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“chemical potential”. We prove that the locally averaged spin 
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a curve in the (β, θ) plane and to the solution of the dynamical 
Φ6 equation near one point on this curve. Our proof relies on a 
discrete implementation of Da Prato–Debussche method [13]
as in [33] but an additional coupling argument is needed to 
show convergence of the linearized dynamics.
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1. Introduction

The theory of singular stochastic partial differential equations (SPDEs) has witnessed 
enormous progress in the last years. Most prominently, Hairer’s work on regularity struc-
tures [27] allowed to develop a stable notion of solution for a large class of SPDEs which 
satisfy a scaling condition called subcriticality. Roughly speaking, a semi-linear SPDE 
equation is subcritical (or super-renormalizable), if the behavior of solutions on small 
scales is dominated by the evolution of the linearized Gaussian dynamics. The class of 
subcritical equations includes, for example, the KPZ equation in one spatial dimension, 
as well as reaction diffusion equations with polynomial nonlinearities

dX =
(
ΔX +

n∑
k=1

a2k−1X
2k−1) dt + dW a2n−1 < 0 (1.1)

driven by a space time white noise dW , if the space dimension d satisfies d < 2n
n−1 (of 

course strictly speaking the dimension d has to be an integer but one could emulate frac-
tional dimensions by adjusting the linear operator or the covariances of the noise). In 
particular, for d = 3, equation (1.1) is only subcritical for the exponent 2n − 1 = 3 while 
for d = 2, equation (1.1) is subcritical for all n. We will refer to these equations as dy-
namical Φ4

3 and Φ2n
2 equations. Note that even in the subcritical case the expression (1.1)

has to be interpreted with caution: for d ≥ 2 a renormalization procedure which amounts 
to subtracting one or several infinite terms has to be performed. The fact that these so-
lutions behave like the linearized dynamics on small scales but very nontrivially on large 
scales is related with the role they play in the description of crossover regimes between 
universality classes in statistical physics. For example, the KPZ equation describes the 
crossover regime between the Edwards–Wilkinson (Gaussian) fixed point and the “KPZ 
fixed point”, while the dynamical Φ4 equation describes such a crossover mechanism 
between the Gaussian and the “Wilson–Fisher fixed point”. In two space dimensions the 
existence of infinitely many fixed points was predicted by conformal field theory, and 
the Φ2n

2 equations should describe the crossover regimes between the Gaussian and this 
family of fixed points ([20, Fig. 4.3]).

One key interest when studying these SPDEs is to understand how they arise as 
scaling limits of various microscopic stochastic systems. Here it is important to note that 
the equations are not scale invariant themselves (this is immediate from subcriticality). 
However, they arise as scaling limits of systems with tunable model parameters that are 
modified as the system is rescaled. Starting with Bertini and Giacomin’s famous result 
[2] on the convergence of the weakly asymmetric simple exclusion process to the KPZ 
equation, by now many results in this direction have been obtained for the KPZ equation 
(for example [1,14,10,11,32,9] based on the Cole–Hopf transform, [24,25,15] based on 
the notion of energy solution, and [28,29] based on regularity structures). Connections 
between the stationary Φ4

2 theory and Ising-like models were already observed in the 
seventies; early references include [36] where the equilibrium Φ4

2 theory was obtained 
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from an Ising-like model by a two-step limiting procedure. The dynamical equation (1.1)
in one dimension was obtained as a scaling limit for a dynamic Ising model with Kac 
interation in the nineties [3,22]. More precisely, the Kac Ising model is a spin model 
taking values in the {±1} valued configurations over a graph (Z or a subinterval of Z in 
the case of [3,22]). The static equilibrium model is given as the Gibbs measures associated 
to the Hamiltonian

Hγ(σ) = −1
2
∑
k,j

κγ(k − j)σ(j)σ(k), (1.2)

where κγ is a non-negative interaction kernel parametrized by γ > 0 which determines 
the interaction range between spins. In [3,22] the Glauber dynamics for this model were 
considered and it was shown that the locally averaged field hγ = σ ∗ κγ converges in 
law to a solution to the Φ4

1 equation when suitably rescaled. Similar results in higher 
dimensions d = 2, 3 were conjectured in [23] but a complete proof in the two dimensional 
case was given only recently [33]. A similar convergence result is expected to hold in three 
dimensions, though a complete proof has not been established yet; however in [30,35] it 
was shown that a class of continuous phase coexistence models rescale to Φ4

3.1

The tunable parameter in all of the results on convergence of variants of the asymmet-
ric simple exclusion process to KPZ, is the asymmetry of the exclusion process: making 
it smaller and smaller corresponds to making the model locally more “Gaussian” which 
in turn corresponds to the fact that the dynamics on small scales are dominated by so-
lutions of the linear equation. In the Kac–Ising case this tunable parameter is the range 
of the interaction kernel κγ . As the system is observed on larger and larger scales locally 
more and more particles interact i.e. locally the system is closer to mean field.

In order to obtain the scaling limit to Φ4
2 in [33] five parameters had to be chosen 

in a certain way: three “scaling parameters” namely the space scaling, the time scaling, 
the rescaling of the field as well as two “model parameters”, the range of the Kac in-
teraction and the temperature. It turns out that in order to obtain a non-linear scaling 
SPDE as scaling limit, one has to choose the temperature close to the mean field crit-
ical value, although in two dimensions there is a small shift which corresponds to the 
renormalization procedure for the limiting equation, and a similar effect is expected in 
three dimensions. The remaining parameters have to be tuned in exactly the right way 
to balance all terms in the equation. It is natural to expect that in two space dimensions 
introducing additional parameters should allow to balance even more terms leading to 
higher order terms in the equation. In this work we show that this is indeed the case. 
We allow for microscopic spin to take values in {±1, 0} i.e. we add the possibility of a 
spin value 0. The Hamiltonian thus becomes:

1 In [30] also different limits such as a dynamical Φ3
3 theory, which may blow up in finite time were 

obtained, but in order to achieve this the σ �→ −σ symmetry in the model had to be broken.
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Hγ(σ) = −1
2
∑
k,j

κγ(k − j)σ(j)σ(k) − θ̃
∑
j

σ(j)2, (1.3)

where the extra parameter θ̃ plays a role of chemical potential which describes a ratio 
of the number of “magnetized” spins (σ(j) �= 0) over the number of “neutral” spins 
(σ(j) = 0). In the limit θ̃ → ∞ we recover the original Kac–Ising model.

This model is the (Kac version) of the Blume–Capel model (initially proposed by 
[4,7]). This Blume–Capel model as well as the closely related (but slightly more com-
plex) “Blume–Emery–Griffiths” (BEG) model [5] have been widely used to describe 
“multi-critical” phenomena in equilibrium physics. Physicists also studied phase transi-
tions for the Glauber type dynamics of mean field BEG model [6]. Mathematically, the 
mean field model in equilibrium was studied by in series of papers [18,12,19] (see more 
references therein), analyzed the phase diagrams and proved that the suitably rescaled 
total spin converges to a random variable which is distributed with density Ce−cx2 , 
Ce−cx4 or Ce−cx6 in different regimes. Also, the work [17] obtained the rates of these 
convergences. Regarding the dynamics, mixing theorems are also proved, see [31,16]. 
The Blume–Capel model is also often referred as the (site) dilute Ising model (cf. for 
instance the physics book [21, Section 7.4.3] or on the mathematical side [26,8] and ref-
erences therein): one considers the site percolation of the square lattice with percolation 
probability p and the usual Ising model on the percolation clusters. The joint measure 
of the percolation and Ising model is then the Gibbs measure with Hamiltonian (1.3)
if one identifies eβθ̃ = (1 − p)−1 − 1. The Glauber dynamics are then defined on both 
percolation and Ising configurations. The results of this article can then be stated as 
convergence to the SPDEs by suitable tuning the Ising temperature and percolation 
probability.

Our main result, Theorem 2.5, shows that for a one parameter family of parameters 
we obtain the Φ4

2 equation in the scaling limit. This family ends at a “tricritical point” 
where (after different rescaling) we get the Φ6

2 equation (see Fig. 1). Our equation for 
this curve of parameters and the value of the tricritical point coincide with the mean field 
results in [5], but as in the [33] logarithmic corrections to these mean field values are 
necessary to obtain the convergence results. These logarithmic corrections correspond 
exactly to the “logarithmic infinities” that appear in the renormalization procedures for 
the limiting equation.

