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Abstract—In this paper, we consider a best action identi-
fication problem in the stochastic linear bandit setup with
a fixed confident constraint. In the considered best action
identification problem, instead of minimizing the accumulative
regret as done in existing works, the learner aims to obtain
an accurate estimate of the underlying parameter based on
his action and reward sequences. To improve the estimation
efficiency, the learner is allowed to select his action based his
historical information; hence the whole procedure is designed
in a sequential adaptive manner. We first show that the existing
algorithms designed to minimize the accumulative regret is not
a consisent estimator and hence is not a good policy for our
problem. We then charcaterize a lower bound on the estimation
error for any policy. We further design a simple policy and
show that the estimation error of the designed policy achieves
the same scaling order as that of the derived lower bound.

I. INTRODUCTION

Multi-armed bandit problem is a canonical sequential
decision problem that has a wide range of applications [1]–
[5]. In the classic multi-armed bandit problem, at each time
slot, a decision maker has to choose one of K competing
decisions or “arms”, and receives a reward related to certain
unknown parameters from his selected decision. Based on
the knowledge collected from his past decisions and the
corresponding rewards, the decision maker can then carefully
decide his future actions according to different goals. The
most commonly used goal is to minimize the cumulative re-
gret, which is the cumulative difference between the optimal
reward that one can achieve when the underlying parameters
are known and the reward of the action taken by the deci-
sion maker. This setup nicely captures “exploration versus
exploitation” phenomena in sequential decision making, as
a crucial tradeoff faced by the decision maker at each round
is between “exploitation”, i.e. to choose the decision with
the highest estimated expected rewards, and “exploration”,
i.e. to choose other decisions so as to obtain better estimates
of the expected rewards of these decisions. Recently, another
goal named “best arm identification” has received significant
attentions [6]–[12]. In the best arm identification problem,
instead of minimizing the cumulative regret, the goal is to
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identify the best arm that provides the highest expected
rewards with high probability. This setup is also known
as pure exploration since the decision maker now has the
freedom to explore all arms without having to worry about
regrets incurred in these exploration actions.
A natural generalization of the classic multi-armed bandit

problem is so called stochastic linear multi-armed bandit
problem [13]. In the stochastic linear multi-armed bandit
problem, the decision maker chooses his decision xt from
an d−dimensional compact set D and receives a reward
< xt,θ

∗ > +ηt, in which θ∗ is a fixed but unknown
parameter and ηt is noise. Defining the regret as the dif-
ference between the rewards of the best decisions when θ∗

is known and the rewards of the selected decisions, existing
works on the stochastic linear multi-armed bandit problem
aim to minimize the total regret. For example, [13], [14] have
proposed algorithms according to the optimism in the face of
uncertainty (OFU) principle, and have shown the proposed
algorithms are Hannan consistent.
In this paper, similar to the best arm identification problem

studied in the classic multi-armed bandit setup, we consider
the best action identification problem in the stochastic linear
multi-armed bandit setup. More specifically, instead of aim-
ing to minimize the cumulative regret, we aim to obtain an
accurate estimation θ̂ of the unknown parameter θ∗ under a
fixed confidence constraint. In particular, the decision maker
aims to minimize the total number of actions under the
constraint that the estimation error ||θ̂−θ∗||2 is under control
with a large probability. We call this best action identification
problem, as the best action xt should have the same direction
as θ∗.
In this paper, we first show that existing algorithms based

on the OFU principle lead to inconsistent estimators of θ∗

and hence are not suitable for the best action identification.
Intuitively, the OFU algorithm keeps selecting the actions
that are close to the current estimation θ̂t in each round
since it aims to minimize the regret. As a result, all selected
actions are concentrated in a small cone around the direction
of the true underlying parameter θ∗. The decision maker
has to use the rewards of selected actions to estimate θ∗,
but the actions with similar directions only bring similar
rewards. In other words, it is challenging for the decision



maker to tell whether the change of rewards is caused by
the different action selection or by the random noise. Hence
it is difficult to identify which action is better. Motivated by
this intuitive explanation, we propose a scheme that selects
actions that are orthogonal to the direction of θ̂t. We show
that the rewards from these different directions are effective
in identifying the best action. In particular, we show that the
proposed algorithm leads to a consistent estimator of θ∗.
Furthermore, we calculate a lower bound of the estimation
error of any policy, and further show that the performance
of our proposed algorithm achieves this lower bound up to
a constant factor.
The remainder of the paper is organized as follows. The

mathematical model is given in Section II. In Section III,
the limitation of OFU based algorithms is discussed. We
further propose a new algorithm and analyze its performance.
Section IV provides a numerical example to illustrate the
conclusion obtained in this paper. Section V offers some
concluding remarks. Due to space limitations, we present
main ideas and conclusions without detailed proof.
Notations: ||x||p denotes the p−norm of a vector x ∈ Rd.

