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Abstract—In this paper, we consider distributed testing prob-
lems with cascaded encoders, which allow cascaded communica-
tions among encoders so that each encoder can utilize messages
from other encoders for encoding. We first focus on a special case
of testing against independence and design a scheme that enables
each encoder to take advantage of extra information from other
encoders. We also derive a matching upper bound and prove
that the designed scheme is optimal. We then investigate the case
with general hypotheses and obtain a lower bound on the type
2 error exponent. We further compare the performances that
can be achieved by schemes with and without cascaded commu-
nications. We show that cascaded communication improves the
performance in terms of the type 2 error exponent under positive
rate communication constraints. On the other hand, we prove
that cascaded communication does not provide performance gain
under zero-rate communication constraints.

Index Terms—Distributed learning, error exponent, hypothesis
testing, cascaded communications.

I. INTRODUCTION

Recently, there have been growing interests in distributed
inference and machine learning problems [2]–[8], in which
available data is distributed over multiple terminals connected
by links with limited communication capacity. These problems
are mainly motivated by the explosive growth in the size and
scale of modern datasets such that data is either naturally
collected by multiple terminals or is too large to be fitted into
one terminal. The limited communication budget between the
terminals makes the inference problems more challenging than
those in the centralized scenario.

Moreover, due to the importance of communication in the
distributed scenario, methods under two different commu-
nication styles: namely non-interactive communication and
interactive communication, are under active investigation. In
the non-interactive communication case, each terminal uses
only its own data to determine the communication message
to be sent. In this case, each terminal compresses its own
observations and sends compressed data to the decision maker,
who will then perform inference and make a decision based
on its own data along with compressed data received from
terminals [5], [6], [9]–[17]. In the interactive communication
cases, each terminal can utilize messages received from other
terminals along with its own data to determine the message to
be sent. The scenario with two fully interactive encoders is also
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under active research [7], [18], [19]. However, the scenarios
where multiple encoders interact with each other are still open.

As the scenario with general interactive communication
among multiple encoders is very complex and difficult to allow
meaningful progress, in this paper, we study a special form
of encoder interaction from information theoretic perspective.
In particular, we consider statistical inference with multiple
cascaded encoders. In the considered setup, there are L termi-
nals (encoders) Xl, l = 1, · · · , L and a decision terminal Y ,
in which terminal Xl has data related to random variable Xl

only. All random variables (X1, · · ·XL, Y ) take values in a
finite set X1 × · · · × XL × Y . We consider a special form of
interaction among terminals, where we assume that terminals
broadcast their messages in a sequential order from terminal 1
until terminal L, and each terminal uses all messages received
so far along with its own observations for encoding. More
specifically, terminal X1 first broadcasts its encoded message
based on its own observations Xn

1 , and then terminal X2

broadcasts its encoded message based on both its own obser-
vations Xn

2 and the message received from terminal X1. This
process continues until terminal XL broadcasts its message
based on its own observations Xn

L and all messages received
before. Finally, terminal Y performs statistical inference based
on messages received from terminals Xl, l = 1, · · · , L
and its own data related to Y . This model is motivated by
scenarios where the encoders may not send their messages to
the decision maker at the same time, and hence the encoder
who sends message at later time can take advantage of the
messages overheard from other encoder’s transmission (e.g.,
when these messages are transmitted over wireless channels).
In this paper, we focus on a basic inference problem in which
terminal Y tries to decide the joint probability mass function
(PMF) of the data from the following two hypotheses:

H0 : PX1···XLY vs H1 : QX1···XLY .

Our goal is to maximize the type 2 error exponent under
constraints on the type 1 error probability and communication
rates. We note that one can consider other forms of interactions
among encoders. However, the problem becomes very complex
if an arbitrary form of interaction among encoders are allowed.
These cases are left for future study.

We first focus on the problem of testing against indepen-
dence, in which QX1···XLY = PX1···XLPY and hence we are
interested in determining whether (X1, · · · , XL) and Y are in-
dependent or not. This work builds upon our recent work [14],
in which we studied the non-interactive communication case
under the same hypotheses. Compared with [14], this paper al-
lows cascaded communication for terminals Xl, l = 1, · · · , L,



so that terminal Xl can utilize the information from terminals
Xl′ , l′ = 1, · · · , l−1, when it performs encoding. The cascaded
communication results in two major differences with the cases
using non-interactive communication [9], [14]. First, in the
non-interactive communication case, one typically converts the
testing against independence problem to the problem of source
coding with a helper [9], then uses the corresponding results
in the source coding with a helper problem to characterize
the type 2 error exponent. However, if we follow a similar
strategy, then the problem will be related to a source coding
with multiple helpers problem, which is still an open problem
in network information theory. Second, in the existing work
with multiple terminals under non-interactive communication
as studied in [14], the type 2 error exponent is not fully
characterized. However, in our cascaded communication case,
as terminals are allowed to use the received massages to
perform encoding, we are able to fully characterize the type
2 error exponent for certain scenarios.

We then extend the study to the case with general hypothe-
ses. The problem with non-interactive communication under
the same hypotheses was first proposed and studied in [9]
and a tighter lower bound was derived in [11]. Different from
these works, in which it is assumed that data related to all
Xl, l = 1, · · · , L is stored in one terminal X (and hence there
are two terminals X and Y in the model studied in [11] and
[9]), we allow data related to Xl, l = 1, · · · , L to be stored
in multiple terminals, and we allow cascaded communications
among encoders for encoding. As these two extensions make
this problem more complex and no upper bound is derived
even for the case with non-interactive communications, in
this paper, we only give a lower bound on the type 2 error
exponent given the constraints on the type 1 error probability
and communication rates.

Finally, we compare performances of schemes with cas-
caded and non-interactive communications. Intuitively, com-
pared with the scheme with non-interactive communication
in [14], the decision maker can potentially obtain more in-
formation in the cascaded communication case and hence is
expected to make a better decision. We show that this is indeed
the case by giving an explicit example in which our scheme
with cascaded communication achieves a larger type 2 error
exponent under different communication rate constraints. On
the other hand, we prove that, compared with non-interactive
communication, cascaded communication does not offer any
improvement in the type 2 error exponent for the zero-rate
data compression case.