Meta-theorem 1.1. Let hγ = κγ ∗ σ be the locally averaged spin field of the Glauber 
dynamic of Kac–Blume–Capel model. There exist a one parameter family of “criti-
cal values” and one “tri-critical value”, such that when (β, θ) approaches a critical 
value at a suitable rate (which reflects the renormalization procedure for the limit-
ing equation), Xγ(t, x) = γ−1hγ(t/γ2, x/γ2) converges to the solution of the dynam-
ical Φ4 equation, and when (β, θ) approaches the tri-critical value at a suitable rate, 
Xγ(t, x) = γ−1hγ(t/γ4, x/γ3) converges to the solution of the dynamical Φ6 equa-
tion.
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Fig. 1. The Glauber dynamic of Blume–Capel model rescales to the Φ4
2 equation for a curve of parameters 

in the (θ̃, β) plane, parametrized here in terms of (a = eβθ̃, β). The leading coefficient of the non-linearity 
in the limiting equation changes along the curve and vanishes at the tricritical point (a∗

c , β∗
c ). Close to this 

point a different rescaling leads to the Φ6
2 equation. Following the curve beyond this point would lead to a 

change of sign in the leading order term resulting in finite time blowup of the corresponding SPDE.

It seems natural to conjecture that if one makes the model more complex (e.g. by 
allowing even more general spins and extra interaction terms in the Hamiltonian) any 
Φ2n

2 model could be obtained.
On a technical level just as [33] our method relies on a discretization of Da Prato–

Debussche’s solution theory for (1.1) in two dimensions [13]. A main step is to prove 
convergence in law (with respect to the right topology) for the linearized dynamics as 
well as suitably defined “Wick powers” of these linearizations. In a second step this is 
then put into discretization of the “remainder equation” and tools from harmonic anal-
ysis are used to control the error. The most striking difference in the present work with 
respect to the technique in [33] is a difficulty to describe the fluctuation characteristics. 
In [33] the quadratic variation of the martingale Mγ (see (2.11) below for its definition) 
is equal to a deterministic constant up to a small error which can be controlled with a 
soft method. In the framework of the present paper this is not true anymore, and the 
quadratic variation has to be averaged over large temporal and spatial scales to char-
acterize the noise in the limiting equation as white noise. We implement this averaging 
by coupling the spin field σ(t, k) to a much simpler field σ̃(t, k) which can be analyzed 
directly. This auxiliary process lacks the subtle large scale effects of σ captured in our 
main result, but it has similar local jump dynamics and it turns out that σ(t, k) coincides 
with σ̃(t, k) for many t and k which is enough.

The structure of the paper is as follows. In Section 2 we discuss the two scaling 
regimes of our model and formally derive the limiting equation in each regime. Section 3
is mainly aimed to show the convergence of the linearized equation. It is here that we 
present the coupling argument used to show the averaging of the martingale fluctuation. 
Section 4 contains the rest of the argument (the discrete Da Prato–Debussche method 
etc.). This part of the argument is close to [33], but one difference with respect to 
[33] is the replacement of the L∞ norm used there by an Lp norm which becomes 
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necessary because of an error term which arises in the coupling argument and which 
is only controlled in Lp.

2. Model, formal derivations and main result

The (Kac–)Blume–Capel model in equilibrium is defined as a Gibbs measure λγ on 
the configuration space ΣN = {−1, 0, +1}ΛN with ΛN = Z

2/(2N + 1)Z2 being the 
two-dimensional discrete torus of size 2N + 1. More precisely

λγ(σ) def= 1
Zγ

exp
(
− βHγ(σ)

)
,

where β > 0 is the inverse temperature, and Zγ denotes the normalization constant 
that is equal to the sum of the exponential weights over all configurations σ ∈ ΣN . The 
Hamiltonian Hγ of the model is defined via

Hγ(σ) def= −1
2

∑
k,j∈ΛN

κγ(k − j)σ(j)σ(k) − θ̃
∑
j∈ΛN

σ(j)2 (2.1)

where θ̃ is a real parameter, σ ∈ ΣN , and κγ is the interaction kernel which has support 
size O(γ−1), which is constructed as follows: Let K : R2 → [0, 1] be a rotation invariant 
C2 function with support contained in the ball of radius 3 around the origin, such that∫

R2

K(x) dx = 1,
∫
R2

K(x) |x|2 dx = 4 . (2.2)

Then, for 0 < γ < 1
3 , κγ : ΛN → [0, ∞) is defined as κγ(0) = 0 and

κγ(k) = γ2 K(γk)∑
k∈ΛN\{0} γ

2 K(γk) k �= 0 . (2.3)

We are interested in the following Glauber dynamics, a natural Markov process on 
(ΣN , λγ) which is reversible for λγ . This process is defined in terms of the jump rates 
cγ(σ; σ(j) → σ̄(j)) for a configuration σ, to change its spin σ(j) at position j ∈ ΛN to 
σ̄(j) ∈ {±1, 0}. This rate only depends on the final value σ̄(j) and is given by

cγ(σ, j,−1) def= cγ(σ;σ(j) → −1) = e−βhγ(σ,j)+θ/Nβ,θ(hγ(σ, j)) ,

cγ(σ, j, 0) def= cγ(σ;σ(j) → 0) = 1/Nβ,θ(hγ(σ, j)) ,

cγ(σ, j, 1) def= cγ(σ;σ(j) → +1) = eβhγ(σ,j)+θ/Nβ,θ(hγ(σ, j))

where θ
def= θ̃β and hγ is the locally averaged field
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hγ(σ, k) def=
∑
j∈ΛN

κγ(k − j)σ(j) =: κγ � σ(k) , (2.4)

and Nβ,θ(hγ(σ, j)) is a normalization factor

Nβ,θ(hγ(σ, j)) def= e−βhγ(σ,j)+θ + 1 + eβhγ(σ,j)+θ .

This can be written in a streamlined way

cγ(σ, j, σ̄(j)) = eσ̄(j)βhγ(σ,j)+σ̄(j)2θ/Nβ,θ(hγ(σ, j)) . (2.5)

The generator of the Markov process is then given by

Lγf(σ) =
∑
j∈ΛN

∑
σ̄(j)∈{0,±1}

cγ(σ, j, σ̄(j)) (f(σ̄) − f(σ)) (2.6)

where f : ΣN → R and σ̄ is the new spin configuration obtained by flipping the spin 
σ(j) in the configuration σ to σ̄(j). Let

hγ(t, k) def= hγ(σ(t), k)

then one has

hγ(t, k) = hγ(0, k) +
t∫

0

Lγ hγ(s, k) ds + mγ(t, k) , (2.7)

where the process mγ(·, k) is a martingale, whose explicit form (quadratic variation etc.) 
will be discussed in Section 3. For the moment we focus on the drift term Lγ hγ(s, k). 
Since σ and σ̄ can only differ in their spin values at site j, one has

hγ(σ̄, k) − hγ(σ, k) = κγ(k − j) (σ̄(j) − σ(j)) ,

and plugging this into (2.6) yields

Lγhγ(σ, k) =
∑
j∈ΛN

∑
σ̄(j)∈{±1,0}

κγ(j − k) (σ̄(j) − σ(j)) cγ(σ, j, σ̄(j)) .

Using the fact that 
∑

σ̄(j)∈{±1,0} cγ(σ, j, ̄σ(j)) = 1, one can alternatively write

Lγhγ(σ, k) =
∑
j∈ΛN

κγ(j − k)
(
− σ(j) +

∑
σ̄(j)∈{±1,0}

σ̄(j) cγ(σ, j, σ̄(j))
)
.

The Taylor expansion of cγ(σ, j, ̄σ(j)) in βhγ(σ, j) gives
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cγ(σ, j, σ̄(j)) =
∞∑

n=0
cn β

nhγ(σ, j)n (2.8)

where the coefficients cn are given by (we only list the ones we will use):

c1 = σ̄(j)eσ̄(j)2θ

1 + 2eθ , c3 =
σ̄(j)eσ̄(j)2θ

(
σ̄(j)2 + 2

(
σ̄(j)2 − 3

)
eθ
)

6(1 + 2eθ)2 ,

c5 =
σ̄(j)eσ̄(j)2θ

(
4
(
σ̄(j)2 − 5

)2
e2θ − 2

(
8σ̄(j)2 + 5

)
eθ + σ̄(j)2

)
120(1 + 2eθ)3 .

Therefore one has

Lγhγ(σ, k) =
(
κγ � hγ(σ, k) − hγ(σ, k)

)
+ Aβ,θ κγ � hγ(σ, k)

+ Bβ,θ κγ � h3
γ(σ, k) + Cβ,θ κγ � h5

γ(σ, k) + . . .

where the remaining terms denoted by “· · · ” are terms of the form κγ � hn
γ with n odd 

and n > 5, and

Aβ,θ
def= 2a

2a + 1β − 1 , Bβ,θ
def= − a(4a− 1)

3(2a + 1)2β
3 ,

Cβ,θ
def= a(64a2 − 26a + 1)

60(1 + 2a)3 β5 (a def= eθ = eβθ̃) .
(2.9)

Note that all the terms κγ � hn
γ with even powers n vanish, because cγ(σ, j, ̄σ(j))

remains unchanged under (hγ(σ, j), ̄σ(j)) �→ (−hγ(σ, j), −σ̄(j)), thus the coefficients cn
in (2.8) for n even must be even functions in σ̄(j). Multiplying this coefficient by σ̄(j)
and summing over σ̄(j) ∈ {±1, 0} necessarily yields zero.

