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Abstract

We consider ASEP on a bounded interval and on a half-line with sources and
sinks. On the full line, Bertini and Giacomin in 1997 proved convergence under
weakly asymmetric scaling of the height function to the solution of the KPZ
equation. We prove here that under similar weakly asymmetric scaling of the
sources and sinks as well, the bounded interval ASEP height function converges
to the KPZ equation on the unit interval with Neumann boundary conditions
on both sides (different parameter for each side), and likewise for the half-line
ASEP to KPZ on a half-line. This result can be interpreted as showing that the
KPZ equation arises at the triple critical point (maximal current / high density /
low density) of the open ASEP. © 2018 Wiley Periodicals, Inc.
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1 Introduction

The open asymmetric simple exclusion process (ASEP) is a default paradigm in
statistical physics for studying transport in systems in contact with reservoirs that
keep the two ends of the system at different local densities. When particles are
driven in one direction, the system approaches a nonequilibrium steady state. In
other words, while there is an invariant measure, there is also a net flux of particles
flowing through the system, and there is no time-reversal symmetry. Consequently,
standard notions of equilibrium statistical mechanics do not apply. Open ASEP
enjoys certain exact relations (such as the matrix product ansatz, or solvability
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through the Bethe ansatz) which has made it a profitable model through which to
develop new physical predictions and theories for a broader class of models that
share the same type of steady state behaviors.

In this paper we demonstrate how the stochastic heat equation (SHE) / Kardar-
Parisi-Zhang (KPZ) equation / stochastic Burgers equation (SBE) on an interval
with various types of boundary conditions arise from the open ASEP under a cer-
tain precise weakly asymmetric scaling limit of the model and its parameters (we
also study the half-line versions of these equations with boundary conditions at the
origin).

While, to our knowledge, this connection between the KPZ equation and the
open ASEP is new to both the mathematics and physics literature, it is certainly
not without precedent. For ASEP on the whole line, the seminal work of Bertini
and Giacomin [7] demonstrated convergence of ASEP under a similar scaling to the
KPZ equation on R via a discrete Cole-Hopf transformation introduced by Gért-
ner [36]. They assumed near-equilibrium initial data, and narrow wedge initial data
was treated in [1]. There has since been great progress in expanding this weak uni-
versality of the KPZ equation on R using methods similar to those of Bertini and
Giacomin [15, 16, 19, 57], as well as using energy solutions (introduced by Ass-
ing [2] as well as Jara and Gongalves [38] and proved to be unique by Gubinelli
and Perkowski [46]) [26,38-40,45,47,48], and Hairer’s regularity structures (in-
troduced in [50]) [51,52]. These works have dealt entirely with the KPZ equation
on R or the torus ([0, 1] with periodic boundary conditions).

We deal here with the KPZ equation with Neumann boundary condition on [0, 1]
(with generically different derivatives on the two ends). For the SHE this corre-
sponds with Robin boundary conditions and for the SBE with Dirichlet boundary
conditions. None of these boundary conditions make a priori sense (solutions of
SHE and KPZ are not differentiable, and SBE does not take values). This is re-
solved through defining a mild solution and equivalent martingale problem for the
SHE with boundary conditions.

In our work, we tried to follow the scheme of Bertini and Giacomin, though were
quickly forced to overcome some significant new complexities. First we apply the
Girtner (or microscopic Hopf-Cole) transform [27,36], which yields a microscopic
SHE for the exponentiated ASEP height function. Parametrizing the open ASEP
boundary conditions by two effective density parameters (one for each side of the
interval) leads to Robin boundary conditions on the microscopic SHE. The chal-
lenge then becomes to prove convergence to the corresponding continuum SHE.
This is done by first showing tightness and then identifying (through a martin-
gale problem formulation) the limit. Tightness reduces to fine estimates about the
heat kernel (and its derivatives and various weighted integrals) for the microscopic
SHE, which, in our case, become much more involved and nonstandard than in the
periodic or full-line case (for instance, they require us to invoke Sturm-Liouville
theory and a delicate method of images estimate). In identifying the limiting mar-
tingale problem, Bertini and Giacomin discovered a key identity (proposition 4.8
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FIGURE 1.1. The half-line and open ASEP (left and right, respectively)
drawn in terms of particles and height functions (bottom and top, re-
spectively). In open ASEP, particles inside jump left and right (i.e., ac-
cording to clocks of exponential distribution with this rate) at rates ¢
and p; particles are inserted (provided the destination is empty) from the
left (respectively, right) at rate o (respectively, §); particles are removed
(provided the removal site is occupied) from the left (respectively, right)
at rate y (respectively, §). In half-line ASEP, there is only a boundary
on the left, and the right goes on infinitely.

and lemma A.1 in [7]) for the quadratic martingale that identifies the white noise.
In our case of bounded intervals, that identity does not hold. Instead we find (via a
new method using Green’s functions) an approximate version which suffices—see
Lemma 5.8 and Proposition 5.1.

Presently the other above-mentioned KPZ equation convergence methods have
not been developed into the context we consider here. These other methods are less
reliant upon the exact structure of the underlying particle system, so it would be
nice to see them developed so as to prove universality of the type of convergence
we have shown here for the particular model of open ASEP. The energy solutions
method only applies in stationarity (or for initial data with finite entropy with re-
spect to the stationary measure) and relies upon certain inputs from hydrodynamic
theory that may be more complicated in this setting since the open ASEP generally
lacks product-invariant measures. However, in a special one-parameter case (see
Remark 2.9) the invariant measure reduces to product Bernoulli. Upon sending
this present paper out for comments, we learned that [42] are completing a work in
which they develop the energy solutions approach to study the KPZ limit of open
ASEP in the special subcase when the invariant measure is product Bernoulli, and
the effective density is exactly % This is a special point in the two-dimensional
family of parameters we consider here. For generic choices of our parameters, the
invariant measure is not of product form.

1.1 Existing Open ASEP Results

Before defining the open/half-line ASEP and stating our main convergence the-
orem, let us try to put our work into the context of known results. Much of this dis-
cussion involves results from the physics literature that have not received a mathe-
matically rigorous treatment.
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FIGURE 1.2. The phase diagram for open ASEP current.

The open ASEP is a test tube for developing predictions for the behavior of sys-
tems with nonequilibrium steady states. The model is illustrated in Figure 1.1 and
defined mathematically in Definition 2.1. The matrix product ansatz [21,24,43,59,
67,69] is the main method that has been utilized in studying the open ASEP steady
state (see also Derrida’s ICM proceedings [20] for further references). Open ASEP
has a highly nontrivial steady state, though it is still possible to compute various
asymptotics about stationary expectations, such as that of the current. Let us give
the phase diagram (see Figure 1.2 for an illustration), which was first discovered
and proved by Liggett [61] in the special parametrization we take below in Defini-
tion 2.8.

Consider open ASEP on an interval of length N and with boundary parameters
o, B,y.8 (see Figure 1.1). Define the average current Jy to be (p — g)~! times
the expected value in the steady state of the net number of particles to enter the
system from the left in a unit of time. As N — oo, this approaches a current J
that can be calculated through the matrix product ansatz. It depends on two density
parameters' a and b given by the formulas (see, for instance, [43])

_r—q—a+y+V(p—g—a+y?+doy

a 200
(1.1)
po P4 B+8+ V(P —q— B+ +4ps
28 '

We assume here (and throughout the paper) that ¢ < p. Note that a only includes
the left source/sink parameters (@ and y) and b those on the right (8 and §). The

!'In the main text of the paper we will work with centered occupation variables taking values of
+1 instead of uncentered occupancy variables that take values 1 (particle) and O (hole). The notion
of density is with respect to uncentered occupancy variables (though it is easily affinely transformed
into centered ones) and can be thought of as the expected value of the uncentered occupancy variable.
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effective left and right particle densities are given (respectively) by
(1.2) o4=1/(1+a) and o =b/(1+Dh).

The low-density phase arises when % < % A 1 (we use 1/a and 1/b to match
the traditional appearance of the phase diagram) and corresponds to a phase with
acurrent J = g4(1 — 04). In this phase, there is a low (< 1/2) effective density
of particles near the left boundary, and the bulk dynamics and the right boundary
easily transport this density through the system. The high-density phase arises
when % < é A1 and corresponds to a phase with a current J = gp(1 —op). In this
phase, there is a high (> 1/2) effective density of particles near the right boundary,
and this causes an overall jamming of the system so that the bulk dynamics and left
boundary cannot operate at their maximum efficiency. The maximal current phase,
when 1/a,1/b > 1, corresponds with flux J = 1/4 and arises when the system
operates at maximum efficiency. The effective densities at the left boundary are
more than 1/2 and at the right boundary are less than 1/2. Since the density in the
bulk that propagates particles at the maximal speed is 1/2, these boundaries do not
inhibit transport.

The above phase diagram describes the law of large number behavior for current.
On the other hand, less is understood about the finer scale nature of fluctuations in
currents (and in associated height functions) for open ASEP.

The main result of our paper proves that the KPZ equation arises at the triple
point between the low density, high density, and maximal current phases. In partic-
ular, for system size N, we scaleq = 1/2—1/(2+/N)and p = 1/2 + 1/(2+/N)
(approximately) and tune «, B, ¥, § in such a way that the left and right densities
also equal 1/2 4+ O(1/+/N) (equivalently, a and b equal 1 + O(1/+/N)). Then,
in time of order N2 and scaling fluctuations by order 1/+/N we come upon the
KPZ equation on [0, 1] with Neumann boundary conditions. This result is stated as
Theorem 2.18 (see also Theorem 2.17 for the half-line version of this result).

Returning to an earlier result, the hydrodynamic limit (i.e., shape theorem or law
of large numbers) has been proved for open ASEP under the symmetric and weakly
asymmetric scaling limits. In both cases, the boundary parameters «, 8, y, § are
fixed. In the symmetric case the internal left and right jump rate parameters g and
p are chosen to be equal. Weakly asymmetric scaling in the hydrodynamic limit
literature means something different than above—one takes ¢ = 1/2 — 1/N and
p = 1/2 4 1/N. Under this type of weakly asymmetric scaling, the arguments
in [18, 36] can prove convergence of the open ASEP density field to the viscous
Burgers equation on [0, 1] with fixed boundary density. (In fact, the proof presented
in [18,36] is on the entire line, while another paper [55] is on the torus; however,
the arguments can be adapted to the boundary driven case; see [30,31,41, 54] for
hydrodynamic limit results of different boundary driven models.) To our knowl-
edge, no results have been proved regarding the totally asymmetric (or partially
asymmetric) open ASEP in which one might expect (as in the full-line case) the
inviscid Burgers equation.
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The fluctuations of the particle density field around its limiting behavior is un-
derstood in the weakly asymmetric case. When started out of equilibrium, [41]
and [58] prove convergence in the (respectively) weakly asymmetric and symmet-
ric cases to generalized Ornstein-Uhlenbeck processes (see also [22] for an earlier
physics prediction of these results). In the symmetric case, and with extremely
depressed boundary rates, [34] has also considered the limiting nonequilibrium
fluctuations.

In the stationary state, the (single time) spatial fluctuations for the weakly asym-
metric system are Gaussian [22], while those of the totally asymmetric case are
known and non-Gaussian [23]. In both cases, the stationary state fluctuations are
given in terms of the sum of two processes; however, there seems to be no way to
scale the weakly asymmetric limit process to the totally asymmetric limit process.
It is compelling to speculate that, as in the full-line case [1], the KPZ equation
limit we consider here provides the mechanism for crossing over between these
two types of steady state behaviors. There is presently no description for the steady
state of the KPZ equation on [0, 1] with Neumann boundary condition, and it would
be interesting to understand whether the matrix product ansatz (or the combinato-
rial methods used in [12, 13]) has a meaningful limit under the scalings considered
in this paper.

Returning to the current, the variance of the actual number of particles to enter
the system in time ¢ (centered by the expected value tJy) grows like Ayt where
Ay is called the diffusion coefficient. [25] argues that in the high- and low-density
phases, the diffusion coefficient has a positive limit as N — oo, whereas in the
maximal current regime, it decays like 1/+/N—a fact that they say is consistent
with the scaling exponents for the KPZ universality class. There do not seem to be
any further results developing this perspective. So, in many ways the fluctuation
profile for the various portions of the phase diagram (assuming they are dictated
solely by these three phases) remains quite mysterious.

There is a special case of open ASEP in which all boundary parameters are
set to 0 and the system becomes closed with reflection at the boundaries. In this
case, [57] recently studied various hydrodynamic and fluctuation limit theorems.
That version of ASEP admits a reversible invariant measure due to the particle con-
servation. When started very far from equilibrium, the fluctuations of the system’s
height function under Bertini-Giacomin-style weak asymmetry scaling converges
to the KPZ equation on the full line. That convergence holds for a finite amount of
time and then suddenly breaks once the invariant measure is reached. This should
be contrasted to our present results in which the KPZ equation is on [0, 1] and re-
mains valid for all time. At a technical level, [57] follows the Bertini-Giacomin ap-
proach. The reflecting boundary conditions for ASEP correspond with the Dirich-
let boundary condition for the associated microscopic heat equation, for which
heat kernel estimates are easily accessible through comparison with the analogous
full-line heat kernel.
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It is also worth mentioning that besides the law of large numbers and fluctuation
behaviors, the large-deviation principle is well-studied for open ASEP. A combi-
nation of matrix product ansatz and Bethe ansatz methods have led to a detailed
description of the rate function and minimizers for open ASEP in various parame-
ter regimes—see, for example, [6, 8, 10, 17,29,43] and references therein.

1.2 Existing Half-Line ASEP Results

A special case of the half-line ASEP was introduced by Liggett in [60] where
the creation rate « = pA and the annihilation rate y = g(1 — A). Here, A controls
the overall density at the origin, which equals (1 — A)/A. Liggett showed that the
long-term behavior of this process has a phase transition: if the rate A < 1/2 and
the original density is below a critical value, the stationary measure is a product
measure with density A; otherwise, if A > 1/2 the stationary measure is spatially
correlated and behaves like product measure with density 1/2 at infinity. Grosskin-
sky [44] studied, using the matrix product ansatz, the correlations of these station-
ary measures, and [28] also employed the matrix product ansatz to study the large
deviations for this system.

Using methods from Bethe ansatz and symmetric functions, there has also been
some work on studying asymptotics of the fluctuations of the number of particles
inserted into the system. In the totally asymmetriccase (p = 1, > 0,qg = y = 0)
[3] proved a KPZ universality class limit theorem with either square root / cube
root fluctuations and Gaussian / GUE Tracy-Widom-type statistics (depending on
the exact strength of o). This result was predated by work of Baik and Rains
[4], which demonstrated a similar phenomenon for the polynuclear growth model.
In the partially asymmetric reflecting case (¢ = y = 0) Tracy-Widom derived
explicit formulas for the configuration probabilities in [68], though no asymptotics
have been accessible from these formulas as of yet (one generally expects from
the universality belief that the same sort of dichotomy between square root and
cube root fluctuations exists for the general partially asymmetric case. For the
KPZ equation itself, [11,49] have employed the nonrigorous replica Bethe ansatz
methods to derive a similar set of KPZ universality class limit theorems as was
shown in the TASEP. There are also some formulas derived for the half-space log-
gamma polymer in [64], though they have yet to produce any asymptotic results.

After completing the present paper, [S] proved an exact one-point distribution
formula for half-line ASEP under the parametrization considered herein, when
A = —1/2. While that value of A is outside the class we consider (where A, B >
0), [65] has been able to extend our analysis to all real A, B. Combining those two
works proves the first one-point distribution formula and cube root fluctuations for
the half-space KPZ equation in the special case when A = —1/2.