The problem studied in this paper is related to but different
from several existing interesting works on distributed hypoth-
esis testing problems with interactive communications [7], [9],
[19], [20]. In particular, in [7], [19], the authors discussed the
case in which Xl, l = 1, · · · , L are all at terminal X (and
hence (X1, · · · , XL) can be denoted as one random variable
X) and terminal X and terminal Y can communicate with each
other in multiple rounds. [20] considered the same setup with
[19] but used sample-by-sample processing, i.e. scaler quanti-
zation at each stage. Different from these interesting studies, in

our problem, we consider a case in which Xl, l = 1, · · · , L are
at different terminals. Furthermore, cascaded communication
among the encoders Xls is allowed and vector quantization is
applied at each stage.

The remainder of the paper is organized as follows. In
Section II, we introduce the model studied in this paper. In
Section III, we study the problem of testing against indepen-
dence. In Section III-C, we give a lower bound on the type 2
error exponent for the general case. In Section IV, we compare
the performances of schemes with cascaded communication
and schemes with non-interactive communication. Finally, we
offer some concluding remarks in Section V.

II. MODEL

In this section, we present our model and summarize the
difference between our model and the existing work with non-
interactive communication schemes.

A. Model

Consider a set of random variables (X1, · · ·XL, Y ) taking
values in a finite set X1× · · · ×XL×Y and admitting a joint
PMF that has two possible forms:

H0 : PX1···XLY ,

H1 : QX1···XLY . (1)

(Xn
1 , · · ·Xn

L, Y
n) are independently and identically generated

according to one of the above joint PMFs, and are observed
at different terminals. In particular, terminal Xi observes only
Xn
i and terminal Y observes only Y n. We consider a model in

which these terminals broadcast messages in a sequential order
from terminal 1 until terminal L, and each terminal will use all
messages received so far along with its own observations for
encoding. More specifically, terminal X1 will first broadcast
its encoded message, which depends only on Xn

1 , and then
terminal X2 will broadcast its encoded message, which now
depends on not only its own observations Xn

2 but also the
message received from terminal X1. The process continues
until terminal XL, who will use messages received from X1

until XL−1 and its own observations Xn
L for encoding. Finally,

terminal Y decides which hypothesis is true based on its
own information and the received messages from terminal
X1, · · · , XL. The system model is illustrated in Fig. 1. In the
following, we will use the term “decision maker” and terminal
Y interchangeably.

Fig. 1. Model

More specifically, terminal X1 uses an encoder

f1 : Xn1 →M1 = {1, 2, . . . ,M1}, (2)
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which is a map from Xn to M1. Terminal Xl, l = 2, · · · , L
uses an encoder

fl : (Xnl ,M1, · · · ,Ml−1)→Ml = {1, 2, . . . ,Ml}, (3)

with rates Rl such that

lim sup
n→∞

1

n
logMl ≤ Rl, l = 1, · · · , L. (4)

We also use the notation ||fl|| to denote the cardinality of
fl, l = 1, · · · , L. Hence, we have ||fl|| = Ml, l = 1, · · · , L.

Using its own observations and messages received from
encoders, terminal Y will use a decoding function ψ to decide
which hypothesis is true:

ψ : (M1, · · · ,ML,Yn)→ {H0, H1}. (5)

For any given fl, l = 1, · · · , L and ψ, one can define the
acceptance region as

An = {(xn1 , · · · , xnL, yn) ∈ Xn1 × · · · × XnL × Yn :

ψ(f1(xn1 ), · · · , fL(xnL), yn) = H0} . (6)

Correspondingly, the type 1 error probability is defined as

αn = PnX1···XLY (Ān), (7)

in which Ān denotes the complement set of An. The type 2
error probability is defined as

βn = QnX1···XLY (An). (8)

Our goal is to design the encoding functions fl, l =
1, · · · , L and the decoding function ψ to maximize the type 2
error exponent under the constraints that the type 1 error prob-
ability is less than ε and the communication rates satisfy (4).

More specifically, for a given ε > 0, we require

αn ≤ ε, (9)

and define

θ(R1, · · · , RL, ε) = lim inf
n→∞

(
− 1

n
log

(
min

f1,··· ,fL,ψ
βn

))
, (10)

in which the minimization is over all f1, · · · , fL, ψ satisfying
conditions (4) and (9). With these notations, our goal men-
tioned above is then to characterize θ(R1, · · · , RL, ε), which
is called the type 2 error exponent for the hypothesis testing
H0 versus H1 with constraints (4) and (9).

B. Comparison with the Non-interactive Model

The main difference between our model and the non-
interactive communication model considered in the existing
works [14]–[16] is that, in the non-interactive communication
model, the encoding function of each user relies only on
its own observations. That is, instead of using (3) as in the
cascaded case, the encoding function at terminal Xl in the
non-interactive communication model is given as

fl : Xnl →Ml = {1, 2, . . . ,Ml}, l = 1, · · · , L. (11)

All remaining definitions are the same. In the following, we
will use θnon-interactive(R1, · · · , RL, ε) to denote the correspond-
ing type 2 error exponent in the non-interactive model.

C. Notation

Following [21], for any sequence xn = (x(1), · · · , x(n)) ∈
Xn, we use n(a|xn) to denote the total number of indices t
at which x(t) = a. Then, the relative frequencies or empirical
PMF- π(a|xn) , n(a|xn)/n,∀a ∈ X of the components of
xn, is called the type of xn and is denoted by tp(xn). The
set of all types of sequences in Xn is denoted by Pn(X ).
Furthermore, we call a random variable X(n) that has the same
distribution as tp(xn) as the type variable of xn.

For a given a type PX ∈ Pn(X ) and a constant η, we denote
by T (n)

η (X) the set of (PX , η)-typical sequences in Xn:

T (n)
η (X) , (12)
{xn ∈ Xn : |π(a|xn)− PX(a)| ≤ ηPX(a),∀a ∈ X}.