Remark 2.1. As mentioned in Section 1, letting θ → ∞ in the Hamiltonian (2.1) one 
recovers the Kac–Ising model. Here in the above expansion for Lγhγ , if we send θ → ∞, 
we obtain the same coefficients in the corresponding expansion [33, Eq. (2.10)] for the 
Ising case.

We set ε = 2
2N+1 . Now every microscopic point k ∈ ΛN can be identified with x =

εk ∈ Λε = {x = (x1, x2) ∈ εZ2 : x1, x2 ∈ (−1, 1)}. We view Λε as a discretization of the 
continuous torus T2 identified with [−1, 1]2. We define the scaled field

Xγ(t, x) = δ−1hγ(t/α, x/ε) , (2.10)

so that
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dXγ(t, x) =
( ε2

γ2
1
α

Δ̃γXγ(t, x) + Aβ,θ

α
Kγ �ε Xγ(t, x) + Bβ,θδ

2

α
Kγ �ε X

3
γ(t, x)

+ Cβ,θδ
4

α
Kγ �ε X

5
γ(t, x) + Kγ �ε Eγ(t, x)

)
dt + dMγ(t, x) , (2.11)

where the martingale Mγ is defined by Mγ(t, x) = δ−1mγ(t/α, x/ε) and has an ex-
plicit quadratic variation of order ε2/(δ2α) (see (3.8) below); the function Kγ(x) def=
ε−2κγ(ε−1x) is scaled to approximate the Dirac distribution; the convolution �ε on Λε

is defined through X �ε Y (x) =
∑

z∈Λε
ε2X(x − z)Y (z); and Δ̃γX = γ2

ε2 (Kγ �ε X −X), 
so that Δ̃γ scales like the continuous Laplacian. The error term Eγ is given by

Eγ = 1
δα

(∑
σ̄∈{±1,0} σ̄ eσ̄βδXγ+σ̄2θ∑
σ̄∈{±1,0} e

σ̄βδXγ+σ̄2θ
− 2a

2a + 1βδXγ −Bβ,θδ
3X3

γ − Cβ,θδ
5X5

γ

)
. (2.12)

Now formally:

• By choosing Aβ,θ/α = O(1) (which means that one tunes β, θ close to a curve in 
the β–θ plane given by Aβ,θ = 0) and the scaling of ε, α, δ such that the Laplacian, 
martingale and cubic terms are all of O(1), namely

ε ≈ γ2, α = γ2, δ = γ , (2.13)

one formally obtains the Φ4 equation, as long as Bβ,θδ
2/α is strictly negative.

• However, if (β, θ) is tuned to be close to a special point (β∗
c , θ

∗
c ) = (3, − ln 4) (which is 

a mean field value of a “tricritical” point given by Aβ,θ = Bβ,θ = 0) on the aforemen-
tioned curve, then under the scaling (2.13), the coefficient Bβ,θδ

2/α vanishes, which 
would formally result in an Ornstein-Uhlenbeck process. To observe a nontrivial limit 
we have to consider a different scale. In fact by imposing that both Aβ,θ/α = O(1)
and Bβ,θδ

2/α = O(1) and that the Laplacian, martingale and quintic terms are all 
of O(1), namely

ε ≈ γ3, α = γ4, δ = γ , (2.14)

one formally obtains the Φ6 equation.

We will refer to the above two cases as “the first (scaling) regime” and “the second 
(scaling) regime”. The curve in the β–θ plane was shown in Fig. 1 Note that at (βc, θc)
the coefficient in front of X5 is negative (Cβc,θc = −9/20) as desired for long time 
existence of solution.

Here, since the domain ΛN has integer size, we can only choose our space rescaling as 
ε = 2

2N+1 , and N =
⌊
γ−2⌋ in the first regime or N =

⌊
γ−3⌋ in the second regime. This 

is why we wrote ≈ above. Write
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Δγ = c2γ,2Δ̃γ = ε2

γ2α
Δ̃γ (2.15)

where the coefficient cγ,2 = ε
γ2 in the first regime (2.13) or cγ,2 = ε

γ3 in the second regime 
(2.14) and is close to 1 up to an error O(γ2).

Remark 2.2. In d space dimensions, the only difference in the above scaling arguments 
is that the rescaled martingale Mγ(t, x) has an explicit quadratic variation of order 
εd/(δ2α), so the condition of retaining Laplacian, martingale and quintic terms becomes

ε ≈ γ
6

6−2d , α = γ
2d

3−d , δ = γ
d

6−2d .

It is manifest now that if d = 3 the above relation cannot be satisfied, which corresponds 
exactly to the fact that the subcriticality condition for the Φ6

d model is d < 3. This may 
be compared with the scaling for the Φ4

d model in [33, Remark 2.2] as follows.

ε ≈ γ
4

4−d , α = γ
2d

4−d , δ = γ
d

4−d .

As discussed in [33], the above formal derivation is not correct. Instead, in the first 
regime, fixing a point (ac, βc) on the curve Cc, one should write the linear and cubic 
terms as

Kγ �ε

(Bβ,θδ
2

α

(
X3

γ − 3cγXγ

)
+ Aβ,θ + 3cγBβ,θδ

2

α
Xγ

)
(2.16)

where cγ is a logarithmically divergent renormalization constant, and tune (a, β) such 
that (Aβ,θ + 3cγBβ,θδ

2)/α = a1 + c1(γ) where a1 ∈ R is a fixed constant, and c1(γ) is a 
quantity vanishing as γ → 0 which will give us certain freedom, namely,

2a
2a + 1β − 1 = γ2

(
cγ

a(4a− 1)
(2a + 1)2 β

3 + a1 + c1(γ)
)
.

The precise value of cγ will be given below (Eq. (2.36)); the difference between βccγ and

∑
ω∈Z

2

0<|ω|<γ−1

1
4π2|ω|2

remains bounded as γ goes to 0. One could well take c1(γ) = 0; but the above tuning 
is not very transparent because there are two parameters (a, β) and the right hand side 
also involves a, β. To make the tuning more explicit, we can for instance first choose 
a = a(γ) to be any sequence such that |a − ac| = O(γ2), and then replace the quantity 
a(4a−1)
(2a+1)2 β

3 by ac(4ac−1)
(2ac+1)2 β3

c with an error of o(γ). We then choose c1(γ) to exactly cancel 
this error, and tune β according to
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2a
2a + 1β − 1 = γ2

(ac(4ac − 1)
(2ac + 1)2 β3

c cγ + a1

)
, (2.17)

where a stands for the sequence a(γ) chosen above that converges to ac. Note that if 
a → ∞ we recover from (2.17) the choice of β in [33, Eq (2.18)].

In the second regime, recall that the fifth Hermite polynomial is x5−10x3 +15x. One 
should write the linear, cubic and quintic terms as

Kγ �ε

(Aβ,θ

α
Xγ + Bβ,θδ

2

α
X3

γ + Cβ,θδ
4

α
X5

γ

)
= Kγ �ε

(Cβ,θδ
4

α

(
X5

γ − 10cγX3
γ + 15c2γXγ

)
+ Bβ,θδ

2 + 10Cβ,θδ
4cγ

α

(
X3

γ − 3cγXγ

)
+
(Aβ,θ

α
+ 3cγ

Bβ,θδ
2 + 5Cβ,θδ

4cγ

α

)
Xγ

)
(2.18)

So one should tune (a, β) such that the coefficient in front of 
(
X3

γ − 3cγXγ

)
is equal 

to a3 + c3(γ) where a3 ∈ R is a fixed constant; noting that Cβ,θ = Cβc,θc + o(γ) =
−9/20 + o(γ), one can replace Cβ,θ by −9/20 and suitably choose c3(γ) to cancel this 
error, and thus obtain

− a(4a− 1)
3(2a + 1)2β

3 = γ2
(9

2 cγ + a3

)
. (2.19)

One should furthermore impose that the coefficient in front of Xγ in (2.18) is equal to 
a1 + c1(γ) where a1 ∈ R is a fixed constant, and suitably choose c1(γ) to get

2a
2a + 1β − 1 = γ4

(
− 3cγa3 −

27
4 c2γ + a1

)
. (2.20)

Combining the above two conditions, we can then obtain the correct tuning of the pa-
rameters (β, a = eθ); we give their values in terms of power series in γ:

a = 1
4 − γ2

(9
8 cγ + a3

4

)
+ 5

48γ
4
(
81c2γ + 36cγa3 + 4a2

3

)
+ O(γ5) ,

β = 3 + γ2
(
9cγ + 2a3

)
+ γ4

(
− 189

4 c2γ + 3a1 − 21cγa3 −
4
3a

2
3

)
+ O(γ5) .