Outline

The introduction above contains a brief survey of the open and half-line ASEP,
as well as a number of relevant works in the literature. Section 2 contains the
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definitions of the models, the choices of parameters and scalings, assumptions on
initial data, and finally the main results of this paper (Theorems 2.17 and 2.18),
which prove convergence to the KPZ equation with Neumann boundary condi-
tions. Section 3 contains the Girtner transform of open and half-line ASEP, and
the resulting microscopic SHE on the half-line and a bounded interval with Robin
boundary condition. This simple boundary condition occurs on a two-dimensional
subspace of the four boundary parameters «, 8, y, 8 when they are parametrized
by two density parameters. Section 4 spends a significant amount of space devel-
oping a variety of bounds for the discrete heat kernel (and its discrete derivative)
associated with Laplacian with Robin boundary conditions. Some of these bounds
require us to derive a generalized method of images, as well as to apply methods
from Sturm-Liouville theory. This section then uses the heat kernel bounds to prove
tightness of the rescaled microscopic SHE. Section 5 contains the identification of
all limit points with solutions to the martingale problems for the continuum SHE
with Robin boundary conditions (and then shows the uniqueness of the martingale
problem and identifies it with the mild solution, thus proving our main theorems).
The section also contains a crucial cancellation in the form of Proposition 5.1 and
Lemma 5.8, without which the identification of the limiting quadratic martingale
would not be evident.

2 Definitions of the Models and the Main Results

The aim of this paper is to study the weakly asymmetric simple exclusion pro-
cesses (ASEP) with open boundaries and their KPZ equation limits. We will dis-
cuss two cases: the first case is an ASEP model on the half-line (i.e., positive
integers) with an open boundary at the origin, which will be called ASEP-H; the
second case is an ASEP model on a bounded interval with open boundaries at the
two ends, which will be called ASEP-B.

We start with the definition of the asymmetric simple exclusion process (ASEP)
on the positive integers. See Figure 1.1 for an illustration of these definitions.

DEFINITION 2.1 (Half line ASEP or “ASEP-H”). Fix four nonnegative real param-
eters p,q,o,y > 0. Let n(x) € {1} denote the centered occupation variable at
site x € Z>o = {1,2,3,...}. Thesite x € Z~ is said to be occupied by a particle
if n(x) = 1, and empty if n(x) = —1. The half-line ASEP is a continuous-time
Markov process on the state space {(7(X))xez-, € {£1}2>0}. The state 7, at
time ¢ evolves according to the following dynamics (we could state the generator,
though we do not make explicit use of it and hence avoid writing it): at any given
time ¢ € [0,00) and x € Z~¢ a particle jumps from the site x to the site x + 1 at
exponential rate

) Rl1ex) = S+ 0N =i (x + 1)
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and from site x + 1 to site x at exponential rate

e2) E(e.x) = T(1 = ne (D1 + 70+ D):

and if x = 1, a particle is created or annihilated at the site 1 at exponential rates

rr (D) = S =) and rgOe(D) = 201+ ne(1).

respectively. All these events of jumps and creations/annihilations are independent
of each other.

Such a process can be constructed by the standard procedures as in [62]. Note
that the rate rf(n(l)) is such that particles are not allowed to be created at 1 if
x = 1 is already occupied, and not allowed to be annihilated from 1 if there is no
particle at x = 1. Also, the number of particles is not preserved. One may also
imagine a pile of infinitely many particles at site 0, and particles are allowed to
jump between 0 and 1 at rates rf(n(l)).

We now define ASEP on the lattice with two-sided open boundaries.

DEFINITION 2.2 (ASEP on bounded interval or “ASEP-B”). Fix six nonnegative

real parameters p,q,a, B,y,8 > 0. Let n(x) € {£1} denote the centered particle

. . . def . . .
occupation variable at site x € Ay = {1,2,...,N}; x is occupied by a particle

if n(x) = 1 and empty if n(x) = —1. The ASEP on the bounded interval Ay is
a continuous-time Markov process on the state space {(7(X))xeAy € {114V,
The state n; at time ¢ evolves according to the following dynamics: at any given
time¢ € [0, 00) and x € Ay, a particle jumps from site x to site x+ 1 (respectively,
from site x + 1 to site x) at exponential rate ¢® (1, x) (respectively, ¢ (n;, x))
where ¢®(n;, x) and ¢L (n;, x) are defined in (2.1) and (2.2).

In addition to the jumps, a particle is created (respectively, annihilated) at the
boundary site x = 1 at exponential rates 72_ (respectively, r ), and a particle is
created (respectively, annihilated) at the boundary site x = N at exponential rates
r ; (respectively, rg), where

)
rr () = S =n(D). rf () = 51 =),

) = L), g = L)

All these events of jumps and creations/annihilations are independent of each other.

DEFINITION 2.3 (Height functions). We define the height function hs(x) for x €
Zso ={0,1,2,...} associated with the ASEP-H and the height function h;(x) for
x € AN U {0} associated with the ASEP-B as follows:

e Let s1;(0) be two times the net number of particles that are removed (i.e.,
the number of particles annihilated minus the number of particles created)
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from the site x = 1 during the time interval [0, ¢]. (In particular h¢(0) =
0.)
e For x > 0, let

def

he(x) S h(0) + D ne(y).

y=1

According to this definition we have V7, (x) = n,(x + 1) for every t > 0 and
x > 0 (respectively, 0 < x < N) for ASEP-H (respectively, ASEP-B). Here the
forward and backward discrete gradients are defined as

def def

=fe+D-f)., Vf()=/fx-1—f).

Let us also record our convention for the discrete Laplacian,

(2.3) VT f(x)

24) A E flx =D =2/(0) + f(x +1).

Note that the above definition of /;(x) is such that for both models, creating
or annihilating particles at x = 1 only affects the value of 4;(0) and none of the
values of h;(x) for x > 0. Also, for ASEP-B, creating or annihilating particles
at x = N only affects the value of 4;(N) but none of the values of /(x) for
x < N. Finally, the internal particle jumps can only affect the values of 4;(x)
for x in the “bulk™, i.e., x > O for ASEP-H or 0 < x < N for ASEP-B. We can
in fact equivalently consider the following interface growth model. See Figure 1.1
for an illustration of this connection.

DEFINITION 2.4 (Solid on solid (SOS) models with moving boundaries). The SOS
model on Z>o with a moving boundary is a jump Markov process defined on the
state space

{he 2220 . [Vth(x)| = 1, Vx € Zso}.

The dynamics for the height function £, at time ¢ are as follows. For each x € Z -,
if Ahs(x) = 2then h;(x) increases by 2 at exponential rate ¢, and if Ah;(x) = =2
then h;(x) decreases by 2 at exponential rate p. Moreover, if V*Th;(0) = 1,
then /,(0) increases by 2 at exponential rate y, and if V¥ /4,(0) = —1 then &, (0)
decreases by 2 at exponential rate «. All the jumps are independent.

The SOS model on A y U{0} with moving boundaries is a jump Markov process
defined on the state space

{h e ZAVYOF vt p(x)| =1, Vx € {0,1,...,N — 1}

For x € {0,1,..., N}, the h;(x) increases or decreases according to the same rule
as for SOS on Zx¢ above, together with the rule that if V"h;(N) = 1 then h;(N)
increases by 2 at exponential rate 8 and if V™ h;(N) = —1 then h;(N) decreases
by 2 at exponential rate §.
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In this article, we will show via the Cole-Hopf/Gértner transformation that un-
der the weak asymmetry scaling, the height function converges to the Cole-Hopf
solution to the KPZ equation:

1 1 .
(2.5) OrH = ZAH + 5(8XH)2 + W,

with Neumann (generically inhomogeneous) boundary conditions, where W is the
space-time white noise (formally, E(W7(X)Ws(X')) = 8(T — S)8(X — X')).
Here, the Cole-Hopf solution to (2.5) with generically inhomogeneous Neumann
boundary condition is defined by Hr(X) = log Z7(X) where Z € C(][0, 00),
C(R)) for ASEP-H or & € C([0, 00), C(]0, 1])) for ASEP-B is the mild solution
(defined immediately below) to the stochastic heat equation (SHE)

(2.6) Y =SAZ + ZW,
with Robin boundary conditions.

DEFINITION 2.5. We say that 27 (X) is a mild solution to SHE (2.6) on R4
starting from initial data Zo(+) € C(R4) satisfying a Robin boundary condition
with parameter A € R

2.7) Ix 27(X)|y_y = A27(0) VYT >0
if 27 is adapted to the filtration 0 {29, W{[ 71} and

200 = [ AR 2y

2.8) e

+[f PR (X, Y)Zs(Y)dWs(dY)
0J0

where the last integral is the Itd integral with respect to the cylindrical Wiener
process W, and 2R is the heat kernel satisfying the Robin boundary condition

x PRX.Y)|y_o = AZF0.Y) YT >0,Y >0.

We say that Z7(X) is a mild solution to SHE (2.6) on [0, 1] starting from initial
data Zy(+) € C(]0, 1]) with Robin boundary conditions with parameters (A, B)

29) 2T (X)|y_y = A270), Ix27(X)|y_, = —BZr(1) VT >0,
if 27(X) is adapted to the filtration 0{Zo, W|[o,r]} and satisfies (2.8) with the
integration domain [0, 0o) replaced by [0, 1] and Z2R satisfying

Wx PRX.Y)|y_y = AZRO.Y), xPEX.Y)|y_, = —BZF1.Y),
forall T > 0,Y € (0,1).

Remark 2.6. At least on the formal level, the Robin boundary condition for SHE
(2.6) corresponds to (via the Cole-Hopf transformation Hy(X) = log Z7(X))
the inhomogeneous Neumann boundary condition for KPZ (2.5). For instance, if
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ox Z7(0) = AZ7(0), then dx Hr (0) = A. In fact, this also corresponds to the
inhomogeneous Dirichlet boundary condition for the stochastic Burgers equation

1 1 .
(2.10) dru = 58)2(14 + 5ax(uz) +ox W

where u & dx H with boundary condition u7(0) = A. Also, dx Z7(1) =
—B %7 (1) corresponds to dy H7 (1) = —B and ur (1) = —B. This is only formal
because the KPZ equation is not differentiable and the stochastic Burgers equation
does not take function-valued solutions. This is why we have defined the Robin
boundary condition in terms of the heat kernel and not the derivative of 2. After
completing our present paper, [37] provided solution theories to a class of singular
SPDEs with boundary conditions, which includes the KPZ equation with Neumann
boundary conditions.

PROPOSITION 2.7. Let A, B > 0, T > 0, and I be the interval [0, 1] or R4. Given
an initial data 2o € C(I) satisfying

sup e PXE(Z5(X)?) < 0o

Xel
for some b = by for all p > 0, there exists a mild solution to SHE (2.6) in
C([0, T], C(I)) with Robin condition 2.7) if | = R4 or (2.9)if I = [0,1]. The
mild solution is unique in the class of adapted processes satisfying
(2.11) sup sup e “YE(Z7(X)?) < 00

Te[0,T]1Xel

for some a > 0. Finally, assuming that Z¢ is given by a nonnegative measure,
Z7(X) is almost surely strictly positive forall X € I and all T € [0, T].

PROOF. Existence and uniqueness of mild solutions to the SHE (2.6) was shown
in [70, thm. 3.2] in the case of a bounded interval [0, 1] with Neumann boundary
condition. The case of bounded interval [0, 1] or half-line R with Robin condition
follows mutatis mutandis, so we only sketch the proof here.

First of all, we note that although [70, thm. 3.2] stated that the “weak solu-
tion” (in the PDE sense, i.e., the equation (2.6) when integrating both sides against
smooth test functions with corresponding boundary condition) exists and is unique,
the proof there actually showed the existence and uniqueness of the mild solution.

The proof in [70] only used the following properties of the (Neumann) heat
kernel 22VV: for each T > 0 there exists a constant C(T') such that forall T < T,

Cc(T _YX2
%(XY)<% v

(see [70, (3.7)], which actually also had a factor ¢~ T due to an extra mass term
considered in the equation therein, but it is never used as long as one does not care
about integrability at T = oc.) For the Robin heat kernel 7R, we can still prove
the above bound: see Lemma 4.3. Note that our bound has 27" in the exponent



OPENASEP IN WEAK-ASYMMETRIC REGIME 2077

instead of 47 because our diffusive term is %A;@” . Therefore the existence and
uniqueness follows for I = [0, 1]. For I = R, the only tweak in the proof is that
one needs the following bound:

o
/ PR, V)eY dY < C(T)e*X, X >0,
0

which is easy to show.
The positivity result follows exactly as in Mueller’s full-line proof [63], and we
do not reproduce it here. 0

We turn now to describe how the above continuum equations arise from our
discrete ASEP models. The following parametrizations of the boundary parameters
will be assumed throughout the remainder of this paper. The reason we make
this choice of parametrization is that it enables us to write the Cole-Hopf/Gértner
transform of ASEP in terms of a discrete SHE with Robin boundary conditions.

DEFINITION 2.8 (Boundary parametrization). For ASEP-B we parametrize o and y
by a single parameter g € [/q/p, v/ p/q] and B and § by a single parameter

UB € [+/q/p, v/ P/q] as follows:
L= PP 1y

PP — 1B /D)

ﬂ:
2.12) s P—4 s pP—4q
, = PV rayD) g Pk D)
q—17p ’ q—7r '

For ASEP-H we parametrize using the above formulas for « and y.

Remark 2.9. The condition on 4, up € [\/q/p,+/ p/q] is necessary and suffi-
cient for all rates to be positive. These choices of rates satisfy the simple relations

Yy B2y
P q P q
In fact, these relations are exactly the relations assumed by Liggett in [60,61] when
considering ASEP on the half-line and bounded interval. In the open ASEP case,

plugging these parametrizations into (1.1) yields simple formulas for

a = HA/Pd —4 b — MB/ P4 —4q
P —BaA/Pq p—1B/Pq
By (1.2), we may compute the effective densities py = «/p and pp = §/q. In the
special one-parameter subcase when the effective densities on the left and right are
equal, i.e., 04 = op in (1.2), then one may check (see, e.g., [42]) that the invariant
measure for open ASEP is a product of Bernoulli random variables with density
04. The equality o4 = op amounts to the relationships between 114 and wp that

L _Pta—iBVPg
VPq
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The special case when o4 = op = 1/2 (and the invariant measure is product
Bernoulli with parameter 1/2) arises when ug = up = 2’7{%.

We now define the weakly asymmetric scaling that will be assumed through-
out the remainder of this paper (whether stated explicitly or not). All functions,
e.g., Z;(x), and all parameters will implicitly depend on ¢ throughout (though our
notation will generally not make this explicit).

DEFINITION 2.10 (Weakly asymmetric scaling). Let ¢ > 0 be a small enough so
that all parameters defined below are positive. Define, for ¢ > 0

(2.13) q= %e_“/g and p = %e“/g.

In other words the particles jump to the right at a higher rate p > 1/2 than to the
left at rate ¢ < 1/2 (which is opposite the convention in [7]). For the ASEP-H, the
above definition is sufficient. For the ASEP-B, we further assume that ¢ = 1/N
where N is the size of the bounded interval. The boundary parameters are likewise
weakly scaled so that uy = 1—¢A4 and up = 1—¢&B for some constants A, B > 0.
See Remark 3.2 for more on the restriction that A, B > 0.

Remark 2.11. Given the weakly asymmetric scaling, we have the following expan-
sions (in & small) for our model parameters:

p=1+1/e+0(), qg=1-1J/e+ 00,

pna =1— Ae, up =1— Be,
a=1+(3+3i0Ve+0(6). B=1+(E3+1iB)Ve+0(),
y=1-3+14)Ve+0(). §=1-(2+1B)JVe+ 0.

We also have expansions of the open ASEP phase diagram parameters and the
associated effective densities:

a=1—(1424)Ve+ 0(s), b=1-(1+2B)ve+ O(c),
04 =3+ (3 +34)Ve+ 0E?). 05 =35~ (5+5B)Ve+ 0(E?).
1/2

From this, one sees that we are exactly tuning into a ¢/ “-scale window around the
triple critical point in the open ASEP phase diagram in Figure 1.2.

