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1. Introduction

The theory of singular stochastic partial differential equations (SPDEs) has witnessed
enormous progress in the last years. Most prominently, Hairer’s work on regularity struc-
tures [27] allowed to develop a stable notion of solution for a large class of SPDEs which
satisfy a scaling condition called subcriticality. Roughly speaking, a semi-linear SPDE
equation is subcritical (or super-renormalizable), if the behavior of solutions on small
scales is dominated by the evolution of the linearized Gaussian dynamics. The class of
subcritical equations includes, for example, the KPZ equation in one spatial dimension,
as well as reaction diffusion equations with polynomial nonlinearities

n
dX = (AX +) a1 X* ) dt+dW  aze1 <0 (1.1)
k=1

driven by a space time white noise dW, if the space dimension d satisfies d < % (of
course strictly speaking the dimension d has to be an integer but one could emulate frac-
tional dimensions by adjusting the linear operator or the covariances of the noise). In
particular, for d = 3, equation (1.1) is only subcritical for the exponent 2n — 1 = 3 while
for d = 2, equation (1.1) is subcritical for all n. We will refer to these equations as dy-
namical ®3 and ®3" equations. Note that even in the subcritical case the expression (1.1)
has to be interpreted with caution: for d > 2 a renormalization procedure which amounts
to subtracting one or several infinite terms has to be performed. The fact that these so-
lutions behave like the linearized dynamics on small scales but very nontrivially on large
scales is related with the role they play in the description of crossover regimes between
universality classes in statistical physics. For example, the KPZ equation describes the
crossover regime between the Edwards—Wilkinson (Gaussian) fixed point and the “KPZ
fixed point”, while the dynamical ®* equation describes such a crossover mechanism
between the Gaussian and the “Wilson—Fisher fixed point”. In two space dimensions the
existence of infinitely many fixed points was predicted by conformal field theory, and
the ®3" equations should describe the crossover regimes between the Gaussian and this
family of fixed points ([20, Fig. 4.3]).

One key interest when studying these SPDEs is to understand how they arise as
scaling limits of various microscopic stochastic systems. Here it is important to note that
the equations are not scale invariant themselves (this is immediate from subcriticality).
However, they arise as scaling limits of systems with tunable model parameters that are
modified as the system is rescaled. Starting with Bertini and Giacomin’s famous result
[2] on the convergence of the weakly asymmetric simple exclusion process to the KPZ
equation, by now many results in this direction have been obtained for the KPZ equation
(for example [1,14,10,11,32,9] based on the Cole-Hopf transform, [24,25,15] based on
the notion of energy solution, and [28,29] based on regularity structures). Connections
between the stationary ®3 theory and Ising-like models were already observed in the
seventies; early references include [36] where the equilibrium ®3 theory was obtained
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from an Ising-like model by a two-step limiting procedure. The dynamical equation (1.1)
in one dimension was obtained as a scaling limit for a dynamic Ising model with Kac
interation in the nineties [3,22]. More precisely, the Kac Ising model is a spin model
taking values in the {£1} valued configurations over a graph (Z or a subinterval of Z in
the case of [3,22]). The static equilibrium model is given as the Gibbs measures associated
to the Hamiltonian

H(0) =~ S wo k= ) o) o(h) (12)
k,j

where K, is a non-negative interaction kernel parametrized by v > 0 which determines
the interaction range between spins. In [3,22] the Glauber dynamics for this model were
considered and it was shown that the locally averaged field h, = o * k, converges in
law to a solution to the ®} equation when suitably rescaled. Similar results in higher
dimensions d = 2,3 were conjectured in [23] but a complete proof in the two dimensional
case was given only recently [33]. A similar convergence result is expected to hold in three
dimensions, though a complete proof has not been established yet; however in [30,35] it
was shown that a class of continuous phase coexistence models rescale to ®3."

The tunable parameter in all of the results on convergence of variants of the asymmet-
ric simple exclusion process to KPZ, is the asymmetry of the exclusion process: making
it smaller and smaller corresponds to making the model locally more “Gaussian” which
in turn corresponds to the fact that the dynamics on small scales are dominated by so-
lutions of the linear equation. In the Kac—Ising case this tunable parameter is the range
of the interaction kernel x,. As the system is observed on larger and larger scales locally
more and more particles interact i.e. locally the system is closer to mean field.

In order to obtain the scaling limit to ®3 in [33] five parameters had to be chosen
in a certain way: three “scaling parameters” namely the space scaling, the time scaling,
the rescaling of the field as well as two “model parameters”, the range of the Kac in-
teraction and the temperature. It turns out that in order to obtain a non-linear scaling
SPDE as scaling limit, one has to choose the temperature close to the mean field crit-
ical value, although in two dimensions there is a small shift which corresponds to the
renormalization procedure for the limiting equation, and a similar effect is expected in
three dimensions. The remaining parameters have to be tuned in exactly the right way
to balance all terms in the equation. It is natural to expect that in two space dimensions
introducing additional parameters should allow to balance even more terms leading to
higher order terms in the equation. In this work we show that this is indeed the case.
We allow for microscopic spin to take values in {41,0} i.e. we add the possibility of a
spin value 0. The Hamiltonian thus becomes:

L In [30] also different limits such as a dynamical @g theory, which may blow up in finite time were
obtained, but in order to achieve this the o — —o symmetry in the model had to be broken.
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H(0) = =5 Y hy(k =)o) alk) =0 o(j), (1.3)
k,j J

where the extra parameter 6 plays a role of chemical potential which describes a ratio
of the number of “magnetized” spins (o(j) # 0) over the number of “neutral” spins
(o(j) = 0). In the limit § — oo we recover the original Kac-Ising model.

This model is the (Kac version) of the Blume-Capel model (initially proposed by
[4,7]). This Blume-Capel model as well as the closely related (but slightly more com-
plex) “Blume-Emery—Griffiths” (BEG) model [5] have been widely used to describe
“multi-critical” phenomena in equilibrium physics. Physicists also studied phase transi-
tions for the Glauber type dynamics of mean field BEG model [6]. Mathematically, the
mean field model in equilibrium was studied by in series of papers [18,12,19] (see more
references therein), analyzed the phase diagrams and proved that the suitably rescaled
total spin converges to a random variable which is distributed with density C’e‘“z,
Ce=*" or Ce=<*" in different regimes. Also, the work [17] obtained the rates of these
convergences. Regarding the dynamics, mixing theorems are also proved, see [31,16].
The Blume—Capel model is also often referred as the (site) dilute Ising model (cf. for
instance the physics book [21, Section 7.4.3] or on the mathematical side [26,8] and ref-
erences therein): one considers the site percolation of the square lattice with percolation
probability p and the usual Ising model on the percolation clusters. The joint measure
of the percolation and Ising model is then the Gibbs measure with Hamiltonian (1.3)
if one identifies e#? = (1 —p)~! — 1. The Glauber dynamics are then defined on both
percolation and Ising configurations. The results of this article can then be stated as
convergence to the SPDEs by suitable tuning the Ising temperature and percolation
probability.

Our main result, Theorem 2.5, shows that for a one parameter family of parameters
we obtain the ®3 equation in the scaling limit. This family ends at a “tricritical point”
where (after different rescaling) we get the ®5 equation (see Fig. 1). Our equation for
this curve of parameters and the value of the tricritical point coincide with the mean field
results in [5], but as in the [33] logarithmic corrections to these mean field values are
necessary to obtain the convergence results. These logarithmic corrections correspond
exactly to the “logarithmic infinities” that appear in the renormalization procedures for
the limiting equation.

Meta-theorem 1.1. Let hy = K, * 0 be the locally averaged spin field of the Glauber
dynamic of Kac—Blume—Capel model. There exist a one parameter family of “criti-
cal values” and one “tri-critical value”, such that when (8,60) approaches a critical
value at a suitable rate (which reflects the remormalization procedure for the limit-
ing equation), X, (t,x) = v th,(t/7* x/7?) converges to the solution of the dynam-
ical ®* equation, and when (3,0) approaches the tri-critical value at a suitable rate,
X, (t,x) = v hy(t/y* x/y3) converges to the solution of the dynamical ®° equa-
tion.
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Fig. 1. The Glauber dynamic of Blume—Capel model rescales to the <I>§ equation for a curve of parameters

in the (0, 8) plane, parametrized here in terms of (a = €??, 8). The leading coefficient of the non-linearity
in the limiting equation changes along the curve and vanishes at the tricritical point (aj, 8>). Close to this
point a different rescaling leads to the <I>g equation. Following the curve beyond this point would lead to a
change of sign in the leading order term resulting in finite time blowup of the corresponding SPDE.

It seems natural to conjecture that if one makes the model more complex (e.g. by
allowing even more general spins and extra interaction terms in the Hamiltonian) any
®2" model could be obtained.

On a technical level just as [33] our method relies on a discretization of Da Prato—
Debussche’s solution theory for (1.1) in two dimensions [13]. A main step is to prove
convergence in law (with respect to the right topology) for the linearized dynamics as
well as suitably defined “Wick powers” of these linearizations. In a second step this is
then put into discretization of the “remainder equation” and tools from harmonic anal-
ysis are used to control the error. The most striking difference in the present work with
respect to the technique in [33] is a difficulty to describe the fluctuation characteristics.
In [33] the quadratic variation of the martingale M., (see (2.11) below for its definition)
is equal to a deterministic constant up to a small error which can be controlled with a
soft method. In the framework of the present paper this is not true anymore, and the
quadratic variation has to be averaged over large temporal and spatial scales to char-
acterize the noise in the limiting equation as white noise. We implement this averaging
by coupling the spin field o(¢, k) to a much simpler field (¢, k) which can be analyzed
directly. This auxiliary process lacks the subtle large scale effects of o captured in our
main result, but it has similar local jump dynamics and it turns out that o (¢, k) coincides
with (¢, k) for many ¢ and &k which is enough.

The structure of the paper is as follows. In Section 2 we discuss the two scaling
regimes of our model and formally derive the limiting equation in each regime. Section 3
is mainly aimed to show the convergence of the linearized equation. It is here that we
present the coupling argument used to show the averaging of the martingale fluctuation.
Section 4 contains the rest of the argument (the discrete Da Prato-Debussche method
etc.). This part of the argument is close to [33], but one difference with respect to
[33] is the replacement of the L* norm used there by an LP norm which becomes
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necessary because of an error term which arises in the coupling argument and which
is only controlled in LP.