(2.21)

In fact, these precise values of (a, β) do not matter in the sequel, and it will be sufficient 
to know that there exists a family of (a, β) depending on γ (approaching (1

4 , 3) as γ → 0) 
such that (2.19) and (2.20) do hold simultaneously.

The limiting SPDEs
We briefly review the well-posedness theory for the Φ2n equation

dX =
(
ΔX +

n∑
a2k−1X

2k−1) dt +
√

2/βcdW X(0) = X0 (2.22)

k=1
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in two space dimensions with a2n−1 < 0, and the parameter βc > 0 will correspond 
to a critical value of β described above. In order to interpret the solution to the above 
equation, let Wε(t, x) = 1

4
∑

|ω|<ε−1 eiπω·x Ŵ (t, ω) be a spatially regularized cylindrical 
Wiener process, and consider the renormalized equation

dXε =
(
ΔXε +

n∑
k=1

a2k−1H2k−1(Xε, cε)
)
dt +

√
2/βc dWε, (2.23)

where Hm = Hm(x, c) are Hermite polynomials defined recursively by setting H0 = 1
and Hm = xHm−1 − c ∂xHm−1 so that H1 = x, H2 = x2 − c, H3 = x3 − 3cx, etc. The 
constant cε is given by

cε = βc
−1

∑
0<|ω|<ε−1

1
4π2|ω|2 . (2.24)

In particular, the constants cε diverge logarithmically as ε → 0. Then, [13] shows that 
Xε converges to nontrivial limit.

More precisely, let

Xε(t) = Zε(t) + PtX
0 + vε(t)

where Pt = etΔ is the solution operator of the heat equation on the torus T2, and

Zε(t, ·) =
√

2/βc

t∫
0

Pt−s dWε(s, ·)

is the solution to the linear equation with zero initial data. Letting

Z :m:
ε (t, x) def= Hm(Zε(t, x), cε(t)) (2.25)

for

cε(t) = E[Zε(t, 0)2] = 1
2βc

∑
|ω|<ε−1

t∫
0

exp
(
−2rπ2|ω|2

)
dr

= t

2βc
+ 1

βc

∑
0<|ω|<ε−1

1
4π2|ω|2

(
1 − exp

(
− 2tπ2 |ω|2

))
, (2.26)

then Z :m:
ε converge almost surely and in every stochastic Lp space with respect to the 

metric of C([0, T ], C−ν) – this is essentially [13, Lemma 3.2]. We denote the limiting 
processes by Z :m:. Note that cε = limt→∞(cε(t) − t

2βc
), where the term t

2βc
comes from the 

summand for ω = 0 in (2.26) which does not converge as t → ∞. Furthermore, for every 
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fixed t > 0 the difference |cε − cε(t)| is uniformly bounded in ε. This replacement of cε
by cε(t) amounts to rewriting (2.23) as (2.30) below. Define a(ε)

2k−1(t) as time dependent 
coefficients such that

n∑
k=1

a2k−1H2k−1(x, cε) =
n∑

k=1

a
(ε)
2k−1(t)H2k−1(x, cε(t)) . (2.27)

This is well-defined since the left hand side is an odd polynomial of degree 2n − 1
which can be uniquely expressed as a linear combination of odd Hermite polynomials 
H2k−1(x, cε(t)). Note that the leading coefficients always satisfy a2n−1 = a

(ε)
2n−1(t). For 

the other coefficients, for instance, when n = 2 one has a(ε)
1 (t) = 3a3(cε(t) − cε) + a1; 

when n = 3 one has

a
(ε)
3 (t) = 10a5(cε(t) − cε) + a3 , (2.28)

a
(ε)
1 (t) = −15a5(cε(t)2 − c2ε) + 3(cε(t)a(ε)

3 (t) − cεa3) + a1 .

In fact, plugging the first relation into the second, one has

a
(ε)
1 (t) = 3a3(cε(t) − cε) + 15a5(cε(t) − cε)2 + a1 . (2.29)

Then (2.23) can be rewritten as

dXε =
(
ΔXε +

n∑
k=1

a
(ε)
2k−1(t)H2k−1(Xε, cε(t))

)
dt +

√
2/βc dWε . (2.30)

To proceed one needs the following simple fact, which generalizes (2.29).

Lemma 2.3. For every k = 1, . . . , n, the difference a2k−1 − a
(ε)
2k−1(t) is a polynomial of 

cε−cε(t) without zero order term, with coefficients only depending on a1, · · · , a2n−1. This 
difference is uniformly bounded in ε for every t > 0 and diverges logarithmically in t as 
t → 0.

Proof. By the differential operator representation of Hermite polynomials Hm(x, c) =
e−cΔ/2xm, where Δ is Laplacian in x and the exponential is understood as power series 
without convergence problem when acting on polynomials. So we have

H2k−1(x, cε) = e−cεΔ/2x2k−1 = e−cε(t)Δ/2e−(cε−cε(t))Δ/2x2k−1

= e−cε(t)Δ/2H2k−1(x, cε − cε(t)) .

The operator e−cε(t)Δ/2 replaces every monomial term xm in the polynomial H2k−1(x, cε−
cε(t)) by Hm(x, cε(t)), which means that when re-expanding H2k−1(x, cε) on the left hand 
side of (2.27) w.r.t. the basis Hm(x, cε(t)) the coefficients only depend on cε, cε(t) via 
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cε − cε(t). After this re-expansion we then compare the coefficients on the two sides 
of (2.27), noting that if cε − cε(t) = 0 then a(ε)

2k−1 = a2k−1, and we obtain the first 
statement of the lemma. Note that

lim
ε→0

(cε − cε(t)) = − t

2βc
+

∑
ω∈Z2\{0}

e−2tπ2|ω|2

4βπ2|ω|2 . (2.31)

It is then obvious that the second statement of the lemma also holds. �
By this lemma the limiting coefficient limε→0 a

(ε)
2k−1(t) is integrable in t at t = 0.

As a convenient way to deal with the initial data X0, we further define Z̃(t) = Z(t) +
PtX

0 and

Z̃ :m:(t) =
m∑

k=0

(
m

k

)
(PtX

0)m−kZ :k:(t) (2.32)

The following theorem, essentially [34, Theorem 6.1] (together with Remark 1.5 therein), 
states that the equation

∂tv = Δv +
n∑

k=1

a2k−1(t)
2k−1∑
�=1

(
2k − 1

�

)
Z̃ :2k−1−�:v� (2.33)

which is derived from (2.30), or equivalently

∂tv = Δv +
2n−1∑
�=1

( ∑
k∈Z∩[ �+1

2 ,n]

a2k−1(t)
(

2k − 1
�

)
Z̃ :2k−1−�:

)
v� (2.34)

with zero initial condition v(0) = 0 is globally well-posed. The solution v is the limit 
of vε.

Theorem 2.4. For ν > 0 small enough, fix an initial datum X0 ∈ C−ν . For

(Z,Z :2:, . . . , Z :2n−1:) ∈
(
L∞(

[0, T ], C−ν
))2n−1

,

let (Z̃, Z̃ :2:, · · · , Z̃ :2n−1:) be defined as in (2.32). Let ST (Z, Z :2:, . . . , Z :2n−1:) denote the 
solution v on [0, T ] of the PDE (2.34). Then for any κ > 0, the mapping

ST :
(
L∞(

[0, T ], C−ν
))2n−1 → C([0, T ], C2−ν−κ(T2))

is Lipschitz continuous on bounded sets.

With the solution v given by this theorem we call X(t) = Z(t) + PtX
0 + v(t) the 

solution to the dynamical Φ2n equation (2.22) with initial data X0 ∈ C−ν . (Due to 
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the above theorem, Eq. (2.22) is sometimes written with each term X2k−1 replaced 
by :X2k−1: but we refrain from using this notation.)

Main result
As in [33], for any function Y : Λε → R, we define its smooth extension to a function 

T
2 → R which is denoted by ExtY (but sometimes still written as Y ) in the following 

way:

ExtY (x) = 1
4

∑
ω∈{−N,...,N}2

∑
y∈Λε

ε2 eiπω·(x−y) Y (y) (x ∈ T
2) (2.35)

which is the unique trigonometric polynomial of degree ≤ N that coincides with Y on Λε.
For any metric space S, we denote by D(R+, S) the space of S valued cadlag function 

endowed with the Skorokhod topology. For any ν > 0 we denote by C−ν the Besov 
space B−ν

∞,∞ (see [33, Appendix A] for such spaces).
Assume that for γ > 0, the spin configuration at time 0 is given by σγ(0, k), k ∈ ΛN , 

and define for x ∈ Λε

X0
γ(x) = δ−1

∑
y∈Λε

ε2Kγ(x− y)σγ(0, ε−1y) .

We smoothly extend X0
γ (in the way described above) to T2 which is still denoted by X0

γ . 
Let Xγ(t, x), t ≥ 0, x ∈ Λ2

ε be defined by (2.10) and extend Xγ(t, ·) to T2, still denoted 
by Xγ .