We now define the microscopic Cole-Hopf/Gértner transformed process [36]
defined as follows:

DEFINITION 2.12 (Gértner transformation). For x € Zx¢ in the case of ASEP-H,
or x € {0} U Ay in the case of ASEP-B, let

2.14) Zi(x) & Mt

where

(2.15) A= Zlogd v b+ g—2Up4.
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Note that A < 0. We extend Z;(x) by linear interpolation to all x € R for ASEP-
H, and to all x € [0, N] for ASEP-B, so that Z € D([0,00),C([)) with I = Ry
or I = [0, N], which is the space of C([)-valued, right-continuous-with-left-limits
processes.

Remark 2.13. We remark that [7] adopted the convention that ¢ > p and the
height profile grows upward, while we follow the convention here that ¢ < p and
the height profile grows downward. In [7] the height profile subtracting a positive
drift term scales to the KPZ equation (2.5) with a negative sign in front of the
nonlinearity, while in our case here since —A > 0, v > 0, the height profile plus a
positive drift term scales to the KPZ equation (2.5) with a positive sign in front of
the nonlinearity.

Let || f: (x)|ln & (E| f: (x)|")1/" denote the L” norm. Following [7], we con-

sider the following near-equilibrium initial conditions for ASEP-H. For the purpose
of the assumption we include a superscript ¢ in ; and Z; to explicitly identify the
e-dependence of the model. This & will generally be suppressed in what follows.

ASSUMPTION 2.14 (Near equilibrium initial conditions for ASEP-H). We assume
that the sequence of e-indexed initial height functions {h{(«)}e or the Gdrtner
transformed functions {Z;(+)}¢ (defined via hy as in (2.14)) associated with the
ASEP-H is “near equilibrium,” namely for any a € (0, %) and every n € N there
exist finite constants C and a such that for every x,x’ € R4 and every ¢ > 0 one
has

(2.16) 1Z6(x0)[ln < Ce®™,
.17 1Z§(x) — ZS(X/)”n < C(e|lx — x/|)aeas(x+x’).

For ASEP-B we do not need to impose any growth condition at infinity, but we
still have the following bound that is uniform in &. Recall that € and N are related
bye=1/N.

ASSUMPTION 2.15 (Initial condition for ASEP-B). For ASEP-B on {0} U Ay,
we assume that a sequence of e-indexed initial height functions {h{(+)}¢ or the
Gdrtner transformed functions {Zg(+)}¢ (defined via hg as in (2.14)) associated
with the ASEP-B is such that, for any o € (0, %) and every n € N, there exists a
finite constant C so that for every x, x’ € [0, N] and every ¢ > 0 one has

(2.18) 1Z5) I < C,

(2.19) 1Z5(x) = Z5(x)ln < C(elx = x".

Given T > 0, we endow the space D([0, T], C(R4)) and D([0, T], C([0, 1]))
with the Skorokhod topology and the space C (R ) with the topology of uniform
convergence on compact sets, and use = to denote weak convergence of proba-
bility laws. When processes converge in these topologies, we refer to it as conver-
gence as a space-time process.
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DEFINITION 2.16 (Scaled processes). The scaled processes Z are defined by

(2.20) ZEX) Y Z, op(e7'X) T e[0.T]

where Z (which depends on & through the model parameters) is defined in (2.14).

For ASEP-H, (2.20) is defined for all X € R4 and 2% € D([0,T], C(R4)); for

ASEP-B, (2.20) is defined for all X € [0, 1] and 2¢ € D([0, T], C([0, 1])).

We state our main theorems for the convergence of these scaled processes. Re-
call the definition of the mild solution to the SHE, the choice of ASEP parameters,
weakly asymmetric scaling, and scaled processes given in the above definitions.

THEOREM 2.17. Given any initial conditions Z{§ satisfying Assumption 2.14 such
that Z§ = Z as & — 0, where ¢ € C(Ry), then 25 = % as a space-
time process as ¢ — 0, where % is the unique mild solution to the SHE (2.6)
on Ry from the initial data %¢ satisfying the Robin boundary condition with
parameter A.

THEOREM 2.18. Given any initial conditions Z§ satisfying Assumption 2.15 such
that Z§ = Fi¢ g5 & — 0, where 7€ € C([0, 1]), then Z¢ = % is a space-time
process, as ¢ — 0, where % is the unique mild solution to SHE (2.6) on [0, 1]

from the initial data %€ satisfying the Robin boundary condition with parameters
(A, B).

3 Hopf-Cole/Girtner Transform and the Microscopic SHE

We derive the microscopic SHE satisfied by the Hopf-Cole/Girtner transforma-
tion [27,36] of ASEP-H and ASEP-B (recall Definition 2.12). For open ASEP,
this transformation and the associated boundary parametrization that yields Robin
boundary conditions was given recently in [41] (though we were unaware of that
work until it was kindly pointed out to us by Gongalves).

We will assume the choices of parameters given in Definition 2.8 and the weakly
asymmetric scaling given in Definition 2.10.

LEMMA 3.1. For ASEP-H, Z;(x) defined in (2.14) satisfies
1
(31) dZt(.Xf) = EAZ;(X)dZ + th(X)

for all x € Z>o, with Robin boundary condition at x = 0:
(B2 paZ(=1)—Z0) + (1 —pa)Z(-1) =0, ie, Z(-1) = psZ(0),

where M.(x) for x € Z>o are martingales with bracket processes

d
E(M(x)’M(y))t =0, x#y,
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L M. M) =

d
t 5 )
((% — 1) CR(nl’ x) + (5 - 1) CL(ntax))Zt(x)Z’ X > O’

d 2 2

10 M) = (£ =1) o+ (2=1) rroun) zio2,
For ASEP-B, (3.1) holds for all x € A y, with Robin boundary conditions at x = 0
and x = N:
(3.3) Z(=1) = puaZ0), Z(N +1)=pupZ(N),

where M.(x) for x € AN are martingales with bracket processes the same as in
the ASEP-H case for x € A y\{N } while at the boundaries x = N,

d 2
Srn ), = ((£-1) )

2
+ (5 - 1) r;(m(N)))zt(Nﬂ

PROOF. We first consider ASEP-H. Since only the jumps can affect the value of
h¢(x) for x > 0, and only the creation/annihilation at x = 1 can affect the value
of hs(0), we have, by definition (2.14) of Z and definition of ASEP-H,

dZ;(x) = Q(x)Z;(x)dt + dM;(x)
where the drift term (we suppress the dependence in ¢ to simplify our notation)

v+ (6722 — Dl x) + (€2 —DeR(p,x)  ifx >0,

O+ @ - D) + @ - D) ifx =0

and M.(x), x € Z>o, are martingales with the desired bracket process (this can be
checked easily).
The relation Q2(x)Z(x) = %AZ (x) for x > 0 can be achieved by setting

1

/\=§log%, v=p+q—-2/pq., D =2/pq,

as in the case of the standard ASEP without boundary; see, for instance, [14]. Note
that with the choice (2.13) we have D = 1 and A < 0; however, in the following
calculations we will represent all the quantities in terms of p, g without specifying
p,q asin (2.13).

With the constants A, v, D determined as above, for x = 0 we have

P+q—2ypq+ (4 —1)a ifn(l)=-1,

3.4 Q(0) =
(3.4) (0) p+q—2ypqg+ (5 -1y ifp)=1
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We want to match ©(0)Z(0) with %AZ (0), with certain “outer” boundary con-

ditions imposed on Z(—1). Recall that by definition Z(0) = e A(0)+vt apd
Z(l) — e—/lh(o)—)tn(l)-l-vt'

For the Robin boundary condition
1a(Z(=1) = Z(0) + (1 = pa)Z(=1) = 0, ie, Z(~1) = paZ(0) = 0
(where the real parameter (4 interpolates the Dirichlet condition Z(—1) = 0 and
the Neumann condition Z(—1) — Z(0) = 0), we have
AZ(0) = Z(1) = 2 = pa) Z(0) = ("W —2 + py) Z/(0).
The condition 2(0)Z(0) = 2 AZ(0) is satisfied for n(1) = —1 if

p+q—2m+(%—1)a=m(\/%—z+m),

and for n(1) = 1if

P+‘1—2«/ﬁ+(§—1)72«/ﬁ(\/§—2+ﬂf1).

Solving these equations leads precisely to the choices of «, y in Definition 2.8.
For ASEP-B, the proof is analogous. The martingale bracket processes are easily
computed. The derivation of our «, y parametrization at the left boundary is the
same, and one likewise readily checks that the same derivation with respect to the
right boundary condition leads to the forms of 8, § in Definition 2.8. 0

Remark 3.2. The range of w4, up € [v/q/Pp,+/ P/q] assumed in Definition 2.8
was necessary to ensure the nonnegativity of the boundary rates. This limits the

types of boundary conditions that can arise. For instance, the Neumann boundary
condition for the SHE is accessible when ug4 = up = 1(@G.e., A = B = 0). On
the other hand, Dirichlet boundary conditions would require g = up = 0, which
is certainly out of range.

In Definition 2.10, we assumed further that (14, g < 1. This is only a technical
restriction as it simplifies heat kernel bounds by disallowing for exponential modes.
In a work in preparation, [65] provides the necessary heat kernel bounds to control
possible exponential modes and extends our proof to A, B < 0 (i.e., g, up > 1)
as well as to delta function initial data.

Utilizing the weakly asymmetric scalings from Definition 2.10—in particular
their asymptotic expansions in Remark 2.11—Ileads to the following.

LEMMA 3.3. For ASEP-H one has

eZ1(x)> =V Z (x)V™Zi(x) + 0(e) Z1(x)?
%(M(x), M) =1 #x=0

eZi(x)* +0(e)Z:(x)* ifx =0,

where 0(g) is a term uniformly bounded by constant Cy and Cg /e — 0.

(3.5)
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For ASEP-B the first estimate in (3.5) holds for every x € {1,2,..., N —1}, and
the second estimate in (3.5) holds for x € {0, N}.

PROOF. The proof for the bulk (the first equation in (3.5)) is standard; see [15,
prop. 2.1(b)] with the parameter j therein set as j = 1/2. We only remark that
the term VT Z,(x)V~Z,(x) arises from the quadratic term n(x)n(x 4 1) in the
definition of the rates ¢L, ¢R. At x = 0, we use the expansions in Remark 2.11 to
immediately conclude the desired behavior in . The proof for the case of ASEP-B
is analogous. O

4 Tightness
4.1 Estimates of Robin Heat Kernels

Before proceeding with the proof of tightness of the sequence Z¢, we need some
estimates on discrete heat kernels with Robin boundary conditions.

Elastic Brownian Motion and Random Walk

A (discrete time) random walk ﬁ?i on Z>¢ with elastic boundary at —1 jumps
in the same way as the standard random walk when it is at x > 0; if it is at O,
then with probability 1/2 it jumps to the site 1, with probability p4/2 it stays
at the site 0 (i.e., “reflected back by the wall —1), and finally with probability
(1—pwq)/2 itis killed (i.e., “absorbed by the wall —17). The continuous-time walk
R$; on Z > with elastic boundary is then defined via ﬁfi by imposing exponential
holding time before each jump in the usual way. The heat kernel p® satisfying the
Robin condition (3.2) is the transition probability for R¢,, which is represented as

o0 tn
(@.1) Prx.y)=e™ Y —pi(x.y)
n=0

where py. (x, y) is the transition probability of the discrete time random walk ﬁfi.
A (discrete time) random walk ﬁ% on Ay = {0,1,..., N} with elastic bound-
ary at both ends is defined in the same way, except that if it is at O (respectively,
at N), then with probability p4/2 (respectively, at wg/2) it stays there, and with
probability (1 — 4)/2 (respectively, (1 — upg)/2) it is killed. The continuous-time
random walk RG on A y with elastic boundary is then defined via §eB analogously
as for the half-line case. The heat kernel p® satisfying the Robin condition (3.3) is
the transition probability for R%. See, for instance, [66].

Remark 4.1. Here and in what follows we will use p® to represent the discrete
heat kernel in both the Z>¢ and A y cases. Likewise we will use 33713 (introduced
below) for the continuous heat kernel in both the R+ and [0, 1] cases.

A Brownian motion Bf; on Ry with elastic boundary at 0 is defined as By, (1) =

|B(¢)| if t < m and killed at time m where m Ll -1 (e/A), e is an independent ex-
ponential random variable of rate 1, and t~! is the inverse function of the reflecting
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Brownian local time
t(t) = lim (2¢) ! Leb(s : |B(s)| < &0 <s <1)
e—>0

where Leb is the Lebesgue measure. Obviously if A = 0 then By, (¢) is simply the
reflected Brownian motion |B(¢)|, and if A — oo one recovers the Brownian mo-
tion killed at the origin. The kernel Z2R that satisfies the Robin boundary condition
with parameter 4 is the transition probability of Bf,. A Brownian motion By on
[0, 1] with elastic boundary at both ends is defined as Bg (1) = By (1) if t < nand

. . def ,_ . —1- . .
killed at time n where n = + 1(e/B), ¢ is as above, and t~! is the inverse function
of the local time

() = 1ir1%(2as)_1 Leb(s : Bf(s) >1—¢6,0<s <1).
£e—

The kernel 2R on [0, 1] that satisfies the Robin boundary condition with parameter
A, B is the transition probability of By . See, for instance, [53].

From these probabilistic interpretations one immediately has the following sim-
ple properties.

LEMMA 4.2. The above kernels @713 and pf satisfy the semigroup properties
and are both nonnegative at all space-time points. Also, the kernels 95 on

I € {R4,[0,1]} and pf{ on A € {Z>0,{0,1,..., N}} satisfy

/@R(X Y)dY <1, Y pf(x.y) <1

yeA

The inequalities become equalities if and only if A = 0 (or p = 1).

LEMMA 4.3. The kernels QZR on Ry or [0, 1] satisfy the following upper bound.
For each T > 0 there exists a constant C(T) such that for all T < T,

C(T) _r X|2
(X Y) < ﬁ

PROOF. For the reflected Brownian motion on [0, 1], for which the Robin heat
kernel 2R reduces to the Neumann heat kernel 2%, this is proved in [70, eq. (3.7)]
(except that the equation considered therein has an extra linear damping term and
thus the resulting bound has an extra factor e~ T). The proof of [70] relies on the
explicit expression of Z% via the image method. Since the transition probability
of the elastic Brownian motion must be smaller than the reflected Brownian motion,
one immediately obtains the claimed upper bound for 2%, For the case of R,
one can again prove the claimed upper bound for 2V by the method of images
and then the bound for ZR follows from it. Note that this bound is also easily
proved for ZR directly by applying the formula in Lemma 4.4 below, which is
derived by the image method. U
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A Generalized Image Method

We start by providing a formula for ﬂﬁ using a generalization of the image
method (to the Robin boundary condition case). We will not make much use of this
continuous-space formula, but include it since it motivates the more complicated
discrete-image method formulas provided in Lemmas 4.5 and 4.7. In scanning
the literature, we came upon some continuous-space generalizations of the image
method on R with some Robin boundary condition at the origin (see [32, 33, 35].
Discrete space and the boundary interval geometry lead to much more involved
calculations.

LEMMA 4.4. The half-line heat kernel @$ (X,Y) for X, Y > 0 that satisfies the
Robin boundary condition dx QTIS(X, Y)}X=0 = A@YIS(O, Y) has the following
representation:

0
@2 2Rx,v) = PT(X—Y)+PT(X+Y)—2Af Pr(X+Y—-2)et% dz

—0o0

where P (X) = «/Z—IH;Te_X ?1@T) s the standard continuous heat kernel for the

heat operator 0 — %A.

PROOF. We will prove (4.2) by showing that given any function ¢(X) on X €
R4,

u(T,X) = fooo PRX, V)p(Y)dY

solves the equation dru = %Au on R} x R4 with initial condition u(0, X) =
¢(X) (X € R4) and Robin boundary condition

Oxu(X,T)|y_o = Au(0.7).

