less computationally expensive and gives a result 
close to optimal.  

To evaluate the performance of online detection based on 
different classifiers, ROC curves are plotted. Fig. 2 shows the 
ROC curves for all the trained classifiers in our experiment. As 
we can see in the graph, there is a trade-off between false 
positives and true positives; the detector is able to catch more 
malicious attacks if we allow higher false positives. To choose 
the best configuration, we pick the point on the curve at the top 
left corner which gives the lowest combined number of false 
negatives and false positives. We can see that they all perform 
very well with an AUC above 0.9. Overall, MLP outperforms 
other classifiers with the highest AUC value. This is as 
expected because MLP is more flexible than other methods 
used. However, it requires a longer training time. 

TABLE I.  PERFORMANCE FOR DIFFERENT CLASSIFIERS 

Classifier AUC  FP (%) FN (%) Training 
Time (sec) 

LR 0.9810939999 3.83 3.40 0.04 

Tuned LR 0.9956850054 1.15 2.43 0.04 

SVM 0.9840326600 0.77 2.43 0.06 
SVM with 
Polynomial 
Kernel 

0.9913142134 0.77 0.97 9.8 

MLP 0.9998512071 0.77 0 95 

We compare the performance of each classifier 
quantitatively using the AUC index and choose the best point 
on the ROC which gives the minimum FP and FN as shown in 
Table I. For the best case using MLP, the detector is able to 
achieve 0% false negatives with only 0.77% false positives.  

VI. CONCLUSIONS 
This paper proposes to detect Spectre attacks by monitoring 

microarchitectural features deviations as the attack exploits 
vulnerabilities in modern processor hardware design such as 
speculative execution and cache side channels. The features are 
collected from hardware performance counters widely 
available in processors. An online detection method is adopted 
to detect malicious behaviors at an early stage of the attack 
rather than offline detection after the damage has been done. 
The experimental results show a promising detection accuracy 
with only 0.77% of false positives with 0% false negatives 
using a trained multilayer perceptron classifier. As complete 
mitigation to the Spectre is challenging, it is more practical 
now to detect such attacks proactively. 

There are many variants of Spectre according to different 
types of hardware design flaws and side channels being 
exploited. New variants are discovered constantly and recently 

researchers have discovered a new speculative store bypass 
vulnerability [15]. However, all the different variants use a side 
channel to infer confidential information in the final stage of 
the attack. In addition, stealth mode Spectre attacks are usually 
ineffective. We thus believe it is possible to detect malicious 
behaviors by monitoring changes in these hardware side 
channels. This research shows the feasibility to detect Spectre 
using such approach. Future research can be carried out for 
other variants of the attack under different configurations such 
as in servers and virtual machines environments.  
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