Define

cγ
def= 1

4βc

∑
ω∈{−N,...,N}2

ω �=0

|K̂γ(ω)|2

γ−b(1 − K̂γ(ω))
, (2.36)

where K̂γ(ω) =
∑

x∈Λε
ε2Kγ(x)e−iπω·x is the Fourier transform of Kγ , b = 2 in the first 

regime and b = 4 in the second regime.
The main result of this article is the following.

Theorem 2.5. Suppose that the precise value of cγ is given by (2.36), and that X0
γ con-

verges to X0 in C−ν for ν > 0 small enough and that X0, X0
γ are uniformly bounded 

in C−ν+κ for an arbitrarily small κ > 0.
(1) Assume that the scaling exponents ε, α, δ satisfy (2.13) and the parameters a =

eθ, β satisfy (2.17) for some (ac, βc) and a1 ∈ R such that

2ac
2ac + 1βc − 1 = 0 . (2.37)

If ac > 1
4 , then Xγ converges in law to the solution of the following dynamical Φ4

equation:
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dX =
(
ΔX + a1X − ac(4ac − 1)β3

c

3(2ac + 1)2 X3) dt +
√

2/βc dW X(0) = X0 .

(2) Under the same assumption in (1), if ac = 1
4 , then Xγ converges in law to the 

linear equation:

dX =
(
ΔX + a1X

)
dt +

√
2/3 dW X(0) = X0 .

(3) Assume that the scaling exponents ε, α, δ satisfy (2.14) and the parameters a =
eθ, β satisfy (2.21) for some a1, a3 ∈ R and in particular

(a, β) → (1/4, 3) as γ → 0 . (2.38)

Then as γ → 0, Xγ converges in law to the solution of a dynamical Φ6 equation:

dX =
(
ΔX + a1X + a3X

3 − 9
20X

5) dt +
√

2/3 dW X(0) = X0 .

All the above convergences are with respect to the topology of D(R+, C−ν).

Remark 2.6. Note that the coefficient 
√

2/βc in front of the white noise in the limiting 
equations makes the interpretation of β as “inverse temperature” more meaningful. This 
means that the quadratic variation of our martingale should behave like 2/βc times the 
Dirac distribution. The quadratic variation will depend on the spin configuration σ and 
in the following proofs we will approximate σ by an i.i.d. spin system σ̃ so that at each 
site P(σ̃ = ±1) = eθc/Nc and P(σ̃ = 0) = 1/Nc where Nc = 1 + 2eθc . (Recall that θ has 
the interpretation of “chemical potential” i.e. the “ratio” between ±1 and 0 spins.) On 
average (over σ̃ ∈ {−1, 0, +1}) the quadratic variation will then be shown as equal to 
(see (3.13))

4eθc
1 + 2eθc = 2

βc

where the last equality is by (2.37) or (2.38).

Remark 2.7. The limiting equations in the theorem are globally well-posed, see the pa-
per [34], especially Remark 1.5 there. Actually, in case (1), if ac < 1

4 , one can still prove 
that Xγ converges to a Φ4 equation, but with a plus sign in front of X3, which may blow 
up in finite time.

3. Convergence of the linearized equation

To prove the convergence result Theorem 2.5 we rewrite our discrete evolution in the 
Duhamel’s form:
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Xγ(t, ·) =P γ
t X

0
γ +

t∫
0

P γ
t−sKγ �

(Cβ,θδ
4

α
X5

γ(s, ·) + Bβ,θδ
2

α
X3

γ(s, ·)

+Aβ,θ

α
Xγ(s, ·) + Eγ(s, ·)

)
ds +

t∫
s=0

P γ
t−s dMγ(s, ·) on Λε

(3.1)

where the coefficients are defined in (2.9), and P γ
t is the heat operator associated with Δγ . 

Recall that the martingale mγ was defined above in (2.7) and the rescaled martingales 
Mγ(t, z) = 1

δmγ( t
α , 

z
ε ) are defined on a rescaled grid Λε ⊆ [−1, 1]2. An important step of 

proving convergence of (3.1) is to show convergence of the linearized system. For x ∈ Λε, 
we denote by

Zγ(t, x) def=
t∫

r=0

P γ
t−r dMγ(r, x) (3.2)

the stochastic convolution appearing as the last term of (3.1). The process Zγ is the 
solution to the linear stochastic equation

dZγ(t, x) = ΔγZγ(t, x)dt + dMγ(t, x)

Zγ(0, x) = 0 , (3.3)

for x ∈ Λε, t ≥ 0. As discussed in (2.35), we extend Zγ to the entire torus T2 and 
still denote it by Zγ . The tightness of the family Zγ with respect to the topology of 
D(R+, C−ν) is established below in Proposition 4.4. In this section we assume this result 
and prove the convergence in law of Zγ to the solution of the stochastic heat equation.

The predictable quadratic covariations of the martingales mγ(·, k) are given by

〈mγ(·, k),mγ(·, j)〉t

=
t∫

0

∑
�∈ΛN

κγ(k − �)κγ(j − �)
∑

σ̄∈{±1,0}
(σ̄ − σ(s, �))2cγ(σ(s), �, σ̄)ds. (3.4)

Following the reasoning from [33] we first construct a modified version of the martin-
gales Mγ and the approximate stochastic convolution Zγ for which we have a better 
control on this quadratic variation. To this end, we first define the stopping time τγ,m
for a fixed ν ∈ (0, 12 ), any m > 1 and 0 < γ < 1,

τγ,m
def= inf

{
t ≥ 0 : ‖Xγ(t, ·)‖C−ν ≥ m

}
. (3.5)

For k ∈ ΛN and for t ≥ 0, define
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σγ,m(t, k) def=
{

σ(t, k) if t < τγ,m

α ,

σ′
γ,m(t, k) otherwise .

Here σ′
γ,m is a spin system with σ′

γ,m(τγ,m/α, k) = σ(τ−γ,m/α, k), and for every t > τγ,m/α

and every k ∈ ΛN it jumps to spin values +1, 0, −1 at rates eθc

Nc
, 1
Nc

, e
θc

Nc
respectively, 

independently of σ, with Nc = 1 + 2eθc . (Recall that θc is a critical value of θ as in 
Section 2.) In other words, the rate function cγ is replaced by

csγ,m(σ(s), k, σ̄) =
{

cγ(σ(s), k, σ̄) if s < τγ,m

α ,

( e
θc

Nc
, 1
Nc

, eθc

Nc
) otherwise

(3.6)

where in the second case, csγ,m(σ(s), k, ̄σ) is independent of the configuration σ(s) and the 
site k and thus only depends on σ̄; so we only defined its values on the three points σ̄ =
1, 0, −1. We now construct processes Mγ,m and Zγ,m following exactly the construction 
of Mγ and Zγ with σγ replaced by σγ,m.

Define the rescaled rate function

Cγ,m(s, z, σ̄) def= c
s/α
γ,m(σγ,m(s/α), z/ε, σ̄) (3.7)

for every s ≥ 0, z ∈ Λε and σ̄ ∈ {+1, 0, −1}. Of course Cγ,m(s, z, ̄σ) still depends on 
the configuration σγ,m but we suppress this dependence in the notation now. For the 
martingales Mγ,m(t, z), Eq. (3.4) turns into

〈Mγ,m(·, x),Mγ,m(·, y)〉t

= ε2

δ2α

t∫
0

∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)
∑

σ̄∈{±1,0}
(σ̄ − σ(α−1s, ε−1z))2Cγ,m

(
s, z, σ̄) ds.

(3.8)

Recall that the kernel Kγ(x) = ε−2κγ(ε−1x) is a rescaled version of κγ that behaves 
like an approximation of Dirac distribution δ; thus we obtain ε4 when rescaling the 
two factors κγ but have moved an ε2 into the sum to anticipate that the sum over z
approximates δ(x − y), possibly times a constant. Since δ = γ in both “scaling regimes”, 
we can also write the coefficient in front of the integral as c2γ,2 = ε2

γ2α which was defined 
in (2.15). The constant cγ,2 is close to 1.

Lemma 3.1. The rates Cγ,m defined in (3.7) satisfy

Cγ,m(s, z,±1) = eθc

Nc
+ Eγ

Cγ,m(s, z, 0) = 1
Nc

+ E′
γ
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for every s ≥ 0, z ∈ Λε, where Nc = 1 +2eθc and the random terms Eγ , E′
γ which depend 

on s, z are deterministically bounded by Cγ1−3ν with constant C depending linearly on m. 
The un-rescaled rates csγ,m(σ(s), k, ̄σ) satisfy the same estimates for every s ≥ 0, k ∈ ΛN

and σ̄ ∈ {±1, 0}.