The above equation can be solved by extending the initial values ¢ so that ¢’ — A¢
is odd, namely, for X < 0 one should solve the ODE

(4.3) ¢'(X) — Ap(X) = —¢'(=X) + Ap(-X), X <0,

and then solve the heat equation on the entire line R with the extended ¢ as initial
data. Indeed, u(T, X) = [g Pr(X —Y)$p(Y)dY satisfies

dxu(X, T)|y_y — Au(0,T) =/RP}(—Y)qb(Y)dY—A/RPT(—YM)(Y)dY

— /R Pr(—Y)(@'(Y) — A$(Y))dY.

which vanishes because Py is even and ¢’ — A¢ is odd.
To solve (4.3), we use an integrating factor e ~4X and get

(e Xp (X)) = —e X (@' (-X) — Ap(-X)), X <0,
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SO
0
P(X) = CetX 44X / e A5 (¢' (—s) — Ap(—s))ds, X <O,
X

Choose C so that the extended function ¢ is continuous at 0, that is, C = ¢(0).
This can be simplified as

—-X
P(X) = p(—=X) — 244X /0 eMp(s)ds, X <O0.

so that

00 0
u(T,X):/O PT(X—Y)¢(Y)dY+/ Pr(X —Y)$(=Y)dY

—0o0

0 -Y
—2A/ PT(X—Y)eAY/ eB(s)dsdY

—00 0

= /oo (PT(X—Y)+PT(X+Y)
0

0
—24 / Pr(X +Y — Z)ed? dZ)¢(Y)d Y.

—00

This shows that the Robin heat kernel is given by (4.2). U

We turn now to the analogous result for the discrete space half-line heat kernel.

LEMMA 4.5. The half-line discrete heat kernel pfa (x,y) for x,y € Zxy that sat-
isfies the Robin boundary condition pf (-1,y) = ,uApf(O, y) has the following
representation:

PR, y) = pr(x = y) + ape(x +y + 1)

4.4) - L
+ui—D > pix+y—u

Z=—00

where p is the transition probability of standard continuous-time random walk on
Z (i.e., jumps left and right by 1 at rate 1/2).

PROOF. The proof is analogous to that of Lemma 4.4, but adapted to the discrete
setting. Given ¢ on Z ¢, one wants to extend it to Z such that for x < 0,

(4.5) ¢(x — 1) = pad(x) = —(p(—x — 1) — pagp(—x)).
The above relation is solved by the function

—x—2

46) () =pap(—x—D+@i—1 Y pug k), x<0
k=0
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(if —x — 2 < 0 the sum over k is understood as 0). Therefore the solution to the
heat equation is given by

u(t.x)= Y pix—y)p»)
y=—00
-1

=Y pix=p(+ D pilx — pag(—y — 1)
y=0

y=—00
—1 —y—2

+3-D > pex—» > w7 ek
y=—00 k=0

=§:(pwx—w+WMPAX+y+1)
y=0

—2—y

A pt(x—Z)MZz_y_z)tﬁ(y)-

Z=—00

To check that this u satisfies the Robin boundary condition u;(—1) = u4u,(0) for
any ¢, observe that

(1) — pau(0) = Y pi(=1=y)p() —pa Y pi(=y)p()
y=—00 y=—00
4.7 o
= > (=9 —1) — pad(»).
y=—00

By (4.5) and p;(—y) = p:(y) the above expression is 0. So the Robin heat kernel
is given by (4.4). U

From the explicit formulas in Lemma 4.4 and Lemma 4.5, one can see that

PRx,y) = 2R, x), pRx,y) =pR(y. )

i.e., they are symmetric in x, y. In proving these lemmas we could have just
checked that the stated formulas solve the relevant heat equations. We opted for
the more detailed derivations since it is informative in attacking the below finite-
interval case, where we are unable to provide a concise closed-form solution to
check. Instead, in that case we provide bounds on the solution, which suffice for
our applications.

To find the Robin heat kernel on the discrete finite interval A y, we need to apply
the above image method in a recursive way. It will be convenient to introduce the
notation

N=N+1
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sothatZ = Ukez{_klv, kN+1,...,(k+1)N—1}, aunion of nonoverlapping sets,
each consisting of N points. We start with the first several steps of the extension in

order to motivate the general case. Given ¢ on {0, 1,..., N — 1}, one first extends
itto{—N,—N +1,...,—1}suchthatforx € {—N,—N +1,...,—1},
(4.8) P(x —1) = pad(x) = —(p(—x — 1) — pagp(—x)).

For this we have already obtained in (4.6) that

—x—2

4.9) PO) = pap(—x - D+ Wi —D Y w7 ()

y=0
for x € {—Z\_/,—]V +1,...,—1}. We then extend ¢ to {]V, ...,2N — 1} such that
(4.10) ¢(x) = pupp(x — 1) = —(p(2N —x) — upp(2N — x — 1))

for every x € {N,N + 1,...,2N — 1}. Solving the above equation (4.10) (or
directly checking the following result), one has

N—-1 _
@1 ¢ =puppQ@N —x D+ @i -1 > wy V)
=2N—x

for x € {]V N +1,...,2N — 1}. We should then iterate this procedure to extend
¢ to increasingly larger domains, but at this point if we were to stop the iteration
we would get the “leading-order terms” of our heat kernel

PR, y) ~ pr(x —y) + ape(x + y + 1) + uppi(x +y +1-2N)

—2—y
+WEi-D Y prlx =
z=—N
2N-1 _
-0 Y pr -t
z=2N-—y
for x,y € {0,1,..., N} (recall that pf is of course always defined only on x, y €
{0,1,...,N}). Here “~” means that we should actually take into account more

terms on the right-hand side in order to obtain an equality (see the final result
(4.21) below for comparison).

We now further extend ¢ to {—2N,—2N +1,.. - —N — 1} according to (4.8).
This is possible because the values on {0, 1,...,2N } have already been defined,
and we get (4.9) forall x € {—2N,—2N +1,...,—N —1}. We then plug (4.11) in

to get an expression only depending on the values of ¢ on {0, 1,..., N — 1}. This
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eventually yields
N-1
_ e
$(x) = papBd N +x) + (i — D D ()
y=0

N-1 _
—(2N
+ ) (MA(ué—l)myg @N+x+D
y=2N4+x+1

(4.12)
—(2N 1
+ g — Dy N ))qﬁ(y)
N-1 o
+Ei-0eE-n Y (X Huh)ew
y=2N+x+2 i,j=0
i+j=y—(2N+2+x)
for every x € {—2N,—2N +1,...,—N —1}.

We can iterate this procedure and use the condition (4.8) and (4.10) in turn to
extend ¢ to the entire Z. Let u be the solution to the heat equation on Z starting
from this extended ¢. Since (4.8) holds for all x < 0 by our construction, as in
(4.7) we have u;(—1) — pqu;(0) = 0. Also, since (4.10) holds for all x > N by
construction, we have

ur(N) — pgug(N —1)

= Y p(N=»p(—us Y. pi(N—1=y)¢()
y=—00 y=—

= Y pi(=»@WN +y) — upp(N — 1+ y)).
y=—00

This vanishes because p; is even, and ¢(N + y) —upp(N — 1+ y) is odd in y by
(4.10) (with x in (4.10) chosen as x = N + v). Therefore u satisfies the desired
boundary condition.

We have the following Lemma 4.6 to represent the extended ¢ in terms of the
original given ¢ defined on A  in a suitable form that is convenient for the follow-
ing analysis.

For x € {k]V,k]V +1,....,kN + N — 1}, we define

o (k + 1)N —x — 1 if k is an odd integer,

(4.13) = e .
x—kN if k is an even integer.

It is easy to check that one always has 0 < x* < N — 1. This is the preimage of x
under reflection through the two sets of boundaries of A .
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LEMMA 4.6. Let ¢ be the function on Z obtained by the above recursive extension
procedure. There exists a constant Cy that only depends on A, B such that for each

keZ,
N-1
(4.14) $(x) = Irp(x*) + £ Y Er(x.y)p(y)
y=0
forallx e {kN,kN +1,...,kN + N — 1}, where 0 < I} < 1 and

o omax B ()l <G
kN<x<(k+1)N
0§y<1v
One can check that (4.12) is indeed of the form (4.14) since u3—1 ~ u%3—1~¢
and the sum ZMZ#% ~ N ~ %

PROOEF. The proof goes by induction. To begin, if k = 0 then x* = x so (4.14)
holds with /o = 1 and E¢ = 0. Suppose that the statement of the lemma is true
for |k| < m;weshowitfork =—m—1landk =m + 1.

Consider the case k = —m — 1. Since ¢ is required to satisfy (4.8), as in (4.6)
we have

—x—2

4.15) $() = pap(—x — D+ (i —1) > 1 V()
y=0

for x € [kN,kN + N — 1] N Z, where ¢(y) on the RHS has been defined as
our induction assumption since —x — 2 < (m + 1)N — 2. Noting that mN <
—x —1 < (m 4+ 1)N — 1, the first term on the RHS of (4.15) is equal to, by
inductive assumption,

N-1
(4.16) palm((—x = D) + pae Y Em(x. »)$(3).

y=0
By definition one can check that

(—x—1D)*=m+ )N +x =x* ifmisodd,
(—x—1D*=—x—1—mN =x* ifmiseven.
The second term on the RHS of (4.15) is equal to (noting that —x — 2 < (m +
)N —2)
m UN+N-1DA(=x—-2)

wi-D> > 1w ().
{=0

y=(N
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Using the inductive assumption, this quantity is equal to

m (UN+N—1A(-x—2) N-1
@17 (n3-1) Z > M/}x_z_y(le¢(y*)+8zEz(y,Z)qﬁ(Z))-
y={N z=0

We now deal with the terms with 7, and the terms with Ey separately. Regarding
the terms with 1, in (4.17), for each fixed ¢, as y ranges from {N to (£ + 1)N — 1,
y* ranges over {0, 1,..., N — 1}, and this correspondence is one-to-one. So

m (UN+N-1A(—x—2)

(4.18) Z > w T () =

—(N _
r= N-1

m
—x—2—
> (i ety )80
y*=0 ¢=0
where the y in the parentheses on the RHS is determined by y* via reversing (4.13),
namely,
(E + 1)N —y* —1 if £is an odd integer,
*+ AN if £ is an even integer.

(4.19) y =1y 0%

Regarding the terms with Ey in (4.17), we have

m (UN+N-1A(—x—2)

N-1
(4.20) Z > TR (s > Ee(y,z)fﬁ(Z)) =
z=0

y=(N
N—1, m (UN+N-1D)A(-x—2)

£ Z (Z 2 T Ee(y,z))qﬁ(Z)-

y={N
Summarizing the above formulas (4.16), (4.17), (4.18), and (4.20), we have
N-1
$) =L m 1) +e Y E_m1(x.9)¢()
y=0
where
I 1 o mAlm,

m
def — —x—2—t(y;t
Eom1(x.3) Z paEm (e, ») + e 03 = DY 1" 200 1, < xms
=0
m EN+N-1
+<MA—1>Z Z Iy 2E(7.y).
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The coefficient /_,,—; clearly satisfies the desired bound since 0 < u4 < 1 and
0 < I, < 1 by induction. Since | p,i — 1] < 3Ae for ¢ sufficiently small, and
N = 1/e, we have

m

|E—m1(x. )| < |Em(x.p)| +34m +34> " max _|Ey(y.y)]
=0 IN<F<W+DN

m
<CP+34m +34) .
£=0

where we have applied the inductively assumed bounds on E,,, Ey. It is easy to
see that there exists Cy that is independent of m such that

m+1_1

C
Cy +34m +34- 2

—<Cm+1
Co—1 — 0

for all m > 0. Indeed, one can divide both sides by C(;”‘H and see that it suffices

to show that for sufficiently large Cp one has Clo + % <09or lc'gi’;l < 0.9.

With this choice of Co the exponential bound |E_,,—1| < C{" *1 follows.
The case k = m + 1 can be shown in the same way. Therefore the inductive
proof is complete. U

The following lemma will be useful for the proofs of the Robin heat kernel
estimates on bounded intervals. One can immediately see that the statement of the
following lemma is true for the Neumann heat kernel on the bounded interval with
Ik = landEk =0.

LEMMA 4.7. The discrete heat kernel pR on {0, 1, ..., N} that satisfies the Robin
boundary condition pf(—1,y) = papf (0, y) and pR(N + 1, y) = uppf (N, )
has the following representation:

PRy =pix=y)+ D Ipi(x —u(y:k))
keZ k+0

4.21) (k+1)N-1
+e Y. > px—PE(G.y)
k€Z.k#0 F=kN
where t is defined in (4.19) and I}, and E}, satisfy the estimates in Lemma 4.6.

PROOF. The heat kernel pX is related to the standard continuous time discrete
space random walk heat kernel p by

(k+1)N-1

N-1
Y PR =D px e =D D pilx—»)p().
y=0

yezZ keZ y=kN
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Note that ¢ in the middle and on the right-hand side of the above equation is the
extension to all of Z of ¢ on A as described earlier in this subsection. By applying
Lemma 4.6, the above quantity is equal to

(k+1)N-1 N—1
SO —y)(lkqs(y*) fe Y Ek(y,zw(z))
k#0  y=kN z=0
N-1
+ ) pix—=)o(y)
y=0
N-1
-y (Z Iepelx —L(y*;k)))qs(y*)
y*=0 “k#0
N—1 (k+1)N-1
+) (sZ > pt(x—y)Ek(y,z))¢(z)
z=0 k#0  y=k N
N-1
+ > pilx = y)$ ().
y=0

Therefore pX is given by (4.21). U

Sturm-Liouville Theory
We need some results on the spectrum of the discrete operator —%A on the
discrete interval {0, 1,..., N} C Z with Robin boundary condition

u(=1) = pau(0) =0, u(N +1)—ppu(N) = 0.

We start by recalling some summation-by-parts formulas. We only need the
formulas on the bounded intervals here in this subsection, but the formulas for the
case of the half-line will also be used later. For the case of the half-line, we define

hy £ {—1,00UZ4 —> R | lim u(x) =0, (u, un, < oo}
X—>00
where (u, v)n, &I 322 1 (VTu(x))(Vtu(x)). (Recall that V# are defined in
(2.3).) The following summation-by-parts formulas are facts of finite difference
Laplacian A in general and has nothing to do with the particular type of boundary
conditions; the proof is omitted since it is straightforward.

LEMMA 4.8. For functions u,v on {—1,0,..., N + 1}, one has
N
(4.22) > u)Av(x) = u(N + DVTo(N) + u(-=1)V v(-1)
x=0

N
= > (Vu@)(Vh(x)),

x=—1
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N N

(4.23) D u)Av(x) = Y v(x)Au(x) + u(N + HVu(N)

x=0 x=0

+u(=1)V7v(0) —v(N 4+ 1)VTu(N)

—v(=1)V7u(0).
For functions u,v € hy, one has
424) Y u@)Av(x) = > vx)Aulx) + u(=HV0(0) — (=) V u(0).
x=0 x=0

First of all, we observe that if ug4, up < 1, the eigenvalues of the matrix —%A
with Robin boundary condition are all nonnegative. This is because —% A is a self-
adjoint Markov generator of the elastic random walk, but we can also see this more
explicitly as follows. Note that if u = (4(0),u(1),...,u(N)) is an eigenvector
with eigenvalue A for the matrix —% A with Robin condition (that is, an (N + 1) x
(N + 1) matrix), then, using (4.22), together with the Robin condition, we have

20 = (u. (=A)u) — Zy:o u(x)(—Au(x))

|ul? ny:o u?(x)
_ N+ D20 i) A0 - D 3 (VHe@)?
B Yo u?(x) T

Here, (u, (—A)u) is a bilinear form on R¥ 1, while in Zi\;o u(x)(—Au(x)) the
A is the usual finite difference Laplacian as in (4.22) where we need to specify
two extra values u(—1) &ef #Au(0) and u(N 4+ 1) = pupu(N) using the Robin
condition.