In the same manner, we use T̃
(n)
η (X) to denote the set of

(P̃X , η)-typical sequences. Note that when η = 0, T (n)
0 (X)

denote the set of sequences xn ∈ Xn of type PX , and we use
T (n)(X) for simplicity.

Furthermore, for yn ∈ Yn, we define T
(n)
η (X|yn) as the

set of all xns that are jointly typical with yn:

T (n)
η (X|yn) = {xn ∈ Xn : (xn, yn) ∈ T (n)

η (XY )}. (13)

III. MAIN RESULTS

In this section, we focus on a special case: testing against
independence, in which we are interested in determining
whether (X1, · · · , XL) and Y are independent or not. In the
case of testing against independence, QX1···XLY in (1) takes
a special form

QX1···XLY = PX1···XLPY

and two hypotheses in (1) become

H0 : PX1···XLY vs H1 : PX1···XLPY . (14)

Note that the marginal distribution of (X1, · · · , XL) and Y are
the same under both hypotheses in the case of testing against
independence.

To simplify our presentation, we first present the results and
detailed proof for L = 2 case in Section III-A, and then extend
the results of the L = 2 case to the general case with L ≥ 2
terminals in Section III-B.

A. L = 2 Case

In this subsection, we study the L = 2 case in detail. Our
goal is to characterize the type 2 error exponent θ(R1, R2, ε)
under αn ≤ ε. We will show this in two parts. First, we design
a scheme and characterize the corresponding error exponent
for PMFs shown in (14). Then we will show that the scheme
is optimal.

Compared with the non-interactive scenario considered in
[14], in our model, X2 can use the message f1(Xn

1 ) from ter-
minal X1 to perform the encoding. Hence, the coding scheme
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will be more complex while terminal Y could potentially
receive more information. In the following, we first design
a scheme and characterize its error exponent.

Theorem 1. For the test against independence with L = 2
cascaded encoders, the best error exponent for the type 2 error
probability satisfies

θ(R1, R2, ε) ≥ max
U1U2∈ϕ0

I(U1U2;Y ) (15)

where

ϕ0 = {U1U2 : R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1),

U1 ↔ X1 ↔ (X2, Y ), (16)
U2 ↔ (X2, U1)↔ (X1, Y ), (17)

|U1| ≤ |X1|+ 1, |U2| ≤ |X2| · |U1|+ 1}.

Proof. In the following, η > η′ > η′′ > η′′′ are given small
numbers.

Codebook generation. Fix a joint distribution
attaining the maximum in (15), which satisfies
PU1U2|X1X2Y = PU1|X1

PU2|U1X2
. Let PU1

(u1) =∑
x1
PX1

(x1)PU1|X1
(u1|x1), and PU2|U1

(u2|u1) =∑
x2
PX2|U1

(x2|u1)PU2|U1X2
(u2|u1, x2). Randomly

and independently generate b2nR1c sequences un1 (m1),
m1 ∈ {1, · · · , b2nR1c} each according to

∏n
i=1 PU1

(u1i). For
each un1 (m1), randomly and independently generate b2nR2c
sequences un2 (m2), m2 ∈ {1, · · · , b2nR2c} each according
to
∏n
i=1 PU2|U1

(u2i|u1i). These sequences constitute the
codebook, which is revealed to all terminals. This process is
shown in Fig. 2.

Fig. 2. Codebook generation

Encoding for terminal X1. Given a sequence xn1 , terminal
X1 finds a un1 (m1) such that (xn1 , u

n
1 (m1)) ∈ T

(n)
η′′′ (X1U1),

then it sends the index m1 to both terminal X2 and Y . If there
is more than one such index, it sends the smallest one among
them. If there is no such index, it sends 0.

Encoding for terminal X2. If m1 = 0 is received from
terminal X1, terminal X2 sends m2 = 0 to terminal Y . If
m1 6= 0 is received, given xn2 and m1, terminal X2 finds a
un2 (m2) such that (un1 (m1), un2 (m2), xn2 ) ∈ T

(n)
η′′ (U1U2X2)

and sends the index m2 to terminal Y . If there is more than

one such index, it sends the smallest one among them. If there
is no such index, it sends 0.

Testing. Upon receiving messages from terminal X1 and
X2, terminal Y sets the acceptance region An for H0 to

An =
{

(m1,m2, y
n) : (un1 (m1), un2 (m2), yn) ∈ T (n)

η (U1U2Y )
}
.

This implies that terminal Y decides Ĥ = H0 if and only if
no 0 is received and (un1 (m1), un2 (m2), yn) ∈ T (n)

η (U1U2Y ).
Analysis of two types of errors. Terminal Y chooses Ĥ =

H1 if and only if one or more of the following events occur:

ε1 = {(Un1 (m1), Xn
1 ) /∈ T (n)

η′′′ (U1X1)

for all m1 ∈ [1 : b2nR1c]},
ε2 = {(Un1 (M1), Un2 (m2), Xn

2 ) /∈ T (n)
η′′ (U1U2X2)

for all m2 ∈ [1 : b2nR2c]},
ε3 = {(Un1 (M1), Un2 (M2), Y n) /∈ T (n)

η (U1U2Y )}.

Here, we can see that Ān = ε1 ∪ ε2 ∪ ε3.
a) Type 1 error probability: To compute the type 1 error

probability, we assume that H0 is true. Then

αn = PnX1X2Y (Ān) = PnX1X2Y (ε1 ∪ ε2 ∪ ε3)

≤ PnX1X2Y (ε1) + PnX1X2Y (ε̄1 ∩ ε2) + PnX1X2Y (ε̄1 ∩ ε̄2 ∩ ε3).

We now bound each term.

1) By the covering lemma [21, Section 3.7],
PnX1X2Y

(ε1) → 0 as n → ∞ if R1 ≥
I(U1;X1) + δ(η′′′).

