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Abstract—In this paper, we consider the problem of quickly
detecting an abrupt change in linear regression models. Specifi-
cally, an observer sequentially obtains a sequence of observations,
whose underlying linear model changes at an unknown time.
Moreover, the pre-change linear model is perfectly known by
the observer but the post-change linear model is unknown. The
observer aims to design an efficient online algorithm to detect
the presence of the change via his sequential observations. Based
on different assumptions on the change-point, both non-Bayesian
and Bayesian problem formulations are considered. In the non-
Bayesian setting, the change-point is modeled as a fixed but
unknown constant. Two performance metrics, namely the worst
case detection delay (WADD) and the average run length to false
alarm (ARL2FA), are adopted to evaluate the performance of
detection algorithms. In the Bayesian setting, the change-point is
modeled as a geometrically distributed random variable. For this
case, the average detection delay (ADD) and the probability of
false alarm (PFA) are used as performance metrics. We propose
a novel algorithm, namely the parallel-sum algorithm, for the
purpose of change detection. For both setups, we show that the
proposed algorithm has a low computational complexity while
still offering a good performance in terms of the performance
metrics of the respective setting.

Index Terms—Change-point detection; linear regression mod-
el; sequential analysis.

I. INTRODUCTION

Linear regression is a basic but important tool in statistics,
signal processing and machine learning. It has wide range
applications in data fitting, classification, feature or subset
selection [2], beam forming [3], cognitive radio network [4],
economic data analysis [5], biomedical science [6], etc. Many
efforts have been devoted into the problem of estimating the
coefficients in the linear regression model based on observa-
tion data [7]–[11]. The underlying assumption in these work
is that all data come from a single linear model. However,
in many applications, the underlying model may change over
time [12]. For example, in building economic growth mod-
els, it is more appropriate to assume that various economic
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indicators obey different models in different time period as
the economic growth pattern undergoes structural changes
over the years [13]. As another example, in monitoring the
health of control systems, the presence of a problem will
cause the system to change from a model of normal state
to another model of abnormal state [14]. In such applications,
it is of interest to detect the presence of such changes in the
underlying model quickly.

Motivated by above applications, we focus on on-line
change detection problem in linear regression models in this
work. In particular, an observer keeps monitoring the explana-
tory variables xn and the dependent variable yn of a linear
model. At an unknown time t, the linear model changes to
another linear model with unknown coefficients. The observer
aims to design an on-line algorithm to quickly detect the
presence of such change based on his sequential observations.

We formulate this problem in the framework of quickest
change-point detection (QCD). Based on different assumptions
on change-point t, both non-Bayesian and Bayesian setups
are considered in this paper. In the non-Bayesian setup, the
change time t is assumed to be a fixed but unknown number.
Specifically, Lorden’s setup [15] is considered. In this case, the
observer aims to minimize the worst case average detection
delay (WADD) while keeping the average run length to false
alarm (ARL2FA), namely the expected duration between two
successive false alarms, under control. WADD and ARL2FA
will be precisely defined in the model section. In the Bayesian
setup, the change-point is assumed to be a geometrically
distributed random variable [16], [17]. Correspondingly, the
observer wishes to minimize the average detection delay
(ADD) (average over the prior distribution of the change-point)
such that the probability of false alarm (PFA) is under control.

In the considered problem, the post-change coefficient in the
linear regression model is unknown to the observer; hence the
formulated problem is closely related to the QCD problem
with unknown post-change parameters [18]–[21]. However,
as we will discuss in the sequel, typical existing methods,
including generalized likelihood ratio (GLR) based cumulative
sum (CUSUM) algorithm and GLR-Shiryaev algorithm, have
a high computational complexity. In this paper, we focus
on designing schemes that have a low complexity yet still
offer reasonable performance. In particular, we propose a
low complexity parallel-sum algorithm. In this algorithm, the
observer calculates the correlations between yn and each
individual component of xn and then compares the sum of
these calculated statistics with a pre-designed threshold. If
the threshold is exceeded, which indicates that yn strongly
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depends on some components in xn, the observer raises an
alarm. The performance of the proposed algorithm is analyzed
for both non-Bayesian and Bayesian formulations. In the non-
Bayesian formulation, to guarantee ARL2FA to be no less
than a preset level γ, we show that WADD of the parallel-sum
algorithm is on the order of O(log γ) when p/γ → 0, in which
p is the dimension of xn, and is on the order of O(log p) when
p/γ → c with c being a constant. In the Bayesian formulation,
to guarantee PFA to be no larger than a given threshold α, we
show that ADD of the proposed algorithm is on the order of
O(| logα|) when pα → 0 and is on the order of O(log p)
when pα → c. The proposed algorithm is neither optimal nor
asymptotically optimal. However, it has a low computational
complexity and its detection delay is reasonable. At time slot
n, the computational complexity of the proposed algorithm is
on the order of O(np).
Our paper is related to several interesting papers on change

detection in the linear model. For example, [22] extends
Lorden’s results to detecting the change in the linear regres-
sion model and proposes a family of asymptotically optimal
algorithms by exploring the relationship between one-sided
sequential probability ratio test (SPRT) and QCD problem.
[23] proposes a first order asymptotically optimal detection
algorithm in which the unknown mean of the dependent
variable in the linear model is replaced by its one-step ahead
estimate. [14] adopts the window-limited GLR-CUSUM for
the change detection in the stochastic dynamic system. [24]
decomposes the unknown post-change parameter space into
several subspaces, and for each subspace the observer runs
a recursive GLR test for detection purpose. [25] and [26]
discuss detecting changes in the linear regression parameter
under both fixed sample setting and sequential setting. One
can find more discussions on this topic in a recent book [27].
However, all these aforementioned works are focus on the non-
Bayesian setting, and most of existing algorithms have a high
computational complexity. In this paper, we consider both non-
Bayesian and Bayesian settings, for which we propose a low
complexity algorithm and analyze its performance in detail.
We now briefly review other related papers. There are a

series of works such as [28], [29] that consider the problem of
monitoring model or structural change. However, these works
focus on the probability of detecting the change-point while
our work focuses on analyzing the detection delay. Some
other works, such as [13], [30], consider the scenario that
the structure of data in the dataset undergo several changes.
These works commonly assume that the whole dataset is
available to the observer, and the observer aims to design
the offline algorithm to estimate the location change-point;
hence the estimation error is of interest. However, in our work,
observations come to the observer in a sequential manner,
and the observer aims to design online change detection
algorithm; hence the detection delay and the false alarm are
of interest. Our problem is also related to the sequential
joint detection and estimation problem considered in [31],
[32], as in our model the post-change linear coefficient is
unknown to the observer. However, the observations in [31],

[32] are identically distributed. In this paper, the distribution
of observations has an abrupt change, and we focus on quickly
detecting the occurrence of the change rather than estimating
the unknown linear coefficient. In addition, the proposed
parallel-sum algorithm is similar to both the SUM-CUSUM
algorithm [33] and to the mixture-based CUSUM algorithm
[34] in a multi-sensor setting. These existing algorithms design
the detection statistic by taking the sum or the weighted sum
of the local CUSUM statistics, while the proposed parallel-
sum algorithm taking the sum of the correlation coefficients
between the dependent variable and the components in the
corresponding explanatory variable. Further, SUM-CUSUM
and mixture-based CUSUM are designed for the sequential
change detection of multiple data streams, while the proposed
parallel-sum algorithm is for the detection of change in the
linear regression models.

The remainder of this paper is organized as follows. The
mathematical model is described in Section II. Section III
presents the proposed algorithms and the main conclusions of
this paper. Numerical examples are provided in Section IV to
illustrate the analytical results obtained in this work. Finally,
Section V offers concluding remarks.