Let) < Ap <A1 <--- < Ay be the eigenvalues of —%A with the above bound-

ary condition. Let 1% be the k" normalized (i.e., ny:o Vi (x)? = 1) eigenfunc-
tion associated with Ay :

(4.25) Y (x) = Cy g cos(wrx) + Cy g sin(wg x).
Since they satisfy the Robin boundary conditionse we have
C1k cos(—wg) + Co i sin(—wg) = naCy .

(4.26) C1x cos(wg (N + 1)) + Cy g sin(wg (N + 1))
= uB(Cy cos(wx N) + Cy i sin(w N)).

From these we cancel out C x, C, x and we get, after simplification, the equation
for wy,:

(4.27) sin(wg(N + 2)) — (ug + up) sin(wg (N + 1)) + pqapup sin(wg N) = 0.
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Note that @ = 0 and @ = 7 are always solutions to (4.27). If ugy = up =1,
they correspond to a constant eigenvector. But if (u4, up) # (1,1), w = 0 and
@ = 7 do not correspond to nontrivial eigenvectors since Cy x in (4.26) must then
be 0 and therefore ¥ = 0.

Let us record here the spectral decomposition of the heat kernel:

N
(4.28) PR Y) = D Y (v, (n)e ™M
k=0
LEMMA 4.9. Under the above setting, if g = up = 1, we have wy = 16‘—11 and

A = l—cos(]\],‘—fl). If tg + B < 2 we have
Ak =1—cos(a)k), k=0,1,...,N,

where wy fork = 0,1,..., N are the N + 1 solutions of (4.27) in (0, ) and are
ordered as wg < w1 < -+ < wpy. Furthermore, we have
km k+ Dm

<C()k<
N+17 - N+1

(4.29)

foreveryk =0,1,...,N.

kn

PROOF. For the case uqg = pup = 1, one can directly check that vy = {7

solve (4.27). So we focus on the case g + up < 2.
We compute the derivative of the LHS of (4.27) w.r.t. g at w; = 0, which is
equal to

(N +2)— (a4 + up)(N + 1) + papupN
>(N+2)—(2—cA—eB)(N+ 1)+ (1—cA—¢eB)N
=cA+eB >0

so the LHS of (4.27) is increasing at 0. Then it is easy to prove that the LHS of

(4.27) at 16‘ _’:1 is negative if k is odd and positive if k is even, since at these values

the LHS of (4.27) becomes
in(fr + ) & P
sin| km + ——— sin| k@ — ,
N 1) T HALB N +1

and the first term always dominates and determines the sign if uqup < 1. The
claim (4.29) follows immediately by continuity of the LHS of (4.27) in wy. O

LEMMA 4.10. Under the above setting, there exists a constant C > 0 such that for
all sufficiently large N,0 <k < N,0 < x < N, one has |y (x)| < JLﬁ

PROOF. By an elementary trigonometric identity we rewrite Yy as ¥ (x) =
Cy sin(wgx +0). Whenk = 0, wg < 757, so it is easy to see that over the inter-
val {0, 1,..., N} (which is less than half of the period of V), the L?-normalized
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function g is bounded by f_ﬁ Since ¥, is normalized for every k,

N
1= Ck2 Z sin?(wgx + 6)
x=0
WA
(4.30) =C2 > 5 (1= cosayx +26,)),
x=0
3= Ckz(N +1 sin((N + Doy ) cos(Nwy + 29;())’
2 sin wy,

where we used a Lagrange trigonometric summation formula. For 0 < k < N/2,
by Lemma 4.9 we know that

a)ke|: km (k+1)71]’

N+1 N+1
and therefore for N sufficiently large

) -1 8wy . Ok 8
Sin @ 11— — _
k= Tk=1"7g =10 = 9N + 1)

so the above quantity (4.30) is larger than
CZ(N +1 9(N + 1))
k )

2 8

and therefore |Cy| and thus || are bounded by JLW If N/J2 <k < N, we can
write sinwg = sin(w — wy) and then follow the same argument. Finally, when
k= N,if ug = up = 1, then oy = A],V—j_'l; otherwise one can check that the
LHS of (4.27) at w = I\ZIV—+” and w = (3;\1]\,;_’_13)” have opposite signs. This implies
that m — N > % For N sufficiently large one has

it — o) > S —wy) >
SIn(m7T —w —\T —w T —
N)=79 N=9GEN +3)

so (4.30) is larger than

o2 N+1 2I(N+1)
K\ 2 167 ’

and therefore |Cy | and thus || are bounded by % O

Heat Kernel Estimates

With the techniques developed above, we now prove the various heat kernel
estimates, which will be useful for the rest of the paper. Proposition 4.11 and
Corollary 4.12 below are the estimates for the 14-Robin heat kernel on Z ¢, while
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Proposition 4.13 and Corollary 4.14 below are the estimates for the (4, up)-
Robin heat kernel on {0, 1, ..., N}. The analogous estimates for the standard heat
kernels on the entire Z are known, for instance, [7, 19].

PROPOSITION 4.11. Assume that pX is the heat kernel on 7> with Robin bound-
ary condition (3.2) with p = 1 — €A for a constant A > 0. Given any b > 0, for
any |n| < [tY2, v €[0,11,0 <t <t' <&2T, and x,y € Lso, we have

(4.31) pR(x.y) <€ DpR(x, ),

—1_
(4.32) |p§(x, y) — pf(x, y)| < C(A) (1 ALT2 v)(t/ _ t)v,
433)  pR(x.y) < C(A.B.TY(1 A177) e bI—2IANTI2)
(4.34) IVupR(x, )| < C(A.b, T)(1 A Z_H_TU) In|V e~ bl=yIAAT12),

Here Vy, f(x) &ef f(x +n) — f(x) acts on the first variable of the functions.

PROOF. To prove (4.31), we use (4.1) to get

oo n

VRV t ’_
Pr(x.y) e e Ty —pix.y) =" Tpfi(x. ),

n=0

where pg(x,y) is the transition probability of the discrete time elastic random
walk.
For the other bounds, we use the explicit formula obtained in Lemma 4.5:

PR, Y) = pex = y) +papi(x +y + 1)

(4.35) —2
+@i—D > pix+y-—ugt

Z=—00

and the existing estimates for the entire line kernel p; (x).
To prove (4.32), we make use of [19, (A.10)]:

(436) |per(¥) = pe(x)] < C(L ALY = 1)",
and this together with (4.35) yields

-2
(. 1) -pR(x, y)| sC(mfi—”xr’—t)”(1+MA+(M,%—1> 5 ugz—z).

Z=—00
The last factor is bounded by a constant independent of ¢. Indeed, this is obvious
if A =0 (e, u =1); and if A > 0, the sum over z yields a factor ﬁ, which

multiplied by /Lfl — 1 is bounded by a constant independent of ¢.
To prove (4.33), we use [19, (A.12)]:

(4.37) pe(x) < CD)(1 A172) e OXIAATY2)
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Note that by e PGFNAAT2) < o=blx=yI(AATY2) e firgt two terms in (4.35)
satisfy the desired bound. Since g < 1 and x,y € Z>o,

-2
Y x4y -t
Z=—00
-2
< C(b) Z (1 /\[_1/2) e—b(x+y—z)(1/\t_1/2)

Z=—00

—_ —1/2
iy e 2b(1A1~1/2)

—1/2y,—b(x+y)(1At
=CO)A At Je Y 1 — e—2(Ar71/2)

< C(b) e—b(x+y)(1/\t_1/2)

where we summed over z and used
(4.38) e 1/(1—e 1) <1/q
for any ¢ > 0. By the assumption on 14 and using ¢ < 62T, we have
12 —1] < C(A)e < C(A,THA A1),
So the last term of (4.35) also satisfies the desired bound and thus we obtain (4.33).
To prove (4.34), we can use [19, (A.13)]:
(4.39) [V pe(x)] < CBY(1 AL 37) || e PHIANT),
and proceed in the same way as in the proof for (4.33) to obtain (4.34). Il

COROLLARY 4.12. Let pR be the heat kernel on Z ¢ as above. Given any a > 0,
foranyt € [0, Te_z], X € Zso, we have

@40) Y pR(x.y) e AR IANTYE) < (g, A, T) e,
y=0

(4.41) Z prfe(x’ ) ey eaIx—yl(l/\t—l/Z) < Cla, 4, T) pdex (—1/2.
y=0

PROOF. To prove (4.40), note that its LHS is bounded above by
(4.42) paEx Z pf (x,y) ea|x—y\(s+(1/\t_1/2))’
y>0
and applying (4.33) this is further bounded above by
C(A, b, T) p4Ex Z(l A t_%) e—blzl(l/\z—‘/2) ea|z|(5+(1/\z—l/2))
Z€Z

for any b > 0. Without loss of generality we assume ¢2 < T,and since t < 72T,
one has TV2(1 A t71/2) > ¢ Choosing b = 2a(T'/2 + 1), the above quantity is
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bounded above by
C(A,a,T)e%* Z(l A t—%)e—glzl(l/\

Z€Z

t—1/2)

(4.40) then follows by performing the sum over z and applying (4.38).
The estimate (4.41) follows in the same way using (4.34) in place of (4.33). [

PROPOSITION 4.13. Assume that pR is the heat kernel on {0, 1, ..., N’} with Robin
boundary condition

P (=1.y) = wapf(0,y). PN +1.y) = uppf (N, )
VO<t<e2T,0<y<N,
with pg = 1 —¢A and pup = 1 — ¢B for constants A > 0, B > 0. Given any
b >0, forany|n| < [tV/?,ve[0,1,0<t <t <& 2T, and0 < x,y <N,

we have all the bounds stated in Proposition 4.11 where the constants depend on
A and B now.

PROOF. The proof for (4.31) follows in the same way as in the half-line case.

Turning to (4.32), unlike in the half-line case, it does not seem to be easy to apply
the standard heat kernel estimate (4.36) combined with (4.21) to reach the conclu-
sion. This is because (4.21) involves summation over all periods while (4.36) does
not capture any spatial decay. Instead of trying to improve upon estimates to follow
this route, we observe below that (4.32) can be seen as a consequence of spectral
properties of —% A as contained in Lemma 4.9.

First note that by (4.28)

N
PR, Y) = PE(.Y) = D U ()Y, () (e — e ),

k=1
By Lemma 4.9 there exist constants Cy, C{, C, C} such that

k2 k?
(4.43) Claz = Cruwg < A = 1—cos(ey) < Coug < G

Using the upper bound in (4.43), one has
11— e < C|(r = YA)IY < Clt = 1) k* /NP

forv € [0, 1] and wx < 7. By Lemma 4.10 the eigenfunctions v/, can be bounded
by a constant times +/N ; thus by the lower bound in (4.43)

R R C & kY
P y)—pr(x,y)| < — Ze" “t —t’l”(l A )

2v
kl N

N
_¢ —C{tk®/N?), _ k2
N E 1 [t —t"|"[ 1A ik
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Summing over k we obtain the desired bound (4.32).

To prove (4.33), we invoke Lemma 4.7 and use the standard heat kernel bound
(4.37). Since the terms with |k| < 2 can be all bounded using (4.37), one only
needs to deal with the terms with |k| > 2. The second term on the RHS of (4.21)
can be bounded by

C(b)(1 A t_%) Z I o—blx—t k) (A=1/2) -

k>2 ~
o—2BN(AIT1/2)

C(hY(1 A 177) e BNANTY),

1 — e—ZN(l/\t—l/Z)

since [Ix| < 1. Using e724/(1 — e~ 9) < 1/q for any q > 0, the above expression
is bounded by
5 —bN(1At~1/2) . - B
CHA AT o < C(T.B)(1 A172) e blyIAArTl2)
bN(1 At™1/2)

where we used t < 72T ande = 1/N.

By using (4.37) and the bound for E; in Lemma 4.6, the last term on the RHS
of (4.21) can be bounded by

(k+1)N-1 1 _
7 7 —1/2
EC(b)Z Z (1 At72) e blx=YI0n / )C(I)kl <
k>2  y=kN
C(h, Co)(1 A1=3) e~ BNOATI2) Z o (CEN(IAT™1/2)+10g Co) k|

k>0
where we used |[x — ¥| > (|k| — 1)N and replaced the sum over y by a factor
N = 1/e. As in the proof of Corollary 4.12, we have NT/2(1 A t71/2) > 1.
Choosing h=2 log CoT'/2 and summing over k, the above quantity is bounded
by (noting that |x — y| < N)

C(A, B,b, T)(1 At72) e 0x—rI0nT12)

The proof of (4.33) is then completed.
The proof of (4.34) follows analogously by using the standard kernel estimates
(4.39) together with (4.21). O

COROLLARY 4.14. Let pR be the heat k_ernel on{0,1,..., N} with Robin bound-
ary condition as above. For any t € |0, Te_z], x €4{0,1,..., N}, we have

N
Y pR(x.y) = C(A.B.T),
y=0

(4.44) N
3 VepR(x, ) AT < 04, BT 1R

y=0
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PROOF. These are consequences of (4.33) and (4.34), and the proof is analogous
with that of Proposition 4.12. O

4.2 Proof of Tightness

The rest of this section is devoted to the proofs of Propositions 4.15 and 4.16,
which will yield tightness of the rescaled process. Recall that
def

1Ll & (B £ ()"

denotes the L” norm. Recall also the definitions given in Section 2. The follow-
ing two propositions provide vital continuity estimates from which the tightness
follows by standard arguments.

PROPOSITION 4.15. Let Z be the Gdrtner transformed process for ASEP-H. Fix
T <oo,neN,ac (O, %) and some near-equilibrium initial conditions as in
Assumption 2.14, with the corresponding finite constant a. Then there exists some
finite constant C such that

(4.45) 1Z:(x)||2n < Ce®®*
(4.46) 1Z,(x) = Zi(x")|l2n < Cle]x — x']) %6 +X)
(4.47) 1Z,(x) = Zi(xX)|lan < Ce%(1V |t —1]5)e228%

forallt,t' € 0,6 2T and x,x’ € Ry with |x — x| <&~ L.

PROPOSITION 4.16. Let Z be the Gdrtner transformed process for ASEP-B. Fix
T <oo,neN,a e (0, %), and some initial conditions as in Assumption 2.15.
Then there exists a finite constant C such that

(4.48) 1Z:(x)]2n < C,
(4.49) 1Z:(x) = Zi(x')|l2n < Clelx — x'])%,
(4.50) 1Z(x) = Zi/(x)||lan < Ce%(1V |1' —1]%),

forallt,t’ €[0,672T] and x,x’ € [0, N].
Recall the scaled process Z° from Definition 2.16.

PROPOSITION 4.17. For ASEP-H with near equilibrium initial conditions as in
Assumption 2.14, the law of { 2} is tight in D([0, T]; C(R.)) and any limit point
of {28} is in C([0,T]; C(R4)). For ASEP-B with boundary conditions as in
Assumption 2.15 the law of {2}, is tight in D([0,T]; C([0, 1])) and any limit
point of {28} is in C([0, T]; C([0, 1])).

PROOF. Let I = Ry for ASEP-H and / = [0, 1] for ASEP-B. First of all, the
bounds for (4.45) and (4.46), or (4.48) and (4.49), imply tightness in C(/); see,
for instance, [9]. Then (4.47) or (4.50) and [7, prop. 4.9] (and the arguments below
proposition 4.9 in [7] with C(RR) replaced by C(/)) combine to imply tightness in
D([0, T]; C(I)) and that the limiting points must lie in C([0, T]; C(I)). The only
necessary change in the arguments [7, prop. 4.9] is that the metric on C(R4) is
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defined as p(f.g) = Y00, (1 A maxyefon | £(x) — g(x)]). and for C((0. 1)
we can simply use the C°° norm. O

The following technical result is useful for L” estimates.