For a positive definite matrix A ∈ Rd×d, the weighted
norm of a vector x is denoted as ||x||A =

√
xTAx, and

the weighted inner product of two vectors x,y is denoted
as < x,y >A= xTAy. λmax(A), λmin(A), det(A) and
trace(A) denote the maximum eigenvalue, the minimum
eigenvalue, the determinant and the trace of matrix A,
respectively.

II. PROBLEM FORMULATION

In this paper, we consider the stochastic linear bandit
problem which proceeds in rounds t = 1, 2, . . .. In each
round t, the decision maker chooses a decision xt from a
compact decision set Dt ⊂ Rd, and subsequently obtains a
reward

yt =< xt,θ
∗ > +ηt, (1)

in which θ∗ ∈ Rd is a fixed but unknown parameter with
finite l2-norm ||θ∗||2 ≤ S, and ηt is a centered sub-Gaussian
random variable with variance proxy σ2. {ηt, t = 1, 2, . . .}
is assumed to be a sequence of independently and identically
distributed (i.i.d.) random variables.
Let Ft = σ{η1, η2, . . . , ηt} be the sigma field at time t.

The decision maker is allowed to choose his decision adap-
tively based on his historical information. Mathematically,
xt can be expressed as

xt = ft(x1, y1, . . . ,xt−1, yt−1),

in which ft(·) is some Ft−1 measurable function. To
simplify the derivation, we assume that the decision set
Dt = {x ∈ Rd : ||x||22 ≤ 1}, which is a fixed set over
time. Hence in the remainder of this paper, we also denote
the decision set as D.

We express the relationship between decisions and corre-
sponding rewards in the matrix form as

Yt = Xtθ
∗ + ηt, (2)

in which Yt = [y1, y2, . . . , yt]
T , ηt = [η1, η2, . . . , ηt]

T

and Xt = [xT
1 ,x

T
2 , . . . ,x

T
t ]

T ∈ Rt×d. Denote θ̂t as the
estimate of θ∗ at time t. The decision maker aims to design
an efficient algorithm to select decisions Xt and accurately
estimate the unknown parameter θ∗ based on his sequential
information {x1, . . . ,xt, y1, . . . , yt}. The performance met-
ric is specified as

P (||θ̂t − θ∗||22 ≤ ϵ) ≥ 1− δ (3)

for some given constant ϵ > 0 and δ ∈ (0, 1). That is, the
decision maker should have strong confidence on the result
that the estimation error is less than a small value ϵ when the
decision procedure is terminated. Since {ηt} is a sequence of
sub-Gaussian random variable, we expect that ϵ converges to
zero and δ decays exponentially with respect to t as t→ ∞.

III. ALGORITHMS AND PERFORMANCES

A natural estimator for (2) is the ordinary least squares
estimator

θ̂t = (XT
t Xt)

−1XT
t Yt. (4)

One difficulty with the above estimator is that XT
t Xt is

not invertible when its rank is deficient (e.g. t ≤ d). In this
paper we focus on the following class of estimators that are
slight modification of (4)

θ̂t = (XT
t Xt +W0)

−1XT
t Yt, (5)

in which W0 is a positive definite matrix. This class of
estimators are widely used in the regret minimizaiton prob-
lems [13], [14]. For notation convenience, we define

Wt := W0 +XT
t Xt. (6)

It is easy to see that Wt is always positive definite; hence
the inversion in (5) is always valid. We further note that
Wt can be efficiently calculated using the recursive formula
Wt = Wt−1 + xtx

T
t .

A. Challenges of Existing Algorithms

The most well known algorithm for the stochastic linear
bandit problem is designed according to the optimism in the
face of uncertainty principle [14]. The basic idea of this
algorithm is to use observations to construct a confidence
set Ct ⊂ Rd that contains the unknown parameter θ∗

with a high probability. The confidence set Ct is updated
whenever the decision maker obtains a new reward yt.
The algorithm then estimates the unknown parameter by
θ̂t = argmaxθ∈Ct

(maxx∈Dt < x,θ >) and selects the next
decision by solving xt = argmaxx∈Dt

< x, θ̂t >.