II. MODEL

We consider the change-point detection problem in a linear
regression model. For a given sequence of p× 1 explanatory
vectors x1,x2, . . ., the observations z1, z2, . . . , obey the fol-
lowing linear model

zn =

{
βT
0 xn + ϵn n = 1, 2, . . . , t− 1

βT
1 xn + ϵn n = t, t+ 1, . . .

, (1)

in which ϵ1, ϵ2, . . . , are i.i.d. N (0, 1) random variables that
model the observation noise, β0 and β1 model the pre-change
and the post-change linear regression coefficients, respectively.
In addition, β0 is perfectly known by the observer but β1 is
unknown. The value of the change-point t is unknown. Hence,
(1) indicates that the relationship between xn and zn abruptly
changes to an unknown linear model from a known linear
model at some unknown time t.

We note that (1) can be transformed to a simpler but
equivalent form. Since β0 is perfectly known, by setting
yn = zn − βT

0 xn, we can obtain

yn =

{
0Txn + ϵn n < t
aTxn + ϵn n ≥ t

, (2)

in which a = β1−β0. In the remainder of the paper, we will
focus on the simplified model (2).

Let xn = [x1,n, x2,n, . . . , xp,n]
T . We assume that {xn}

satisfy the following regularity condition:

lim
m→∞

1

m

k+m∑
n=k+1

xnx
T
n = R uniformly for all k ≥ 0, (3)

where R is a p × p positive definite matrix. This uniform
convergence assumption entails the fact that for any a ̸= 0,
there exists a common upper bound for aTxn, n = 1, 2, . . ..
This fact will be used several times in the detailed proofs.
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It is of interest to consider the case that the abrupt change
only modifies a few components in the linear coefficient.
Hence, we assume that a is an s−sparse vector, i.e., a only
contains at most s non-zero components. s is assumed to be
known to the observer.
Let a = [a1, a2, . . . , ap]

T . We specify the feasible set of a,
denoted as A, in an element-wise manner. Particularly, if the
ith element of the linear coefficient is modified by the abrupt
change, then ai falls in the set:

Ai = {ai|ai ∈ (−∞,−bi] ∪ [bi,∞)}, (4)

in which bi > 0. Furthermore, denote Āi := {ai = 0} and let

Ak =
∪

(i1,...,ip)∈P

(Ai1 ∪ · · · ∪ Aik ∪ Āik+1
∪ · · · ∪ Āip), (5)

where P consists of all permutations of set {1, 2, . . . , p}.
Hence Ak contains all vectors with exactly k-nonzero com-
ponents. Then, the feasible set of a is expressed as A =∪

1≤k≤s Ak. We note that a = 0 is excluded from A.
The observer aims to detect the change-point t via the

observation sequence {yn} and the deterministic explanatory
vector sequence {xn}. Let τ be the stopping time when the
observer declares that a change has occurred. The goal of the
observer is to, intuitively speaking, minimize the detection
delay (τ − t)+ while keeping the false alarm {τ < t}
under control. Two formal mathematical formulations, based
on different assumptions on the change-point t, are considered
in this paper.
In the non-Bayesian formulation, t is assumed to be a fixed

but unknown number. The detection problem is formulated as

minimizeτ WADD(τ ;a) :=
sup
t≥1

esssupEa
t [(τ − t+ 1)+|Ft−1], for all a ∈ A

subject to ARL2FA(τ) := E∞[τ ] ≥ γ, (6)

in which Ea
t is the expectation with respect to P a

t , and P a
t is

the probability measure of the observations when the change
occurs at t with the post change linear coefficient being a,
E∞ is the expectation under the probability measure that
change never happens (t = ∞), and Ft−1 is the sigma field
generated by {yn}t−1

n=1. (6) is known as Lorden’s formulation
[15], which is a min-max setting aiming to minimize the worst
case average detection delay over both change-point t and
observations up to t− 1. E∞[τ ] is termed as the average run
length to false alarm. Since no change happens in the event
{t = ∞}, the declaration at τ is a false alarm. Hence the
constraint in (6) requires that the expected duration to a false
alarm is no less than γ.
In the Bayesian formulation, t is modeled as a geometrically

distributed random variable. Particularly, we assume that

P (t = m) =

{
π0, m = 0,
(1− π0)ρ(1− ρ)m−1, m = 1, 2, . . . ,

(7)

in which π0, ρ ∈ (0, 1) are known parameters. Define proba-
bility measure P a

π for a measurable event F as

P a
π (F ) :=

∞∑
m=0

P a
t (F |t = m)P (t = m)

=
∞∑

m=0

P a
m(F )P (t = m). (8)

The problem under the Bayesian framework is then formulated
as

minimizeτ ADD(τ ;a) := Ea
π[τ − t|τ ≥ t], for all a ∈ A.

subject to PFA(τ) := P∞(τ < t) ≤ α, (9)

in which Ea
π is the expectation with respect to P a

π , and P∞ is
the probability measure that the change never happens. Note
that on the event {τ < t}, all observations are generated by
the pre-change distribution; hence the false alarm probability
does not depend on the post-change coefficient a. Therefore,
(9) aims to minimize the average detection delay while keeping
the probability of false alarm under control.

We note that both (6) and (9) are multi-objective opti-
mization problems. Optimal solutions for these two proposed
problems are generally difficult to obtain. Hence, in this paper,
we aim to propose low complexity algorithms and to analyze
their performances.

III. THE PARALLEL-SUM ALGORITHM

A. Challenges of Existing Methods

Let f0(yn) and f1(yn;a) denote the pre-change distribution
and the post-change distribution of yn, respectively. We note
that {yn, n < t} are i.i.d. random variables with distribution
N (0, σ2), and {yn, n ≥ t} are independent variables with
distribution N (aTxn, σ

2). Hence, the likelihood ratio (LR) is

L(yn;a) =
f1(yn;a)

f0(yn)
= exp

{
aTxnyn − 1

2
aTxnx

T
na

}
. (10)

We further denote

µa :=
1

2
aTRa =

1

2

p∑
i=1

a2i ri,i +
1

2

∑
i̸=j

aiajri,j , (11)

in which ri,j is the element located at the ith row and the jth

column in R.
For the classic quickest change-point detection problem,

it is well known that the CUSUM procedure is optimal for
Lorden’s formulation and the Shiryaev procedure is optimal
for the Bayesian formulation. Particularly, for a given a, the
CUSUM statistic can be written as

Cn(a) = max
1≤m≤n

n∏
k=m

L(yk;a), (12)

and the Shiryaev statistic can be written as

Rn,ρ(a) =
π0

(1− π0)ρ

n∏
k=1

L(yk;a)

1− ρ
+

n∑
m=1

n∏
k=m

L(yk;a)

1− ρ
. (13)
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In our problem, the observer does not know the true value
of a. Hence, it is natural to consider the GLR based detection
procedures. More specifically, GLR-CUSUM procedure can
be written as

τ
(GLR)
C := min

{
n ≥ 0 : sup

a∈A
Cn(a) ≥ B

}
, (14)

and the GLR-Shiryaev procedure can be written as

τ
(GLR)
R := min

{
n ≥ 0 : sup

a∈A
Rn,ρ(a) ≥ B

}
. (15)

It is easy to see that, for both (14) and (15), the observer
has to estimate a by solving supa∈A

∏n
k=m L(yk;a) for each

m ∈ {1, . . . , n}1, which is equivalent to solving

inf
a∈A

n∑
k=m

(yk − aTxk)
2 for m = 1, . . . , n. (16)

The challenges of solving this problem include
• (16) is a non-convex problem because the feasible set

A is non-convex. It is known that to find an s−sparse
solution of an underdetermined system is NP hard.