LEMMA 4.18. Let A € {Z>0,{0,1,...,N}}. Given any n € N, there exists a
finite constant C such that, for any deterministic function fy(x,x’): [0, 00)x A% —
Randanyt <t' €[0,00) witht' —t > 1,

t’ 2
(4.51) H/ > felexNdM(x)| <
L' xeA 2n
t/
Ce/ Z ﬁ(x,x/)ZHZSZHn(x/)ds
L xreA
where
(4.52) ) E sup | fy(x.x)|

|s’—s|<1

and M is the martingale introduced in Lemma 3.1.

PROOF. This is essentially [19, lemma 3.1]; see also [15, lemma 3.1]. Fixing ¢
and calling R/ (x) the integral on the left-hand side of (4.51), by the Burkholder-
Davis-Gundy (BDG) inequality, one only needs to bound ||[R.(x)]s|n, Where
[R.(x)]s is the optional quadratic variation, i.e., the sum of the squares of all
the jumps of R.(x) over time (¢,¢]. The only inputs from the martingale M to the
proof in [19, lemma 3.1] are that a jump of M(x’) at time s equals

((q/p)E' = 1) Z-(x))? < CeZs—(x))?,
and that
(4.53) sup  Zy(x') < e2VENIODZ (i)

s€(s1,52]
where 51,52 € I and Ny(x') is the number of jumps occurring at x” during a unit
time interval / that is stochastically bounded by a Poisson random variable with

constant rate; these remain true in our case, and therefore the detailed proof is
omitted. O

The rest of this section is devoted to the proofs of Propositions 4.15 and 4.16.
We rewrite the discrete SHE (3.1) in the following integrated form:

t

(4.54) Z:(x) = Z pR(x,x") Zo(x') +/ Z PR (x. x")dM(x'),
x'eA 0 xeA

with A € {Z>0,{0,1,..., N}} depending on the half-line or bounded interval

case.
We start with the proof of Proposition 4.15.
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PROOF OF PROPOSITION 4.15. In what follows, the value of constants may
change from line to line (and within lines). Let /; and /5 denote the first and
second terms on the RHS of (4.54), respectively.

We begin by proving the uniform bound (4.45). First, by (4.40) we have the
following bound on the Robin heat kernel:

(4.55) Z pR(x,y)e < Ce®** fort <& 2T.
y=0
For 11, by the triangle inequality we have

2
107 = 1113, < (X pF e )1 Zo()2n)

Combining this with (4.55) and (2.16), we obtain
(4.56) 11, %) [l < Ce?@e™.

Turning to bounding />, we assume ¢ > 1 and apply Lemma 4.18 with fs(x, x’) =
Pf_s (x, x’) to obtain

t
120202 = Co [ 35|22, 00ds
0 y>o0
where p is the local supremum of pR defined as in (4.52). By (4.31) we have
pf < Cpﬁ for0 <’ —t < 1, and by (4.33) we have the estimate pf <CcrV2,
Therefore p2_(x, y) < C(t — s)_l/zpf_s(x, y) and hence

t
_1
|72(t. )]l < Ce fo (t =) (Yo PR )IZ2n(r))ds fort = 1.

y=0
Combining this with (4.56) yields

t

@sn) |22l = ce 4 Ce [ =57 ( X o eI Z2 () ds.
0 y=0

The bound (4.57) was derived for ¢ > 1, but in fact it also holds true for t < 1.

This is so because, by (4.45) and (4.53) with (s1,s2] = (0,¢], we already have

| Z2(x)|l2n < Ce?9* for ¢t < 1. With this, iterating this inequality and using the

semigroup property of the heat kernel p® and (4.55), we then arrive at

0 . .
CJ t J
1220l < (€2 + 3 = (e [ 5712ds ) e2eer).
i=1 J! 0

With ¢ < ¢ 2T, the desired result (4.45) follows.

Now we turn to proving the spatial Holder estimate (4.46). For this we extend
Z to the entire Z (we still denote it by Z¢) such that Zo(x — 1) — g Zo(x) is odd
in x:

(4.58)  Zo(x—1)—puaZo(x) = —(Zo(—x — 1) — ugZo(—x)), x <0.
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As in Section 4.1, this implies that
459 Litx) =Y prx.»)Zo(y) = Y pi(x = ) Zo(y) = pr * Zo(x).
y=0 yezZ

The advantage of the extension is that now p;(x—y) only depends on the difference
between x and y. By the triangular inequality, we have

@60) 11160 x) = 1. )13, = (X PN Zotx =)~ Zo(' ~F)lan)
X€Z

By (2.17) we have || Zo(x) — Zo(x)|ln < C(e]x —x')*e®*+X) for x x" € Zx,
where o € (0, %) This is also true for the extended Z( with any x, x”. To see this,
rewrite (4.58) as (recall that u = 1 — ¢ A)

Zo(x—1)=Zo(x) = =(Zo(—x—1) = Zo(—x)) —€A(Zo(x) + Zo(—x)) x <O.

Then, for x < x” < 0, sum the above identity over the points between x and x’,
which yields

x+1
(4.61) Zo(x)—Zo(x") = Zo(—x—1)—Zo(—x'—1)—¢cA Z (Zo(2)+Zo(—2)).

z=x'
Therefore, by (4.61), (2.16), and (2.17),
1Zo(x) — Zo(x")|n < C(e]x — x'|)%e®C+*) 4 Ceg|x — x/|e®+X)
< C(e|x _ xl|)aea8(x+x’)

since |x — x’| < 1/eand a € (0, %). For x < 0 < x’ we have the same bound by
|x|%+|x'|* < C(x'—x)*. For the standard heat kernel p, Y =, p;(X)e?** < C;
thus the RHS of (4.60) is bounded by

N2 p
(4.62) ( Z D ()_c)(e|x _x/|)aeae(|x—x|+|x —xI)) < C(8|x _xll)Zanas(x—l—x )‘
xeZ

For | Ir(t, x) — I2(t, x")|3,,, we apply Lemma 4.18 with f;(x,¥) = pR  (x',X) —
pf_ . (x, X) and use the already-proved result (4.45) to bound || Z2(x")||,, by g2asx’
We then use the fact that

— —\2
(pf—LsJ(x/’x)_pf—LsJ(x’x)) =
[pR |, (D) = pR D) (R (L T) + R (6. D),
and for the first factor we apply the L°° gradient estimate (4.34), which implies

X v _1l_«a
}pf_m(x/,x) —Pf_m(x,X)\ <CAA@E—s)"2"2)x—x|%
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and for the second factor we use the L! bound (4.55) to integrate out the weight
¢24¢%" This yields

t
12(t.x) = L2 (6. x')[13, < Celx — x/|*e29eC+x) f (t —s5)"2"% ds.
0

Noting that fé(t — ) V22 gy < c1(-®/2 < C(T)e® 1, we arrive at the
bound (4.46).

Next we prove the temporal Holder estimate (4.47). Without lost of generality,
we assume ¢ < 1’ — 1. For Iy, we first note that /1 (¢, x) > 0 since both pR and Z
are positive. We then use the semigroup property of p® and Zy pf_t (x,y) <1
(Lemma 4.2) to get

L' x) = L(tx) = ) PP (x. 21 (1,2) = 111, x)

z>0

<> pf () (t.2) — 112, x)).

z>0

(4.63)

By the spatial Holder estimate (4.46), we have
1712, 2) = 1 (2. ) 20 < Clelx — z)*e®C 2,

Also, since |r|% < Cel"l for any r, one has

Z |X _ Zla pﬁ—t (.X, Z) eaa(x—i—z)

z>0
(464) <C Z ealx—zI(l/\(t’—t)_l/2)(1 v ([/ _ t)%)pﬁ_t(x’z) eaS(X+Z)

z>0
< Ce2 (1 v |t —1|2)

where we applied Corollary 4.12 in the last inequality. Therefore one obtains the
desired bound || 7, (7, x) — I1(t, x)||2n < Ce%|t’ — 1|*/2e%eIx],

Regarding the term I, we write I5(¢', x) — I>(t, x) = J1(¢, 1/, x) + J2 (2,1, x)
where

t/
St x) = [ 3 PR (x, )My (),
t

y=0
t
R0 = [ 0F = e ) M),
y>0

For the term J;, applying Lemma 4.18, then proceeding as above with the uniform
bound (4.45) on Z, the bound (4.33), and Corollary 4.12, we obtain

11,2, x)2 |0 < C(e%|t' —1]2e95%)2,
As for J,, applying Lemma 4.18 using
R R \2 R R R R
(pr—s = Piog)” = [Pr—s — Pis| (P s + Piy)
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followed by the estimate (4.32)
pE_, = PR, < CO A2 — 1)

together with again the uniform bound (4.45) and Corollary 4.12, one obtains the
desired bound ||J2||§n < Ce2®|t' — t|%e22€lXl . Combining all these bounds con-
cludes the proof of the proposition. U

PROOF OF PROPOSITION 4.16. The proof follows in the same way as the proof
of Proposition 4.15 except that we simply take a = 0 (erasing the weights e%*)
and replace the summation domain Z 4 of the spatial variables by {0,1,..., N},
and then apply Proposition 4.13 and Corollary 4.14 instead of Proposition 4.11
and Corollary 4.12 for all the heat kernel estimates. Also, regarding the bound
for || 11(¢,x) — I (¢, x/)||%n in the proof of the spatial Holder estimate (4.46), for
two points x < x’ < 0 with |[x — x’| < N we need (4.61), and for two points
0 < x < x” with |x — x’| < N we then replace the constant A in (4.61) by B. [

5 Proof of the Main Theorem

5.1 A Crucial Cancellation

Now that we have proved the tightness result, we would like to identify a limit as
the mild solution to SHE (2.6). We want to show that the martingale M converges
to & W, so the bracket of M should behave like €272 where the factor ¢ is the
correct scaling factor we need. In view of (3.5), however, there is another term
V+Z,(x)V~Z(x) in the bracket. The “key estimate” in [7, sec. 4.2] shows that
this term is actually small; in fact, if Z; is replaced by a heat kernel p;, then one
has the following identity ([7, lemma A.1] or [15, lemma 4.2]):

o0
> [V @Y pndi = o
X€E€ZL 0
which is a crucial cancellation around which the key estimate revolves. Note that
the integrand V™ p,(x) V™ p;(x) can be also written as —V ™ p,(x)V* p;(x — 1).
We show an analogue of this identity in Proposition 5.1 below. On R, the identity
can be proved via integration by parts since the heat kernel is just a function of
the different x — y. In our present situation, this approach fails (the heat kernel
depends on the actual values of x and y, not just their difference), and we develop
below a new method of proof using Green’s functions. It is worth noting that
the half-line identity (5.2) is exactly the same as that for the full line, while the
bounded interval identity (5.1) involves nonzero contribution for all choices of x
and x—a new feature.

PROPOSITION 5.1. For the Robin heat kernel p® on {0, 1, ..., N}, one has

N
6 0 [ VR VIRRE = Lixll =0~ Lgsc
y=0
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forall x,x € {0,1,..., N — 1}, where the constant c is independent of x,x and
such that 0 < ¢ < Ce for some constant C > 0, andc = 0ifuqg =1 or up = 1.
For the Robin heat kernel pR on Z>q, one has

(5.2) 3 /O VipR(x, )V pR(E y)dt = 1o
y=0

forall x,x > 0.

PROOF. For the case of the finite intervals, using the spectral decomposition
in (4.28) ({Ax }l]cvzo are the eigenvalues of —%A with (i 4, up)-Robin boundary
condition and {wk},ivzo are the corresponding eigenfunctions), one has

N o0
63 X [ Vi)V =
y=0

N . N N
S [ Y D V) ) e V) ) e
—07% k—oj—o
The eigenfunctions V. are orthonormal, i.e., Zy Vi (¥)Vg(y) = 8, since the
Laplacian with Robin boundary conditions is a finite symmetric matrix. Using this

and performing the summation over y, we obtain that the above expression in (5.3)
equals

oo [ S VU OV Ve =
k=0

Vi (VI (R) dger
= F
Z o (x,X).

k=0

By Lemma 5.2, it turns out that F(x, x) does not depend on x. Consider F (0, 0).

Let GR be the Green’s function of —%A with the same Robin boundary condition.
Note that G is symmetric: GR(x, y) = GR(y, x). Since

1 1 1
—1=2AGR(x.0)|  =2GR(1.0)— 22— pa)GF(0.0),

2

x=0

(5.5)

1 1 1
0= zAxGR(x, 1) = EGR(I, n-5@- na)GR(, 1),

x=0
we have, using the identity (5.7) from Lemma 5.2 below,

(5.6) 2F(0,0) = GR(0,00+GR(1,1)=2GR(1,0) = (ua—1)2GR(0,0)+ 24

where in the last step we solved for GR(0, 1) and GR(1,1) in terms of GR(0,0)
from (5.5).
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Now if uyg = 1, then F(0,0) = 1, and invoking (5.8) from Lemma 5.2 below,
we obtain (5.1) with ¢ = 0. We therefore assume g < 1, namely A > 0 below.
Invoking the formula (5.9) for G®(0,0) in Lemma 5.3 below, and recalling that
a4 =1—¢€Aand up = 1 — ¢B, we can straightforwardly check from (5.6) that
(eA)%2(1 + NeB) (e A+ B+ ABe(N — 1)
— & —
¢(A+ B) + AB&*N A+ B+ ABeN
With N = 1/¢, we have

F(0,0) =

A+ B+ AB — ABs
A+B+AB

from which we immediately see that the constant ¢ in (5.8) below satisfies 0 <
¢ < Ce for some constants C > 0 that depend only on A, B. Therefore invoking
(5.8) again one has F'(x,y) = —c, where c is as above if x # y, and thus (5.1) is
proved.

To prove (5.2) for the case of the half-line, we start with a Robin heat kernel p®
on {0, 1,..., N} with ug and, say, up = 0. The same arguments above lead us to
(5.6), namely,

F(0,0) =

N oo
_ 1
> /0 VIR o VP (R p)dt = S (a = D?GR(0,0) + pta — Less.
y=0
Taking the limit N — oo and applying (5.10) of Lemma 5.3 to the above equation,
we obtain (5.2). O

LEMMA 5.2. Let F(x,y) be defined as in (5.4). Then the function F can be rep-
resented as

(5.7) F(x,y) = %(GR(X,y)+GR(x+1,y+1)—GR(x+1,y)—GR(x,y—i-l)),

where GR is the Green’s function of —%A with Robin boundary condition. Fur-
thermore, there exists a constant ¢ (possibly depending on ¢€) such that

(5.8) F(x,y) = 1x=y(1 —c) — 1,4,c.

In other words, F is equal to a constant on the diagonal and is equal to another
constant off diagonal, and these two constants differ by 1.

PROOF. The proof of (5.7) is simple. Indeed, since

GR(x,y) =D A )Y (),
k

it is clear that
F(x.y) =) Qh) 7 Wi + 1) = Y)W (v + 1) = i (»))
k
is equal to RHS of (5.7). It is also clear that F(x, y) = F(y, x).
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To prove (5.8), note that for all x € {0,1,..., N —2},
2V F(x.y)
=(GRx+1, ) +GRx+2,y + 1) - GR(x +2,y)) —GR(x + 1,y + 1))
—(GRx, )+ GR(x + Ly + 1) = GR(x + 1,y) = GR(x.y + 1))

= —AGRx + 1))+ AGRx + 1,y + 1)

=2(1x+1=y — Lx=y).
So F only changes values when crossing the diagonal:

-1 ifx =y,
VjF(x,y)z 1 ifx+1=y,
0 otherwise.