Proof. By (3.7) it suffices to prove the stated estimates for Cγ,m and that for cγ,m
immediately follow. For t > τγ,m, we have Eγ = E′

γ = 0 by definition. For t ≤ τγ,m, 
first of all, we note that ( e

θ

N , 1
N , e

θ

N ) with N = 1 + 2eθ are nothing but the values of cγ
defined in (2.5) for βhγ = 0 at the three points σ̄ = 1, 0, −1. Since the derivatives 
of the functions x

1+2x and 1
1+2x are both bounded by 2, the error caused by replacing 

( e
θ

N , 1
N , e

θ

N ) by ( e
θc

Nc
, 1
Nc

, e
θc

Nc
) is bounded by 2|eθ−eθc |; by the discussion above (2.17) (for 

the first scaling regime) or (2.21) (for the second scaling regime), this error is bounded 
by Cγ1−2ν .

Furthermore, it is easy to check by (2.5) that for any σ̄(j) ∈ {±1, 0} and any θ ∈ R, 
the rate cγ viewed as a function of βhγ has the derivative:

eσ̄(j)βhγ+σ̄(j)2θ
(
σ̄(j)(e−βhγ+θ + 1 + eβhγ+θ) + e−βhγ+θ − eβhγ+θ

)
(e−βhγ+θ + 1 + eβhγ+θ)2 ,

which is bounded by 2. Therefore for t < τγ,m,

|Eγ | ∨ |E′
γ | ≤ 2β

∣∣hγ(σ(t/α), z/ε)
∣∣ + Cγ1−2κ = 2βδ

∣∣Xγ(t, z)
∣∣ + Cγ1−2κ

≤ C(ν)γ1−3ν(‖Xγ(t)‖C−ν + 1) .
(3.9)

In the last step of (3.9) we used the fact that δ = γ in both scaling regimes; β ≤ 4 for γ
sufficiently small since in all three cases of Theorem 2.5 βc ≤ 3; and the fact that since 
the Fourier coefficients of Xγ with frequency larger than γ−2 (resp. γ−3) vanish, by [33, 
Lemma A.3], ‖Xγ(t)‖L∞ ≤ Cγ−bν‖Xγ(t)‖C−ν with b = 2 in the first regime (resp. b = 3
in the second regime). �

This lemma allows to rewrite the last terms appearing in (3.8) as∑
σ̄∈{±1,0}

(σ̄ − σ(α−1s, ε−1z))2Cγ,m

(
s, z, σ̄) = A(σ(α−1s, ε−1z)) + E′′

γ , (3.10)

where the error E′′
γ is again deterministically bounded by Cγ1−3ν (for a constant C

which depends on m) and A is a function defined on three points {+1, 0, −1} as follows

A(σ) =
{

2eθc/Nc for σ = 0
4eθc/Nc + 1/Nc for σ = ±1

(3.11)

where Nc = 1 +2eθc as before. The main ingredient in the proof of Theorem 3.3 below is 
to show that the dependence on the microscopic configuration σ(t, x) in this expression 
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becomes irrelevant when averaging over long time intervals, and that A may be replaced 
by its average.

Before stating Theorem 3.3, we define a coupling between the microscopic spin process 
σ(s, k) with an extremely simple auxiliary spin process σ̃(s, k). For every given site 
k ∈ ΛN the spin σ̃(·, k) gets updated at the same random times as the original process 
σ(·, k) but the update is determined according to a fixed probability distribution P̃ on 
{±1, 0} independently of the values of both σ and σ̃ and independently of other sites, 
which motivated by Lemma 3.1 is given by

P̃ =

⎛⎜⎝ eθc/Nc

1/Nc

eθc/Nc

⎞⎟⎠ . (3.12)

This process σ̃ does not capture any of the subtle large scale non-linear effects of 
the field σ described in our main result, but for any given site it coincides with σ for 
many times which allows to replace σ with σ̃ below (see e.g. (3.17)). The advantage of 
this replacement is that one can then average over σ̃ ∈ {−1, 0, +1}: indeed, note that 
by (2.37) and (2.38) and the definition (3.11) for A

ẼA(σ̃(r, k)) = eθc

Nc
A(−1) + eθc

Nc
A(1) + 1

Nc
A(0) = 4eθc

1 + 2eθc = 2
βc

, (3.13)

where Ẽ denotes the expectation with respect to P̃ . This is essentially the reason why the 
pre-factor 

√
2/βc in front of the noise of the limiting equation shows up (see Remark 2.6). 

In the proof of Theorem 3.3 we only make use of the averaging in time over σ̃. The proof 
of Proposition 3.4 below then relies on the same construction and we will make use of 
the spatial averaging as well.

We now proceed to the construction of this coupling. By definition, for any fixed site 
k ∈ ΛN the process σ(s, k) is a pure jump processes on {±1, 0}. The joint law of all of 
these processes can be constructed as follows:

• For each site there is an independent Poisson clock, running at rate 1.
• At each jump of the Poisson clock the spin changes according to the transition 

probabilities given in the vector

P (s, k) =

⎛⎜⎝ csγ,m(σγ,m(s), k, 1)
csγ,m(σγ,m(s), k, 0)
csγ,m(σγ,m(s), k,−1)

⎞⎟⎠ .

Of course this vector depends on the configuration of the neighboring particles at 
time s.
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The transition probabilities of the auxiliary processes σ̃(s, k), k ∈ ΛN are fixed and 
given by (3.12). In order to construct the coupling, we note that according to Lemma 3.1
there exists a number q satisfying

1 ≥ q ≥ 1 − Cγ1−3ν ,

such that qP̃ ≤ P where the inequality of the two vectors is to be understood entry by 
entry. Therefore, we can write

P (s, k) = qP̃ + (1 − q)R(s, k),

where R is normalized to be a probability measure. The coupling is now the following:

• At the initial time each of the σ̃(0, k) is distributed according to P̃ and the realiza-
tions for different sites k �= k′ are independent.

• At each jump of the Poisson clock at site k, σ̃(s, k) is updated according to P̃ . This 
update is independent of the updates at other sites as well as the jump times.

• To determine the updated spin for σ(s, k) after the same jump of the Poisson clock, 
the vector R(s, k) are evaluated. It depends on the environment at the given time s.

• Toss a coin which yields 1 with probability q and 0 with probability 1 − q. If the 
outcome of this toss is 1 the spin σ(s, k) is updated to the same value as σ̃(s, k). If 
the outcome is 0 then σ(s, k) is updated according to R(s, k) independently of the 
update for σ̃.

It is clear that the process σ̃ constructed in this way is a jump Markov chain jumping 
according to P̃ and that the processes for different sites are independent. This construc-
tion is consistent with the jumping rule of σ (in particular σ jumps according to P ). 
Furthermore, for every k ∈ ΛN , after each jump the probability that σ̃(s, k) �= σ(s, k) is 
bounded by Cγ1−3ν , where the constant C obtained from (3.9) does not depend on the 
location k and the jump-time.

To lighten the notation in the following calculation we introduce the centered random 
field Ā(σ̃(r, k)) = A(σ̃(r, k)) − 2

βc
where A was defined in (3.11).

Lemma 3.2. For every r, r′ ≥ 0 and k, k′ ∈ ΛN we have

EĀ(σ̃(r, k))Ā(σ̃(r′, k′)) ≤ C1k=k′e−|r−r′|.

Proof. Recall from the construction that for k �= k′ the random variables σ̃(r, k) and 
σ̃(r′, k′) are independent and that therefore for these k �= k′ we have

EĀ(σ̃(r, k))Ā(σ̃(r′, k′)) = 0.

To get bounds in the temporal correlations for σ̃(·, k) for a fixed site k we fix times r′ < r

and denote by τ the first jump time of the Poisson clock for site z after r′. Recall from 
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the construction of σ̃ that if r < τ the spin values of σ̃(r, k) and σ̃(r′, k) are identical. 
The value after τ becomes independent of the value before τ . With this discussion in 
mind we write

EĀ(σ̃(r, k)) Ā(σ̃(r′, k))

= EĀ(σ̃(r, k))21τ>r + EĀ(σ̃(r, k))Ā(σ̃(r′, k))1τ≤r .

The first term on the right hand side is bounded by

EĀ(σ̃(r, k))21τ>r ≤ sup
σ̄∈{±1,0}

|A(σ̄)|2 P(τ > r) ≤ Ce−|r−r′|.

For the second term we write

EĀ(σ̃(r, k))Ā(σ̃(r′, k))1τ≤r

= EĀ(σ̃(r′, k))1τ≤rE
(
Ā(σ̃(r, k))

∣∣Fτ

)
= 0,

where Fτ is the sigma algebra generated by σ̃(·, k) up to the stopping time τ . �
Theorem 3.3 (Convergence of Zγ). Let ν ∈ (0, 1/2) and m > 1. As γ tends to 0, the pro-
cesses Zγ,m converge in law to Z with respect to the Skorokhod topology on D(R+, C−ν), 
where Z is defined as

Z(t, ·) def=
√

2/βc

t∫
0

Pt−s dW (s, ·) .