2. Model, formal derivations and main result

The (Kac-)Blume-Capel model in equilibrium is defined as a Gibbs measure A, on
the configuration space Yy = {—1,0,+1}*¥ with Ay = Z2/(2N + 1)Z? being the
two-dimensional discrete torus of size 2N + 1. More precisely

Ay (o) o D@% exp ( - 5«%(0)) ;

where 8 > 0 is the inverse temperature, and 27, denotes the normalization constant
that is equal to the sum of the exponential weights over all configurations o € ¥y. The
Hamiltonian 7, of the model is defined via

A 2 S k=)o) o) 0 Y o) (2.1)

kjeAn JEAN

where 6 is a real parameter, o € Xy, and k. is the interaction kernel which has support
size O(y~1), which is constructed as follows: Let £: R? — [0, 1] be a rotation invariant
C? function with support contained in the ball of radius 3 around the origin, such that

/ﬁ@ﬂhzl, ‘/ﬁuﬂﬂﬂmz4. (2.2)

Then, for 0 <7 < 3, ky: Ay — [0,00) is defined as x-(0) = 0 and

_ V2 R(vk)
> kean\{0} V> ROVE)

iy (K) k#0. (2.3)

We are interested in the following Glauber dynamics, a natural Markov process on
(Xn,Ay) which is reversible for A,. This process is defined in terms of the jump rates
cy(o;0(j) = (7)) for a configuration o, to change its spin o(j) at position j € Ax to
a(7) € {£1,0}. This rate only depends on the final value 5(j) and is given by

. def . — o7 .
cy(0.4:=1) = ey(o30(j) = =1) = e @I N (hy (0, ))

c1(0,7,0) = ¢ (a30(j) = 0) = 1/ Ny (h, (0, ) ,

. def . o .
cy(0,5.1) = ey (050(j) = +1) = TN (ks (0, 7))

where § & 05 and h. is the locally averaged field
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holo, k) =Y by (k= §) 0(j) = ky %o (k) |
JEAN

and N g(hy (o, 7)) is a normalization factor

Nio(hy(0,7)) & el (@0 | 1 | oBha(0:)+6
This can be written in a streamlined way

¢y (0,5,5(§)) = 7DD N 4 (hs (0,) -
The generator of the Markov process is then given by

Lof0)=3 D e(0.4.5() (f(@) ~ f(0))

J€AN 5(j)e{0,:1}

1327

(2.4)

(2.5)

(2.6)

where f : ¥y — R and ¢ is the new spin configuration obtained by flipping the spin

o(7) in the configuration o to o (j). Let
def
hy(t, k) = hy(o(t), )

then one has

t
I (4, k) = ho (0, k) + /.,sf7 (s, k) ds +mo (4, k) |
0

(2.7)

where the process m~ (-, k) is a martingale, whose explicit form (quadratic variation etc.)

will be discussed in Section 3. For the moment we focus on the drift term 2, h (s, k).

Since o and & can only differ in their spin values at site j, one has

hy(3,k) = hy(o,k) = ky (k= §) (3(5) = 0(4))

and plugging this into (2.6) yields

Lihyok) =Y > R k) (G() —0() ey(0,4:5()) -

JeAN o(j)e{£1,0}

Using the fact that 26(j)€{i1 0} cy(0,4,5(j4)) =1, one can alternatively write

Lo k) = 3 k(G =B+ Y a0)e(0.4,5())) -

JEAN G(j)e{%1,0}

The Taylor expansion of ¢, (c,7,5(j)) in Bhy(0o,]) gives
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(0,4, chﬁ hoy(o, §)" (2.8)

where the coefficients ¢, are given by (we only list the ones we will use):

o(j)e” 0’0 5(j)e” % (5() +2 (5()* — 3) )
AT iyl 0 @7 6(1 + 200)2 ,

70)e” (450 = 5) ¥ =2 (570 +5)  +0)?)
“ 120(1 + 2¢%)3 :

Therefore one has

Lyho(0,k) = (o 5y (0,K) = iy (0,R) ) + Agg i % By (0, )

+ Bgg Ky *h,gy(O', k) + Cp,0 Ky *hi(a, k) +

where the remaining terms denoted by “---” are terms of the form . x b with n odd
and n > 5, and

def 2a def a(da—1)
38,0 ﬂ ’ 8,0 3(2a_|_ 1)2

2a +1
def a(64a2 — 26a + 1)55 (a def o 659)
60(1 + 2a)3

/B3 b)
(2.9)

Cﬁﬁ

Note that all the terms ., x b} with even powers n vanish, because c, (0,7, 7(j))
remains unchanged under (h(c,j),0(j)) — (—=hy(0,7),—(j)), thus the coefficients ¢,

n (2.8) for n even must be even functions in &(j). Multiplying this coefficient by &(j)
and summing over (j) € {£1, 0} necessarily yields zero.

Remark 2.1. As mentioned in Section 1, letting 8 — oo in the Hamiltonian (2.1) one
recovers the Kac-Ising model. Here in the above expansion for .Z, h., if we send 6 — oo,
we obtain the same coefficients in the corresponding expansion [33, Eq. (2.10)] for the
Ising case.

We set ¢ = m Now every microscopic point k € An can be identified with x =

ek € Ao = {x = (1,72) € €Z%: 21,79 € (—1,1)}. We view A, as a discretization of the
continuous torus T? identified with [—1,1]2. We define the scaled field

X, (t,z) =0 hy(t)a,z /) , (2.10)

so that
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21~ A B 6>
dX,(t,z) = (?EAWXW(L:E) + %KV xe X, (t, 1) + 55 Ky % X3(t,2)
Cﬁ g6

Ky % X3(t,7) + Ky x. E,y(t,:v)) dt +dM, (t,z),  (2.11)

where the martingale M, is defined by M, (t,z) = § 'm.(t/a,z/c) and has an ex-

plicit quadratic variation of order £2/(6%a) (see (3.8) below); the function K, (z) = dof

5‘%@(5‘13&) is scaled to approximate the Dirac distribution; the convolution *. on A,
is defined through X . Y'(z) =3 . 2X(x — 2)Y(2); and A, X = Z—;(K,, * X — X),

so that Eﬂ, scales like the continuous Laplacian. The error term E, is given by

GB6X+5%6

1 (E&e{il,o} oe 2a

_ B 33 515
7T S 07 B6X, 1520 2a+ 15(5)( Bg, 90 X 05795 XV) . (2.12)

Z&e{il,o}

Now formally:

o By choosing Agp/a = O(1) (which means that one tunes 3,6 close to a curve in
the -6 plane given by Ag g = 0) and the scaling of ¢, a, § such that the Laplacian,
martingale and cubic terms are all of O(1), namely

€~ a:’yQ, 0=r, (2.13)

one formally obtains the ®* equation, as long as Bg 02/« is strictly negative.

o However, if (3, 6) is tuned to be close to a special point (5%, 0%) = (3, —In4) (which is
a mean field value of a “tricritical” point given by Ag gy = B¢ = 0) on the aforemen-
tioned curve, then under the scaling (2.13), the coefficient Bg 6%/ vanishes, which
would formally result in an Ornstein-Uhlenbeck process. To observe a nontrivial limit
we have to consider a different scale. In fact by imposing that both Agg/a = O(1)
and Bg¢0%/a = O(1) and that the Laplacian, martingale and quintic terms are all

of O(1), namely
€~ a =5, 0=, (2.14)
one formally obtains the ®° equation.

We will refer to the above two cases as “the first (scaling) regime” and “the second
(scaling) regime”. The curve in the -0 plane was shown in Fig. 1 Note that at (5., 6.)
the coefficient in front of X° is negative (Cs, 9, = —9/20) as desired for long time
existence of solution.

Here since the domain Ay has integer size, we can only choose our space rescaling as
2N+1, and N = L ’QJ in the first regime or N = h*SJ in the second regime. This
is why we wrote ~ above. Write

e =
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_ 2 A A
Ay=c,A, = A, (2.15)

where the coefficient ;.2 = =5 in the first regime (2.13) or ¢;,2 = -5 in the second regime

(2.14) and is close to 1 up to an error O(?).

Remark 2.2. In d space dimensions, the only difference in the above scaling arguments
is that the rescaled martingale M, (t,z) has an explicit quadratic variation of order
e4/(82a), so the condition of retaining Laplacian, martingale and quintic terms becomes

It is manifest now that if d = 3 the above relation cannot be satisfied, which corresponds
exactly to the fact that the subcriticality condition for the ®% model is d < 3. This may
be compared with the scaling for the <I>§ model in [33, Remark 2.2] as follows.

4 _d
€~ yTd, a=yi-d, 5:’}/47d .
As discussed in [33], the above formal derivation is not correct. Instead, in the first

regime, fixing a point (ac, S.) on the curve C., one should write the linear and cubic
terms as

A By 00?
£+ 3¢ B0 X)) (2.16)

Bp.g0?
Koy (ZR2 (X3 = 36, X,) + -

o
where ¢, is a logarithmically divergent renormalization constant, and tune (a, ) such
that (Ag,p + 3¢,Bg 0%) /o = a1 + ¢1(7) where a; € R is a fixed constant, and ¢;(7) is a
quantity vanishing as v — 0 which will give us certain freedom, namely,

2a
2a+1

a(da — 1)
(2a 4 1)?

5—1:72(% ﬁ3+a1+61(’7)) .

The precise value of ¢, will be given below (Eq. (2.36)); the difference between S.c, and

Y s
A2 |w]?

WEZL

0<|w|<y™t

remains bounded as v goes to 0. One could well take ¢1(y) = 0; but the above tuning
is not very transparent because there are two parameters (a, ) and the right hand side
also involves a, 8. To make the tuning more explicit, we can for instance first choose

a = a(y) to be any sequence such that |a — a.| = O(y?), and then replace the quantity
a(4a—1) p3 b ac(4a.—1)

(2a+1)2 B8 by (2a0+1)2
this error, and tune § according to

2 with an error of o(7). We then choose c;(7) to exactly cancel
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2a o ac(4a.—1) 3
daril 17T 7(W5 o +a), (2.17)

where a stands for the sequence a(y) chosen above that converges to a.. Note that if
a — oo we recover from (2.17) the choice of 8 in [33, Eq (2.18)].

In the second regime, recall that the fifth Hermite polynomial is 2° — 1023 + 15z. One
should write the linear, cubic and quintic terms as

A By 46? Cp. 6%
KV*E( LO0 X, 4 ZB0T 3 280 X:’;)
[0
C. 95t By 462 + 1005 5>
= 1y e (2 (X§—10c7X3+15c§/X7)+ 208 10000 (X3 - 36, X))
A B 462 + 5C5 g%
+( Z"’+3c7 £.0 - 8.0 W)XW) (2.18)

So one should tune (a,3) such that the coefficient in front of (X3 — 3¢, X,) is equal
to az + ¢3(y) where az € R is a fixed constant; noting that Czg = Cg, 9, + o(y) =
—9/20 + o(7y), one can replace Cgy by —9/20 and suitably choose c3(7) to cancel this
error, and thus obtain

a(4a — 1)

9
_3(20,—4—1)253 :’72(— c7+a3) . (219)

2

One should furthermore impose that the coefficient in front of X, in (2.18) is equal to
a; + ¢1(y) where a; € R is a fixed constant, and suitably choose ¢;(7) to get

2a
2a + 1

27
/6_1:’74(—3%‘13—ZC?Y+C11) . (2.20)

Combining the above two conditions, we can then obtain the correct tuning of the pa-
rameters (3, a = e?); we give their values in terms of power series in 7:

1 9 5
a=7 -7 (5o + ) + 27 (816 + 36c,a5 + 4a3) + 0(7) ,
4 8 4 48" (2.21)
189 4 '
B=3+92 (9c,Y + 2a3) + 74( — Tci + 3a; — 21eya3 — §a§> +0(+°).
In fact, these precise values of (a, 8) do not matter in the sequel, and it will be sufficient
to know that there exists a family of (a, 8) depending on v (approaching (%, 3)asy—0)
such that (2.19) and (2.20) do hold simultaneously.

The limiting SPDEs
We briefly review the well-posedness theory for the ®2" equation

= (AX + an 1 XN dt+/2/BdW X (0) = X° (2.22)

k=1
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in two space dimensions with as, 1 < 0, and the parameter 5. > 0 will correspond
to a critical value of 8 described above. In order to interpret the solution to the above
equation, let W(t,z) = iz\wKs*l eimwe W(t,w) be a spatially regularized cylindrical
Wiener process, and consider the renormalized equation

dX. = (AXE + sy Hopo1 (X, cg)) dt + \/2/B. AW, (2.23)
k=1

where H,, = H,,(z,c) are Hermite polynomials defined recursively by setting Hy = 1
and H,, = 2H,,_1 — cOyH,,_1 so that H; = z, Hy = 2?> — ¢, H3 = 2® — 3cz, etc. The
constant c. is given by

c=p"" > L (2.24)

4m2|w|?
0<|w|<e™?