This immediately yields (5.8). U
LEMMA 5.3. Assume that jig < 1 or ug < 1. Let GR be the Green’s function of

—%A with Robin boundary condition as above. On the finite interval, one has

N+1—Nug
N 42— (N + D)(pua + up) + Nuapn

(5.9) GR0,00=2-
On Z> one has

(5.10) GR0,0) =

1 — gy
PROOF. If N = 1, then the operator —A on {0, 1} with Robin boundary condi-

tion 18 the 2 x 2 matrix
R
—1 2—kB

The first entry (i.e., the upper-left one) of its inverse matrix can be directly com-
puted, which is exactly (5.9) with N = 2. In fact, the numerator 2 — pup on the
RHS of (5.9) is precisely the minor of the above matrix deleting the first row and
the first column, and the denominator 3 — 2(ug + up) + papp of the RHS of
(5.9) is the determinant of the above 2 x 2 matrix.

We prove (5.9) for general N by induction and Cramer’s rule. Suppose that for
all numbers less than N, the determinant of —A is given by the denominator of the
RHS of (5.9), and the cofactor of 2 — 4 (i.e., the minor by deleting the first row
and the first column) is given by the numerator of the RHS of (5.9) (so in particular
(5.9) holds for all numbers less than N), we show that this is also the case for N.

If we denote by My the cofactor of the first (i.e., upper-left) entry 2— 4 (which
is a determinant of an N x N matrix) of the matrix —A, namely

_A:[ 2— 4 (—1,0,...,0)

(—1,0,...,0)7 * . det(x) = My,

j|(N+1)X(N+1)
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then it is easy to see that (M is understood as 1)
My =2X My_1 —Mp_».
Using the induction assumption,
My =2(N = (N —=Dup) —(N —=1—=(N =2)up) = (N +1) — Nug,

which is the desired numerator.
Turning to the determinant of —A, we have

det(—A) = 2 — pua) x My — Mpy—1,

and again using the induction assumption together with the formula for My we
have just proved, we have

det(=A) = 2 —pa)(N +1—=Npup) = (N = (N = Dpup).

which is equal to the denominator of (5.9). Therefore (5.9) holds for all N.
The half-line case (5.10) follows immediately by taking N — oo. |

COROLLARY 5.4. Let T > 0, a > 0. For the Robin heat kernel pR on Z>q, there
exist g9 > 0 and c« < 1 such that

e 2T
(5.11) Z[ [VIpR(x, y)VipR(x, y)| e dr < c.
y>1"0

for every x > 1, ¢ < g9. Moreover, for any S € [0, T], there exists C > 0 such
that with s :== =28 one has

)
G120 / VPR ) VpR ()| @2 (s — )2 dit < Ce
y>170

for every x > 1, & < gg. For the Robin heat kernel p® on {0, 1, ..., N}, the above
bounds hold for every x € {1,2,..., N — 1} witha = 0 and y summing from 1 to
N -1

Before our proof, we remark that the proof of these estimates for the standard
heat kernel on the entire line can be found in [7, lemmas A.2 and A.3].

PROOF. We first consider the finite interval case. To prove (5.11), using the
Cauchy-Schwarz inequality, the LHS of (5.11) with @ = 0 is strictly smaller than

N fove) ) % N [o’e) 5 2
(5.13) ( (VipR(x,y)) dl) ( (VipR(x, ) dt) :
z), z),

which is bounded by 1 by Proposition 5.1 with x = X; here the Cauchy-Schwarz
inequality is strict because V pR # . pR. This is the argument in [7] and is
sufficient to show that the LHS of (5.11) is bounded by a constant strictly smaller
than 1. However, to show that this constant ¢, is actually uniform in x, we need to
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be more careful. We apply the Lagrange identity (which captures the sharpness of
Cauchy-Schwarz inequality):

N
(Z VipR(x.) )(Z( VipR(x, y)))
=0 y=0
N 2
(5.14) —( \V:pf(x,yW;pf(x,yn)
y=0
N
= > (VipRe. ) VepR @ 3| - |[VipR (. )V pR(x. 3)|)%.
,y=0

It is clear that if V' p® and V;p® were equal the RHS of (5.14) would be 0.
We claim that there exists o > 0 and go > O such that for all ¢ < #¢, all x €
{1,2,...,N — 1}, and all ¢ < &g, one has

9 1
(5.15) VEpR(x,x) < —1g @nd IVipR(x. x—D|Vv|VipR(x.x+1)| < o

Here V;E only acts on the first variable of p® as before. (In fact, in the special
case ¢t = 0 the claim obviously holds since the first quantity is equal to —1 and
the second equal to 0.) If we assume this claim, for ¢ < 79 the RHS of (5.14) is
bounded from below by the term” with y = x and y = x + I,

1
(v PR, )V pR(x, x + D] - ‘V"’pf(x x + )VpR(x, x)‘ z 5
where the last step used (5.15). Therefore for all 7, (5.14) can be rewritten as
N % N %
2 — 2
(X @orwny) (X (arke)’)

N
=Y |VipR . »)VipR(x.y)|
y=0

N 1

1< 0 o 2
(5.16) z%( 1 (Z(prf(x,y))z)
oe{x} ~y=0

N -1
+ ) |[VipR . Ve (x, y)!)
y=0
N

1< 1_[ (Z(V,‘?pf(x,y))z)
y=0

oe{t}

1
2

A%

2We bound the sum over v,y from below by only one term in the sum because the summand
concentrates around the region where ¢ is small and y, ¥ are close to x (but y # ¥).
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Now by (4.34) one has |V;Epfv (x,y)| < C, and by (4.44) one has
N 1
Y Vipfxy) = €3
y=0

thus for 79/2 < t < t¢ the last line of (5.16) is bounded from below by a con-
stant ¢ (which only depends on ?p); in other words, it is bounded from below by
1;,/2<1<4,C forall z.

Now we integrate over ¢ from O to co on both sides of (5.16); note that the time
integral of the first term in the first line of (5.16) can be bounded from above by
(5.13) using the Cauchy-Schwarz inequality, which is then bounded from above
by 1 as mentioned above. Therefore we conclude that

to

0
1= /0 2 Ve e ) VR ) = / Zdt = ty/2.
y

to/2

which is the desired uniform bound (with ¢, = 1 — ¢ty/2).
It thus remains to prove the claim (5.15). For this, we can first prove the similar
estimates for the standard heat kernel on the entire line

19 _ 1
VEPI(0) < =55 and  [VEp(DIV IV pi(=D)] < o

for sufficiently small time #, which is easy to show by using the relation between p
and the discrete time standard heat kernel (a relation as (4.1)) and the explicit for-
mula for the latter kernel. We then apply Lemma 4.7 and exponential spatial decay
of Vipt to obtain (5.15).

To prove (5.12), note that

N s
2
> [ R Vel o ar <
ry=1

N s
2 _ 1
cy i/o IV pR (e, Vi pR(x. y)| 572 di < &C.
y=1

where in the last step we used s71/2 = ¢§71/2 and the bound (5.11). On the other
hand, by (4.34) withn = 1, v = 1, and (4.44) witha = 0,

N
> [ VR Vepf | = ar
y=1 2

S
< C/ V26— )"V 2 g

2
< C(=2(s =272 _ ) < Cs7 = Ce2S < Ce?,
-2

so (5.12) is proved.



OPENASEP IN WEAK-ASYMMETRIC REGIME 2113

Regarding the kernel half-line case, note that both p® and e?¢*=>| depend on «.
Denote by L (g, €) the LHS of (5.11) with ¢?¢/*~¥| replaced by ¥~ We show
that there exists g9 > 0 such that for all ¢, € < g¢, one has L(g,2) < ¢« < 1; thus,
in particular, L(g, &) < c, < 1.

By (4.34) one has |V;Cpf2 (x,y)] < C(1 At™1), and as in the proof of Corol-
lary 4.12 (namely, following the arguments starting from (4.42) which lead to the
bound (4.40)) we have ), pR(x,y) etelx=yl < C. So

/ Yo VIR VPR (v p)] e <C[ (nrhear<c
y=0

With this integrability estimate at hand and noting that ¢?®*~>| monotonically
decreases to 1 as € — 0, we can apply the dominated convergence theorem,

th(e_) / Z|V+ (x,y)V;pf(x,y)|dt.

y=0

The RHS can be bounded by a constant c, strictly smaller than 1, uniformly in
€ < g9 and x > 1, following the same arguments as in the finite interval case. This
implies that by slightly increasing ¢, and slightly decreasing ¢, one has L(e, &) <
¢y for all &, < &g, which is the desired bound.

Relation (5.12) for the half-line case then follows similarly as the finite interval
case by cutting the integral into two parts ¢ < s/2 and ¢t > s/2 and applying
(5.11). O

5.2 Key Estimate and Identifying the Limit

In order to identify the limit of Z%, we will use an equivalent formulation of the
mild solution called the martingale solution.

DEFINITION 5.5. Let I be the interval [0, 1] or [0, c0). Let

def

(. 9) & / o(X)y (X)dX,

(5.17) C L (p e COM) | ¢/ (0) = Ap(0)},

C% L (g € CR) | ¢/(0) = Ap(0),¢'(1) = —Bo(1)},

where C2°(R) is the space of compacted supported smooth functions on R. We
say that a probability measure Q on C(R4, C(1)) solves the martingale problem
for SHE (2.6) with initial condition 2¢7¢ if it satisfies the following requirements.
Letting 2 be the canonical coordinate in C(R, C(I)) we have Z(0,-) = Z'¢
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in distribution, and for all p € C°if I = Ry orall 9 € C% if I = [0, 1], the
processes

e 1T ”
618 N @ - @ - [ (@i,

T
(5.19) 07(9) & Nr(g)® — [0 (22.0%)dS,

are Q-local martingales. If I = [0, 0o), we further require that for all 7 > 0, there
exists a > 0 such that
(5.20) sup_ sup e “XE(27(X)?) < oo.
Tel0,T]XeR 4+
Notation: Throughout the rest of this section, we denote A = {0, 1,..., N} for
ASEP-B and A = Z>¢ for ASEP-H, and A9 = {1,2,..., N —1} for ASEP-B and
A() = Z>0 for ASEP-H.

PROPOSITION 5.6. For ASEP-H, consider any initial conditions Z§ satisfying As-
sumption 2.14 such that Z§ = Z¢ as e — 0, where ¢ € C(Ry). Then any
limit point of Z¢ solves the martingale problem on R 4 in Definition 5.5 with initial
data %€ satisfying the Robin boundary condition with parameter A.

For ASEP-B, consider any initial conditions Z satisfying Assumption 2.15 such
that Z§ = Z as e — 0, where Z¢ € C([0,1]). Then any limit point of Z¢
solves the martingale problem on [0, 1] in Definition 5.5 with initial data %€
satisfying the Robin boundary condition with parameter (A, B).

PROOF. By the uniform bound (4.45) in the case of ASEP-H, any limit point
of the family Z* satisfies (5.20). Since Z§ = 2 i¢_the initial condition of the
martingale problem is also satisfied for any limit point. So it only remains to show
that any limit point satisfies the conditions (5.18) and (5.19).

Define for all ¢ € [0, ¢72T]

N
def
(Ze.@)e S €Y 0(ex)Zi(x) ¢ €C%p

x=0
or

o0
(Zr.9)e E e ) 0(e0)Zi(x) ¢ € CP,
x=0
for the finite interval and the half-line case, respectively.
Consider the microscopic analogues of (5.18) and (5.19) as (A below is the
discrete Laplacian with Robin boundary conditions)

-2
def 1 [ T
Vi@ & Zearaor— Zopi—5 [ (AZugpeds,

def

07(p) =

(5.21)
N7 (@)* = (N7(9)).
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Indeed, by Lemma 3.1, N.(¢) and hence Q7 (¢) are martingales. Now we would
like to show that N7.(¢) can be rewritten as

(522) & Y ZF(X)e(X)—& Y Z5(X)e(X)

XeeA XeeA
1 (7
-5 / e Y 25(X)e"(X)dS + En)
0 Xxeen
and that Q% (¢) can be rewritten as
T
(5.23) NE(9)? — / ey Z5(X)%¢(X)*dS + En®,

XeeA

where the error terms Err"), Err® vanish in probability as ¢ — 0. Here eA =
{X € R | X/e € A}. Assuming this vanishing error, the proof is completed
by passing to the limit along a converging subsequence and noting that eA — [
and the Riemann sums converge to the integrals by continuity of ¢ and Z¢ and its
limit Z. Thus, we conclude that any limiting point Z of the sequence Z¢ satisfies
(5.18) and (5.19). It remains to show that the error terms in (5.22) and (5.23) go
to 0 as desired.

We start by arguing for (5.22). Consider the last term in the expression of
NZ(p). In the finite interval case, applying the summation-by-parts formula (4.23)
with u(s) = @(e+) and v(s) = Z(+) (recall that N = 1/¢ so that, for instance,
u(N + 1) = ¢(1 + ¢)), we find that

N
(AZs,9)e =& ) Zs(x)Ag(ex) + VT Z(N)p(1 + €) + V™ Zs (0)p(—e)

x=0

—eZs(N + D(p(1 + &) — (1)) — eZs(=1)(¢(~¢) — 9(0))
N
=) Zs(x)Ag(ex) — *B Zs(N)p(1 + €) — 624 Z5(0)g(~¢)
x=0

—e(1=eB)Zs(N)(p(1 + &) — p(1))

—e(1 = eA)Zs(0)(¢(—¢) — ¢(0))

where Agp(ex) = @(e(x + 1)) 4+ ¢(e(x — 1)) — 2¢(ex). Note that in the last
equality we used the Robin boundary condition for Zj, for instance, VT Z;(N) =
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(up —1)Zs(N) = —eB Z3(N). Therefore

e 2T
/ (AZs,p)eds
0
N

e72T
520 = [ (e X 200 e0) - BZuN () - 4Zi0000)

x=0

_ 2y (1) + Z5 ()8 (0) + R8(¢))82 ds

where ¢”(¢x) stands for the second continuous derivative of ¢ evaluated at ex and
the error term

def

R§(®) = (Zs, 67 Ad(ee) — ¢ (e2)),

+ (BZy(N)g(1) — BZy(N)g(1 + )
T (AZ,(0)p(0) — AZ4(0)p(—¢)
n (ZS(NW(D (11— ¢B)Zy(N)
p(—¢) — w(O)).

&

p(1 + &) — (1)
&

+ (—zs(ow’m) (1 - eA)Zs(0)

Since ¢ is smooth, by the uniform bound (4.48) on Z, we have E(Rg(qﬁ)z) -0
as ¢ — 0. Invoking the assumed Robin boundary condition (5.17) on ¢, the four
boundary terms on the RHS of (5.24) add up to 0.

Therefore by the changes of variables X = ex and S = &2s and the definition
(2.20) of Z#, we have cast N7 (¢) into the desired form (5.22) where the error
ErrD) = —% fOT R§(¢)dS vanishes in probability. This completes the proof that
any limiting point Z of the sequence Z° satisfies (5.18) for the finite interval case.
The half-line case can be shown in the same way by applying the summation-by-
parts formula (4.24) and invoking both the discrete boundary conditions for Z and

the continuous boundary condition for the test function ¢.
Turning to Q% (¢) and (5.23), we apply Lemma 3.3 to calculate (N7 (¢)) and
obtain the following expression for Q% (¢):

72T

&
def
NE(9)? — &2 /0 (22.0%), ds + RS (¢) + R5(9)

(5.25) Q7(p) =
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where
def e’T
Ri) 2o [ (22.0%), ds
e 2T

Ri(p) & &2 /0 Y VTZi(x)VF Zs(x)e(x)? ds,

x€lAo

where in the definition of RS, x is summed in the “bulk” Ag. Since the second
term on the RHS of (5.25) is equal to the second term in (5.23) after passing to the
macroscopic variables T, X, it now suffices to prove that E(Rf((,o))2 — O fori =
1, 2. By the uniform bound (4.45) or (4.48) on Z, we clearly have E(R§{ (¢)?) = 0.
To control R} (¢)?, we follow [7] by using the “key estimate” as in Lemma 5.7 in

the following. Letting F; &ef 0(Zs(x) : x € Z>9,s < t), we denote the canonical
filtration, and for y € Ay letting

(5.26) U(y.s.5) E BV Zs(»)VT Zo(y) | Fo).

we have that

e 2T ps
E(RS(p)?) = ¢* /O ds /0 s’ Y plex)Po(er)?
x,y€Ao
‘E(V ™ Zy(x)VY Zy(x)U%(y,5.5)).

