

Online Detection of Spectre Attacks Using
Microarchitectural Traces from Performance Counters

Congmiao Li and Jean-Luc Gaudiot
Electrical Engineering and Computer Science

University of California, Irvine
Irvine, USA

congmial@uci.edu, gaudiot@uci.edu

Abstract— To improve processor performance, computer

architects have adopted such acceleration techniques as
speculative execution and caching. However, researchers have
recently discovered that this approach implies inherent security
flaws, as exploited by Meltdown and Spectre. Attacks targeting
these vulnerabilities can leak protected data through side
channels such as data cache timing by exploiting mis-speculated
executions. The flaws can be catastrophic because they are
fundamental and widespread and they affect many modern
processors. Mitigating the effect of Meltdown is relatively
straightforward in that it entails a software-based fix which has
already been deployed by major OS vendors. However, to this
day, there is no effective mitigation to Spectre. Fixing the
problem may require a redesign of the architecture for
conditional execution in future processors. In addition, a Spectre
attack is hard to detect using traditional software-based antivirus
techniques because it does not leave traces in traditional log files.
In this paper, we proposed to monitor microarchitectural events
such as cache misses, branch mispredictions from existing CPU
performance counters to detect Spectre during attack runtime.
Our detector was able to achieve 0% false negatives with less
than 1% false positives using various machine learning classifiers
with a reasonable performance overhead.

Keywords— security, malware detection, microarchitectural
features

I. INTRODUCTION
Information can be leaked to unprivileged parties through

unintended side channels. It is important to protect information
from unauthorized access to ensure security. In
microarchitectural side-channel attacks, malicious processes
attempt to interfere with the victim through shared
microarchitectural resources. The interference pattern such as
cache timing [1-4], branch prediction history [5,6], or Branch
Target Buffers [7,8] can then be exploited to infer secrets.

Speculative execution improves performance by executing
the predicted path prematurely before the actual path is known
definitively. Spectre attacks [9, 10] exploit speculative
execution by tricking the processor into taking the wrong
branch, while instructions associated with the malicious branch
execution path can be carefully crafted to leak the victim’s
memory or register content through microarchitectural side
channels. Kocher et al. [10] demonstrated the use of cache side
channel for their attack implementation. It should be noted that
the KAISER software patch [11] to mitigate Meltdown attack
cannot defend against Spectre attacks.

Traditional antivirus (AV) software scans suspicious
instructions in binaries or traces in system logs files statically
to detect malicious attacks. Unfortunately, Spectre usually does
not leave traces in system log files. Thus, it is difficult to detect
Spectre with a static analysis. However, recent research has
shown that malicious software and attacks can be detected
using dynamic microarchitectural execution patterns from
widely available hardware performance counters (HPC) in
modern processors [12]. This is done by adopting offline
analysis based on various supervised machining learning
algorithms to show that malware classification is possible
using complete trace of the program behavior after execution.

In this paper, we propose to use microarchitectural features
to detect Spectre while the attack is in progress. The hardware
performance counter-based detection approach allows for the
monitoring of the dynamic behavior of the system at the
hardware level with low overhead and allows the system
administrator to effectively catch Spectre in real time. Our
methodology consists in collecting microarchitectural traces in
a clean desktop environment and in a system under attack
respectively, then use machine learning methods to train and
test classifiers to detect the attack. Unlike previous offline
detection method using the entire program traces after attack
[12], we propose to use the Weighted Moving Average
(WMA) of the time series data from the output of classifier to
make successive decisions over sliding windows of program
execution in real time. In our experiment, the online detector
can catch 100% of the attacks with 0.77% false positives.

The rest of the paper is organized as the follows. We first
explain how Spectre attacks work in section II. In section III,
we introduce our proposed online detection approach. In
section IV, detailed experimental setup is described. The
detection performance results are presented in section V.
Finally, we conclude this paper in section VI.

II. BACKGROUND
Meltdown and Spectre exploit critical modern processor

design flaws to allow attackers to steal sensitive information
from users’ devices through microarchitectural side channels.
Mitigation of Meltdown involves changes in kernel code to
further isolate the kernel memory from user-mode processes.
Such remedies have been released by OS vendors through
software kernel patches.