Proof. Proposition 4.4 below for the case n = 1 shows that the family {Zγ,m, γ ∈ (0, 13 )}
is tight on D(R+, C−ν) and any weak limit is supported on C(R+, C−ν). Given this tight-
ness result, we aim to show that any weak accumulation point Z̄ solves the martingale 
problem discussed in Theorem 6.1 and Appendix C of [33]. The argument for the “drift” 
part of the martingale problem, namely establishing that

MZ̄,φ(t) def= (Z̄(t), φ) −
t∫

0

(Z̄(s),Δφ) ds

is a local martingale for any test function φ ∈ C∞ is identical to [33]. Indeed, the claim 
we need to establish is that there exists a sequence of stopping times Tn with Tn ↑ ∞
a.s. as n → ∞ such that for all s < t and all random variables F which are bounded and 
measurable with respect to the σ-algebra over D([0, s], C−ν) we have

E

((
MZ̄,φ(t ∧ Tn) − MZ̄,φ(s ∧ Tn)

)
F
)

= 0. (3.14)
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For any C∞ function φ

Mγ,φ(t) = (Zγ,m(t), φ) −
t∫

0

(Zγ,m(s),Δγφ) ds , (3.15)

is a martingale by assumption and therefore the formula (3.14) with MZ̄,φ replaced 
by Mγ,φ holds irrespective of the choice of stopping time Tn. Just as in [33, Eq. (6.6)] it 
follows that the approximate Laplacian Δγ appearing in expression (3.15) can be replaced 
by the full Laplacian Δ up to an error which is controlled by C(φ)γ2−2κ in both the 
“first regime” and the “second regime”. By assumption the processes Zγ,m converge in 
law to Z̄ and as the law of Z̄ only charges the space C(R+, Cν), in particular it assigns 
measure one to the set of continuity points (with respect to D(R+, Cν) topology) of 
the map that sends Z̄ to MZ̄,φ(t) (recall that φ is smooth). Thus we can pass to the 
limit as soon as we have some control over the uniform integrability of these random 
variables. This is precisely the role of the stopping times – if we set TL,γ = inf{t ≥ 0 :
‖Zγ,m(t)‖C−ν > L} then it follows just as in [33, Proof of Theorem 6.1] that (outside of 
a hypothetical countable set of values L) the processes Zγ,m(s ∧ TL,γ) also converge in 
law and furthermore for fixed L, s, t the random variables

(Zγ,m(t ∧ TL,γ), φ) −
t∧TL,γ∫

0

(Zγ,m(s ∧ TL,γ),Δγφ) ds , (3.16)

are uniformly bounded as γ → 0 which permits to pass to the limit and establishes (3.14).
The more interesting part concerns the quadratic variation. More precisely, we need 

to show that (
MZ̄,φ(t)

)2 − 2t
βc

‖φ‖2
L2

is a local martingale; recall that the factor 2/βc naturally appears from (3.13).
This follows if we can establish that for any fixed trigonometric polynomial φ. If we 

fix such a φ, then as soon as γ is small enough to guarantee the degree of φ is ≤ γ−2 (or 
γ−3 depending on the regime), the quantity

(Mγ,m(t), φ) =
∑
x∈Λε

ε2Mγ,m(t, x)φ(x)

can be written using Parseval’s identity (see [33, Appendix A])

〈(Mγ,m(t), φ)〉 = c2γ,2
∑

x,y∈Λε

ε4φ(x)φ(y)
∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)

×
t∫ ∑

(σ̄ − σ(α−1s, ε−1z))2Cγ,m

(
s, z, σ̄) ds
0 σ̄∈{±1,0}
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= 2t
βc

‖φ‖2
L2 + E′′′

γ (t),

for an error E′′′
γ (t) for which E|E′′′

γ (t)| → 0 as γ → 0. For this statement in turn (3.10)
and (3.11) show that it is sufficient to prove that for every z ∈ Λε we have

t∫
0

A(σ(α−1s, ε−1z))ds = 2t
βc

+ E′′′′
γ , (3.17)

with a good control on E′′′′
γ . Indeed, one has |c2γ,2 − 1| ≤ O(γ2) and by (2.2), (2.3) and 

Kγ(x) = ε−2κγ(ε−1x),∑
x,y∈Λε

ε4φ(x)φ(y)
∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z) → ‖φ‖2
L2 ,

independently of the scaling relation between ε and γ (thus it holds for both scaling 
regimes). Although we have assumed that φ is a trigonometric polynomial, by [33, Re-
mark C.4], this is sufficient to characterize the law of Z.

While the error terms Eγ , E′
γ , E

′′
γ were all deterministically bounded, we will only get 

a probabilistic bound for E′′′
γ . To obtain this bound we will need the coupling between 

the microscopic spin processes σ and σ̃.
Recall that for every z, after each jump the probability that σ̃(α−1s, ε−1z) �=

σ(α−1s, ε−1z) is bounded by Cγ1−3ν , where the constant C does not depend on z and 
the jump-time. We then get

t∫
0

A(σ(α−1s, ε−1z))ds− 2t
βc

=
t∫

0

A(σ̃(α−1s, ε−1z))ds− 2t
βc

+
t∫

0

A(σ(α−1s, ε−1z))ds−A(σ̃(α−1s, ε−1z)) ds.

For the term in the second line we get

E

∣∣∣ t∫
0

A(σ(α−1s, ε−1z)) −A(σ̃(α−1s, ε−1z)) ds
∣∣∣

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
t∫

0

P

(
σ(α−1s, ε−1z) �= σ̃(α−1s, ε−1z)

)
ds

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
t∫ (

P(To > s) + Cγ1−3ν
)
ds (3.18)
0
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≤ sup
σ̄∈{±1,0}

|A(σ̄)|
t∫

0

(
e−

s
α + Cγ1−3ν

)
ds

≤ sup
σ̄∈{±1,0}

|A(σ̄)|
(
α + Ctγ1−3ν) .

Here To is the holding time before the first jump.
For the other term, by Lemma 3.2, its second moment can be bounded as

E

( t∫
0

A(σ̃(α−1s, ε−1z))ds− 2t
βc

)2

≤
t∫

0

t∫
0

EĀ(σ̃(α−1s, ε−1z))Ā(σ̃(α−1s′, ε−1z)) ds ds′

≤ C

t∫
0

t∫
0

e−
|s−s′|

α ds ds′ ≤ Cα .

So this term goes to zero as well. Therefore we have shown that the error term in (3.17)
goes to zero and thus the theorem is proved. �

The following result will also be applied several times in the sequel.

Proposition 3.4. For every 0 ≤ s ≤ t ≤ T and x ∈ Λε, one has

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
∑

σ̄∈{±1,0}
(σ̄ − σ(α−1r, ε−1z))2Cγ,m

(
r, z, σ̄) dr

= 2
βc

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x) dr + Ẽt(s, x)

(3.19)

where the process Ẽ satisfies the bound

E|Ẽt(s, x)|p ≤ Cγ1−3ν log(γ−1)p+1 (3.20)

for every p ≥ 2 and some constant C = C(T, ν, m) depending linearly on m. Its extension 
ExtẼt(s, ·), which will still be denoted by Ẽt(s, ·), satisfies

E‖ExtẼt(s, ·)‖pLp(T2) ≤ Cγ1−4ν log(γ−1)2p (3.21)

for every p ≥ 2 and some constant C = C(T, ν, m) depending linearly on m.
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Proof. We first show that the sum over σ̄ can be replaced by A(σ(r, ε−1z)) (recall the 
definition of A in (3.11)) up to an error which is controlled deterministically. Turn-
ing to Fourier space, using (A.2) and Parseval’s identity and the elementary bound ∫ s

0 e−(s−r)adr ≤ C(1
s + a)−1 for any a > 0, we obtain

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z) dr ≤ C
∑

ω∈{−N,...,N}2

|K̂γ(ω)|2

t−1 + 2γ−b(1 − K̂γ(ω))
(3.22)

where b = 2 in the first regime and b = 4 in the second regime. We then use the estimates 
(A.3) and the first estimate in (A.6) to bound the sum over |ω| ≤ Cγ−1 (resp. Cγ−2) 
and the estimate (A.7) to bound the sum over |ω| ≥ Cγ−1 (resp. Cγ−2) in the first (resp. 
second) regime, which permits to conclude that the right hand side of (3.22) is bounded 
by C log(γ−1). Therefore, invoking (3.10), the left hand side of (3.19) is equal to

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)A(σ(α−1r, ε−1z)) dr

plus an error which is deterministically bounded by Cγ1−3ν log γ−1.
We proceed as in the proof of Theorem 3.3, again making use of the process σ̃

constructed at the beginning of this section. Arguing as in (3.18) we can replace 
A(σ(α−1r, ε−1z)) in the above integral by A(σ̃(α−1r, ε−1z)) with an error satisfying 
the following first moment bound

E

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
∣∣∣A(σ(α−1r, ε−1z)) −A(σ̃(α−1r, ε−1z))

∣∣∣ dr
≤ sup

σ̄∈{±1,0}
|A(σ̄)|

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
(
e−

r
α + Cγ1−3ν) dr .