In particular, the constants c. diverge logarithmically as € — 0. Then, [13] shows that
X. converges to nontrivial limit.
More precisely, let

X (t) = Z.(t) + P X° 4+ v.(t)

where P, = e*® is the solution operator of the heat equation on the torus T?, and

Zs(t, ) = \/Q/ﬂc/Pt—s dW€(87 )
0

is the solution to the linear equation with zero initial data. Letting

Zm () S Ho(Zo(t, 3), e () (2.25)

for

t

¢ (t) = E[Z.(t,0)?] ! > /exp(727"7r2|w|2) dr

256 |wl<e=1 7
¢l 1
- - — _(1- — 2tn? 2) 2.26
5.t B, 2 e (e (AT r) (2
0<|w|<e1

then Z™ converge almost surely and in every stochastic L” space with respect to the

metric of C([0,T],C~¥) — this is essentially [13, Lemma 3.2]. We denote the limiting
processes by Z™ . Note that ¢ = lim;_, o (cc(¢)— ﬁ), where the term ﬁ comes from the

summand for w = 0 in (2.26) which does not converge as t — oco. Furthermore, for every
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fixed ¢ > 0 the difference |c. — ¢-(t)| is uniformly bounded in e. This replacement of c.
by ¢.(t) amounts to rewriting (2.23) as (2.30) below. Define agz)_l(t) as time dependent

coefficients such that

Zﬂ% 1Hop—1(x,¢.) Zagk V() Hop 1 (2, e (1)) (2.27)
k=1

This is well-defined since the left hand side is an odd polynomial of degree 2n — 1
which can be uniquely expressed as a linear combination of odd Hermite polynomials
Hsj—1(x,c-(t)). Note that the leading coefficients always satisfy as,_1 = ag;)_l(t). For
the other coefficients, for instance, when n = 2 one has age) (t) = 3ag(ce(t) — ce) + ag;
when n = 3 one has

al (t) = 10as(co(t) — ) + a3, (2.28)

01 (1) = 1505 (c=(1)” — 2) + 3(e(t)af (1) — cc0) +a
In fact, plugging the first relation into the second, one has
ai” () = 3as(c(t) — c2) + 15a5(c-(t) — ¢)? +ay . (2.29)

Then (2.23) can be rewritten as

dX. = (AXE + 2 as;) (t)Hapo 1 (X, c€<t>>) dt +/2/Be AW . (2.30)

To proceed one needs the following simple fact, which generalizes (2.29).
Lemma 2.3. For every k = 1,...,n, the difference agp_1 — a;@)q(t) is a polynomial of
ce —ce(t) without zero order term, with coefficients only depending on ay,- -+, agp_1. This

difference is uniformly bounded in € for every t > 0 and diverges logarithmically in t as
t— 0.

Proof. By the differential operator representation of Hermite polynomials H,,(z,c) =

e~ ¢A/2gm where A is Laplacian in = and the exponential is understood as power series

without convergence problem when acting on polynomials. So we have

—cEA/2x2k—1 e—is(t)A/Qe—(Cs—Cs(t))A/Qka—l

Hop_1(z,cc) =€

e—fs(t)A/2H2k71(x, Ce — cs(t)) N

A/2 replaces every monomial term z™ in the polynomial Hog_1(x, cc—

The operator e~ (%)
ce(t)) by Hy(x, co(t)), which means that when re-expanding Hay—1(z, c.) on the left hand

side of (2.27) w.r.t. the basis H,,(z,c.(t)) the coefficients only depend on ¢, c.(¢) via
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ce — ¢e(f). After this re-expansion we then compare the coefficients on the two sides
of (2.27), noting that if ¢ — c.(¢) = 0 then aé?_l = aop_1, and we obtain the first
statement of the lemma. Note that
Z 72t7r2|w\2
lim (¢ — ¢.(2)) = + . (2.31)
e=0 ﬁc werm (0} 472 |w|?

It is then obvious that the second statement of the lemma also holds. O

By this lemma the limiting coefficient lim._,q agi)fl(t) is integrable in t at ¢ = 0.
As a convenient way to deal with the initial data X, we further define Z(t) = Z(t) +
PtXO and

Zmit)y=3" (Z) (P,X0)m—k Z:k: (1) (2.32)

k=0

The following theorem, essentially [34, Theorem 6.1] (together with Remark 1.5 therein),
states that the equation

n 2k—1 2% — 1
O = Av+ Z azk—1(t) ( >Z:2k_1_€:01e (2.33)
k=1 =1 ¢

which is derived from (2.30), or equivalently
2n—1 9% — 1\ .
oo =2v+ Y ( 3 Clgk._l(t)< , )Z‘Zkle:)ve (2.34)
£=1 kGZﬁ[%,n]

with zero initial condition v(0) = 0 is globally well-posed. The solution v is the limit
of v..

Theorem 2.4. For v > 0 small enough, fir an initial datum X° € C™V. For
(2,72%,..., 72 %) e (L=([0,T],c 7)),

let (Z,2°% -+ | 222771 be defined as in (2.32). Let Sp(Z, 2%, ..., Z2"=1) denote the
solution v on [0,T] of the PDE (2.34). Then for any xk > 0, the mapping

Sr: (L=([0,7],¢7))*" ™" = ([0, 7], ~*(T?))
is Lipschitz continuous on bounded sets.

With the solution v given by this theorem we call X (t) = Z(t) + P,X° + v(t) the
solution to the dynamical ®2" equation (2.22) with initial data X° € C7". (Due to
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the above theorem, Eq. (2.22) is sometimes written with each term X2F~! replaced
by :X2k~1: but we refrain from using this notation.)

Main result

As in [33], for any function Y: A, — R, we define its smooth extension to a function
T? — R which is denoted by ExtY (but sometimes still written as Y') in the following
way:

ExtY (z) = % > Y@My () (weT?) (2.35)

we{—N,...,N}2 yeA.

which is the unique trigonometric polynomial of degree < N that coincides with Y on A..
For any metric space S, we denote by D(R, S) the space of S valued cadlag function
endowed with the Skorokhod topology. For any v > 0 we denote by C™" the Besov

space B, (see [33, Appendix A] for such spaces).
Assume that for v > 0, the spin configuration at time 0 is given by 0(0,k), k € Ay,

and define for z € A,

Xg(x) =0t Z 2K, (r —y)o,(0,e 'y) .
yEA.

We smoothly extend Xg (in the way described above) to T? which is still denoted by Xf)/.
Let X, (t,z), t >0, z € A2 be defined by (2.10) and extend X, (¢, ) to T?, still denoted

by X,.
Define
1 K. (w)]?
o® - 3 S E:e1C) (2.36)
4fe welnnyz V(= By (W)

w#0

where K (w) = > wen, £ K, (2)e™" ™" is the Fourier transform of K, b = 2 in the first
regime and b = 4 in the second regime.
The main result of this article is the following.

Theorem 2.5. Suppose that the precise value of ¢, is given by (2.36), and that X,? con-
verges to X% in C™Y for v > 0 small enough and that X°, XS are uniformly bounded
in CTVF* for an arbitrarily small k > 0.

(1) Assume that the scaling exponents €,a,d satisfy (2.13) and the parameters a =
e?, B satisfy (2.17) for some (ac, B.) and a; € R such that

2a,
2a.+1

Be—1=0. (2.37)

If a. > %, then X, converges in law to the solution of the following dynamical ®*
equation:
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o 3
CL;((ZC—Jrll))ECX?’)dH V2/BedW X(0) = X7

dX = (AX +a X —
2) Under the same assumption in (1), if a. = +, then X, converges in law to the
1 ¥
linear equation:

dX = (AX + a1 X)dt ++/2/3dW  X(0) = X".

(3) Assume that the scaling exponents €, «,d satisfy (2.14) and the parameters a =
e?, B satisfy (2.21) for some ay,a3 € R and in particular

(a,8) = (1/4,3) asy—0. (2.38)

Then as v — 0, X, converges in law to the solution of a dynamical O6 equation:
9
dX = (AX + a1 X + a3 X?® — 2—0X5) dt++/2/3dWw  X(0)=X".

All the above convergences are with respect to the topology of D(R4,C™").

Remark 2.6. Note that the coefficient y/2/8. in front of the white noise in the limiting
equations makes the interpretation of 8 as “inverse temperature” more meaningful. This
means that the quadratic variation of our martingale should behave like 2/, times the
Dirac distribution. The quadratic variation will depend on the spin configuration ¢ and
in the following proofs we will approximate o by an i.i.d. spin system & so that at each
site P(6 = 1) = % /N, and P(6 = 0) = 1/N, where N, = 1 + 2¢%. (Recall that 6 has
the interpretation of “chemical potential” i.e. the “ratio” between +1 and 0 spins.) On
average (over & € {—1,0,+1}) the quadratic variation will then be shown as equal to
(see (3.13))

4¢P 2

1+ 2ef B

where the last equality is by (2.37) or (2.38).

Remark 2.7. The limiting equations in the theorem are globally well-posed, see the pa-

per [34], especially Remark 1.5 there. Actually, in case (1), if a. < i,

that X, converges to a ®* equation, but with a plus sign in front of X3, which may blow

one can still prove
up in finite time.
3. Convergence of the linearized equation

To prove the convergence result Theorem 2.5 we rewrite our discrete evolution in the
Duhamel’s form:
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t
Clg 6% Bg.962
X, (t,) =P)X)+ /P]_SK7 * <BTX3(S7 D+ BTX;”(S, )
0 (3.1)
A t
—i—% ~(s,4) + E4(s, )) ds + / P dM,(s,-) on A
s=0

where the coefficients are defined in (2.9), and P, is the heat operator associated with A,
Recall that the martingale m., was defined above in (2.7) and the rescaled martingales
M, (t,z) = $my (L, 2) are defined on a rescaled grid A. C [—1,1]%. An important step of
proving convergence of (3.1) is to show convergence of the linearized system. For € A,
we denote by

t

Z,(t,x) < / Py, dM,(r,x) (3.2)

r=0

the stochastic convolution appearing as the last term of (3.1). The process Z, is the
solution to the linear stochastic equation

Az (t,x) = Ay Z(t, x)dt + dM,(t, )
Z"/(Oﬂz) =0, (33)

for x € A, t > 0. As discussed in (2.35), we extend Z, to the entire torus T? and

still denote it by Z,. The tightness of the family Z, with respect to the topology of

D(R,4,C™") is established below in Proposition 4.4. In this section we assume this result

and prove the convergence in law of Z, to the solution of the stochastic heat equation.
The predictable quadratic covariations of the martingales m (-, k) are given by

—~

m"/('v k)am'y('aj»t

_ / (b= Oy —0) Y (6 —0(5,0)2e(0(s), 6,5)ds. (3.4)
0

CeAN Fe{+1,0}

Following the reasoning from [33] we first construct a modified version of the martin-
gales M, and the approximate stochastic convolution Z, for which we have a better
control on this quadratic variation. To this end, we first define the stopping time 7.,
for a fixed v € (O,%)7 anym>1and 0 <~y <1,

def .
Ty = inf {t > 0: [| X (t,")[|c-v = m} . (3.5)

For k € Ay and for ¢t > 0, define
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t k) =
0’7,111( k) ol w(t, k) otherwise .

o { o(t, k) ift< e
v

Here o7, ,, is a spin system with o”, . (7 m/a, k) = 0(75 n /@, k), and for every t > 7, n/cx
9c oc .

and every k € Ay it jumps to spin values +1,0,—1 at rates eTC’ AL/C, f\/—c respectively,

independently of o, with A, = 1 4 2e%. (Recall that 6, is a critical value of 6 as in

Section 2.) In other words, the rate function ¢, is replaced by

e (0(s),k, o) if s < Tem |
& n(o(s), k,5) = 4 ok ko) s <7 (3.6)
’ ( N Nc) otherwise

where in the second case, c ,(o(s), k, o) is independent of the configuration o(s) and the
site k and thus only depends on &; so we only defined its values on the three points ¢ =
1,0, —1. We now construct processes M, m and Z, , following exactly the construction
of M, and Z, with o, replaced by o m.