Acknowledgments -This work is partly supported by the National Science
Foundation (NSF) under Grant No. CCF-1763793/3654. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

25

2018 30th International Symposium on Computer Architecture and High Performance Computing

978-1-5386-7769-8/18/$31.00 ©2018 IEEE
DOI 10.1109/SBAC-PAD.2018.00018

A. Spectre
However, there are still no efficient software patches for

Spectre attacks until now. As reported in [9, 10], the attack has
two variants: bounds check bypass and branch target injection.
The first variant exploits conditional branch mispredictions and
the second targets indirect jump target predictions. For
example, the victim function in Listing 1 receives integer x
from an untrusted source. The function does a bound check on
x to prevent the process from reading unauthorized memory
outside array1 to ensure security. However, speculative
execution can lead to out-of-bounds memory reads. Suppose
the attacker makes several calls to victim_function() to train the
branch predictor to expect taking the branch by feeding it with
valid values of x, then calls the same function with an out-of-
bound x that points to a target byte in the victim’s protected
memory.

void victim_function (size_t x) {
if (x < array1_size) {

temp &= array2[array1[x] * 512];
}

}
Listing 1: Conditional Branch Example

A Spectre attack usually consists of three phases. It starts
with the setup phase where the attacker prepares the side
channel to leak the victim’s sensitive information, and other
necessary pre-requisites such as mis-training the branch
predictor to take the erroneous execution path, etc. In the
following phase, the attacker diverts confidential information
from the victim’s context to a microarchitectural side channel
through speculative execution. Then during the final phase, the
attacker gains access to the secret data through the side channel
prepared in the previous stages.

B. Detection of Spectre
It is important to proactively detect a malicious attack and

stop it at the earliest possible stage. For the example in Listing
1, the attacker calls the victim function multiple times that
causes the condition to be true. Therefore, we speculate that the
branch misprediction rate will be reduced during an attack. In
addition, the secret data are leaked through cache side channel.
For this, the attacker needs to flush the cache constantly, so the
cache miss rate is likely to be increased. By monitoring the
deviation of these two microarchitectural behaviors, it may be
possible to detect an attack.

To further validate our hypothesis, we set up experimental
attacks based on the proof of concept code in [10] and
collected microarchitectural traces from HPC to analyze the
results, as shown in the subsequent sections.

III. PROPOSED ONLINE DETECTION APPROACH
In our proposed detection approach, we first collect

microarchitectural features from HPC every t second, where t
is the sampling period. For the variant of Spectre attack
discussed in the previous section using a conditional branch,
we choose to monitor 4 events including cache references,
cache misses, branch instructions retired and branch
mispredictions. The data are respectively collected in a clean
environment and in an environment under Spectre attack. The

data are then labeled to train the machine learning classifier to
classify the input data for each sampling period t. At runtime,
the output classification time series is fed into the online
detection mechanism to decide whether the system is under
attack. This section describes in detail the machine learning
algorithms we used to train the classifier and our proposed
online detection approach.

A. Machine Learning Classifiers
Machine learning (ML) can be used to train classifiers that

determine the class to which a given data set belongs. We use
supervised learning [13] to train the detector with a set of pre-
labeled samples. We choose machine learning algorithms such
as Logistic Regression (LR), Support Vector Machine (SVM),
and Artificial Neural Networks (ANN) (also known as
Multilayer Perceptron (MLP)), to build classifiers of increasing
complexity. We collect data in 10 independent runs and use the
same number (1200) of samples from both classes to avoid any
bias. Then we randomly divide the collected data into training
(80%) and test (20%) data, then separate training data into
training (80%) and validation (20%) data.

B. Online Attack Detection
We propose to use online classification method to detect

malicious behavior during attacks. We periodically collect
microarchitectural features. The multidimensional data are then
feed to a machine learning classifier to make consecutive
decisions as to maliciousness. The problem of detecting
malicious attacks in real time is essentially to make decisions
according to the time series generated from the base classifier.

To smooth the fluctuated time series data, a Weighted
Moving Average (WMA) is used to filter out noise for better
decision making by assigning a weight factor to each element
in the time series. Then we segment the data using a sliding
window [14] to calculate the average of consecutive decisions
within the current window. If the average is above a certain
threshold, we consider it a malicious attack. For our
experiments, we chose the window size to be 10 and the
sampling period to be 0.1 second, which means our detector
makes a decision every second. Note that these parameters
should be tuned for different hardware systems. In general, a
larger window size and smaller sampling period may give
better detection accuracy but a larger performance overhead.
For our system, we choose the above numbers so as to reach a
satisfiable detection accuracy without incurring a major
slowdown of the system.

C. Evaluation of Detection Performance
A key criterion to evaluate the detection performance is the

accuracy of the model used to make decisions on previously
unseen data. To characterize accuracy, we use metrics such as
False Positives (FP) which is the percentage of misclassified
malicious instances, and False Negatives (FN) which is the
percentage of misclassified normal instances. A detection
approach with good performance is expected to minimize both.