2) Since η′′ > η′′′, ε̄1 = {(Un1 (M1), Xn
1 ) ∈

T
(n)
η′′′ (U1X1)} and Xn

2 |{Xn
1 , U

n
1 } = Xn

2 |Xn
1 ∼∏n

i=1 PX2|X1
(x2i|x1i), by the conditional typicality

lemma [21, Section 2.5], then Pr{(Un1 (M1), Xn
1 , X

n
2 ) ∈

T
(n)
η′′ (U1X1X2)} → 1, thus Pr{(Un1 (M1), Xn

2 ) ∈
T

(n)
η′′ (U1X2)} → 1 as n → ∞. Therefore, again by

the covering lemma, PnX1X2Y
(ε̄1 ∩ ε2)→ 0 as n→∞

if R2 ≥ I(U2;X2|U1) + δ(η′′).
3) To bound the last term, we need two steps.

Step 1: Since Xn
2 , Y

n|{Xn
1 = xn1 , U

n
1 (M1) =

un1} ∼
∏n
i=1 PX2Y |X1

(x2i, yi|x1i), we can show that
Pr{(Xn

1 , X
n
2 , U

n
1 (M1), Y n) ∈ T

(n)
η′ (X1X2U1Y )} → 1

using the conditional typicality lemma.
Step 2: Since we have the Markov
chain Un2 (M2) ↔ (Xn

2 , U
n
1 (M1)) ↔

(Xn
1 , Y

n) and (Xn
1 , X

n
2 , U

n
1 (M1), Y n) ∈

T
(n)
η′ (X1X2U1Y ) by Step 1, we can show

that Pr{(Un1 (M1), Un2 (M2), Xn
1 , X

n
2 , Y

n) ∈
T

(n)
η (U1U2X1X2Y )} → 1 as n → ∞ using Markov

lemma [21, Section 12.1].

b) Type 2 error probability: To calculate the type 2 error
probability, assume in this case that H1 is true, then we have

βn = (PX1X2PY )n(An) = (PX1X2PY )n(ε̄1 ∩ ε̄2 ∩ ε̄3)

= (PX1X2PY )n(ε̄1) · (PX1X2PY )n(ε̄2|ε̄1)

·(PX1X2PY )n(ε̄3|ε̄1 ∩ ε̄2).
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We now bound each factor.
1) By the covering lemma, (PX1X2

PY )n(ε̄1)→ 1 as n→
∞, if R1 ≥ I(U1;X1) + δ(η′′′).

2) The second term is the same as that of H0 as it
depends only on PnX1X2

. Hence again by the cover-
ing lemma, (PX1X2PY )n(ε̄2|ε̄1) → 1 as n → ∞ if
R2 ≥ I(U2;X2|U1) + δ(η′′).

3) For the third term, we have

(PX1X2
PY )n(ε̄3|ε̄1 ∩ ε̄2)

=
∑

(un1 ,u
n
2 ,y

n)∈T (n)
η (U1U2Y )

(PX1X2
PY )n{Un1 (M1) = un1 ,

Un2 (M2) = un2 , Y
n = yn|ε̄1 ∩ ε̄2}

≤ 2n(H(U1U2Y )+δ(η))2−n(H(U1U2)−δ(η′))2−n(H(Y )−δ(η′))

= 2−n(I(U1U2;Y )−δ(η)).

Combining the bounds on these three factors, we have

βn ≤ 2−n(I(U1U2;Y )−δ(η)).

This completes the achievability proof.

Now we show that the scheme in Theorem 1 is optimal.

Theorem 2. In the testing against independence with L = 2
cascaded encoders, when the type 1 error constraint (9)
is satisfied, the best error exponent for the type 2 error
probability satisfies

lim
ε→0

θ(R1, R2, ε) ≤ max
U1U2∈ϕ0

I(U1U2;Y ) (18)

where ϕ0 is defined in Theorem 1.

Proof. First, for any scheme (f1, f2, ψ) that satisfies the type
1 error constraint (9) and rate constraints (4), we have

D(PM1M2Y n ||PM1M2
PY n)

(a)

≥ (1− αn) log
1− αn
βn

+ αn log
αn

1− βn
(b)

≥ (1− ε) log
1

βn
−H(αn),

in which M1 = f1(Xn
1 ), M2 = f2(Xn

2 ,M1), αn and βn
are defined in (7) and (8) respectively, and H(αn) := −(1−
αn) log(1−αn)−αn logαn is the binary entropy function. In
the above derivation, (a) is true due to the log sum inequality
[21], and (b) follows by the constraint (9). By the communi-
cation constraints (4), we have H(Ml) ≤ nRl, l = 1, 2.

Hence we have the following multi-letter expression of the
upper bound

lim
ε→0

θ(R1, R2, ε) ≤ lim
n→∞

1

n
D(PM1M2Y n ||PM1M2PY n)

= lim
n→∞

1

n
(I(M1M2;Y n))

= H(Y )− lim
n→∞

1

n
(H(Y n|M1M2)).(19)

Then, we single-letterize the upper bound in (19) in the
following steps. First consider

nR1 ≥ H(M1) ≥ I(M1;Xn
1X

n
2 )

=
n∑
i=1

I(M1X
i−1
1 Xn

2(i+1);X1iX2i)

≥
n∑
i=1

I(M1X
i−1
1 Xn

2(i+1);X1i)

(a)
=

n∑
i=1

I(U1i;X1i),

where (a) is true by identifying U1i = (M1, X
i−1
1 , Xn

2(i+1))
and noting that U1i ↔ X1i ↔ (X2i, Yi) forms a Markov
chain.