Define the rescaled rate function

Com(s,2,5) L /o0y m(s/a), /2, 5) (3.7)

for every s > 0, z € A and ¢ € {+1,0,—1}. Of course C, m(s,2,0) still depends on
the configuration o, but we suppress this dependence in the notation now. For the
martingales M., (¢, 2), Eq. (3.4) turns into

<M’Y,m(" .Z‘), M"/,m('a y)>t

t
2
= 552— /Z K (z—2) Ky(y — 2) Z (0 —o(a"s,e7"2))°Cym(s, 2,0) ds.
o 0 #€Ae oe{+1,0}
(3.8)

Recall that the kernel K. (z) = e 2k, (¢7'x) is a rescaled version of k. that behaves
like an approximation of Dirac distribution §; thus we obtain ¢* when rescaling the
two factors . but have moved an €2 into the sum to anticipate that the sum over z
approximates §(z —y), possibly times a constant. Since § = v in bo‘gh “scaling regimes”,
2 €

= -5~ which was defined

we can also write the coefficient in front of the integral as cf , = 55

in (2.15). The constant ¢, o is close to 1.

Lemma 3.1. The rates C, w defined in (3.7) satisfy

0.

a
S

Cym(s,z,£1) =

+Ey

- &

Cym(s,2,0) = A + E,

o
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for every s > 0, z € A., where N, = 1+2¢% and the random terms E,, E; which depend
on s, z are deterministically bounded by Cy' 3" with constant C depending linearly on m.
The un-rescaled rates c5, ,(0(s), k, o) satisfy the same estimates for every s > 0, k € An

and o € {£1,0}.

Proof. By (3.7) it suffices to prove the stated estimates for C, ,, and that for c,m
immediately follow. For ¢t > 7, we have E, = E’ = 0 by definition. For ¢ < 7y,
first of all, we note that (/\/’ o N —) with ' = 1 4 2¢? are nothing but the values of Cy
defined in (2.5) for Bhy, = 0 at the three points ¢ = 1,0,—1. Since the derivatives

of the functions ey and ﬁ are both bounded by 2, the error caused by replacing

(/\j’ NN —) by (eez ) /\1/ , N ~) is bounded by 2|e? — e’ |; by the discussion above (2.17) (for
the first scaling regime) or (2.21) (for the second scaling regime), this error is bounded
by 071721/’

Furthermore, it is easy to check by (2.5) that for any o(j) € {£1,0} and any 0 € R,
the rate ¢, viewed as a function of 8h, has the derivative:

07 (1)Bh+5(5)20 (5.(j)(efﬁh~,+0 14 ety 4 g Bhaytl eﬁhww)

(e_Bh’YJ"e + 1 +66h’v+9)2 5
which is bounded by 2. Therefore for ¢ < 7 m,

|| V|EL| < 28|hy(0(t/), z/e)| + Cy' 2 = 2B6| X, (t, z)| + Cy' 2"

(3.9)
<Cn T (IX O)le—v +1) -

In the last step of (3.9) we used the fact that = v in both scaling regimes; 8 < 4 for
sufficiently small since in all three cases of Theorem 2.5 8. < 3; and the fact that since
the Fourier coefficients of X, with frequency larger than y~2 (resp. yv~3) vanish, by [33,
Lemma A.3], || X, (t)]|z < Cy~ || X, (t)||¢c-» with b= 2 in the first regime (resp. b = 3

in the second regime). O

This lemma allows to rewrite the last terms appearing in (3.8) as

Z (0 —o(ats,e72)Cm(s,2,0) = A(o(a's,e712)) + EJ,  (3.10)
oce{£1,0}

where the error Elvl is again deterministically bounded by Cy'=3" (for a constant C
which depends on m) and A is a function defined on three points {+1,0,—1} as follows

Alo) = {Qeec/./\/c for o =0 (3.11)

4e% IN. +1/N, for o = +1

where NV, = 1+ 2¢% as before. The main ingredient in the proof of Theorem 3.3 below is
to show that the dependence on the microscopic configuration o (¢, ) in this expression
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becomes irrelevant when averaging over long time intervals, and that A may be replaced
by its average.

Before stating Theorem 3.3, we define a coupling between the microscopic spin process
o(s,k) with an extremely simple auxiliary spin process &(s, k). For every given site
k € Ay the spin &(-, k) gets updated at the same random times as the original process
o(+, k) but the update is determined according to a fixed probability distribution P on
{#£1,0} independently of the values of both ¢ and & and independently of other sites,
which motivated by Lemma 3.1 is given by

el JN.
P=| 1N, |. (3.12)
el N

This process 6 does not capture any of the subtle large scale non-linear effects of
the field o described in our main result, but for any given site it coincides with o for
many times which allows to replace o with & below (see e.g. (3.17)). The advantage of
this replacement is that one can then average over & € {—1,0,+1}: indeed, note that
by (2.37) and (2.38) and the definition (3.11) for A

~ _ 0. 0. 1 4 0. 2
EA®G(r, k) = j\—/.A(—l) + j\—/,A(l) + A0 = He—w =5 (3.13)

where E denotes the expectation with respect to P. This is essentially the reason why the
pre-factor \/2//3. in front of the noise of the limiting equation shows up (see Remark 2.6).
In the proof of Theorem 3.3 we only make use of the averaging in time over &. The proof
of Proposition 3.4 below then relies on the same construction and we will make use of
the spatial averaging as well.

We now proceed to the construction of this coupling. By definition, for any fixed site
k € Ay the process o(s, k) is a pure jump processes on {£1,0}. The joint law of all of
these processes can be constructed as follows:

o For each site there is an independent Poisson clock, running at rate 1.

e At each jump of the Poisson clock the spin changes according to the transition
probabilities given in the vector

C'Sy,m(o—’)’ym(s)v ka 71)

Of course this vector depends on the configuration of the neighboring particles at
time s.
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The transition probabilities of the auxiliary processes &(s,k), k € Ay are fixed and
given by (3.12). In order to construct the coupling, we note that according to Lemma 3.1
there exists a number ¢ satisfying

1>¢g>1-Cy'"%,

such that ¢P < P where the inequality of the two vectors is to be understood entry by
entry. Therefore, we can write

P(S, k) = qp + (]— - q)R(S, k)?
where R is normalized to be a probability measure. The coupling is now the following;:

o At the initial time each of the &(0, k) is distributed according to P and the realiza-
tions for different sites k # k' are independent.

o At each jump of the Poisson clock at site k, (s, k) is updated according to P. This
update is independent of the updates at other sites as well as the jump times.

o To determine the updated spin for o(s, k) after the same jump of the Poisson clock,
the vector R(s, k) are evaluated. It depends on the environment at the given time s.

e Toss a coin which yields 1 with probability ¢ and 0 with probability 1 — ¢. If the
outcome of this toss is 1 the spin o(s, k) is updated to the same value as G(s, k). If
the outcome is 0 then o(s, k) is updated according to R(s, k) independently of the
update for .

It is clear that the process & constructed in this way is a jump Markov chain jumping
according to P and that the processes for different sites are independent. This construc-
tion is consistent with the jumping rule of o (in particular ¢ jumps according to P).
Furthermore, for every k € Ay, after each jump the probability that 6(s, k) # o(s, k) is
bounded by Cy'~3", where the constant C obtained from (3.9) does not depend on the
location k and the jump-time.

To lighten the notation in the following calculation we introduce the centered random
field A(G(r, k)) = A(G(r,k)) — % where A was defined in (3.11).

Lemma 3.2. For every r,v’ >0 and k, k' € Ay we have
EA(G(r, k) A(G(r', k) < Clgmpre™ "7,

Proof. Recall from the construction that for k # k' the random variables &(r, k) and
a(r' k') are independent and that therefore for these k # k' we have

EA(G(r, k) A(e(r", k")) = 0.

To get bounds in the temporal correlations for &(-, k) for a fixed site k we fix times 7’ < r
and denote by 7 the first jump time of the Poisson clock for site z after 7. Recall from
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the construction of & that if » < 7 the spin values of 5(r, k) and &(r’, k) are identical.
The value after 7 becomes independent of the value before 7. With this discussion in
mind we write

EA(G(r,k)) A( (' k))
=RAG(r, k) 1rsr + EAG(r, k) AG(r k) 1<

The first term on the right hand side is bounded by

EA®G(r, k) 1,5, < sup  |A@)PP(r > r) < CemIml.
ce{£1,0}

For the second term we write

k)< ]E(A &(r k)| Fr) =
where F. is the sigma algebra generated by &(-, k) up to the stopping time 7. O

Theorem 3.3 (Convergence of Z). Let v € (0,1/2) and m > 1. As v tends to 0, the pro-
cesses Z, m converge in law to Z with respect to the Skorokhod topology on D(R4,C™"),
where Z is defined as

2(t,) < /275, / Py dW (s
0

Proof. Proposition 4.4 below for the case n = 1 shows that the family {Z, n,v € (0, %)}
is tight on D(R4,C~") and any weak limit is supported on C(R4,C~"). Given this tight-
ness result, we aim to show that any weak accumulation point Z solves the martingale
problem discussed in Theorem 6.1 and Appendix C of [33]. The argument for the “drift”
part of the martingale problem, namely establishing that

t

My () (2(1), 6) - / (Z(s), Ad) ds

0

is a local martingale for any test function ¢ € C* is identical to [33]. Indeed, the claim
we need to establish is that there exists a sequence of stopping times T,, with T}, T oo
a.s. as n — oo such that for all s < ¢ and all random variables F' which are bounded and
measurable with respect to the o-algebra over D([0, s],C~") we have

E( (g5t NT) =t o5 NT))F) =0, (3.14)
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For any C* function ¢

Mo o) = (Zy (), 8) — / (Zym(s), Ayd) ds (3.15)
0

is a martingale by assumption and therefore the formula (3.14) with M7, replaced
by M., 4 holds irrespective of the choice of stopping time T,. Just as in [33, Eq. (6.6)] it
follows that the approximate Laplacian A appearing in expression (3.15) can be replaced
by the full Laplacian A up to an error which is controlled by C(¢)y*>~2 in both the
“first regime” and the “second regime”. By assumption the processes Z,  converge in
law to Z and as the law of Z only charges the space C(R,,C"), in particular it assigns
measure one to the set of continuity points (with respect to D(R;,C") topology) of
the map that sends Z to Mz 4(t) (recall that ¢ is smooth). Thus we can pass to the
limit as soon as we have some control over the uniform integrability of these random
variables. This is precisely the role of the stopping times — if we set Ty, = inf{t > 0 :
| Zym(t)||c-» > L} then it follows just as in [33, Proof of Theorem 6.1] that (outside of
a hypothetical countable set of values L) the processes Z, (s A Tr ) also converge in
law and furthermore for fixed L, s,t the random variables

tATL17

(Z%m(t A TL,7)7 ¢) - / (Z%m(s A TL,w)a Av@ ds (3~16)
0

are uniformly bounded as v — 0 which permits to pass to the limit and establishes (3.14).
The more interesting part concerns the quadratic variation. More precisely, we need
to show that