• One may consider using the popular l1-relaxation tech-
niques, such as LASSO, to solve for the s−sparse solu-
tion. However, l1-relaxation techniques cannot guarantee
to find the optimal solution of (16) for all m = 1, . . . , n.
Specifically, when m is close to n, e.g. n − m ∼
o(s log p), the observer does not have enough samples
for a successful recovery [35]–[37].

• Even if the LASSO algorithm could work in solving
(16), its computational complexity is high. For example,
if LASSO is implemented using LARS algorithms, the
computation complexity of recovering a p−dimensional
s−sparse vector using n−m measurements is O(p3+(n−
m)p2) [38]. Hence, the total computational complexity of
solving (16) is O(np3+n2p2). Note that the computation-
al complexity increases dramatically when the observer
obtains more samples.

[22] proposes another GLR based detection procedure and
shows that it is asymptotically optimal for Lorden’s QCD
problem. In that algorithm, the observer has to calculate the
detection statistic by solving

sup
||am:n||≥θ

(
aTXT

m:nYm:n − 1

2
aTXT

m:nXm:na

)
for m = 1, . . . , n, (17)

in which am:n = (n −m + 1)−1(XT
m:nXm:n)

1/2a, Xm:n =
[xm, . . . ,xn]

T and Ym:n = [ym, . . . ,yn]
T . Though (17) is a

convex optimization problem, considering the calculation of
matrix multiplication and singular value decomposition, the
computational complexity of solving (17) is at least O(np3 +
n2p2) at time slot n.
Using mixture based detection procedures is another way to

deal with the post-change uncertainty. When the post-change

1For Bayesian setting, we use the case π0 = 0 to explain the GLR-Shiryeav
procedure involves high computational burden.

distribution contains unknowns, it has been shown that the
mixture based Shiryaev procedure is asymptotically optimal
for the exponential family under Bayesian QCD, the mixture
based CUSUM procedure and the mixture based SR procedure
are asymptotically optimal for the non-Bayesian QCD under
some regularity conditions. One can refer to Section 7.5,
Section 8.3 and Section 8.5 in [27] and references therein
for more details. Let g(a) be a prior distribution for a. In our
context, the mixture CUSUM procedure can be written as

τ
(mix)
C := min

{
n ≥ 0 :

∫
A
Cn(a)g(a)da ≥ B

}
, (18)

and the mixture Shiryaev procedure can be written as

τ
(mix)
R := min

{
n ≥ 0 :

∫
A
Rn,ρ(a)g(a)da ≥ B

}
. (19)

The challenges of mixture base detection procedures include:
1) they require prior distribution g(a), which may not be
available in some applications; 2) they usually involve high
computational complexity since the integral is difficult to
calculate especially when a has a complicated multivariate
pdf.

Finally, we note that the asymptotic lower bound of the
detection delay for non-Bayesian formulation has been estab-
lished in several existing works [22], [23]. The detection delay
is lower bounded by | log γ|/µa(1+o(1)). In this paper, we are
interested in finding low complexity algorithms (which may
be sub-optimal) to avoid the huge calculation burden involved
in both GLR and mixture type detection procedure.

B. Parallel-Sum Algorithm for the Non-Bayesian Setup

In this subsection, we propose a low complexity algorithm,
termed as parallel-sum algorithm, for Lorden’s formulation.
The proposed detection procedure is described as follows:

Wi(m,n; ai) := κai

n∑
k=m

xi,kyk − κ

2
a2i

n∑
k=m

x2
i,k,

for 1 ≤ i ≤ p, (20)

U(m,n) := sup
a∈A

p∑
i=1

Wi(m,n; ai), (21)

Sn := sup
1≤m≤n

U(m,n), (22)

τS := inf{n ≥ 0 : Sn ≥ logB}, (23)

in which κ is a constant, and B is a properly selected threshold
to control ARL2FA.

The main idea of the proposed parallel-sum algorithm is to
use the correlation between yk and xk to detect the change-
point. From (2), we see that yk does not depend on xi,k before
the change as the linear coefficients are 0. After the change,
yk depends on xi,k if ai ̸= 0. Furthermore, ai reflects the cor-
relation strength between yk and xi,k. Actually, Wi(m,n; ai)
defined in (20) is a measurement of the correlation between yk
and xi,k. In particular, on the event {t = m}, Wi(m,n; ai) is
close to zero if the ith component in a is unchanged and tends
to be positive if changed. Hence, the observer wants to sum
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up all s positive Wi’s to speed up the detection procedure.
This idea is reflected by U(m,n) in (21). As the change-point
t is unknown, the observer then searches over all time instants
within [1, n] in (22) and detect the change-point via a threshold
rule in (23). This follows a similar idea of constructing the
CUSUM procedure from the one-side SPRT procedure [15],
[22].
The performance of the proposed parallel-sum algorithm is

presented in the following theorem.

Theorem III.1. By setting

logB = 2κs

[
log

(
2p+ p

√
κs

4π
+ E[Nmax]

)
+ log γ

]
, (24)

in which Nmax is a finite random variable, and E[Nmax] ≤
c1p with c1 being a constant independent of p. One can
guarantee that

ARL2FA[τS ] ≥ γ. (25)

Furthermore, the detection delay is bounded by

WADD(τS ;a)

≤ 2| logB|
κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i̸=j aiajri,j

(1 + o(1)) (26)

as γ → ∞.

Proof: Please see Section A.

Remark III.2. 1) In the asymptotic analysis when p, s are
constants and γ → ∞, i.e., roughly speaking, the observer
has infinitely many (compared with dimension p) post-change
observations to detect the change-point, we have logB =
2κs log γ(1 + o(1)) and

WADD(τS ;a)
infτ WADD(τ ;a)

≤ 2s

∑p
i=1 a

2
i ri,i +

∑
i̸=j aiajri,j∑p

i=1 a
2
i ri,i + 2

∑
i̸=j aiajri,j

.

Hence, when the components in xn are mutually uncorrelated,
i.e., R is a diagonal matrix, the performance loss of the
proposed algorithm is no more than 2s.
2) In the high dimension setting when p → ∞, s → ∞, γ →
∞ and γ/p → c (c is constant that could be zero), we have
logB ∼ O(s log p). Note that the denominator in (26) is on the
order of O(s) (since there are only s non-zero components in
a); hence the detection delay WADD(τS ;a) ∼ O(log p). That
is, the observer only needs O(log p) post-change observations
on average to detect the change-point. Recall that in the sparse
recovery problem, one needs O(s log p) observations to recov-
er an s−sparse vector. Here, we require fewer observations
for the purpose of detection.
3) From (24) and (26), we note that the constant κ does not
affect the upperbound of WADD in the non-Bayesian case.
However, as will be shown in the sequel, κ plays a role in the
upperbound of ADD in the Bayesian case.

C. Parallel-Sum Algorithm for the Bayesian Setup

In this subsection, we construct the the parallel-sum algo-
rithm for the Bayesian formulation. Specifically, the proposed
detection procedure is described as follows:

Wi(m,n; ai) := κai

n∑
k=m

xi,kyk − κ

2
a2i

n∑
k=m

x2
i,k,

for 1 ≤ i ≤ p, (27)
Vi(m,n; ai) := Wi(m,n; ai) + (n−m+ 1)µ, (28)

U(m,n) := sup
a∈A

p∑
i=1

Vi(m,n; ai)

= sup
a∈A

p∑
i=1

Wi(m,n; ai) + p(n−m+ 1)µ, (29)

Sn := sup
1≤m≤n

U(m,n), (30)

τS := inf{n ≥ 0 : Sn ≥ logB}. (31)

With a little abuse of notations, we still use U(m,n), Sn and
τS in the Bayesian case to denote the detection procedure.
However, these notations can be clearly distinguished from the
ones for the non-Bayesian setting in a given context. Similar
to the non-Bayesian case, the parallel-sum algorithm for the
Bayesian formulation also explores the correlated information
between yk and xk for the purpose of change-point detection.
However, the proposed algorithm in the Bayesian case contains
one more parameter µ in (28), which can be designed by the
observer to speed up the detection procedure by exploring the
prior knowledge of the change-point.