Here x, y are both summed in the bulk A as above.
With [VEZ;(x)| < Ce'/2Z,(x), we further obtain

e 2T ps
BR5@?) < [ ds [ as Y plexPpter?

5.27) x,y€Ao
‘E(Zy(x)*U*(y,s.5")).

Note if we were to simply use |VEZ,(x)| < Ce'/2Z;(x) to “brutally” bound
|U¢(y,s,s")| by eCZZ2(y), the resulting bound on E(R5(¢)?) would be of order
O(1) (since the change of time and space variables to macroscopic variables gives
£7%), which would be insufficient for our purpose. To show E(R} ()% — 0,
we divide the time integrals in (5.27) into two parts. The first part consists of the
region with s’ < £73/2 where the above brutal estimate gives a bound of o'/ 2),
For the second part, which is the rest of the integral, we utilize the key Lemma 5.7
below, which provides the important decay factor (1 —s)~'/2 that is typically O(e),
thus together with the factor gl/2=8 improving the above brutal bound. Indeed, as
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in the proof of proposition 4.11 in [7], in the case of ASEP-H, conditioning on
{Zy(x) < K}, (5.27) can be bounded by

CE283eas(x+y) /8 /s 8%_8(3‘ —S,)_% ds’ ds < Ceas(x-i—y)g%—(?IZZ’
0 0

while by conditioning on {Zy (x) > K} (5.27) can be bounded using the Cheby-
shev inequality by Ce®**+») K=2 Letting ¢ — 0 and then K — o0, we obtain
E(RS (¢)?) — 0. For ASEP-B the argument is the same with a = 0.

Therefore we have shown that Q7 (¢) as in (5.25) can be indeed cast into the
form (5.23) with error term Err® = R{(¢) + R5(¢p), which vanishes in proba-
bility. By the arguments below (5.23), we conclude that any limit Z, satisfies the
conditions in Definition 5.5 and thus solves the martingale problem. U

LEMMA 5.7. Assume the_ above setting, and consider both the ASEP-H and the
ASEP-B models. Forall T > 0, § > 0, there are constants a, C > 0 such that

(5.28) sup e “**E|U®(x,t1,5)] < Cg%_s(t — s)_%

X€Ag

for all g=3/2 <s<t< ¢ 2T and all ¢ > 0. Here, for ASEP-B, the constant a
may be taken to be 0.

PROOF OF LEMMA 5.7. The proof follows a similar argument as that for [7,
lemma 4.8]. Throughout the proof we assume a = 0 in the case of ASEP-B. Let
Zi(x) = I (x) + Nl (x) where

Lx) =Y pRGx. ) Zo(y). Ni)E / T3 R ()M, ().
yeA 0 yea
Note that Nst (x) is a martingale in 5. For s < r <t, one has
E(V™ N/ (x)VTN}(x) | Fs)
= V" N/ (x)VF N (x)

; E( |3 Kt y)a ). M),

yeA

(5.29)

J—"S)

where

def _
(5.30) Ki(x,y) = VIpR(x, »)VipR(x, y).



OPENASEP IN WEAK-ASYMMETRIC REGIME 2119

With U®(x, ¢, s) defined as in (5.26) and with E(N/ (x)|Fs) = N{!(x), one has by
(5.29)

Uf(x,t,8) = VI, (x)VTI(x) + VI, (x)VT N/ (x)

+ VNI (x)VT I (x) + VNI (x)VT N (x)
+E(/ > Kime(r (M) | )

s
yeA
We bound the L! norms (i.e., E|+|) of the terms on the RHS. For the first four
terms, by the Cauchy-Schwarz inequality one only needs to show

(5.32) E(VEI(x)2 E(VEN!(x))? < Ce2(t —5)~2295%,

(5.31)

Estimates for E(VE1,(x))%. We use (2.16) to obtain

E((VE1(x)?) Z VERR (. »)VEPR(x. Y E(Zo () Zo()))
(5.33) < c( 3 vEpR(x. y) eaay)z.
yeA

By Corollaries 4.12 or 4.14, the above quantity can be bounded by Ce2%¢*;~1,
Further expressing 1! as 1~1/2¢=1/2 and applying 1~/2 < (t — s)~"/2 and
1=1/2 < ¢3/4 (since we assume 1 > £3/2), we thereby obtain the desired bound
on E(VE1,(x))? as in (5.32).

Estimates for E(VEN!(x))2. One has

E((VEN!(x))?) / S (VEDR ) (6 ) (M) ()

yeA

50/ (sup VP c(x.3))
0 yeA

(DS VBRI B (M) ()] )d
yeA

By combining Lemma 3.3, the bound V= Z,;(y) < Ce!/2Z,(y), and the uniform
bounds (4.45) or (4.48), one has E|%(M(y))r| < Cee*®”; we then apply the
same reasoning as used above to bound (5.33), together with (4.34) for v = 1, to
obtain

E((VEN!(x))%) < Cee?e™ /s(z — )73 ds.
0

Upon integrating over t, we obtain the desired bound on E(V“—LN; (x))? as in
(5.32).
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Estimates for the last term on the RHS of (5.31). We use the explicit expression
of the predictable quadratic variation given in Lemma 3.3 to rewrite the last term
on the RHS of (5.31) as I; + I, where

t
N0 E E+0@) Y. | Kielx. ) E(Z:(0)? | Fo)dr,
yeA §

t
Bet - Y [ K BV 20V Ze0) | Fod,
yeho "’

By Lemma 5.8 below, we can bound E|T7 (s, 7, x)| by Cel/2=8eaex (1 — )=1/2,
So we have obtained the desired bound on all the terms coming from the RHS of
(5.31) except for the term fz, but 72 contains the same conditional expectation on
the LHS of (5.31), which means that one can bound this conditional expectation
in terms of an expression involving this conditional expectation itself. Indeed,
collecting the bounds for the terms in (5.31), one has

e YYE|U%(x,t,5)|

< Cs%_S(t —s)_%
t
(5.34) e ) [ |Ki—c(x. )] -E|U°(y.7.9)ld
’ yeho "
< Cs%_‘g(t —s)_%
t
+ D | 1Kl ORIV (y. 7 s) d
yeho S

We find that e 74**E|U®(x, t, 5)| is bounded by

Ce2~8 (t — s)_%
t 1_5s 1
+ > / |1<t-n(x,y1>|e“'x—yl'(cw— (11— )"
y1€Ao "
T
+ > |Key—zs (y1. y2) 71772 e T2 E| U (33, 72, 9)) dtz)drl'
y2€A0”°

by iterating the bound (5.34) as in [7, lemma 4.8]. Expanding the parentheses we
then obtain three terms, with the second term (a single summation-integration over
space-time) given by A; defined below, and the third term (a double summation-
integration over space-time) again involving the expectation of U?. Repeating this
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iteration, we eventually get

eUNEIUS(x.1,5)| < CeZ (1 —5)"2 + Y Au(x.1.)

n>1

where, with yg := x, 19 ;= 1,

1 1
Ap(x,t,s) = Z Cei_s(tn —5)"2
1 72,~~~;J’n€AO

n n
T 1K i1, y)le® =Y [ T d,
i=1 i=1
where the time integrals are over s < 1, < 17,1 < --- < 11 < t. To estimate
Ay, for each n, we first integrate over t,, € [s, T,—1] and sum over y, € Ay in the
following way: by a change of variable 7, = t,—1 — r we instead integrate over
r € [0, ty—1 — 5], and we are in the scope of applying (5.12) and obtaining a factor
Ce. We then integrate and sum over the other space-time variables using (5.11),
which yields a bound by ¢”~! where ¢, was introduced in (5.11). Together with the
factor C&1/278 on the right-hand side of the above definition of A;, we obtain that
|An(x,1,5)] < Ce3/278¢"=1 Since ¢, < 1 one obtains a convergent series and
the sum over 1 yields a bound by C3/278 that is smaller than Ce'/278 (1 —5)~1/2,
where the last constant C depends on T. Therefore the bound (5.28) follows. [

LEMMA 5.8. Let Fs be the filtration defined above, and K;(x,y) be the deter-
ministic function defined in (5.30). There exist a, C > 0 such that for any § > 0,
0<s<t<e 2T, xe Ay ande>0 sufficiently small, we have

t
e | Kielx, E(Z:(»)* | Fy)dr
yeA §

For ASEP-B, we can take a = 0.

(5.35) E|:

i| < Ca%_‘ge“x(t - s)_%.

PROOF. To start, we note that by definition
Ki(x.y) = =Vipf (. ) Vipfi(x — 1.y).

Using Proposition 5.1 (with the variable X therein taken as X = x — 1) we have
DB fooo K. (x,y)dt = O(e). The quantity in the L! norm E|+| on LHS of (5.35)
can be then rewritten as

t
SZ Kt—r(x»Y)E(Zr(J’)Z_Zt(x)z | Fs)dt
yeA S

(5.36) L eE(Z (%)% | Fy) Z - K. (x,y)dt + O(e*)E(Z;(x)? | Fs)
yeA t—s

=1+ +J3
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where we have labeled the three terms as Jy, J2, J3. Here we have simply sub-
tracted and added aterm ) _, fst Ki—(x,y)E(Z;(x)? | F5) dt and made a change
of variable f —t — t and applied Proposition 5.1; the expression O(&?) stands for &
times the constant ¢ in (5.1) in the case of ASEP-B, and is actually O in the case
of ASEP-H. We estimate the L! norm of these three terms separately as follows.
Throughout this proof we set a = 0 for ASEP-B.

Estimates of J3. Note that (t — s)™/2 > ¢T=1/2 > ¢3/2 fore > 0 sufficiently
small. Using this and the uniform bound (4.45) or (4.48) on Z, which states that
1 Z:(x)]l2 < Ce(l/2)aex for a constant a, we concluded that E|J3| is bounded by
the RHS of (5.35).

Estimates of J,. Recall that K is a product of two factors V¥ p® and V- p&. Ap-
plying (4.34) withn = v = 1 to one of the factors VipR in K, and (4.41) or (4.44)
to the other factor V¥ p®, we can bound Zy |K:(x,y)| by C(1 AT73/2)eX Us-
ing this and the uniform bound (4.45) or (4.48), we obtain the desired bound on J3

as
00

(5:37) E|J3(s,1,x)| < Cgeagx/ 73 dv < Cee*™ (1 —s)_%.

t—s

Estimates of J1. The idea of controlling J; is to use the fact that K,_,(x, y)
concentrates on values of (t, y) that are close to (¢, x), and that, thanks to the
Holder estimates (4.46)—(4.47), or (4.49)—(4.50), | Z-(y)? — Z;(x)?| is small when
(t,y) = (¢, x). More precisely, with

1Ze(0)* = Ze(x)?] < (Ze(¥) + Ze N Ze(y) = ZeO)| + | Z:(0) = Ze ()],

we use the Cauchy-Schwarz inequality and the Holder estimates (4.46)—(4.47) or
(4.49)~(4.50) for & = § — § to obtain

EIZ:(3)? = Zo(x)?| = Ce> 0 |y — x| 270 4 (jt — 7| v 1)372).
Therefore, invoking (4.34) withn = v =1

E|J1(s,t, x)|
§2T

< ng_‘se“”/ ((t—1)"'A
0
x (32 IV P, )l Iy = 2P0 4 (i — | v i)
y

Arguing as in (4.64), together with (4.41) or (4.44), we obtain
E|Ji(s,t,%)] <

27

3 T 1 i
Ce27898% / AAGC—0) We-1)3 v —1)"2dT.
0
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Here the last factor (¢ —‘L’)_l/ 2 arises from the RHS of (4.41) or (4.44). The integral
is bounded by a constant because as t — ¢ the integrand behaves as (f — 7)71/2,
and as T — oo the integrand behaves as 775/4. So E|J; (s, 7, x)| is bounded by
Ce3/2-8paex With (t — s)_l/2 > t71/2 > T=1/2¢ the desired bound

E|Ji1(s,1,x)| < Ce%_‘ge“”(t — s)_%
follows. This concludes the proof of the lemma. U

We show the uniqueness for the martingale problem and its equivalence with the
mild solution to the SHE.

PROPOSITION 5.9. Let I be the interval [0, 1] or [0, 00), and Z*¢ € C(I) be a
random function. If I = [0, 00) we assume that for each p > 1 there exists a > 0
such that
sup e XE(Z¢(X)P) < .
XeRy
Then the martingale problem (Definition 5.5) has a unique solution whose law
coincides with that of the mild solution to SHE with initial condition %°.

PROOF. We only need to show the uniqueness, since the existence follows im-
mediately from the convergence along subsequences of Z¢ provided in Propo-
sition 5.6. To prove uniqueness of the solution to the martingale problem, we
need to show a martingale representation theorem which, possibly by extending
the probability space and the filtration, represents the local martingale N in (5.18)
as a stochastic integral of 2 against a Wiener process, essentially following [7,
56]. By Definition 5.5 there exists a sequence of stopping times {ty} such that
limy 00 Ty = +00 Q-a.s., N™ (¢) isasquare-integrable martingale, and A™ (¢)
is a martingale. The associated orthogonal martingale measure (see [70] for a def-
inition) N(dS dX) has quadratic variation measure Z5(X)?>dS dX.

We introduce a cylindrical Wiener process W on L2(I) (possibly by extending
the probability space and the filtration) that is independent of Z. Let Q' be the
probability measure on the extended space. Define a process

d_ef /\rN —1 1 dsSd
5 X N X
Wi (¢) /0 L F (0 (25 ()03 (X)N( )

TATN o
+ /0 (I{zs(x)=01®. d W s).

It is easy to see by Lévy characterization that V[~/71~V is simply a cylindrical Wiener
process on L2(I) (which we denote by Wr) stopped at Ty, and that one has the

martingale representation N;N (p) = fOTATN (Zs¢,dWs). Using this representa-
tion together with (5.18), one has

TAtn 1 N
@0 - = [ @paws+5 [ (25
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Q’-as. Sending N — oo we obtain that & is the “weak solution” (in the PDE
sense) defined in [70, eq. 3.9]. In order to identify 2 as the mild solution, as in [70,
eq. 3.10], we can actually show that for all smooth functions ¥ (7, X) such that
Y (T, X)|x=0 = AY(T,0), as well as ¥'(T, X)|x=1 = —By (T, 1)if I =[0,1],
one has

T

(27 9(T)) — (Zo. Y (0)) = /0 (Zsy(S).dWs)

e oy o O
+§](; (:@%‘,lﬂ (S)-i-ﬁ(S))dS.
Choose ¥ (S.Y) = [, 9713_ s(Y,U)¢(U)dU, which clearly satisfies the above

Robin boundary condition since 2R does, and is also such that ¥ + g—’é’ =

Sending ¢ (+) — 8x () and using the symmetric property Wg? (X,Y) = Wg? (Y, X),
we see that ¥ (S,+) — L@YE_S(X, ¢), that ¥ (T, «) — 6x(+), and that {(0,+) —
yﬁ (X, »). Therefore % is the mild solution defined in Definition 2.5 and in par-
ticular the martingale solution is unique. U

PROOF OF THEOREMS 2.17 AND 2.18. The rescaled processes are tight accord-
ing to Proposition 4.17, and by Proposition 5.6 any limiting point solves the mar-
tingale problem with the desired boundary conditions and initial condition. Ac-
cording to Proposition 5.9 the law of the martingale solution coincides with that of
the mild solution. Therefore Theorems 2.17 and 2.18 follow immediately. U
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