Next consider

nR2 ≥ H(M2) ≥ I(M2;Xn
1X

n
2 Y

n|M1)

=
n∑
i=1

I(M2;X1iX2iYi|M1X
i−1
1 Xn

2(i+1)Y
i−1)

(b)
=

n∑
i=1

I(M2Y
i−1;X1iX2iYi|M1X

i−1
1 Xn

2(i+1))

≥
n∑
i=1

I(M2Y
i−1;X2i|M1X

i−1
1 Xn

2(i+1))

(c)
=

n∑
i=1

I(U2i;X2i|U1i),

where (b) is true since Y i−1 ↔ (Xn
2(i+1), X

i−1
1 ,M1) ↔

(X1i, X2i, Yi) forms a Markov chain, which can be derived
in the following way,

(Xn
1 , X1i, X2i, Yi, X

n
2(i+1))↔ Xi−1

1 ↔ Y i−1

⇒ (M1, X1i, X2i, Yi, X
n
2(i+1))↔ Xi−1

1 ↔ Y i−1

(d)⇒ (X1i, X2i, Yi)↔ (M1, X
i−1
1 , Xn

2(i+1))↔ Y i−1,

in which (d) follows by the weak union property of Markov
chain [22]. (c) follows by defining U2i = (M2, Y

i−1) and
noting that U2i ↔ (U1i, X2i) ↔ (X1i, Yi) forms a Markov
chain which is proved in Appendix A.

Finally, we consider

H(Y n|M1M2) =

n∑
i=1

H(Yi|M1M2Y
i−1)

≥
n∑
i=1

H(Yi|M1M2Y
i−1Xi−1

1 Xn
2(i+1))

=
n∑
i=1

H(Yi|U1iU2i).

Define the time-sharing random variable Q ∼ Unif[1 : n]
and independent of (M1,M2, X

n
1 , X

n
2 , Y

n), and identify U1 =
(U1Q, Q), U2 = (U2Q, Q), X1 = X1Q, X2 = X2Q, and
Y = YQ. Clearly, we have U1 ↔ X1 ↔ (X2, Y ) and U2 ↔
(U1, X2)↔ (X1, Y ) form two Markov chains. Hence we have

5



shown

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1),

lim
ε→0

θ(R1, R2, ε) ≤ H(Y )−H(Y |U1U2) = I(Y ;U1U2),

for PU1U2|X1X2Y = PU1|X1
PU2|U1X2

. This completes the
converse proof.

Hence, we obtain a matching upper and lower bound on the
type 2 error exponent which is shown in Theorem 3.

Theorem 3. In the testing against independence with L = 2
cascaded encoders, when the type 1 error constraint (9)
is satisfied, the best error exponent for the type 2 error
probability satisfies

lim
ε→0

θ(R1, R2, ε) = max
U1U2∈ϕ0

I(U1U2;Y ) (20)

where ϕ0 is defined in Theorem 1.

B. General L Case

The results in the previous subsection can be extended to
the general case with L terminals and a decision maker Y .
The result is shown in the following theorem. The proof of
this theorem can be obtained by properly modifying the proof
for L = 2 case, and hence is omitted for brevity.

Theorem 4. In the testing against independence with L
cascaded encoders, the best type 2 error exponent satisfies

θ(R1, · · · , RL, ε) ≥ max
U1···UL∈ϕ

I(U1 · · ·UL;Y ), (21)

in which

ϕ = {U1 · · ·UL : R1 ≥ I(U1;X1),

Rl ≥ I(Ul;Xl|U1 · · ·Ul−1),

U1 ↔ X1 ↔ (X2, · · · , XL, Y ), (22)
Ul ↔ (Xl, U1, · · · , Ul−1)↔ (X1, · · · , Xl−1,

Xl+1, · · · , XL, Y ), (23)
|U1| ≤ |X1|+ 1,

|Ul| ≤ |Xl| · |Ul−1| · · · |U1|+ 1, l = 2, · · · , L}.

C. General PMF Case

Furthermore, we extend our study to the general PMF
case (i.e., not necessarily for the test against independence
anymore) with L terminals:

H0 : PX1···XLY , H1 : QX1···XLY .

The result is shown in the following theorem.

Theorem 5. For the case with general hypothesis PX1···XLY
vs QX1···XLY with L cascaded encoders, the best error
exponent of the type 2 error probability satisfies

θ(R1, · · · , R2, ε) ≥ max
U1···UL∈ϕ

(24)

min
P̃U1···ULX1···XLY ∈ξ

D(P̃U1···ULX1···XLY ||QU1···ULX1···XLY ),

where ϕ is defined in Theorem 4,

ξ =
{
P̃U1···ULX1···XLY : P̃U1···UlXl = PU1···UlXl ,

P̃U1···ULY = PU1···ULY , l = 1, · · · , L
}
,

QU1|X1
= PU1|X1

and QUl|U1···Ul−1Xl = PUl|U1···Ul−1Xl for
l = 2, · · · , L.

Proof. We can adopt the coding scheme in Section III-A
and the analysis in [11] with necessary changes. Details are
omitted for brevity.

IV. COMPARISON WITH THE NON-INTERACTIVE
COMMUNICATION MODEL

In this section, we compare the performance achieved by
the cascaded communication scheme and that of the non-
interactive communication scheme. We will provide concrete
examples to show that for certain PMF and positive communi-
cation rates, the scheme with cascaded communication outper-
forms that of the non-interactive communication scheme. On
the other hand, we will also prove that when the communica-
tion rates go to zero (zero-rate compression), the performance
of the cascaded communication scheme is the same as that
of the non-interactive communication scheme, and hence the
cascaded scheme does not improve the performance in these
scenarios.

A. Example When the Cascaded Scheme Is Better Than the
Non-interactive Scheme

Here, we provide an example in which the error exponent
achieved using the cascaded scheme is larger than that can
be achieved using the non-interactive scheme. The example
is about the testing against independence case. The testing
against independence problem with non-interactive commu-
nications and multiple terminals was studied in [14], which
provides a lower and an upper bound on the type 2 error
exponent of non-interactive schemes. As the lower and upper
bounds in [14] do not match with each other, in this part, we
compare the type 2 error exponent achieved by the scheme
with cascaded communications shown in the proof of Theorem
1, with the upper bound on the type 2 error exponent of the
non-interactive scheme derived in Theorem IV3 of [14].