To visualize the tradeoff between percentage of correctly
identified malicious instances and the percentage of normal
instances misclassified, we use Receiver Operating

26

Characteristic (ROC) graphs that plot True Positives (TP =
100% - FN) against FP. In addition, to compare the
performance of different models, we could compute and
compare the area under the ROC curve for each model. The
Area Under Curve (AUC) score (also known as c-index)
provides a quantitative measurement of how well an attack
detection approach performs (higher AUC value means better
performance).

IV. EXPERIMENTAL SETUP
In this section, we describe the details of the

microarchitectural data collection mechanisms, as well as the
system settings under attack and in normal conditions.

A. Data Collection Mechanism
We run the attack on a typical personal laptop with Debian

Linux 4.8.5 OS on Intel® Core™ i3-3217U 1.8 GHz processor
with 3MB cache and 4GB of memory. The Intel processor
contains a model-specific Performance Counter Monitor
(PCM) and can be configured to count up to four different
hardware events at the same time. According to the discussion
on the nature of Spectre attacks in Section II, we choose 4
available events for our system, which are Last-level cache
reference events (LLC references), Last-level cache misses
events (LLC misses), Branch instruction retired events
(branches), and Branch mispredict retired events (branch
mispredictions). We use the standard profiling infrastructure on
Linux, perf tools, to obtain system-wide performance counter
data.

B. Test Environment Setup
In the clean environment, we sought to create realistic

scenarios by randomly browsing popular websites with
FireFox in different orders, and streaming videos from browser
plug-ins. In addition, we also ran a text editor to read and edit
files. For data collection when the system is under malicious
attack, we launch the Spectre proof of concept attack on top of
the normal running applications. System status is reset after
each run to ensure the measurements are independent across
different clean and exploit runs. We collect overall
performance counter data across the system rather than
individual process to make the classification problem more
difficult and closer to real world setup.

V. RESULTS
In the experiment described in section III, we periodically

collect data from the four performance counters at the same
time. In this section, we first analyze the collected raw data to
see if it is feasible to differentiate measurements in clean
environment and those under attack by visualizing the
distribution of data. Then we use different machine learning
algorithms to train the classifier and build the real-time attack
detector using sliding window approach discussed previously.

A. Data Distribution Analysis
Our data collection mechanism produces 4-dimensional

time series data. Each sample contains event counts for branch
mispredictions, LLC misses, branches, LLC references during

the sampling period. We also calculate the branch miss rate (1)
and the LLC miss rate (2) for each interval as defined below:

 branch miss rate = branch mispredictions / branches (1)

 LLC miss rate = LLC misses / LLC references (2)

We analyze the feasibility to distinguish the data collected
using more than one feature by plotting the sample points in
3D graphs with each dimension corresponding to one feature.
Fig. 1 shows the distribution of normal and malicious sample
points using LLC references, LLC misses and branch miss rate.
We can see the data points of two different classes distribute in
two different regions and the boundary between the two is
obvious. Therefore, we believe it is possible to use the chosen
microarchitectural features to detect Spectre attacks.

LLC References, LLC Misses, Branch Miss Rate (%)

Fig. 1. Distribution of LLC references, LLC misses and branch miss rate
features.

B. Online Detection Performance
We use 3 different machine learning algorithms to train the

base classifier, then smooth the output time series with WMA,
and finally build the online detector based on a sliding window
approach.

Fig. 2. ROC for online detectors using different classifiers

27

A simple model is first built with default parameters for
each classifier. To further enhance the detection accuracy,
different parameters are tuned for each ML model. We use a
randomized search over different parameters to find the best
combination, where each setting is sampled over a distribution
over possible parameter values. Compared with an exhaustive
search, it is less computationally expensive and gives a result
close to optimal.

To evaluate the performance of online detection based on
different classifiers, ROC curves are plotted. Fig. 2 shows the
ROC curves for all the trained classifiers in our experiment. As
we can see in the graph, there is a trade-off between false
positives and true positives; the detector is able to catch more
malicious attacks if we allow higher false positives. To choose
the best configuration, we pick the point on the curve at the top
left corner which gives the lowest combined number of false
negatives and false positives. We can see that they all perform
very well with an AUC above 0.9. Overall, MLP outperforms
other classifiers with the highest AUC value. This is as
expected because MLP is more flexible than other methods
used. However, it requires a longer training time.