(7,40)" = =0l

is a local martingale; recall that the factor 2/8. naturally appears from (3.13).
This follows if we can establish that for any fixed trigonometric polynomial ¢. If we

-2

fix such a ¢, then as soon as «y is small enough to guarantee the degree of ¢ is < y~* (or

7~ depending on the regime), the quantity

( 25 ’ymtx¢('r)

z€A.

can be written using Parseval’s identity (see [33, Appendix A])

(Mym(8),0)) = o Y '6(@)dly) Y Ky —2) Ky (y - 2)

z,yEAL z€AN,

/ Z 575_1,2))20%“1(8,2,6) ds

0 oe{£1, 0}
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2t
= EHQS”%? + E(1),

for an error EZ'(t) for which E|EZ'(t)| — 0 as v — 0. For this statement in turn (3.10)
and (3.11) show that it is sufficient to prove that for every z € A, we have

¢
2

/A(o(a_ls75_1z))ds = ﬁ_t + EJ", (3.17)

0

with a good control on E”. Indeed, one has |2 , — 1| < O(?) and by (2.2), (2.3) and
K, (z) =e k(e ),

Y eo@)oly) Y KLz —2) Kyly —2) = [|9]72

z,YyENL 2€A.

independently of the scaling relation between £ and ~ (thus it holds for both scaling
regimes). Although we have assumed that ¢ is a trigonometric polynomial, by [33, Re-
mark C.4], this is sufficient to characterize the law of Z.

While the error terms E,, EQ, Elv/ were all deterministically bounded, we will only get
a probabilistic bound for Eiy” . To obtain this bound we will need the coupling between
the microscopic spin processes ¢ and &.

Recall that for every z, after each jump the probability that &(a~'s,e™'z) #

o(a™ts,e712) is bounded by Cy'~3¥, where the constant C does not depend on z and

the jump-time. We then get

/A(U(a_ls,s_lz))ds _ :/A(&(a_ls,s_lz))ds — —
0 0

For the term in the second line we get

E‘ /A(a(ofls,eflz)) — A(G(ats,e712)) ds‘
0

t

< sup \A(6)|/P(U(a715,671z)#&(ails,sflz»ds

cge{+1,0}

t
< sup |A@®)] / (BT, > 5) + Oy =) ds (3.18)
ce{+£1,0} 5
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¢
<  sup |A(6)|/(e‘§ +C"yl_3”)ds
oe{%1,0} 0

< sup |A@G)|(a+Cty' 7).

T Ge{£1,0}

Here T, is the holding time before the first jump.
For the other term, by Lemma 3.2, its second moment can be bounded as

E(/A(&(a‘ls,s_lz))ds— %)2
0

t ot
< //E/_l(é(a_ls,5_12))14(&(04_15’,5_12))ds ds'
00

SC//ef‘S;S‘dst/SCoz.
0 0

So this term goes to zero as well. Therefore we have shown that the error term in (3.17)

goes to zero and thus the theorem is proved. O
The following result will also be applied several times in the sequel.

Proposition 3.4. For every 0 < s <t <T and x € A, one has

0 #€EA: Fe{+1,0}

s (3.19)
= % O/z%;s e? (P, *: K,Y)Q(z —x)dr + Ey(s,z)
where the process E satisfies the bound
E|Ey(s,z)[P < Cy 3" log(y~1)PHt (3.20)

for every p > 2 and some constant C = C(T,v,m) depending linearly on m. Its extension
ExtE,(s,-), which will still be denoted by E,(s,-), satisfies

E||ExtE; (s, -)Hip(w) < Cy W log(y TP (3.21)

for every p > 2 and some constant C = C(T,v,m) depending linearly on m.
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Proof. We first show that the sum over & can be replaced by A(o(r,e71z)) (recall the
definition of A in (3.11)) up to an error which is controlled deterministically. Turn-
ing to Fourier space, using (A.2) and Parseval’s identity and the elementary bound
fos e~ (s=magy < C(% +a)~! for any a > 0, we obtain

S (P, K) (mdr<c Y [y ()P . (3.22)

0 #€Ac we€{—N,...,N}2 th+ 29701 = Ky (w)

where b = 2 in the first regime and b = 4 in the second regime. We then use the estimates
(A.3) and the first estimate in (A.6) to bound the sum over |w| < Cy~! (resp. Cy~2)
and the estimate (A.7) to bound the sum over |w| > Cy~1 (resp. Cy~2) in the first (resp.
second) regime, which permits to conclude that the right hand side of (3.22) is bounded
by C'log(y~!). Therefore, invoking (3.10), the left hand side of (3.19) is equal to

Z e (P, *: K,Y)z(z —x) A(o(a™tre712)) dr
o z€A.
plus an error which is deterministically bounded by Cy!=3" log~~1.

We proceed as in the proof of Theorem 3.3, again making use of the process &
constructed at the beginning of this section. Arguing as in (3.18) we can replace
A(o(a~tr,e712)) in the above integral by A(G(a~lr,e~!z)) with an error satisfying
the following first moment bound

/ Z P, % 7)2(2' —x) ‘A(U(Oflr, e712)) — A(&(cflr,aflz))’ dr
et (3.23)

< sup |/ Z 7)2(2 —z) (e +Cy ) dr .

Ee{il,o} Z€A.

We claim that by a similar argument to the one leading to (3.22), the right hand side
of (3.23) can be bounded by Cy'~3"log~y~!. Indeed, for the term involving Cy!=3¥ thls
is immediately clear from the above log(y~!) bound on (3.22). For the term with e~ «
we divide the r-integral into an integral over r € [y, s] and an integral over r € [0,7].
For the integral over r € [y, s], we simply bound e~& < C7 (recall that a ~ «? in the
first and o &~ 7* in the second scaling regime), and the integration of the other factors
is bounded by C'log(y~!) as above. For the integral over r € [0,7], we bound e~ & < 1,
and then since after applying Parseval’s identity the only r-dependent factor inside the

—2(t—r)y P (1- K, (@)

r-integral is e and as this function is monotonically increasing in r,

we have
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S

il

/e—u—rwb(l—kw(w))dr <7 /e—a—r)ﬂ(l—m(w))dr;
S

0 0

applying the above log(y~!) bound again we conclude that as claimed the right hand
side of (3.23) is bounded by Cy'=3"log~y~1.
Finally using the deterministic bound

Z e (P, *: K,Y)Q(Z —a) |[A(o(a ™ re2)) — A(G(a e 2))| dr

0 #€Ac

< Clogy™ ",

the above bound on the first moment can be upgraded to a bound on all stochastic

moments. We get for any p > 1 that

E(/S Z e (P, *: KW)2(Z — ) ‘A(a(a‘lr,e_lz)) - A(&(a‘lr,s_lz))’ dr)p
0

z€EA.

< Oy (logy )P, (3.24)

To prove (3.19) it remains to control moments of the error term

0/ Z e? (P, K»Y)Q(Z — ) (A(&(oflr,g_lz)) - E) dr .

z€EA.

As before we use the centered random field A(G(a~'r,e712)) = A(G(a"'r,e712)) — ﬁl

and write

z€A.
:// Z et (P, % Ky) (2 — ) (P, % Ky) (2 — )
0 0 z€N. 2’ €A,
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< Ce //Z K)o — ) (P e K)o — @) e drdr!

z€A.

< Ce® sup [P, % Ky Zwa,)
r’€[0,s]

22— 567‘7,?/‘ r' ) dr
/Z (P e 1) (2 >(0/ ar')d

zE€A,

< Ce? (v tlog(v ™) a/Zs P x. K V)Q(Z—oc)dr
o z€A

€

< Ce?y(log(v ) e,

where in the third inequality we have used (A.9) and b = 2 in the first regime and b = 4
in the second regime. In both the first regime (2.13) and the second regime (2.14) this
expression is bounded by < Cy?(log(y~1)). As before we can upgrade this stochastic L?
to a stochastic LP bound by using a deterministic bound

/ Z 7)2(,2 —2)A(G(atr e 2)) dr < Clogy ™.
z€A.

Therefore in both scaling regimes (3.20) follows.
To obtain the second bound (Eq. (3.21)) we sum (3.20) over x € A, to obtain

E|Ei(s, W oia., = D e ElE(s,2)|P < Oy~ log(y™")P.
TEA

To replace the LP norm over A, by the L? norm over the continuous torus and E by its
extension write using Jensen’s inequality

/ |ExtE, (s, 2)|Pdz

£
= /’ Z e2Ey(s, z)Ker(x — 2) pdz (3.25)
T2 TEA:
< / ( 3 &|E(s,z)[|Ker(x - z)|)( 3 e[Ker(x - z)|>p_1dz
T2 ®EAe €A,

where (as discussed in [33, Lemma A.6]) the extension kernel is given by

2 .
2N 1 -
Ker(z — 2) Hsm + )~ %))
s

1n 5z — zj))

Jj=1
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so that we have that ZzeAE e?|Ker(x — 2)| < Clog~y~! uniformly in z. Plugging this
estimate into (3.25) yields

/ |ExtE (s, z)[Pdz

T2

< C(log’yfl)pfl( Z EQ\Et(s,x)|p/|Ker(x — z)|dz)

TEA. T2
< Cllog ™| Bx(s, ).
so (3.21) follows as well. O

4. Wick powers and proof of the main theorem

The aim of this section is to prove Theorem 2.5. Since we will apply a discrete version
of Da Prato—Debussche argument ([13]) as in [33], an important step is to prove the
convergence of the approximate Wick powers Z7* to the Wick powers. Fortunately, the
work [33] treated the Wick powers with general n, though only n < 3 was needed therein;
here we only need some minor modifications to their construction of Wick powers.

We start by recalling the definitions of the approximate Wick powers Zi*. Recall
that Z., is defined in (3.2). It will be convenient to work with the following family of
approximations to Z,(t, z). For s < t, we introduce

S

Ry (s, x) def / P dM,(r,x),

r=0

and extend R, ;(s,-) and Z,(t,-) to functions on all of T? by trigonometric polynomials
of degree < N as (2.35). Note that for any ¢ and any = € T?, the process Ry4(- ) is a
martingale and Ry ¢(t,-) = Z,(t,-).

The iterated integrals are then defined recursively as follows. For a fixed ¢ > 0 and
x € T?, we set Rylt(s,x) =R, (s,z). Forn>2,t>0and z € A, we set

S

Rii(s,2) =n / Ry (r™ x) dRy 4 (r, ) . (4.1)
r=0

We use the notation R;’f;lz(r_,w) to denote the left limit of R;rf;lz(-,x) at 7. This
definition ensures that (R (s, z))o<s<¢t is a martingale. The extension of R'i(s,-) to
the entire T? is also defined recursively, through its Fourier series

A

R (s,0) / LRI w - @) dRy (@) (4.2)
reg WEZ?
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and set R (s, ) e 3> ez ﬁwnt(& w)e™® This definition coincides with (4.1) on A,

and for every n > 2 the function RI'i(s,-): T? — R is a trigonometric polynomial of
degree < nN. For any n > 2 and for ¢t > 0, x € T? we define

m: def m:
Zm(tw) L R () (4.3)

Finally let R . and ZJ', be iterated stochastic integrals defined just as R, and

Z7" but with M, replaced by M, . Recall that m is the parameter fixed in (3.5).
By the definition of R, ;(s,z) and the quadratic variation of M, one has

(Ry (-, @))s = 0372/ Z g2 (P;’_T *e Kv)2(x —z)
0 €A (4.4)

X Z (6 —a(r, »3712))26’%m (r, z,0)dr .
oce{£1,0}

There exists a constant vy > 0 (arising when we apply the kernel bounds in Ap-
pendix A) such that the following results hold.