The analysis of the proposed parallel-sum algorithm re-
quires some additional mild assumptions. In particular, let

ξk := κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2 + pµ.

Iξ :=

p∑
i=1

κ
2
a2i rii + κ

∑
i̸=j

aiajrij

+ pµ.

As will be shown in the appendix, on the event {t = m},

1

n

m+n−1∑
k=m

ξk
a.s.→ Iξ.

Define

Tδ := inf

{
n ≥ 0 :

∣∣∣n−1
m+n−1∑
k=m

ξk − Iξ

∣∣∣ > δ

}
, (32)

hence Tδ < ∞ almost surely. We further assume that

Ea
m[Tδ] < ∞ and Ea

π[Tδ] < ∞ for all a ∈ A. (33)

With Assumption (33), we have the following result:

Theorem III.3. Let

c2 = (1− κ)−
1
2 exp

{p
s
µ
}
.
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By setting

logB = s| logα|+ s log
ρc2

(c2 − 1)[1− (1− ρ)c2]
,

and choosing κ < 1,

s

2p
log(1− κ) ≤ µ <

s

2p
log(1− κ) +

s

p
| log(1− ρ)|, (34)

one can guarantee that

PFA[τS ] ≤ α (35)

for all a ∈ A. Furthermore, the average detection delay is
bounded by

ADD(τS ;a) ≤ Ea
π[τS − t|τS ≥ t]

=
2| logB|+ 2c3s

κ
∑p

i=1 a
2
i rii + 2κ

∑
i̸=j aiajrij + 2pµ

(1 + o(1))(36)

as α → 0, in which c3 is a constant independent of p.

Proof: Please see Section B.

Remark III.4. 1) In the asymptotic analysis when p, s are
constants and α → 0, it is easy to see that (34) is satisfied if
we choose

µ =
s

2p
log(1− κ) +

s

p
log

1− α

1− ρ
.

With this selection, we have c2 = (1− α)/(1− ρ) and hence
logB = 2s| logα|(1 + o(1)) as α → 0. Correspondingly,

ADD(τS ;a) ≤
4s| logα|
ϑ(a,R, κ)

(1 + o(1)),

in which

ϑ(a,R, κ) = κ

p∑
i=1

a2i rii + 2κ
∑
i̸=j

aiajrij

+2s| log(1− ρ)|+ s log(1− κ).

By adjusting the value of κ, we can obtain a family of
upper bounds for the detection delay. In this case, we have
ADD(τS ;a) ∼ O(| logα|) for all a ∈ A.
2) In the high dimension setting when p → ∞, s → ∞,

α → 0 and pα → c (c is a constant that could also be infinity),
it is easy to see that (34) is satisfied if we choose

µ =
s

2p
log(1− κ) +

s

p
log

1− p−1

1− ρ
,

we then have logB ∼ O(s log p). Since the denominator in
(36) is on the order of O(s), the detection delay ADD(τS ;a) ∼
O(log p). Hence, similar to the conclusion obtained in the non-
Bayesian case, we require less observations for the purpose
of online change-point detection than that for the sparse
recovery.

D. Implementation and Discussion

The proposed parallel-sum algorithm can be easily imple-
mented. From (21) and (29), the main calculation of the
parallel-sum algorithm, for both non-Bayesian and Bayesian
cases, is to solve the optimization problem

sup
a∈A

p∑
i=1

Wi(m,n; ai). (37)

By solving ∂
∂ai

Wi(m,n; ai) = 0, we can easily obtain that
Wi(m,n; ai) achieves its maximum at

a∗i =

∑n
k=m xi,kyk∑n
k=m x2

i,k

. (38)

Let

âi := arg max
ai∈Ai

Wi(m,n; ai). (39)

It is easy to see that âi = a∗i if a∗i ∈ Ai, otherwise âi equals
to one of the two candidates {−bi, bi}.

Let â∗ = [â∗1, â
∗
2, . . . , â

∗
p]

T be the optimal solution for (37).
Denote the order statistics of {Wi(m,n; âi), i = 1, . . . , p} as

W(1)(m,n; â(1)) ≥ W(2)(m,n; â(2)) ≥
· · · ≥ W(p)(m,n; â(p)). (40)

It is easy to see that the optimal estimation â∗ is given as

â∗i =

{
âi if Wi(m,n; âi) ≥ W(s)(m,n; â(s))
0 otherwise . (41)

As a result, for the non-Bayesian case, we have

U(m,n) =
s∑

i=1

W(i)(m,n; â(i)), (42)

and for the Bayesian case

U(m,n) =

s∑
i=1

W(i)(m,n; â(i)) + p(n−m+ 1)µ. (43)

We now discuss the computational complexity of the pro-
posed algorithm. The main computation of the parallel-sum
algorithm consists of four parts: 1) Calculating Wi(m,n; âi)
for m = 1, . . . , n. Since

∑n
k=m xi,kyk and

∑n
k=m x2

i,k can be
calculated recursively for adjacent values of m, the computa-
tional complexity of calculating {Wi(m,n; âi),m = 1, . . . , n}
is on the same level of calculating Wi(1, n; âi), which is
on the level of O(n). As the observer has to find Wi’s for
i = 1, . . . , p, the total amount of computation in this part
is O(np); 2) Finding {W(i)(m,n; â(i)), i = 1, . . . , s} for
m = 1, . . . , n. The computational complexity of searching the
sth largest number from a group of p numbers is known as
O(p), hence the total computational amount in this step is also
O(np); 3) Calculating U(m,n) for m = 1, . . . , n. The amount
of calculation is O(ns) in this step. 4) Calculating Sn. The
computational complexity of finding the largest number from
n numbers is O(n). As a result, the computational complex
of proposed algorithm at time slot n is O(np).
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One may notice that the computational complexity increases
as n increases; hence the amount of computation explodes
when n → ∞. For implementation purpose, one can truncate
the proposed algorithm by a window with length lw. Specifi-
cally, one can modify Sn defined in (23) and (31) as

Sn := sup
n−lw+1≤m≤n

U(m,n). (44)

With this modification, the computational complexity will be
limited to O(lwp) for each time slot. In practice, we should
set lw slightly larger than the average detection delay. For
example, in the high-dimensional case, the detection delay is
O(log p) as we have discussed in Remark III.2 and Remark
III.4; hence we can set, for instance, lw = O(log p log log p).
Then, Markov’s inequality indicates that P a

m(τ−m > lw) → 0
as p → ∞. In this paper, we do not focus on the window-
based parallel-sum algorithm, hence the rigorous analysis of
the window-based algorithm is left for future work.
The parallel-sum algorithm reduces the computational com-

plexity at the expense of asymptotic optimality. Denote
L(yn, ai) as the LR of the component-wise hypothesis testing
H

(i)
0 : yn = ϵn versus H(i)

1 : yn = aixi,n+ ϵn. Then, for both
non-Bayesian and Bayesian setup, one can easily verify that

Wi(m,n; ai) = κ
n∑

k=m

logL(yk, ai).

Hence, the parallel algorithm is based on the statistic of
component-wise hypothesis testing rather than on the statistic
(10) of the original model H0 : yn = ϵn versus H1 :
yn = aTxn + ϵn. On the one hand, the proposed algorithm
significantly reduces the computational complexity as the
component-wise hypothesis testing only considers one un-
known parameter each time. On the other hand, the proposed
algorithm is not asymptotic optimal anymore because of the
model mismatch.