In the example, we let X1, X2 and Y be binary random
variables with joint PMF PX1X2Y .

TABLE I
THE JOINT PMF PX1X2Y

X1X2Y 000 010 100 110
PX1X2Y 0.0704 0.2108 0.0015 0.3233
X1X2Y 001 011 101 111
PX1X2Y 0.2206 0.0667 0.0046 0.1021

For testing against independence case, we have QX1X2Y =
PX1X2

PY , which can be easily calculated from Table I.
With given communication constraint R = R1 = R2, we
use Theorem 1 to find the best value of the type 2 error
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exponent that we can achieve using our cascaded scheme. For
comparison, we also use Theorem IV3 of [14] to find an upper
bound on the type 2 error exponent of the non-interactive
case. For R = 0.48, we list the conditional distributions
PU1|X1

and PU2|X2
for non-interactive case and the conditional

TABLE II
PU1|X1

AND PU2|X2
FOR NON-INTERACTIVE CASE WHEN R = 0.48

U1|X1 0|0 1|0 0|1 1|1
PU1|X1

0.9991 0.0009 0.1564 0.8436
U2|X2 0|0 1|0 0|1 1|1
PU2|X2

0.9686 0.0314 0.0357 0.9643

distributions PU1|X1
and PU2|X2U1

for the cascaded case in the
following tables.

TABLE III
PU1|X1

AND PU2|X2U1
FOR CASCADED CASE WHEN R = 0.48

U1|X1 0|0 1|0 0|1 1|1
PU1|X1

0.0155 0.9845 0.5829 0.4171
U2|X2U1 0|00 1|00 0|01 1|01
PU2|X2U1

0.0636 0.9364 0.9727 0.0273
U2|X2U1 0|10 1|10 0|11 1|11
PU2|X2U1

0.9898 0.0102 0.0005 0.9995

The simulation results for different Rs are shown in Fig. 3.
From Fig. 3, we can see that the type 2 error exponents in both
cases increase with the increasing value of R, which makes
sense as the more information we can send, the less errors
we will make. We also observe that the type 2 error exponent
achieved using our cascaded communication scheme is even
larger than an upper bound on the type 2 error exponent of any
non-interactive schemes. Hence, we confirm the intuitive idea
that more information offered by the cascaded communication
facilitates a better decision making for certain testing against
independence cases with positive communication rates.

Fig. 3. Simulation results

We also list the error exponents for R ≥ 0.46 in TABLE IV
since it is not obvious to see the increase in the performance of
both cascaded and non-interactive communication. Note that
when R is large enough, we can let U1 = X1 and U2 = X2.
And we have θnon-ineractive ≤ I(X1X2;Y ) = θ. To achieve
this maximum value, the constraints of R1 and R2 can be
simplified in the following:
• Non-interactive case:

R1 ≥ H(X1), R2 ≥ H(X2). (25)

• Cascaded case:

R1 ≥ H(X1), R2 ≥ H(X2|X1). (26)

We also list the values these theoretic limits in TABLE V.

TABLE IV
ERROR EXPONENTS FOR R ≥ 0.42

R 0.42 0.46 0.50 0.52
θnon-interactive 0.096724 0.10136 0.10585 0.10930

θ 0.11222 0.11612 0.11625 0.11630
R 0.54 0.58 0.62 0.66

θnon-interactive 0.11013 0.11496 0.11754 0.11754
θ 0.11640 0.11661 0.11755 0.11755
R 0.68 0.70 0.72 0.74

θnon-interactive 0.11754 0.11754 0.11754 0.11754
θ 0.11755 0.11755 0.11755 0.11755

TABLE V
THEORETIC LIMITS FOR U1 = X1 AND U1 = X2

I(X1X2;Y ) H(X1) H(X2) H(X2|X1)
0.1187 0.6838 0.5127 0.4259

From TABLE IV and TABLE V, we can see that the increas-
ing speed of θ decreases when R ≥ 0.42 as R is large enough
for terminal X2. This same happens for θnon-interactive when
R ≥ 0.52. Furthermore, both θnon-interactive and θ approach the
best possible value of I(X1, X2;Y ) = 0.1187 as R → 0.68.
We note that there is a slight gap between the theoretic limit
and simulation results. This is due to the precision of the
numerical simulation.

B. Example When the Cascaded Scheme Has the Same Per-
formance as that of the Non-interactive Scheme

In this subsection, we provide an example for which the
cascaded scheme has the same performance as that of the non-
interactive scheme. In particular, we will prove that, under
“zero-rate” data compression, i.e. Rl = +0, l = 1, · · · , L,
cascaded communication does not improve the performance.
More specifically, we consider our model testing the general
hypotheses under the communication constraints

as n→∞, Ml →∞, (27)

but
Rl =

1

n
logMl → 0, l = 1, 2. (28)
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In the non-interactive communication scenario with zero-
rate compression, a matching upper bound and lower bound
on the type 2 error exponent was provided in [13, Theorem 2]
when QX1···XLY > 0. If we can prove an upper bound on the
type 2 error exponent for the cascaded communication case
that is no larger the error exponent shown in [13], then we
can arrive at the conclusion that the cascaded communication
won’t help under the zero-rate compression case.

For reference, we state the error exponent of the non-
interactive scheme characterized in [13] in the following.

Theorem 6. ( [13]) Let PX1···XLY be arbitrary and
QX1···XLY > 0, for all ε ∈ [0, 1), the type 2 error exponent for
zero-rate compression under αn ≤ ε with L non-interactive
encoders is given by

θnon-interactive(+0, · · · ,+0, ε)

= min
P̃X1···XLY ∈L

D(P̃X1···XLY ||QX1···XLY ) (29)

where

L =
{
P̃X1···XLY : P̃Xl = PXl , l = 1, · · · , L, P̃Y = PY

}
.

In the following, we provide an upper bound on the type 2
error exponent for the cascaded case.