TABLE I. PERFORMANCE FOR DIFFERENT CLASSIFIERS

Classifier AUC FP (%) FN (%) Training
Time (sec)

LR 0.9810939999 3.83 3.40 0.04

Tuned LR 0.9956850054 1.15 2.43 0.04

SVM 0.9840326600 0.77 2.43 0.06
SVM with
Polynomial
Kernel

0.9913142134 0.77 0.97 9.8

MLP 0.9998512071 0.77 0 95

We compare the performance of each classifier
quantitatively using the AUC index and choose the best point
on the ROC which gives the minimum FP and FN as shown in
Table I. For the best case using MLP, the detector is able to
achieve 0% false negatives with only 0.77% false positives.

VI. CONCLUSIONS
This paper proposes to detect Spectre attacks by monitoring

microarchitectural features deviations as the attack exploits
vulnerabilities in modern processor hardware design such as
speculative execution and cache side channels. The features are
collected from hardware performance counters widely
available in processors. An online detection method is adopted
to detect malicious behaviors at an early stage of the attack
rather than offline detection after the damage has been done.
The experimental results show a promising detection accuracy
with only 0.77% of false positives with 0% false negatives
using a trained multilayer perceptron classifier. As complete
mitigation to the Spectre is challenging, it is more practical
now to detect such attacks proactively.

There are many variants of Spectre according to different
types of hardware design flaws and side channels being
exploited. New variants are discovered constantly and recently

researchers have discovered a new speculative store bypass
vulnerability [15]. However, all the different variants use a side
channel to infer confidential information in the final stage of
the attack. In addition, stealth mode Spectre attacks are usually
ineffective. We thus believe it is possible to detect malicious
behaviors by monitoring changes in these hardware side
channels. This research shows the feasibility to detect Spectre
using such approach. Future research can be carried out for
other variants of the attack under different configurations such
as in servers and virtual machines environments.

REFERENCES

[1] D. A. Osvik, A. Shamir and E. Tromer, “Cache attacks and
Countermeasures: the Case of AES,” Cryptology ePrint Archive, Report
2005/271, 2005.

[2] D. J. Bernstein, “Cache-timing Attacks on AES”, http://cr.yp.to/antiforg
ery/cachetiming20050414.pdf, 2005.

[3] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack,” USENIX Security, San Diego,
CA, US, Aug 2014, pp.719–732.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” IEEE Symposium on Security and
Privacy (S&P), May 2015, pp. 605–622.

[5] Aciiçmez, O., Gueron, S., and Seifert, J.-P., “New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,”
11th IMA International Conference on Cryptography and Coding (Dec.
2007), S. D. Galbraith, Ed., vol. 4887 of Lecture Notes in Computer
Science, Springer, Heidelberg, pp. 185–203.

[6] Aciiçmez, O., Koç, Çetin Kaya., and Seifert, J.-P., “Predicting secret
keys via branch prediction,” Topics in Cryptology CT-RSA 2007 (Feb.
2007), M. Abe, Ed., vol. 4377 of Lecture Notes in Computer Science,
Springer, Heidelberg, pp. 225–242.

[7] Evtyushkin, D., Ponomarev, D. V., and Abughazaleh, N. B., “Jump over
ASLR: attacking branch predictors to bypass ASLR,” MICRO (2016),
IEEE Computer Society, pp. 1–13.

[8] Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., and Peinado, M.,
“Inferring fine-grained control flow inside SGX enclaves with branch
shadowing,” 26th USENIX Security Symposium, USENIX Security
2017, pp. 557–574.

[9] Horn, J., “Reading privileged memory with a side-channel,”
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html, 2018.

[10] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y., “Spectre
attacks: Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[11] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and
Mangard, S., “KASLR is dead: long live KASLR,” International
Symposium on Engineering Secure Software and Systems, Springer, pp.
161–176, 2017.

[12] Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A.,
Sethumadhavan, S., Stolfo, S., “On the feasibility of online malware
detection with performance counters,” Proceedings of the International
Symposium on Computer Architecture (ISCA), 2013.

[13] J. Frank, “Machine learning and intrusion detection: Current and future
directions,” in Proc. National 17th Computer Security Conference,
Washington,D.C., October 1994.

[14] Vafaeipour, M., Rahbari, O., Rosen, M.A., Fazelpour, F. & Ansarirad,
P., “Application of sliding window technique for prediction of wind
velocity time series,” International journal of Energy and environmental
engeering (springer), 5,105-111, 2014.

[15] Horn, J., “Speculative execution, variant 4: speculative store bypass”,
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, May
2018.

28