In our context, for t = 1, 2, . . ., the algorithm designed
according to the OFU principle can be expressed as:

θ̂t = (XT
t Xt +W0)

−1XT
t Yt, (7)

Ct =
{
θ ∈ Rd : ||θ̂t − θ||Wt ≤ βt

}
, (8)

xt = argmaxx∈Dt
< x, θ̂t >= θ̂t/||θ̂t||22. (9)

We note that the confidence region Ct is an ellipsoid with
radius βt. The value of βt is updated at every time slot
according to newly obtained information.
Several existing works [13], [14] have shown that, if βt is

properly designed, the above algorithm has a small cumula-
tive regret. Particularly, let x∗

t = argmaxx∈Dt
< x,θ∗ > be

the best decision for θ∗, let rt =< x∗
t ,θ

∗ > − < xt,θ
∗ >

be the regret at time t for taking decision xt and let
Rn =

∑n
t=1 rt be the cumulative regret. [14] proved the

following result.
Theorem 1: (Theorem 2 and Theorem 3 in [14]) Let

W0 = κI, κ > 0. By setting

βt = σ2
√
2 log(det(Wt)1/2det(λI)−1/2/δ) + κ1/2S,

then for any δ > 0, with probability at least 1 − δ, θ∗ lies
in the set Ct. Further more, if for all t and all x ∈ Dt,
< x,θ∗ >∈ [−1, 1], then with probability at least 1− δ, the
cumulative regret satisfies

∀n ≥ 0, Rn ≤ 4
√
nd log(κ+ n/d)

(κ1/2S + σ2
√
2 log(1/δ) + d log(1 + n/(κd))).

Theorem 1 indicates that the OFU algorithm is Han-
nan consistent, i.e., limn→∞Rn/n = 0. However, in the
following, we point out that the OFU algorithm leads to
an inconsistent estimate of θ∗. The result is stated in the
following theorem.
Theorem 2: If Rn/n → 0 as n → ∞ with probability at

least 1− δ, then

lim
t→∞

P
(
||θ̂t − θ∗||22 ≥ σ2

)
≥ 1− δ. (10)

Define event E :=
{
||θ̂t − θ∗||22 ≥ σ2

}
. Theorem 2

implies that

E[||θ̂t − θ∗||22] ≥ E[||θ̂t − θ∗||22|E ]P (E) ≥ σ2(1− δ).

That is, the estimation error of the OFU algorithm does not
vanish as the sample size goes to infinity.
In the following, we provide an intuitive explanation of the

reason why OFU algorithms lead to inconsistent estimators.
The examination of this also provides motivation for the
proposed algorithm to be discussed below. Considering the
case with d = 2, the reward yt =< xt,θ

∗ > +ηt =
||xt||||θ∗|| cosψ+ηt, in which ψ is the angle between xt and
θ∗. As illustrated in the upper-right subfigure in Fig. 1, the
solid cosine curve is < xt,θ

∗ >, and the region bounded by
the two dash cosine lines characterizes the possible region

of the rewards yt. In OFU algorithms, the decision maker
takes action xt = θ̂t−1. As θ̂t−1 and θ∗ are generally close,
the regret is small and ψ is close to zero. In this case, an
obtained feedback reward yt leads to a wide possible range
for θ∗. That is, any value of ψ in the red region of the upper-
right subfigure in Fig. 1 could lead to the same reward yt. In
the regret minimization, this is unavoidable, as we need to
select xt that has small angle with θ∗. In our problem setup,
as the regret is not of primary concern, we can avoid this by
selecting xt to be orthogonal to θ̂t−1 (and hence has large
angle with θ∗). These actions are helpful in improving the
estimation accuracy of ψ as their rewards are close to the
zero-crossing region of the cosine curve, which infers a much
narrower possible region for θ∗. The proposed algorithm to
be discussed below is motivated by this observation.

Fig. 1: An illustration of the difference between the OFU
algorithm and the proposed algorithm. Upper figures: the
case for OFU algorithm. Lower figures: the case for proposed
algorithm.

B. Proposed Algorithm and Performance Analysis

Motivated by the discussion above, we propose a novel
algorithm which leads to a consistent estimator with a fast
convergence rate. The proposed algorithm is specified in
Algorithm 1. To facilitate the presentation, for k = 1, 2, . . .,
we use the following notations in Algorithm 1:

Xk,d =
[
xT
(k−1)d+1,x

T
(k−1)d+2, · · · ,x

T
kd

]T
,

Yk,d = [y(k−1)d+1, y(k−1)d+2, . . . , ykd]
T ,

ηk,d = [η(k−1)d+1, η(k−1)d+2, . . . , ηkd]
T .