Theorem 7. Let PX1···XLY be arbitrary and QX1···XLY > 0,
for all ε ∈ [0, 1), the best type 2 error exponent for zero-rate
compression under αn ≤ ε with L cascaded encoders satisfies

θ(+0, · · · ,+0, ε)

≤ min
P̃X1···XLY ∈L

D(P̃X1···XLY ||QX1···XLY ) (30)

where L is defined in Theorem 6.

Proof. Please see Appendix B.

Comparing Theorem 7 with Theorem 6, we can see that the
upper bound on the type 2 error exponent for the cascaded
communication scheme is the same as the type 2 error expo-
nent achievable by the non-interactive communication scheme.
This implies that the performance of the cascaded commu-
nication scheme is the same as that of the non-interactive
communication scheme in the zero-rate data compression case.

The conclusion that cascaded communication does not im-
prove the type 2 error exponent under the zero-rate data com-
pression case also holds when we have a stronger constraint
on the type 1 error probability:

αn ≤ exp[−nr], r > 0. (31)

This constraint is called exponential-type constraint.
In the cascaded communication case, based on the results in

Theorem 7, we can use a similar strategy as in [10] to convert
the problem under the exponential-type constraint (31) to the
corresponding problem under the constraint in (9). As the
converting strategy is independent of the communication style,
it will be the same as that in [16]. Then an upper bound on the
type 2 error exponent under the exponential-type constraint

can be easily derived without going into details, shown in
the sequel. Here, we use σ(+0, · · · ,+0, r) to denote the type
2 error exponent under exponential-type constraint (31) for
general case with L terminals.

Theorem 8. Let PX1···XLY be arbitrary and QX1···XLY > 0,
the best type 2 error exponent for zero-rate compression case
under αn ≤ exp[−nr] with L cascaded encoders satisfies

σ(+0, · · · ,+0, r)

≤ min
P̃X1···XLY ∈Hr

D(P̃X1···XLY ||QX1···XLY ) (32)

where

Hr =
{
P̃X1···XLY : P̃Xl = P̂Xl , P̃Y = P̂Y , l = 1, · · · , L

for some P̂X1···XLY ∈ ϕr
}
, (33)

ϕr = {P̂X1···XLY : D(P̂X1···XLY ||PX1···XLY ) ≤ r}. (34)

Comparing Theorem 8 with [16, Theorem 4], where a
matching upper and lower bound is provided for the non-
interactive scheme, we can conclude that there is no gain
in performance on the type 2 error exponent under zero-rate
compression with the exponential-type constraint on the type
1 error probability.

V. CONCLUSION

In the paper, we have considered distributed testing prob-
lems with cascaded encoders. We have first investigated the
special case of testing against independence. We have designed
a scheme to benefit from the extra information provided by
cascaded communications, and have shown that the proposed
scheme is optimal when certain Markovian relation exists.
We have then derived a lower bound on the type 2 error
exponent for cases with general hypotheses. Compared with
existing results in the non-interactive communication cases, we
have shown that cascaded communication does provide perfor-
mance gain under certain PMFs and positive communication
rates but does not offer gain under zero-rate data compression
scenarios.

APPENDIX A
PROOF OF THE MARKOV CHAIN
U2i ↔ (U1i, X2i)↔ (X1i, Yi)

First, we need the following lemma introduced and proved
in [23, Lemma 1].

Lemma 1. [23] Let A1, A2, B1, B2 be the random variables
with joint PMF PA1A2B1B2 = PA1B1PA2B2 and assume
that {f i}ki=1, {gi}ki=1 are any collection of P -measurable
mappings with domain structure given by:

f1(A1, A2); f2(A1, A2, g
1); · · · ; fk(A1, A2, g

1, · · · , gk−1),

g1(B1, B2, f
1); · · · ; gk(B1, B2, f

1, · · · , fk). (35)

Then,

I(A2;B1|A1, B2, f
1, f2, · · · , fk, g1, g2, · · · , gk) = 0. (36)
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To prove the Markov chain U2i ↔ (U1i, X2i)↔ (X1i, Yi),
first we set {

A1 := Xi−1
1 , B1 := Xi−1

2

A2 := Xn
1i, B2 := Xn

2i

(37)

Then according to Lemma 1, we have

I(Xn
1i;X

i−1
2 |Xi−1

1 , Xn
2i,M1) = 0, (38)

where M1 = f1(A1, A2). Thus, we have the following
Markov chain,

(X1i, X
n
1(i+1))↔ (Xi−1

1 , Xn
2i,M1)↔ Xi−1

2 . (39)

As M2 = g1(B1, B2,M1), we have

X1i ↔ (Xi−1
1 , Xn

2i,M1)↔M2. (40)

Since Yi ↔ (X1i, X2i) ↔ (Xi−1
1 , Xn

2(i+1),M1,M2), we can
have

(X1i, Yi)↔ (Xi−1
1 , X2i, X

n
2(i+1),M1)↔ (M2, Y

i−1), (41)

i.e.
(X1i, Yi)↔ (X2i, U1i)↔ U2i. (42)

APPENDIX B
PROOF OF THEOREM 7

In this appendix, to facilitate the presentation, we show a
detailed proof for L = 2. The proof for the general L is
similar. Our proof follows a similar strategy as that in [13]
and employs the “blowing-up” lemma [24].

First, we define

Cm1 = {xn1 ∈ Xn1 : f1(xn1 ) = m1},
Dm2|m1

= {xn2 ∈ Xn2 : f2(xn2 ,m1) = m2},
Fm1,m2

= {yn ∈ Yn : ψ(m1,m2, y
n) = H0},

then we can write

An =

||f1||⋃
m1=1

||f2||⋃
m2=1

Cm1
×Dm2|m1

× Fm1,m2
. (43)

And we can see that Cm1
s are pairwise disjoint and for fixed

m1, Dm2|m1
s are pairwise disjoint for different m2.

We have PnX1X2Y
(An) ≥ 1 − ε, then there exists an index

(m10,m20) such that

PnX1X2Y (Cm10
×Dm20|m10

× Fm10,m20
) ≥ 1− ε
||f1|| · ||f2||

.