IV. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illus-
trate the theoretic results obtained in our paper. In the first
numerical example, we assume that p = 15 and s = 3,
the post-change linear coefficient a is given as a1 = 0.8,
a2 = 0.65, a3 = 0.5, and ai = 0 for the rest of components
in a. We set Ai = [0.4, 2.5] for all i ∈ {1, . . . , p}. R,
the covariance matrix of xn, is randomly selected as R =
diag[1.32, 1.18, 1.04, 0.93, 0.86, 0.84, 0.71, 0.64, 0.52, 0.42,
0.39, 0.28, 0.17, 0.14, 0.03]. In the simulation, the explanatory
variable xn are generated independently by an underlying
distribution; hence the uniform convergence assumption (3)
is satisfied. Particularly, two underlying distributions, namely
the Gaussian distribution with zero mean and the Possion
distribution with its expectation shifted to zero, are tested in
the simulation.
Figure 1 illustrates the performance of the proposed parallel-

sum algorithm under the non-Bayesian setting. In particular,
the blue line with squares is the performance of the parallel-
sum algorithm when xn’s are independent and identically

Gaussian distributed, and the green line with diamonds is
the performance when xn’s are independent and identically
Possion distributed. The black dot-dash line is calculated as
| log γ|/µa, which is the lower bound of WADD presented
in Theorem 1 [22]. The black dash-line is the upper bound
of the parallel-sum algorithm, which is presented in Theorem
III.1. Figure 1 presents the relationship between WADD and
ARL2FA for the proposed parallel-sum algorithm. From the
simulation, we can see that the parallel-sum algorithm is not
asymptotically optimal since it diverges from the lower bound
as γ increases. However, we note that the detection delay of the
parallel-sum algorithm still increases only linearly with log γ,
and the computation complexity of this algorithm is low.
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Fig. 1. WADD versus ARL2FA when p = 15, s = 3

Figure 2 illustrates the relationship between ADD and PFA
for the proposed parallel-sum algorithm under the Bayesian
setting. In this simulation, we set ρ = 0.2 and we choose
κ = 0.35, µ = 0.0014. The performance result is similar to
the one obtained in the non-Bayesian simulation. In particular,
the performances under Gaussian distribution and Possion dis-
tribution are close to each other, which verifies our theoretical
results that the asymptotic performance is independent of the
underlying distribution xn. In addition, the performance of the
proposed algorithm diverges from the lower bound hence it is
not asymptotically optimal, but the detection delay is still on
the order of | logα| as the performance is upper bounded by
the result in Theorem III.3. The computational complexity of
the proposed algorithm is also low.
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Fig. 2. ADD vs. PFA under when p = 15, s = 3
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TABLE I
PERFORMANCE OF THE PARALLEL-SUM ALGORITHM UNDER DIFFERENT

THRESHOLDS

logB approximated change change- detection
ARL2FA declaration time point delay

84.67 10 45 60 false alarm
105.39 102 72 60 12
126.11 103 81 60 21
146.84 104 87 60 27

Finally, we test our proposed algorithm on a real dataset,
which is published on the webpage of the Center for Machine
Learning and Intelligent Systems at University of California,
Irvine [39]. This data set is comprised of measured EMG
signals for six different kinds of hand movements of differ-
ent persons. Specifically, each kind of hand movements is
repeated and measured 30 times, and each time the signal is
recorded by a 2-channel EMG system; hence each person has
30× 2× 6 = 360 different measurements. In data processing,
we use the last measurement as dependent variable yn and the
rest of measurements as xn; hence p = 359 in this numerical
example. We then concatenate two different person’s data
to model the change-point. 60 samples for each person are
selected; hence the real change-point is located at t = 60 and
the total time duration is 120. Since the change-point is fixed
(but unknown to the observer in the simulation), we implement
the proposed algorithm for non-Bayesain formulation and
select s = 9 in our simulation. The evolution of the detection
statistic Sn over time is shown in Figure 3. As we can see, Sn

tends to increase for n > 60. The performance under different
threshold logB is listed in Table I, which shows the efficiency
of the proposed algorithm.

Fig. 3. The evolution of statics Sn over time slot

V. CONCLUSION

In this paper, we have considered the problem of quickly
detecting an abrupt change in the linear model. Both non-
Bayesian and Bayesian formulations are considered. For each
case, we have proposed a low complexity online algorithm.
When p and s are fixed, the average detection delay for the
proposed strategy is on the order of O(log γ) for the non-
Bayesian formulation as γ → ∞ and is on the order of
O(| logα|) for the Bayesian formulation as α → 0. When

p → ∞, the average detection delay of the proposed algorithm
has been shown to be upper bounded by O(log p) for both
non-Bayesian and Bayesian formulations.

APPENDIX A
PROOF OF THEOREM III.1

We prove Theorem III.1 by exploring the relationship
between Lorden’s QCD problem and the one-sided SPRT
problem.

Consider a sequential hypothesis testing problem that
{(xn, yn)}∞n=1 obeys one of the following hypothesis:

H0 : yn = 0Txn + ϵn versus H1 : yn = aTxn + ϵn. (45)

Denote P∞(·) and P a(·) as probability measures under H0

and H1, respectively. In the one-sided SPRT problem, the
observer wants to take as many (even infinitely many) ob-
servations as possible when H0 is true, and wants to take as
few observations as possible when H1 is true. Specifically, a
testing procedure can be defined as a stopping time τ . {τ = n}
indicates the number of observations taken by the observer
when he claims H1 to be true. {τ = ∞} is the event that
the procedure takes infinitely many observations. For a given
a ∈ A, the one-sided SPRT problem aims to solve

minimizeτ Ea[τ ],

subject to P∞(τ < ∞) ≤ α. (46)

The relationship between one-sided SPRT and Lorden’s QCD
problem is firstly revealed by Lorden in [15]. [22] extends this
relationship to the linear model. We rewrite this well known
result in our context as the following lemma.

Lemma A.1. (Proposition 1 in [22]) Suppose τ1 is a
stopping time for one-sided SPRT problem with respect to
{(xn, yn)}∞n=1 such that

P∞(τ1 < ∞) ≤ α, 0 < α < 1. (47)

For each k = 1, 2, . . . , let τk denote the stopping time
obtained by applying τ1 to {(xn, yn)}∞n=k and define

τ∗ = inf{τk + k − 1|k = 1, 2, . . .}. (48)

Then τ∗ is also a stopping time, and for the problem formu-
lation defined in (6) it satisfies

ARL2FA(τ∗) ≥ 1

α
(49)

and

WADD(τ∗;a) ≤ Ea[τ ]. (50)

Using this lemma, we will study the performance of fol-
lowing algorithm for the one-sided SPRT problem (46):

Wi(1, n; ai) = κai

n∑
k=1

xi,kyk − κ

2
a2i

n∑
k=1

x2
i,k,

Un = sup
a∈A

p∑
i=1

Wi(1, n; ai),

τ1 = inf{n ≥ 0 : Un ≥ logB}. (51)
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Note that τS in (23) can be equivalently written as τS =
inf{τk + k − 1|k = 1, 2, . . .}. Due to Lemma A.1, it suffices
to study the performance of Ea[τ1] and P∞(τ1 < ∞) in (46).

Lemma A.2. (Detection delay) For a given threshold B, as
B → ∞ we have

Ea[τ1] ≤
2| logB|

κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i̸=j aiajri,j

(1 + o(1)). (52)

for any a ∈ A.

Lemma A.3. (False alarm probability) For a given threshold
B, the error probability of τ1 is given as

P∞(τ1 < ∞) ≤

2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs , (53)

in which Nmax is a finite random variable and E[Nmax] ≤
c1p, where c1 is a constant independent of p.