Proposition 4.1. For everyn e N, p > 1, v > 0,T > 0,0 < A
there exists a constant C = C(n,p,v,T, A\, k) such that for every

= IA

0 < v <, one has

E sup [|[R75(r, )b ) o < CAP 4 CyPE7R) (4.5)
o<r<t
E sup [[R};(r,) — Ry (1 As, Mo—san < Ct - 52+ CAPO—R) (4.6)
0<r<t
E sup [|RYi(r,) = Ry (r As, G- -on < C |t — s|AP 4 Cnp=R) (4.7)
0<r<t

The same bounds hold for R

vst,me

Proposition 4.2. For x € A., let

Qr.(5,2) = [Ro (5 2)]s = (R o5 ) s - (4.8)

Foranyt >0, k > 0 and 1 < p < +o0, there exists C = C(t,k,p) such that for
0< Y <0,

E sup sup |Q.(s,z)P < C”yp(lf").
€A, 0<s<t

The same bound holds for Q. +m, that is, the same process as Q- but defined via M,
instead of M., .



H. Shen, H. Weber / Journal of Functional Analysis 275 (2018) 1321-1367 1351

One important result is that these iterated integrals are almost Hermite polynomials
with renormalization constant chosen as [R (-, x)]s.

Proposition 4.3. Define

n: def n:

E"y,t(svm) = Hn(R’y,t(svm)a [R’y,t('vf)]s) - R'y,t(‘s?x) ) (49)
for any x € T2. Here, we view [R,(-,x)|s as defined on all of T?, by extending it as
a trigonometric polynomial of degree < N. Then for anyn € N, k > 0, t > 0 and
1 < p < oo, there exists C = C(n,p,t, k) > 0 such that for every sufficiently small

v >0,

E sup sup |E‘V”£(5,x)‘17 < C«vp(lfn)_
z€T2 0<s<t ’

The same bound holds for EY'; ., — the same process as EJ'; but defined via M w instead
of M,.

Proof of Propositions 4.1-4.3. For the case of the Kac Ising model, these results are
Prop. 4.2, Lemma 5.1 and Prop. 5.3 in [33]. Several modifications of these proofs are
necessary for the case of our Blume—Capel model.

The first necessary modification is due to the difference in the scalings (2.13)
and (2.14). This difference comes into play via the estimates on the kernels K, and
P used throughout the proofs. We list all these kernel estimates in Appendix A. These
estimates with modifications in the second regime lead to the desired bounds mutatis
mutandis.

Another necessary modification of the proof for the case of our Blume—Capel model is
due to the fact that the martingale we use to build Z7* is different. For Proposition 4.1,
the only place where the martingale enters into play is [33, Lemma 4.1], which is a
consequence of Burkholder-Davis—Gundy inequality. The proof of that lemma only used
two facts that depend on the martingale. First, a jump of the spin at e~z causes a jump
of size 267 1e? K., (y — z) for M, (y), and in our case this becomes an upper bound of the
jump size since a spin could jump by 1 or 2. Second, in the quadratic variation of M,
which was given by

_<M’Y("x)7 M“/('7 Y))e = 40?/,2 Z EQKV('T - 2) Kv(y - z) Cy (t, Z) )
z€Ae

and C, is a rate function therein which is bounded between 0 and 1. For our case, in the
quadratic variation given in (3.8), one also has

0< Z (0 —o(ats,e712))2C, (5,2,0) <5. (4.10)
oe{+1,0}
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Since the desired bound in [33, Lemma 4.1] allows a proportionality constant, nothing
else needs to be proved.

For Proposition 4.2, by Burkholder-Davis—Gundy inequality, one needs to bound the
quadratic variation (Q,:(-,x)):, which can be again explicitly expressed as in the case
for Ry 4(-,z) in (4.4); using the bound (4.10) one eventually obtains

(@t ) a54 / Z Pl e Ky (2) ds .

Using the bound || P % K ||peo(a.) < CZ—E and (e27*/ad*) < 292 which turn out to
hold in both regimes, the proof of [33, Lemma 5.1] again goes through.

Proposition 4.3 is then a consequence of the first two propositions by the proof in [33],
and therefore nothing needs to be re-proved. O

One then has the following tightness and convergence results.
Proposition 4.4. For every m € N and v > 0, the family {Z%,,v € (0, %)} is tight on
D(R4,C"). Any weak limit is supported on C(Ry,C™"). Furthermore, for any p > 1

and T > 0, we have

sup E sup ||Z
ve(0,k)  0<t<T

(g <00 (4.11)

Proof. Once Proposition 4.1 (in particular the bounds (4.5) and (4.6)) is shown, this
tightness result follows in exactly the same way as [33, Proposition 5.4]. O

Recall that we have defined Z*™ below (2.25).

Proposition 4.5. For everym € N andn € N, the processes (Z:: Z{‘,;) defined above

s
converge (jointly) in law to (Z*Y,. .., Z'™) with respect to the topology of D(R,,C~)".
Proof. Since by Proposition 4.4 for every n, the family of vectors (Z,Ylm,,Z,Y"m),

v € (0, %) is tight with respect to the topology of D(R4,C~")", we only need to show
convergence of the finite dimensional distributions. We follow the diagonal argument as
in [33, Theorem 6.2]. Define

8,%) déf V 2/66 / Pt—r dW(T’,fﬂ) 9
r=0

where (. is a critical value of 8 as above. The process s — Ry(s,z) for s < t is a
continuous martingale. For n > 1 define
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R (s,2) < n / RV (r,2) dRy(r, ) = Hyy (Ry(s,2), (Ry(-,2))s) - (4.12)
r=0

For s <t R{™(s,x) is a regular approximation of the limiting objects Z (¢, -); indeed,
as discussed in [33, (3.10)], for all v > 0, 0 < A <1, p > 2 and T > 0, there exists
C =C(v,\,p,T) such that

E|Z™(t,) — Ry (s,)[%, » < Clt — | (4.13)
forall 0 < s <t <T. Write

Z,=(Z}"

Aamo e
R»y)t:(R'l' Rn

v,t,mo 'y,t,m) )

Z:n: ) , 7 = (Z:l:,. . wz:n:) ,
R, = (RV,...,R™).

Fix K ¢ Nand t; <ty < ... <tg. Let F: (CV)"*X — R be bounded and uniformly
continuous. For s1 < tq, ...,sx < 1k,

|EF(Zy(t1),...,2,(tx)) —EF(Z(t1),...,Z(tx))]
<E|F(Zy(t1),...,Zy(tx)) — F(Ry4,(51),- .., Ryt (5K))|
+ |EF(Ryt, (s1), -, Ryt (k) — EF(Rtl (s1),- -, Rey (sK))|
+E\F(Rt1(sl),...,RtK(sK)) — F(Z(t1),...,Z(tx))| -

(4.14)

The estimates (4.13) and (4.7) yield moment bounds of arbitrary order of ||Z.(¢;) —

R'Y;ti (Si)H(C—u)n
right-hand side of (4.14) small uniformly in v by choosing |t; — s;| small enough.

uniformly in «. We can thus make the first and the third terms on the

Some extra care has to be taken in the case of our model for the second term on the
right-hand side of (4.14). By Proposition 4.3, it suffices to show that

HE(R’y,ti,m(th)a[R’y,ti,m('vx)}si) Ezla"'anv 1= 17"'7K

converges in law to (R, (s1), .., Rix (sx)) in (C™¥)E. By (4.12) and Proposition 4.2, it
suffices to show the two convergences in law

(R'Y,tl,m(sl)’ s ’R’thKﬂ‘ﬂ(SK)) (Rtl (81) ’RtK (SK)) )

(<R%t1,m('7 ')>317 R <R’Y,tK7m('v '))SK) — (<Rt1('v ')>S1>' te <Rt1<('7 ')>SK) )

¥—0

for a suitable topology, e.g. (L>°)¥X in the first convergence and (LP)X for p large
enough for the second convergence. For the first convergence, note that R, ;, m(s;) =
Py is replaced by

s, Zym(si). [33, Corollary 8.7] then gives an error control if P;!
the continuous heat kernel P;,_,,. So the first convergence follows from Theorem 3.3

ti—s;
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(convergence of Z,(t)), continuity of the mapping P;,_,, and the continuous mapping
theorem.

Regarding the second convergence, recall the explicit expression (4.4) for the quadratic
variation (R ¢, m(-,))s,. The constant ¢2 , is deterministically close to 1 by (2.15), and
therefore Proposition 3.4 shows that the quadratic variation (Ry¢, m(-,2))s, is given by

33 / Z g2 (P]_, *e Kq,)z(z —x)dr
0

z€A,

up to an error Ej(s) which satisfies E|| E;(s) Hip(w) — 0. This expression in turn converges
to the limiting object (R, (-,-))s, by the calculation as in [33, (6.14)]. O

We now summarize the results obtained above and prove our main result, Theorem 2.5.
To show the convergence of discrete evolution (3.1) to the solution of

t

da. —1)B2 .5
X(t.) = P,XO P, X .,‘16(076)(& ) d
) =F +0/ e (1X(5,) B2ac 12~ )) ds (4.15)
+ Z(t,-) on T?
in the first regime and
t
0 20 :5: :3:
X(t,) :PtX —+ Pt—s*(_?X (57.)—|—a3X (S,')
o (4.16)

+a1 X (s, )) ds+ Z(t,") on T?

in the second regime, we need to control the following error terms.

(1) The error E, in (3.1) arising from the Taylor expansion in Section 2.

(2) In the second regime the discrepancies caused by Cgg # —%, the coefficient
in front of Xf;’ — 3¢, X, in (2.18) is not exactly a3, and the coefficient in front of X,
in (2.18) is not exactly ap; similarly in the first regime there are also such discrepancies
of coefficients comparing with (2.16).

(3) The operator Ext which extends a function on A. to a function on T? defined
in (2.35) does not commute with powers. As in [33] this is dealt with by decomposing
the field X, into a “high” and a “low” frequency part

Xlov e S gx,, XM E N gx (4.17)

2k < I 2k > I

where we refer to [33, (A.7)] for the precise definition of the operator ¢ (we recall that

3

N =~ ~~2 in the first regime and N ~ ~v~3 in the second regime). For leow the operator
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Ext does commute with the powers appearing below and we need to control the error
caused by the high frequencies.

(4) Recall that in the discussion on the limiting SPDE, the actual renormalization
constant used to define the Wick powers Z. in (2.25) is a time-dependent constant c.(¢),
and the time-dependent coefficients ag(t) is introduced in place of the time-independent
ones ai in order to take care of the difference between c¢.(¢) and c., i.e. to guarantee
that (2.27) holds. For the discrete model, we have ¢, # ¢, and we will introduce the
approximate time-dependent renormalization constant

¢y (s, ) = [Rys(- )]s (4.18)

(and extend this to all x € T? as a trigonometric polynomial). So we need to control the
error caused by the fact that Eq. (2.27) does not exactly hold anymore if the subscript &
in (2.27) is replaced by 7.