The proposed algorithm adopts batch processing. In par-
ticular, the proposed algorithm initializes the first d decisions
as a group of standard orthogonal basis. The decision maker
updates the estimate θ̂t whenever he collects d successive
rewards. Furthermore, whenever a new estimate θ̂t is calcu-
lated, the decision maker chooses next decision xt+1 as the
direction of θ̂t, and selects another d − 1 decisions such
that these d decisions form another group of orthogonal



basis. We emphasize that algorithms according to the OFU
principle keep taking decisions that maximize the reward
< x, θ̂t >. In our context, the OFU algorithm will always
select the decision with the same direction of θ̂t. However, in
our proposed algorithm, among every successive d decisions,
only one decision is on the direction of θ̂t; the rest of d− 1
decisions are orthogonal to θ̂t. This is the key difference
between the OFU algorithm and our algorithm.

Data: the adaptively designed decisions x1, . . . ,xt and
corresponding rewards y1, . . . , yt

Result: the estimate θ̂t

Initialization: select x1, . . . ,xd as a set of standard
orthogonal basis ;
for k = 1, 2, . . . ⌈t/d⌉ do

obtain rewards: Yk,d = Xk,dθ
∗ + ηk,d ;

update matrix: Wkd = W(k−1)d +XT
k,dXk,d ;

estimate parameter: θ̂kd = W−1
kd X

T
kdYkd ;

choose decision: xkd+1 = θ̂kd/||θ̂kd||22, select
{xkd+1,xkd+2, . . . ,x(k+1)d} to be an orthogonal
basis;

end
Algorithm 1: The Proposed Algorithm

The performance of the proposed algorithm is character-
ized in the following theorem.
Theorem 3: For the proposed algorithm, we have

E[||θ̂t − θ∗||22] ≤
d2

t
σ2(1 + o(1)).

Furthermore, if ηt is a sub-Gaussian vector, then

P

(
||θ̂t − θ∗||22 ≥ 3σ2d3/2

t1/2
+O

(
σ2d2

t

))
≤ e−t

Theorem 3 characterizes our performance metric (3). In
particular, δ decays exponentially as t→ ∞, and the bound
of estimation error ϵ shrinks to zero on the order O(t−1/2)
for the proposed algorithm.
We now provide a lower bound of the mean square

estimation error (MSE) for all possible sequential decision
selection strategies and show that MSE reduces at most on
order O(t−1).
Theorem 4: (Lower Bounds on MSE) Let ηt be a sub-

Gaussian random variable with variance proxy σ2. If estima-
tor (5) is adopted, then for any adaptively selected decision
sequence {xi, i = 1, 2, . . . , t}, we have

E[||θ̂t − θ∗||22] ≥
1

t
σ2 + o

(
1

t

)
. (11)

Theorem 3 indicates that the convergence rate of MSE for
the proposed algorithm is on order O(t−1), while Theorem 4
shows that the convergence rate of MSE cannot be faster than
O(t−1). Hence, the proposed algorithm is order optimal.

IV. NUMERICAL SIMULATION

In this section, we provide a numerical example to il-
lustrate the results obtained in this paper. In this numerical
example, we set d = 5, and compare the performance of the
OFU algorithm and our proposed algorithm. In particular,
the MSE of each algorithm is calculated by Monte Carlo
method. In the simulation, the estimation procedure proceeds
3000 rounds; hence, for each trial, the decision maker has
to adaptively make 3000 decisions. For each algorithm,
we conduct 105 trials with randomly created underlying
parameter θ∗, and we record the estimation error at each
round of decision. Then, the logarithm of MSE, which is
estimated by the average of estimation error at each trial, at
each decision round is illustrated in Figure 2.
In Figure 2, The blue solid line is the performance of

the OFU algorithm and the red dash line is the performance
of the proposed algorithm. The simulation result shows that
the error of the OFU algorithm tends to be a constant as the
number of decisions goes large; hence, the corresponding
MSE also tends to a constant. However, the error of the
proposed algorithm decays when the number of decisions
grows, which indicates the estimation error tends to zero as
the number of decisions goes to infinity. Hence, the proposed
estimator is consistent.

time
0 1000 2000 3000

lo
g 10

 M
SE

-2.5

-2

-1.5

-1

-0.5

0

0.5
proposed algorithm
OFU algorithm

Fig. 2: Estimation error vs. the total number of decisions

V. CONCLUSION

In this paper, we have studied the problem of identifying
the best action in the stochastic linear bandit setup with a
fixed confidence constraint. We have shown that the existing
OFU algorithm is an inconsistent estimator for the unknown
parameter θ∗. We have proposed and analyzed a novel
algorithm. We have shown that the proposed algorithm is
consistent and that its mean square estimation error reduces
on order O(t−1). Furthermore, we have shown that the
probability that the estimation error is larger than t−1/2

decays exponentially with respect to t.



We note that this paper has considered the asymptotic case
with t→ ∞. In the future, it will be of interest to consider
the problem when a finite number of decisions are made. In
this case, we expect that tools from optimal stopping [15]
and controlled sensing [16] will be useful.
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