With these two lemmas, by setting

logB = 2κs

[
log

(
2p+ p

√
κs

4π
+ E[Nmax]

)
+ log γ

]
,

we have

P∞(τ1 < ∞)

≤ 2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs

≤
(
2p+ p

√
κs

4π
+ E[Nmax]

)
B− 1

2κs =
1

γ
.

Theorem III.1 then follows by exploring the results (49) and
(50). In the rest of this subsection, we will prove Lemma A.2
and Lemma A.3.

A. Proof of Lemma A.2

To support the proof of Lemma A.2, we first rewrite a
supporting lemma from [22] in our context.

Lemma A.4. (Lemma 2 in [22]) Let ξ1, ξ2, . . . , be a sequence
of independent random variables. Let Ūn =

∑n
k=1 ξk. Suppose

that {τB, B ∈ (1,∞)} is a sequence of stopping rules with
respect to {ξn}. Suppose further E[τB ] → ∞ as B → ∞. Let
supk≥1 E[|ξk|] < ∞, and 1

n

∑n
k=1 E[ξk] → ν as n → ∞ with

ν finite. Then E[ŪτB ]/E[τB ] → ν as B → ∞.

Lemma A.4 says Wald’s identity holds asymptotically when
ξi’s have different expectations but their average value con-
verges to a finite limit.
We then prove Lemma A.2. Assume that a genie knows the

true post-change linear coefficient a, and he uses the statistic

Ūn =

p∑
i=1

Wi(1, n; ai) =

n∑
k=1

[
κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2

]

for detection. Let Ū0 = 0, define ξk = Ūk − Ūk−1 =
κyk

∑p
i=1 aixi,k − κ

2

∑p
i=1(aixi,k)

2, k = 1, 2, . . .. Then, for
a deterministic explanatory variable sequence {x1,x2, . . .},

{ξk} is a sequence of independent random variables under
the alternative hypothesis. In addition, we have

Ea[ξk] =
κ

2

p∑
i=1

a2ix
2
i,k + κ

∑
i̸=j

aiajxi,kxj,k.

By the assumption of uniform convergence (3), we have

1

n

n∑
k=1

Ea[ξk] →
κ

2

p∑
i=1

a2i ri,i + κ
∑
i̸=j

aiajri,j . (54)

Further

Ea[|ξk|] ≤ κEa

[∣∣∣yn p∑
i=1

aixi,k

∣∣∣]+ κ

2
Ea

[∣∣∣ p∑
i=1

(aixi,k)
2
∣∣∣]

= κEa
[∣∣∣(aTxk + ϵk)a

Txk

∣∣∣]+ κ

2
Ea

[∣∣∣ p∑
i=1

(aixi,k)
2
∣∣∣]

≤ κaTxkx
T
k a+ κaTxkEa[|ϵk|] +

κ

2

∣∣∣ p∑
i=1

(aixi,k)
2
∣∣∣

< ∞, (55)

in which the last step is due to the uniform convergence
assumption (3) and Ea[|ϵk|] < ∞. Let τB = inf{n ≥ 1 :
Ūn ≥ logB}. Using Lemma A.4 and ignoring the overshoot
of ŪτB , as B → ∞, we have

1

n

n∑
k=1

Ea[ξk] =
Ea[ŪτB ]

Ea[τB ]
=

| logB|
Ea[τB ]

, (56)

or equivalently,

Ea[τB ] =
2| logB|

κ
∑p

i=1 a
2
i ri,i + 2κ

∑
i̸=j aiajri,j

.

We note that τ1 ≤ τB since Un ≥ Ūn; hence Lemma A.2
holds.

B. Proof of Lemma A.3

In the following, we study the false alarm probability
of τ1 for the one-sided SPRT problem (46). By solving
∂

∂ai
Wi(1, n; ai) = 0, it is easy to see that

a∗i =

∑n
k=1 xi,kϵi∑n
k=1 x

2
i,k

(57)

maximizes the value of Wi(1, n; ai) under P∞. Specifically,

Wi(1, n; a
∗
i ) =

κ

2

(
∑n

k=1 xi,kϵk)
2∑n

k=1 x
2
i,k

=
κ

2

(
n∑

k=1

wkϵk

)2

(58)

with wk = xi,k/
√∑n

k=1 x
2
i,k. Since

∑n
k=1 wkϵk is a linear

combination of Gaussian random variables with weights sat-
isfying

∑n
k=1 w

2
k = 1,

∑n
k=1 wkϵk is distributed as N (0, 1).

As a result, 2
κWi(1, n; a

∗
i ) is χ

2
1 distributed.

We further note that as n → ∞,

a∗i =
1
n

∑n
k=1 xi,kϵk

1
n

∑n
k=1 x

2
i,k

P∞−a.s.→ 0

ri,i
= 0. (59)
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Recall that Ai = {ai|ai ∈ (−∞,−bi] ∪ [bi,∞)}. Therefore,
(59) indicates that there exists a finite random variable Ni

such that −bi < a∗i < bi almost surely when n > Ni. Let
Nmax = maxi Ni, then Nmax is a finite random variable with

E[Nmax] ≤ E

[
p∑

i=1

Ni

]
≤ c1p, (60)

where c1 = maxi E[Ni] is a constant that is independent of p.
Further, let N be a large constant, we have

P∞(τ1 < ∞) = P∞ [Uτ1 ≥ logB]

= P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB

]

≤ P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB, τ1 ≤ N

]

+P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB, τ1 > Nmax

]

+P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB,Nmax ≥ τ1 > N

]
. (61)

We then bound these three items on the right hand side of
(61) individually. To bound the first item, we have to introduce
some notations. Let

â∗ = argmax
a∈A

Un.

Follow a discussion that is similar from (39) to (42), we have

Un =
s∑

i=1

W(i)(1, n; â(i)), (62)

in which âi = argmaxai∈Ai Wi(1, n; ai), and W(i)(1, n; â(i))
is the ith order statistic of {Wk(1, n; âk), k = 1, . . . , p}. Then,
for the first item, we have

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB, τ1 ≤ N

]
(a)
=

∞∑
n=1

P∞

[
s∑

i=1

W(i)

(
1, n; â(i)

)
≥ logB, τ1 = n, τ1 ≤ N

]

≤
N∑

n=1

P∞

[
W(1)

(
1, n; â(1)

)
≥ logB

s

]

≤
N∑

n=1

P∞

[
∃i ∈ {1, . . . , p} such that Wi(1, n; âi) ≥

logB

s

]

≤
N∑

n=1

p∑
i=1

P∞

[
Wi(1, n; âi) ≥

logB

s

]
(b)

≤
N∑

n=1

p∑
i=1

P∞

[
2

κ
Wi(1, n; a

∗
i ) ≥

2

κ

logB

s

]
= NpP∞

[
χ2
1 ≥ 2

κ

logB

s

]
(c)

≤ Np

√
κs

4π

1

B1/κs[logB]1/2
, (63)

in which (a) holds because of (62), (b) is due to definitions of
âi and a∗i , and (c) is true because of the tail bounds inequality

P (X > x) ≤ exp(−x2/2)

x
√
2π

for a standard normal random variable X .
We then bound the second item in (61). For xi,k under P∞,

we generate another two probability measures Q−
b (yk) and

Q+
b (yk). In particular, Q−

b (yk) is generated by linear transfor-
mation yk = −bixi,k+ ϵk and Q+

b (yk) by yk = bixi,k+ ϵk. A
direct calculation shows that the Radon-Nikodym derivatives
of Q−

b , Q
+
b and P∞ for (y1, . . . , yn) are given as

dQ−
b

dP∞
= exp

{
−bi

n∑
k=1

xi,kyk − 1

2

n∑
k=1

b2ix
2
i,k

}

= exp

{
1

κ
Wi(1, n;−bi)

}
,

dQ+
b

dP∞
= exp

{
bi

n∑
k=1

xi,kyk − 1

2

n∑
k=1

b2ix
2
i,k

}

= exp

{
1

κ
Wi(1, n; bi)

}
.