(5) The error from P X9 # P,X°.

(6) The processes Z, are defined via iterated integrals, which are not exactly the
same as Hermite polynomials with constant c,(s,z) (see Proposition 4.3).

(1) A#A,.

In the following Lemma we control the errors from (1)—(4). We will frequently use the
fact that an L>°(A.) bound on X, can be extended to an L>(T?) bound by loosing an
arbitrarily small power of v ([33, Lemma B.6]), and the fact that the L> norm can be
bounded by the C~* norm of X, multiplied by a factor v~ ([33, Lemma B.3]) if X,
has vanishing frequency larger than v~ (b = 2,3 depending on the regime).

Before stating the lemma, we recall that the constant ¢, is defined in (2.24), the
constant ¢, (¢) is defined in (2.26), the constant ¢, is defined in (2.36), the constant ¢ (, -)
is defined in (4.18), the constant a; (resp. a; and ag) are introduced in (2.17) (resp. (2.21))
in the first (resp. second) regime. The constants a,(:)(t) are defined in (2.27), and here
we will use the € —> 0 limits of them: in the second regime, by (2.28) and (2.29) with as

substituted by —= we define a;(s), as(s) as ¢ — 0 limits of a; )( ), a (s), namely
9_ _ 27
az(s) —ag = —§c(s) , a1(s) — a3 = 3age(s) — Zc( s)?, (4.19)

—¢.) (see (2.31) for existence of this limit). In the first regime

)
3
3as ( ) +a; = _gc(tac—1)b, E(S) +ag.

where ¢(s ) = hms_m( (s
= (2a6+1)2

we simply define a;(t)

Lemma 4.6. For everyt > 0, we have on T? (we drop the space variables for readability)

t

ac(4a. —1)33
X, (t) = PIX3 + /PlsKw « (- H (35 =36, (96,) (4.20)
J .

+ap(s) X, (s) + Err<1>(s)) ds + Z.,(t)
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in the first scaling regime and

X, (t) = PP X0+ / P K, ( - 2% (Xi(s) — 106, (s)X3(s) + 15c,y(s)2X,y(s)>
0
a3 () (X3(5) = 3¢y (5) X, (5) ) + a1(5) X5 (5) + B (s) ) ds + Z, (1)
(4.21)

in the second scaling regime, such that the following holds. For every T > 0 and k > 0,
there exists C = C(T,k,v) such that for all 0 < s < T, x € T? and sufficiently small
v>0

Bt (s,)] < Oy~ (| X, (s, ) -0 + 1)

<
2 1 i ~
x (7FsT X (s, ey + Qs (5 )l + [E s, 2)])
(4.22)

where E is defined in (3.19). Here ErrV) s different in the two regimes but the bound
holds for both regimes.

Remark 4.7. Recall the stopping time 7, ., defined in (3.5). Denote by X n the solution
to (4.21) with Z, replaced by Z, , and Err) replaced by Errl(.i) which is equal to Err
before the time 7, and is set to 0 after 7, . Taking the L?(T?) norm on both sides
of (4.22), one has the bound

2

||E”:(nl)(5a')HLp(T2) <Cy~ (SOHK)( 5575 4 | X2IER (s, )| poo (m2)
(4.23)

1Qus (3 Mz nay + 1B (s, Nees) )
where C' depends on T, m, p, K, V.

Proof of Lemma 4.6. We first consider the second regime. With the choice of parameters
as in (2.21), or equivalently (2.19) and (2.20), the discrete evolution (3.1) can be written
as

t
9
X, (t,-) =P X3 + /P,?_SK7 * (0579)(3(5, D+ (5% + ag)X;”(s, )
0

27
—|—( —3cya3 — Zci + al)Xn,(s, )+ E (s, )) ds+ Z,(s,-)  onA..

We apply Ext on both sides, and compare it with the continuous equation (4.21). We
then have
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Err™® = err® + err® 4 err® ) (4.24)

where the error terms are given by

errM(s) = B, (s) + (Cﬁ,o + %)EXt(Xg(S)) )
err®(s) = _% (Ext (X2(s)) — (Ext Xv(s))5)

+ (o + o) (B (X3(0) - (Bxe X, (9)°)

err®(s) = (ch + a3 — gcy(s) - ag(s)) X3(s)

— (%ci + 3azcy —a; — %cv(s)2 — 3asz(s)cy(s) + a1(5)> X, (s),
where in the expression of err®® and also below we simply denote X, = ExtX,. The
analysis for err") and err(® follow essentially the same way as in [33, Proof of Lemma 7.1],
so we will only write down the bounds we eventually obtain for these errors.

For the first term err) using the assumption (2.21) on (3,6), and the definition
of Cgp, one has [Cgg + 55| < Cy*c,. Then by the definition of E, in (2.12), and that
¢, has only logarithmic divergence, we can finally get that for any arbitrary small x > 0

Herr(l) (8, ')HLW(']I'Q) < C(Kﬁ V)’YZ_K_SOV(”X’Y(S? )”Z*” + 1) .

For the second term err(®) | by decomposing X, into low and high modes as in (4.17),
we can obtain the bound

lerr® (s, )| o (m2y < ClR)Y™ 157 | X8R () | oo oy | X (5, IS - (4:25)
In order to control the term err® | we first consider the quantity
& — € (5,2) + im (ca(s) — <) (4.26)

which is called ¢y — ¢4 (s,2) + A — A(s) in [33, Proof of Lemma 7.1] (see the definition
of A.(s) below [33, (3.11)]); note that the ¢ — 0 limit is well-defined as discussed
around (2.31) in the proof of Lemma 2.3. By the definition of ¢, in (2.36), the definition
of ¢, (s,x) in (4.18), and (2.31), we have that for z € T?, (4.26) is equal to

|f(7(w)|2 S eXp(—287T2|w|2)
> =Ry s(2)]s + 55 — i
we{%;.,N}? 4Byt (1 — Ky (w)) K 28, Z 4872 |wl?
w#0 w#0

Here b = 4 and f3. = 3 since we are considering the second regime. Recall from (4.8) that
forx € Ag, [Ryr (-, 2)]r = (Ryr(,2))r +Q,r(s,2). According to (4.4) we get for x € A,
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Z e? (P’Y *e K,Y)Q(Z‘ —2) Z (0 —ola™tr, 6712))2077,“ (r, z,0)dr

S—T

0 2z€A oce{+1,0}
2 [ ~
= / Z e (P], * K7)2(x —2) dr +er™® (s, ) + Ey(s, x)
¢ 0 z€A.

1
2B

/ > exp(—%(l—mw)))!f?7<w>|2dr+err<4><s,x>+Es<s,a:>

0 wWE{—N,...N}

s

s |K’Y(w)| . *%(1*1%7(‘*’)) (4) ~
R 17 (1 - Ky () (1-e ) e s,2) + Ey(5,2)

we{-N,...,N}?
w#0

where err® is the error that arises by replacing c,2y72 in the second line by 1, and E
is defined in (3.19). By |2, — 1] < »? and IN D en. e2 (P, * K,Y)z(z —x)dr <
Clogy~! < C(k)y~* one has |err (s, 2)| < C~>~*. Proposition 3.4 gives the stochastic
bound on E,(s, z).

Therefore up to the terms Q. (s, x), err™® (s, 2) and F(s,z), the quantity (4.26) is
equal to

. 2
K 2 (1_ K (w -9 2 2
3 C v(w)t (R @) 3 M. (4.27)
we{—-N,...,N}? 4Bery (1 - K'Y(w)) weZ? Bem |w|
w#0 w0

2 2 2

We bound the sums over |w| < v~* and |w| > v~ 2 separately. In the case |w| < v~ we
use the fact that according to Lemma A.1 y~4(1 — K.,(w)) approximates 7%|w|? up to
an error < Cy?|w|® (which implies in particular that IAC,(w) approximates 1 up to an

2 we treat the two sums separately and use Lemma A.2

error < Cy*w|?). For |w| > v
which yields in particular the upper bound |K, (w)| < C|y2w|~2 as well as the lower
bound 1 — K,(w) > 1. After some calculations (the details of which are as in [33,
Equation (7.7)]) we conclude that (4.27) is bounded by Cy3s™ 3.

Now to really bound the coefficients appearing in err(3) (s,z), note that the coefficient

of X3(s) in err® (s, ) can be expressed as

9 9 9 _
2% +az — 557(5) —ag(s) = 5(% —oy(s) +¢(s))
which is exactly the quantity (4.26) we have bounded times g. Furthermore, the absolute
value of the coefficient of X, (s) in err® (s, z) is

27 27
ZC?Y + 3ascy —ag — ZC7(8)2 — 3a3(s)ey(s) + ai(s)
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27 9_ _ 27_
=15 (cz - cv(s)Q) + 3(a3cv + Se(s)e, (5) - agcv(s)) + 3agé(s) — e(s)’
27 _ 4 _
= Zlen(s) + ey — &) gas| - ey — e () + €(9)
< C(R)Y " |ey = ¢y (s) +¢(s)]
where in the second line we applied (4.19), the third line is obtained by elementary
factorization, and in the last line we have used that each term in c,(s) + ¢, —¢(s) + 3a3
is bounded by < Clog~~! uniformly in s. So the bound of this coefficient again boils

down to the bound on (4.26).
The E dependent terms in err® are

~ 2 4 -
_g Fu(s,2)X3(s,2) + 17 (c2(5) + & — &5) + 505 Bl ), 5,) (4.98)
whose absolute value is bounded by
O,y (11 (5, ) o + 1) [ Bul5, )] -

Summarizing all the above bounds we obtain (4.22).

The proof for the first regime is analogous and is thus omitted; in particular we can
obtain bounds with slightly larger (but still negative) powers of v and lower powers of
| X+ (s,-)|lc-» than that in (4.22) but the latter is sufficient for our purpose. O

The error (5) is bounded by [33, Lemma 7.3] as

sup [P XY = P XOe-v < CIIX° = Xle-v + Cy2 =0 (4.29)
0<t<T

for every T > 0, where C' depends on v, x, T and HXSHC_UM.
In the sequel, we let n = 3 in the first regime and 7 = 5 in the second regime.
At this stage, note that if we define

e of 2 i
X’y,m(tv ) d: PtXO + Z’y,m(t7 ) + ST(Z’y,ma Z‘Z‘ e aZ )(tv ) ) (430)

y,m? v,m

where Sp is the solution map defined in Theorem 2.4, then by the convergence

in law of (Zym, Z .-+, Z%) with respect to the topology of L*([0,T],C~")™ to
(Z,Z%,---,Z"™), and by the continuity of the map St as stated in Theorem 2.4, one

has that X, converges in law to X.
Therefore, it remains to compare Y%m and X, . The idea is to follow a discrete
version of Da Prato-Debussche argument [13], namely, setting

Uy (t,7) L X (b, 7) = Zym(t,x) — PP XO(t2)  xeT?, )

Tyt ) © Xt 2) = Zym(t,x) — PXO(t)  x€T?,
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and we compare vy, and Uy m. Define

k
k. def — 0 il —:k:  def — 0 rrl:
Zh SN (PXO Tz Zym = (PXO L, (4.32)
£=0 £=0

Note that if the above Wick powers were defined via Hermite polynomials rather than
iterated integrals then the above identities would follow from basic properties of Hermite
polynomials Hy(z 4+ y) = Z];:o v Hy_o(y).