To simplify the notations, we let C = Cm10 , Dm20|m10
= D

and Fm10,m20 = F . We can rewrite the equation above as

PnX1X2Y (C ×D × F ) ≥ exp(−nδn) (44)

where δn = − 1
n log(1− ε) + 1

n log(||f1|| · ||f2||) and δn → 0
by (27) and (28). (44) implies that

PnX1
(C) ≥ exp(−nδn), PnX2

(D) ≥ exp(−nδn),

PnY (F ) ≥ exp(−nδn).

Define the Hamming k-neighborhood ΓkC of C by

ΓkC = {zn ∈ Xn1 : ∃xn1 ∈ C, s.t. d(xn1 , u
n) ≤ k}.

Using Blowing-up lemma [25], there exists sequences kn and
γn satisfying kn/n→ 0 and γn → 0, and such that

PnX1
(ΓknC) ≥ 1− γn, (45)

PnX2
(ΓknD) ≥ 1− γn, (46)

PnY (ΓknF ) ≥ 1− γn. (47)

Furthermore, kn and γn depend only on X1, X2, Y and γn.
In the following, we will use k instead of kn. (45), (46) and
(47) hold true if we replace P by P̃ where P̃X1X2Y satisfies
the marginal constraints P̃X1 = PX1 , P̃X2 = PX2 , and P̃Y =
PY . Moreover, via simple derivations we have

P̃nX1X2Y (ΓkC × ΓkD × ΓkF ) ≥ 1− 3γn. (48)

As T̃
(n)
η (X1X2Y ) is the set of (P̃X1X2Y , η)-typical se-

quences, then P̃nX1X2Y
(T̃

(n)
η (X1X2Y )) ≥ 1 − ηn, where ηn

is a small number such that ηn/n→ 0 as n→∞. Hence, for
all sufficiently large n, we obtain

P̃nX1X2Y

(
(ΓkC ×ΓkD×ΓkF )∩ T̃ (n)

η (X1X2Y )
)
≥ 1

2
. (49)

By the definition of T̃ (n)
η (X1X2Y ), we have the following

decomposition:

T̃ (n)
η (X1X2Y ) =

⋃
P̂X1X2Y

∈ Pn(X1 × X2 × Y)
|P̂X1X2Y

− P̃X1X2Y
| ≤ ηP̃X1X2Y

T̂ (n)(X1X2Y ).

Given the fact of equiprobable elements of a given
T̂ (n)(X1X2Y ), (49) can be rewritten as∑

P̂X1X2Y
∈ Pn(X1 × X2 × Y)

|P̂X1X2Y
− P̃X1X2Y

| ≤ ηP̃X1X2Y

P̃nX1X2Y (T̂ (n)(X1X2Y ))

|(ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y )|
|T̂ (n)(X1X2Y )|

≥ 1

2
.

Hence, there exists a type P̂X1X2Y ∈ Pn(X1 × X2 × Y)
satisfying |P̂X1X2Y − P̃X1X2Y | ≤ ηP̃X1X2Y and such that

|(ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y )|
|T̂ (n)(X1X2Y )|

≥ 1

2
.

Since pairs (xn1 , x
n
2 , y

n) of the same type are also equiprob-
able under QnX1X2Y

, we conclude that for the previous type
P̂X1X2Y ,

QnX1X2Y (ΓkC × ΓkD × ΓkF )

≥ QnX1X2Y ((ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y ))

≥ 1

2
QnX1X2Y (T̂ (n)(X1X2Y )). (50)

Consider an arbitrary element (zn, vn, wn) of ΓkC×ΓkD×
ΓkF . By definition of Γk, there exists at least one element
(xn1 , x

n
2 , y

n) ∈ C×D×F such that (x1i, x2i, yi) differs from
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(zi, vi, wi) for at most 3k values of i. We thus have

QnX1X2Y (zn, vn, wn) =
n∏
i=1

QX1X2Y (zi, vi, wi)

= ρ−3kQX1X2Y (xn1 , x
n
2 , y

n), (51)

where ρ = minx1∈X1,x2∈X2,y∈Y QX1X2Y (x1, x2, y) > 0. As
(zn, vn, wn) ranges over ΓkC × ΓkD × ΓkF , each element
(xn1 , x

n
2 , y

n) of C×D×F will be selected at most |Γk(xn1 )| ·
|Γk(xn2 )| · |Γk(yn)| times. By virtue of this, (51) yields

QnX1X2Y (ΓkC × ΓkD × ΓkF )

≤ ρ−3k|ΓkC(xn1 )| · |Γk(xn2 )| · |Γk(yn)|QnX1X2Y (C ×D × F ).

From [25], we have the upper bound

|Γk(xn1 )| ≤ exp

[
n

(
H

(
k

n

)
+
k

n
log |X1|

)]
.

Thus, we can write

QnX1X2Y (ΓkC×ΓkD×ΓkF ) ≤ exp(nξn)QnX1X2Y (C×D×F ),
(52)

where ξn → 0.
Finally, combining (50) and (52) with the upper bound on

QnX1X2Y
(T̂ (n)(X1X2Y )), we have

QnX1X2Y (C ×D × F )

≥ exp[−n(D(P̂X1X2Y ||QX1X2Y ) + ςn)],

where ςn → 0. Since D(P̃X1X2Y ||Q̃X1X2Y ) is uniformly con-
tinuous, we can find a sequence µn = µn(ρ, |X1|, |X2|, |Y|)→
0 such that

|P̂X1X2Y − P̃X1X2Y | ≤ ηP̃X1X2Y

⇒ |D(P̂X1X2Y ||QX1X2Y )−D(P̃X1X2Y ||QX1X2Y )| ≤ µn.

Hence,

QnX1X2Y (C ×D × F )

≥ exp[−n(D(P̃X1X2Y ||QX1X2Y ) + ςn + µn)], (53)

and consequently

θ(+0,+0, ε) ≤ min
P̃X1X2Y

∈L0

D(P̃X1X2Y ||QX1X2Y ).
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