Note that âi equals to either −bi or bi, ∀i ∈ {1, . . . , p}, on the
event {τ1 > Nmax}. Then, for the second item on the right
hand side of (61), we have

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB, τ1 > Nmax

]

= P∞

[
s∑

i=1

W(i)

(
1, τ1; â(i)

)
≥ logB, τ1 > Nmax

]

≤ P∞

[
W(1)

(
1, τ1; â(1)

)
≥ logB

s
, τ1 > Nmax

]
≤

p∑
i=1

P∞

[
Wi (1, τ1; âi) ≥

logB

s
, τ1 > Nmax

]

=

p∑
i=1

P∞

[
Wi (1, τ1; âi) ≥

logB

s
,

{âi = −bi or âi = bi}, τ1 > Nmax]

≤
p∑

i=1

[
P∞

[
Wi (1, τ1;−bi) ≥

logB

s

]
+P∞

[
Wi (1, τ1; bi) ≥

logB

s

]]
=

p∑
i=1

[∫
{Wi(1,τ1;−bi)≥

log B
s }

dP∞

dQ−
b

dQ−
b

+

∫
{Wi(1,τ1;bi)≥

log B
s }

dP∞

dQ+
b

dQ+
b

]
(a)

≤
p∑

i=1

1

elogB/κs

[
Q−

b

[
Wi (1, τ1;−bi) ≥

logB

s

]
+Q+

b

[
Wi (1, τ1; bi) ≥

logB

s

]]
=

2p

B1/κs
, (64)
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in which (a) holds because of inequalities (65) and (66) in
the following∫

{Wi(1,τ1;bi)≥
log B

s }
dP∞

dQ+
b

dQ+
b

=

∞∑
n=1

∫
{Wi(1,τ1;bi)≥

log B
s

,τ1=n}
dP∞

dQ+
b

dQ+
b

=

∞∑
n=1

∫
{Wi(1,n;bi)≥

log B
s

,τ1=n}
exp

{
− 1

κ
Wi(1, n; bi)

}
dQ+

b

≤ exp

{
− 1

κ

logB

s

} ∞∑
n=1

∫
{Wi(1,n;bi)≥

log B
s

,τ1=n}
dQ+

b

= exp

{
− logB

κs

}
Q+

b

[
Wi (1, τ1; bi) ≥

logB

s

]
. (65)

Similarly, we have∫
{Wi(1,τ1;−bi)>

log B
s }

dP∞

dQ−
b

dQ−
b

≤ exp

{
− logB

κs

}
Q−

b

[
Wi (1, τ1;−bi) ≥

logB

s

]
. (66)

The third term in the right hand of (61) can be bounded by
the Markov inequality:

P∞

[
sup
a∈A

p∑
i=1

Wi(1, τ1; ai) ≥ logB,Nmax ≥ τ1 > N

]

≤ P (Nmax > N) ≤ E[Nmax]

N
. (67)

By setting
N = B1/2κs(logB)1/4

and adding three bounds together, we obtain

P∞(τ1 < ∞)

≤ Np

√
κs

4π

1

B1/κs[logB]1/2
+

2p

B1/κs
+

E[Nmax]

N

= 2pB− 1
κs +

(
p

√
κs

4π
+ E[Nmax]

)
(logB)−

1
4B− 1

2κs .

This ends the proof.

APPENDIX B
PROOFS FOR THE BAYESIAN SETUP

The proof of Theorem III.3 relies on the following two
supporting lemmas.

Lemma B.1. (Detection Delay) If κ < 1 and µ ≥ s
2p log(1−

κ), then as B → ∞

Ea
π[τS − t|τS ≥ t]

≤ logB + c3s
κ
2

∑p
i=1 a

2
i rii + κ

∑
i̸=j aiajrij + pµ

(1 + o(1)),(68)

in which c3 is a constant that is independent of p.

Lemma B.2. (False Alarm) If κ < 1 and
s

2p
log(1− κ) ≤ µ <

s

2p
log(1− κ) +

s

p
| log(1− ρ)|, (69)

then for threshold B,

P∞(τS < t) ≤ 1

B1/s

ρc2
c2 − 1

1

1− (1− ρ)c2
, (70)

in which c2 = (1− κ)−1/2 exp{pµ/s}.

Theorem III.3 then can be proved by setting

logB = s| logα|+ s log
ρc2

(c2 − 1)[1− (1− ρ)c2]
. (71)

Putting this threshold into (70), we have P∞(τS < t) ≤ α.
Putting (71) into (68), we can obtain the upperbound of the
detection delay presented in Theorem III.3. In the rest of this
subsection, we prove the above two supporting lemmas.

A. Proof of Lemma B.1:

In the following, we study the detection delay of τS defined
in (31). Assume that a genie knows the true post-change linear
coefficient a, and he uses the statistic

Ū(m,n) =

p∑
i=1

[Wi(m,n; ai) + (n−m+ 1)µ]

=

n∑
k=m

[
κyk

p∑
i=1

aixi,k − κ

2

p∑
i=1

(aixi,k)
2 + pµ

]
. (72)

Let ξk = κyk
∑p

i=1 aixi,k − κ
2

∑p
i=1(aixi,k)

2 + pµ (note that
this is the same ξk defined in (32)). Let

τ̃S = inf{n ≥ 0 : Ū(1, n) ≥ logB}. (73)

Note that Ū(1, n) ≤ Sn since the definition of Sn takes
supreme over {a ∈ A} and over {1 ≤ m ≤ n}; therefore
τ̃S ≥ τS . It is sufficient to find an upper bound for τ̃S .

On the event {t = m}, it is easy to see that as n → ∞

1

n
Ū(m,m+ n− 1) =

1

n

m+n−1∑
k=m

ξk

=

p∑
i=1

[
κai

1

n

m+n−1∑
k=m

xi,kyk − κ

2
a2i

1

n

m+n−1∑
k=m

x2
i,k

]
+ pµ

a.s.→
p∑

i=1

κ
2
a2i rii + κ

∑
i̸=j

aiajrij

+ pµ. (74)

Denote

Iξ =

p∑
i=1

κ
2
a2i rii + κ

∑
i̸=j

aiajrij

+ pµ.

Then, we can rewrite the Tδ in (32) as

Tδ = inf{n ≥ 0 : |n−1Ū(m,m+ n− 1)− Iξ| > δ}. (75)

On the event {τ̃S > Tδ + (m− 1)}, we have

Ū(m, τ̃S − 1) > (τ̃S −m+ 1)(Iξ − δ)

or equivalently,

τ̃S −m+ 1 <
Ū(m, τ̃S − 1)

Iξ − δ
<

logB − Ū(1,m− 1)

Iξ − δ
.
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Then we have

τ̃S −m+ 1

<
logB − Ū(1,m− 1)

Iξ − δ
1{τ̃S>Tδ+(m−1)} + Tδ1{τ̃S≤Tδ+(m−1)}

≤ logB − Ū(1,m− 1)

Iξ − δ
+ Tδ. (76)

Taking the conditional expectation on both sides, we have
Ea

m[τ̃S −m|τ̃S ≥ m]

≤ logB

Iξ − δ
− Ea

m

[
Ū(1,m− 1)

Iξ − δ

∣∣∣τ̃S ≥ m

]
+ Ea

m

[
Tδ

∣∣∣τ̃S ≥ m
]
.