Now it is straightforward to check that 7, satisfies

t
Tym(t) = — / PV w(s)ds, (4.33)
0
where we have set

ac(4a. —1)53 3 — ik
Fm(0) S G Y (1) )~ 016) (o) + Zom(5) (430

in the first regime and

in the second regime. On the other hand, by Lemma 4.6 and (4.31), v, n satisfies (on T?)

t
Uy m(t) = — /PQ_SK7 * (Wy m(s) + EnD + ErrP(s,)) ds (4.36)
0

where \Ilym( ) is defined in the same way as (4.34) or (4.35) with zZ"
placed by Z:k

’Ym7

Jp Z%m re-
Z m and v, ., replaced by vy . Here the term Err( ) was estimated
in Lemma 4.6, and Err(2) controls the error (6) i.e. the fact that the iterated integrals do
not exactly coincide with Hermite Polynomials. In fact, the difference between Hermite
polynomials and iterated integrals was already bounded in Lemma 4.3. Relying on these
bounds and using (4.32) it is straightforward (see [33, Lemma 7.4] for the analogous

details in the Kac—Ising case) to check that in both regimes one has for 0 < s <T

5
[ (s, )l zz) < C(T,w ) (15727 + ol ) D2 IE s, )l

k=2
(4.37)
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where EZi(s, ) was introduced in Proposition 4.3. The following estimate holds in both
regimes.

Lemma 4.8. For every 0 <t < T and sufficiently small v > 0, we have

t
— - JE S
[T,m (2, ) = vym(t, )| 12 SCl/(t—s> 3570 [[Uy,m(s,) = vym(s, )l .3 ds
0
+C01(vE +]1X0 = XOe-v) + Ern (1), (4.38)

where the constant Cy depends on v, k, T, || X°|lc-vi=, [ XOllc-v+x as well as the random

quantities SUpg< <7 [|[Uy,m (8, ')Hc% , SUPg<s<7 |[Vy,m (s, )Hcl , and

S 1Z: (s, le-v  fork=1,...,7

There exists some p > 2, such that the error term Err®) satisfies that for every T > 0
and 0 < A < %

E sup |Err(3) (t)|p < Coy™, (4.39)
0<t<T

for a constant Cy = Ca(p, T, \).

Proof. Using (4.33)—(4.36), we get that for any ¢ > 0 and v > 0,

t
Vym(t,) = Uym / P_s— P, Kv) @mm(s) ds
0
— /ngS * Ky * (@%m(s) — \Il%m(s)) ds (4.40)

¢
+/P;LS* Ky (Erl (s,) + EnP (s,-)) ds
0

where W, 1 (s) was defined in (4.35) and ., 1 (s) was defined below (4.36). The rest of the
proof relies on the crucial multiplicative inequality [33, Lemma A.5] which is the linchpin
around which the Da Prato-Debussche argument revolves (see [13, Proposition 2.1] for a
similar result); it states that if 8 < 0 < v with v+ 8 > 0, then there exists a constant C'
depending only on v and [ such that

121 Z2llcs < CllZ1ller |22 cs - (4.41)
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Proceeding as in the proof of [33, Lemma 7.5], which uses the above multiplicative

inequality, together with the (discrete) heat kernel estimates in Sec. 8 of that reference,
—:k:

o1 and [|Z) (s, -)[[c-+ where

v < 1, and the latter quantity is by (4.32) further bounded in terms of ||Z,Ykm(s, Me=v

and || X9||¢—». Therefore the C2 norm of the first term on the RHS of (4.40) can be

eventually bounded by C*y% where C' may depend on all the quantities stated in the

we can bound || W, m(8)||c-v in (4.40) in terms of |0 m(s, -)

lemma, and the small factor 'y% arises from a bound on H (Pt — P x KPY) HC*V%C%.
The C2 norm of the second term on the RHS of (4.40) can be bounded in the same

way using the multiplicative inequality (4.41) and heat kernel estimates, by

t
C / (t=5)7 557 8][Tym(5) = vym(5)l 3 ds + ClIXT = XOlcv + Oy
0

where again C' may depend on all the quantities stated in the lemma.

Now we consider the C2z norm of the last term on the RHS of (4.40). We use [34,
Rem. 3.6 and Prop. 3.7] which state that the space L? is continuously embedded in 5’2,00
and the latter is further continuously embedded in By, ., (i.e. the space C%) provided that
a+2/p = 0. Thus applying (4.23), we have that for any & > 0 there exists C = C(p, k)
such that

t

¢
_1_1_ g
H/Pg_s* KV*Err‘(i)(s,')dsHC% < C/(t—s) T K||E”$)(5»')|’LP(T2)d‘9
0

(4.42)

1

i ( [ g
0

X (”X'}ylithL“(T?x[O,T]) + |Qn,sll Lo (A x[0,77) + HEHLv(mx[o,T]))

where p, is such that p% + % = 1. Choosing (and fixing from now on) p sufficiently large
(depending only on k) the above expression can be bounded by

C(T,p, &)y~ B0+ (ﬁ + | X5 | oo (2. [0,7) F 1@, [l Lo (A2 x[0,7]) + ||E||LP<T2x[o,T1>) :
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We have Proposition 3.4 to bound E, Proposition 4.2 to bound Q. Regarding the
term X1M&" which is equal to Zbieh + vhlgh + (PP X9)Meh we can bound || - || (r2) of
the last two quantities by Cy!|| - ||C%. Finally for ZM&" by [33, Lemmas 4.6] with minor
changes in the proof due to the scaling-regime-dependent definition (4.17) and kernel
estimates in Appendix A, one has E| Xheh(s,)||7 . < CyP(1=%). Therefore by choosing
v, £ small enough depending on the previously fixed p one has that

E sup H /Pty_s * K, Erll (s, ) ds’
0<t<T

p 1
L, <Cp,T)ye .
Cc32

Similarly for Err,(nz)7 invoking Proposition 4.3 to bound E:*: . one has

Y,8,m?

E sup H/ 7k K+ Err (s, )ds‘
0<t<T

, SC@ThE.

Therefore (4.39) is obtained. O
Now we prove our main theorem of the article.

Proof of Theorem 2.5. The proof is essentially the same as [33]; we give the proof for
completeness. Our arguments hold for both scaling regimes. For r and m > 1, we define

the events AZ = AZ(y,m), and AF = AE(y,m) by

AZ )|z

Sl

c-v <ron[0,T], k:l,...,5},

AF déf{ sup |Err(3) )] <~z },
0<t<T

where p is the constant in (4.39). For every m,r > 1 and every bounded uniformly
continuous mapping F': D([0,T],C") — R, we have

[E(F(Xym)) —E(F(X))| < [E(F(X,m)) —E(F(X))]

_ 7 _E (4.43)
+E(|F (Xym) = F (Xym)| Lazoae ) + |1Fll~ P(A7 UAT)
Recall that X, converges in law to X, see (4.30) and the discussion below it.

To bound the second term on RHS of (4.43), note that on the event AZ and by
continuity of Sy (Theorem 2.4), we have supy<;<r ||E%m(t)||c% < C(T,r) for some finite
constant C(7,r). Applying Gronwall’s inequality to the bound obtained in Lemma 4.8,
one has that on the event A7 N AE

[yt ) =Ty ()l < C (7% + X5 = XOle-v) (4.44)
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for all ¢ > 0 such that ||v%m(t)||c% < C(T,r) + 2. In particular for v small enough, the
right hand side of (4.44) is bounded by 1. By continuity of v, and v, (which follows by
definition (4.31) — the jumps in the evolution of X, are all contained in the part Z, ),
the bound (4.44) must actually hold for all ¢ € [0, T.

This together with (4.29), (4.31) implies that the second term on RHS of (4.43)
vanishes.

Regarding the last term in (4.43), it follows from (4.39) i.e. the bound for Err® ()
and Chebyshev’s inequality that lim,_,o P(AF) = 1. For the event AZ, we know that the
limiting quantities supg<, < |2 (t)||c-» are finite a.s.; on the other hand it is easy to
argue that the stopping time that || Z:;, (t)|lc-» first exceeds the value r will converge to”
the stopping time that ||Z¥(t)||c- first exceeds the same value r. Thus we can choose
r large enough, so that liminf.,_,o P(AZ) is arbitrarily close to 1.

This proves that X, converges in law to X as « tends to 0, for any fixed value
of m. We can remove m by the same reasoning as above. The stopping time 7, , defined
in (3.5) converges in law to® the stopping time 7, defined in the same way for X, for
every m. Moreover, we know from Theorem 2.4 that supy<; <741 [[X(t)[c-» is a.s. finite.
Hence by choosing m = m(7, ¢) sufficiently large, liminf,_,o P(X, n = X,) can be made
arbitrarily close to 1. Therefore we have proved that X, also converges in law to X.

This concludes the proof of Theorem 2.5. Note that item (2) of the theorem is clearly
just the degenerate case of the item (1) that the cubic term equals zero and therefore
one obtains a linear limit. O
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Appendix A. Kernel estimates

We need some estimates about K, and P7. In the case of the first scaling regime (2.13),
these estimates are proved in [33, Section 8]. For the second scaling regime (2.14), we
list all these results, without proving them since the proofs follow exactly the same way
except that one simply applies the new scaling relations.

We begin with the Fourier transforms of these kernels. For w € {—N, ..., N}2,

K, (w) = Z 2 K (z)e ™" = c 4 Z v2 R(x) eI E/Mw (A.1)
€A zEVL?

2 Qutside a countable set of r that HZ,Ykm(t)Hcﬂ attains r as a local maximum with positive probability.
3 Qutside a countable set for the same reason.
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where £ is the smooth function introduced in (2.2), vZ2 e vZ? \ {0}, and note that
/v = 7 in the first regime and /v ~ 72 in the second regime. Also,

P (w) =exp (17" (R (@) - 1)) (A.2)

where b = 2 in the first regime and b = 4 in the second regime.
We now list some estimates which state that some properties of &(yw) (resp. &(7*w))
also hold for IA(V in the first (resp. second) regime, uniformly in ~.

Lemma A.1. The following statement holds with b = 1 in the first regime and b = 2 in

the second regime. There exists C' > 0 such that for all 0 < v < % and for |w| <~y we

have for j =1,2

[P = Ky () = 7P wl?| < O lwl?, (A3)
| =20 K, (w) — 27°w;| < O], (A.4)
| =7 PO K, (w) — 27%| < CHP|w - (A.5)

Lemma A.2. The following statements hold with b = 1 in the first regime and b = 2 in
the second regime. There exists C > 0 such that for all 0 < v < %, we[-N-— %, N+ %]2
and j =1,2,

(1) (Estimates most useful for |w| < ~v7°)
Ky <1, [0;K,w)] < O (WPwl A1), 07K, (W) <Cy . (A6)
(2) (Estimates most useful for |w| > ~v7?)

ol Ky W) <G P’ |95, W) < O el |87 K, (w)] < O7*. (A7)

Furthermore, there exist constants C1 > 0 and o > 0 such that for all 0 < v < v9 and
w€[-N—-3 N+12

1
1—Ky(w)> C—(|7bo./|2 A1) . (A.8)
1
Lemma A.3. Let v > 0 be the constant introduced in Lemma A.2. For every T > 0,
there exists a constant C = C(T) such that for all 0 < v < v, 0 <t < T and v € T?,
we have

|P) K ()] < Ot (log(v™ 1) Ay 2 log(y 1Y) (A.9)

where b =1 in the first regime and b = 2 in the second regime.
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