In addition, we have
Ea

π[τ̃S − t|τ̃S ≥ t]

≤ logB

Iξ − δ
− Ea

π

[
Ū(1, t− 1)

Iξ − δ

∣∣∣τ̃S ≥ t

]
+ Ea

π

[
Tδ

∣∣∣τ̃S ≥ t
]
. (77)

The uniform convergence assumption (3) entails the fact
that for any a ̸= 0, there exists a common upper bound for
aTxk, k = 1, 2, . . .. For a given a, let ca := maxi(aixi,k)

2,
we then have

Ea
m

[
Ū(1,m− 1)

]
= E∞

[
Ū(1,m− 1)

]
=

m−1∑
k=1

[
pµ− κ

2

p∑
i=1

(aixi,k)
2

]

≥
m−1∑
k=1

[
pµ− κ

2
sca

]
.

The last step is true as a has at most s non-zeros. For the case
of {m = 0} and {m = 1}, we use the convention

Ea
m[Ū(1,m− 1)] = Ea

m

[
m−1∑
k=1

ξk

]
= 0.

Then

Ea
π[Ū(1, t− 1)] =

∞∑
m=0

πmEa
m[Ū(1,m− 1)]

≥
∞∑

m=2

(1− π0)ρ(1− ρ)m−1(m− 1)(pµ− κ

2
sca)

= s
(1− π0)(1− ρ)

ρ

[p
s
µ− κ

2
ca

]
≥ sc3, (78)

in which

c3 =
(1− π0)(1− ρ)

2ρ
[log(1− κ)− κca] .

The last inequality holds due to the condition µ ≥ s
2p log(1−

κ). Hence, c3 is a constant independent of s and p.
Since we have assumed that Ea

π [Tδ] < ∞, and {τ̃S ≥ t} is
an almost sure event as B → ∞, by (77) we have

Ea
π[τ̃S − t|τ̃S ≥ t]

≤

(
logB

Iξ − δ
−

Ea
π

[
Ū(1, t− 1)

]
Iξ − δ

)
(1 + o(1))

≤ logB + c3s

Iξ − δ
(1 + o(1)). (79)

Then, Lemma B.1 follows the fact that δ is arbitrarily close
to zero and that Iξ = κ

2

∑p
i=1 a

2
i ri,i + κ

∑
i̸=j aiajri,j + pµ.

B. Proof of Lemma B.2:

In the following, we study the false alarm probability of
τS defined in (31). To proceed, we first recall some nota-
tions in Section III-D. Specifically, â∗ = [â∗1, â

∗
2, . . . , â

∗
p]

T

is the optimal estimation of a in (29). Note that â∗ is
also optimal for supa∈A

∑p
i=1 Wi(m,n; ai). Further âi =

argmaxai∈Ai Wi(m,n; ai) and W(i)(m,n; â(i)) is the ith

order statistic of {Wi(m,n; âi)}pi=1. With these notations, for
a constant N , we have

P∞(τS ≤ N) = P∞

(
max

1≤n≤N
exp{Sn} ≥ B

)
= P∞

(
max

1≤n≤N
exp

{
sup

1≤m≤n
sup
a∈A

p∑
i=1

Vi(m,n; ai)

}
≥ B

)

= P∞

(
max

1≤n≤N
exp

{
sup

1≤m≤n

p∑
i=1

Vi(m,n; â∗
i )

}
≥ B

)

= P∞

(
max

1≤n≤N
sup

1≤m≤n

p∏
i=1

eVi(m,n;â∗
i ) ≥ B

)

= P∞

(
max

1≤n≤N
sup

1≤m≤n
ep(n−m+1)µ

p∏
i=1

eWi(m,n;â∗
i ) ≥ B

)
(a)
= P∞

(
max

1≤n≤N
sup

1≤m≤n
ep(n−m+1)µ

s∏
i=1

eW(i)(m,n;â(i)) ≥ B

)

≤ P∞

(
max

1≤n≤N
sup

1≤m≤n
e

p
s
(n−m+1)µeW(1)(m,n;â(1)) ≥ B

1
s

)
,(80)

where (a) is true due to (41) and (43). In the following, we
will construct a submartingale and apply Doob’s martingale
inequality to bound the false alarm probability. We have

W(1)(m,n; â(1)) = max
1≤i≤p

Wi(m,n; âi)

= max
1≤i≤p

sup
ai∈Ai

Wi(m,n; ai)

= max
1≤i≤p

sup
ai∈Ai

[
κai

n∑
k=m

xi,kyk − κ

2

n∑
k=m

(aixi,k)
2

]

≤ max
1≤i≤p

κ
n∑

k=m

sup
ai∈Ai

[
aixi,kyk − 1

2
(aixi,k)

2

]
(a)
= max

1≤i≤p

κ

2

n∑
k=m

y2k =
κ

2

n∑
k=m

y2k, (81)

in which (a) is true as aixi,kyk − 1
2 (aixi,k)

2 achieves its
maximum value y2k/2 when ai = yk/xi,k. Putting (81) into
(80), we have

P∞(τS ≤ N)

≤ P∞

(
max

1≤n≤N
sup

1≤m≤n
e

p
s (n−m+1)µe

κ
2

∑n
k=m y2

k ≥ B
1
s

)
≤ P∞

(
max

1≤n≤N

n∑
m=1

n∏
k=m

e
κ
2 y

2
k+

p
sµ ≥ B

1
s

)
. (82)
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Let

Mn :=
n∑

m=1

n∏
k=m

exp
{κ
2
y2k +

p

s
µ
}

= (Mn−1 + 1) exp
{κ
2
y2n +

p

s
µ
}
. (83)

We note that Mn could be a submartingale. Particularly, let
Fn := σ{y1, . . . , yn}, we have

E∞[Mn|Fn−1] = (Mn−1 + 1) exp
{p
s
µ
}
E∞

[
exp

{κ
2
y2n

}]
.

Since we have κ < 1 in the condition, then E∞
[
exp

{
κ
2 y

2
n

}]
is integrable and E∞

[
exp

{
κ
2 y

2
n

}]
= (1 − κ)−1/2. In ad-

dition, the condition s
2p log(1 − κ) ≤ µ guarantees (1 −

κ)−
1
2 exp

{
p
sµ
}

≥ 1; hence we have E∞[Mn|Fn−1] ≥
Mn−1 + 1 > Mn−1, i.e., Mn is a submartingale. In addition,

E∞[Mn] =
n∑

m=1

n∏
k=m

E∞

[
exp

{κ
2
y2k +

p

s
µ
}]

=
n∑

m=1

n∏
k=m

[
(1− κ)−

1
2 exp

{p
s
µ
}]

=
c2(c

n
2 − 1)

c2 − 1
, (84)

in which c2 := (1− κ)−
1
2 exp {pµ/s}. By Doob’s martingale

inequality

P∞

(
max

1≤n≤N
Mn ≥ B1/s

)
≤ E∞[MN ]

B1/s
. (85)

Combining (82) and (84), we have

P∞(τS ≤ N)≤P∞

(
max

1≤n≤N
Mn ≥ B1/s

)
≤ 1

B1/s

c2(c
N
2 − 1)

c2 − 1
.

Further,

Pπ(τS < t) =
∞∑

N=1

πNP∞(τS ≤ N − 1)

≤
∞∑

N=1

(1− π0)ρ(1− ρ)N−1 1

B1/s

c2
c2 − 1

cN−1
2

=
1

B1/s

ρc2
c2 − 1

1− π0

1− (1− ρ)c2
. (86)

in which the last step is because the condition µ < s
2p log(1−

κ) + s
p | log(1− ρ)| guarantees (1− ρ)c2 < 1.
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