(3.23)

We claim that by a similar argument to the one leading to (3.22), the right hand side 
of (3.23) can be bounded by Cγ1−3ν log γ−1. Indeed, for the term involving Cγ1−3ν this 
is immediately clear from the above log(γ−1) bound on (3.22). For the term with e−

r
α

we divide the r-integral into an integral over r ∈ [γ, s] and an integral over r ∈ [0, γ]. 
For the integral over r ∈ [γ, s], we simply bound e−

r
α ≤ Cγ (recall that α ≈ γ2 in the 

first and α ≈ γ4 in the second scaling regime), and the integration of the other factors 
is bounded by C log(γ−1) as above. For the integral over r ∈ [0, γ], we bound e−

r
α ≤ 1, 

and then since after applying Parseval’s identity the only r-dependent factor inside the 
r-integral is e−2(t−r)γ−b(1−K̂γ(ω)) and as this function is monotonically increasing in r, 
we have
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γ∫
0

e−(t−r)γ−b(1−K̂γ(ω))dr ≤ γ

s

s∫
0

e−(t−r)γ−b(1−K̂γ(ω))dr ;

applying the above log(γ−1) bound again we conclude that as claimed the right hand 
side of (3.23) is bounded by Cγ1−3ν log γ−1.

Finally using the deterministic bound

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
∣∣A(σ(α−1r, ε−1z)) −A(σ̃(α−1r, ε−1z))

∣∣ dr
≤ C log γ−1,

the above bound on the first moment can be upgraded to a bound on all stochastic 
moments. We get for any p ≥ 1 that

E

( s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
∣∣∣A(σ(α−1r, ε−1z)) −A(σ̃(α−1r, ε−1z))

∣∣∣ dr)p

≤ Cγ1−3ν(log γ−1)p. (3.24)

To prove (3.19) it remains to control moments of the error term

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
(
A(σ̃(α−1r, ε−1z)) − 2

βc

)
dr .

As before we use the centered random field Ā(σ̃(α−1r, ε−1z)) = A(σ̃(α−1r, ε−1z)) − 2
βc

and write

E

( s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)Ā(σ̃(α−1r, ε−1z)) dr
)2

=
s∫

0

s∫
0

∑
z∈Λε

∑
z′∈Λε

ε4 (P γ
t−r �ε Kγ

)2(z − x)
(
P γ
t−r′ �ε Kγ

)2(z′ − x)

× EĀ(σ̃(α−1r, ε−1z)) Ā(σ̃(α−1r′, ε−1z′)) drdr′.

Applying Lemma 3.2, this turns into

E

( s∫ ∑
z∈Λ

ε2 (P γ
t−r �ε Kγ

)2(z − x)Ā(σ̃(α−1r, ε−1z)) dr
)2
0 ε
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≤ Cε2
s∫

0

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
(
P γ
t−r′ �ε Kγ

)2(z − x) e−
|r−r′|

α drdr′

≤ Cε2 sup
r′∈[0,s]

‖P γ
t−r′ �ε Kγ‖2

L∞(Λε)

×
s∫

0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)
( s∫

0

e−
|r−r′|

α dr′
)
dr

≤ Cε2 (γ−b log(γ−1)
)2

α

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)dr

≤ Cε2γ−2b(log(γ−1))3α,

where in the third inequality we have used (A.9) and b = 2 in the first regime and b = 4
in the second regime. In both the first regime (2.13) and the second regime (2.14) this 
expression is bounded by ≤ Cγ2(log(γ−1))3. As before we can upgrade this stochastic L2

to a stochastic Lp bound by using a deterministic bound

s∫
0

∑
z∈Λε

ε2 (P γ
t−r �ε Kγ

)2(z − x)Ā(σ̃(α−1r, ε−1z)) dr ≤ C log γ−1.

Therefore in both scaling regimes (3.20) follows.
To obtain the second bound (Eq. (3.21)) we sum (3.20) over x ∈ Λε to obtain

E‖Ẽt(s, ·)‖pLp(Λε) =
∑
x∈Λε

ε2
E|Ẽt(s, x)|p ≤ Cγ1−3ν log(γ−1)p.

To replace the Lp norm over Λε by the Lp norm over the continuous torus and Ẽ by its 
extension write using Jensen’s inequality∫

T2

|ExtẼt(s, z)|pdz

=
∫
T2

∣∣∣ ∑
x∈Λε

ε2Ẽt(s, x)Ker(x− z)
∣∣∣pdz (3.25)

≤
∫
T2

( ∑
x∈Λε

ε2|Ẽt(s, x)|p|Ker(x− z)|
)( ∑

x∈Λε

ε2|Ker(x− z)|
)p−1

dz

where (as discussed in [33, Lemma A.6]) the extension kernel is given by

Ker(x− z) =
2∏ sin

(
π
2 (2N + 1)(xj − zj)

)
sin

(
π (xj − zj)

)

j=1 2
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so that we have that 
∑

x∈Λε
ε2|Ker(x − z)| ≤ C log γ−1 uniformly in z. Plugging this 

estimate into (3.25) yields∫
T2

|ExtẼt(s, z)|pdz

≤ C(log γ−1)p−1
( ∑

x∈Λε

ε2|Ẽt(s, x)|p
∫
T2

|Ker(x− z)| dz
)

≤ C(log γ−1)p‖Ẽt(s, ·)‖pLp(Λε)

so (3.21) follows as well. �
4. Wick powers and proof of the main theorem

The aim of this section is to prove Theorem 2.5. Since we will apply a discrete version 
of Da Prato–Debussche argument ([13]) as in [33], an important step is to prove the 
convergence of the approximate Wick powers Z :n:

γ to the Wick powers. Fortunately, the 
work [33] treated the Wick powers with general n, though only n ≤ 3 was needed therein; 
here we only need some minor modifications to their construction of Wick powers.

We start by recalling the definitions of the approximate Wick powers Z :n:
γ . Recall 

that Zγ is defined in (3.2). It will be convenient to work with the following family of 
approximations to Zγ(t, x). For s ≤ t, we introduce

Rγ,t(s, x) def=
s∫

r=0

P γ
t−r dMγ(r, x) ,

and extend Rγ,t(s, ·) and Zγ(t, ·) to functions on all of T2 by trigonometric polynomials 
of degree ≤ N as (2.35). Note that for any t and any x ∈ T

2, the process Rγ,t(·, x) is a 
martingale and Rγ,t(t, ·) = Zγ(t, ·).

The iterated integrals are then defined recursively as follows. For a fixed t ≥ 0 and 
x ∈ T

2, we set R:1:
γ,t(s, x) = Rγ,t(s, x). For n ≥ 2, t ≥ 0 and x ∈ Λε, we set

R:n:
γ,t(s, x) = n

s∫
r=0

R:n−1:
γ,t (r−, x) dRγ,t(r, x) . (4.1)

We use the notation R:n−1:
γ,t (r−, x) to denote the left limit of R:n−1:

γ,t (·, x) at r. This 
definition ensures that (R:n:

γ,t(s, x))0≤s≤t is a martingale. The extension of R:n:
γ,t(s, ·) to 

the entire T2 is also defined recursively, through its Fourier series

R̂:n:
γ,t(s, ω) def= n

s∫ 1
4

∑
2

R̂:n−1:
γ,t (r−, ω − ω̃) dR̂γ,t(r, ω̃) , (4.2)
r=0 ω̃∈Z
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and set R:n:
γ,t(s, x) def= 1

4
∑

ω∈Z2 R̂:n:
γ,t(s, ω)eiπω·x. This definition coincides with (4.1) on Λε, 

and for every n ≥ 2 the function R:n:
γ,t(s, ·) : T2 → R is a trigonometric polynomial of 

degree ≤ nN . For any n ≥ 2 and for t ≥ 0, x ∈ T
2 we define

Z :n:
γ (t, x) def= R:n:

γ,t(t, x) . (4.3)

Finally let R:n:
γ,t,m and Z :n:

γ,m be iterated stochastic integrals defined just as R:n:
γ,t and 

Z :n:
γ but with Mγ replaced by Mγ,m. Recall that m is the parameter fixed in (3.5).
By the definition of Rγ,t(s, x) and the quadratic variation of Mγ , one has

〈Rγ,t(·, x)〉s = c2γ,2

s∫
0

∑
z∈Λε

ε2(P γ
t−r �ε Kγ

)2(x− z)

×
∑

σ̄∈{±1,0}
(σ̄ − σ(r, ε−1z))2Cγ,m

(
r, z, σ̄) dr .

(4.4)

There exists a constant γ0 > 0 (arising when we apply the kernel bounds in Ap-
pendix A) such that the following results hold.

Proposition 4.1. For every n ∈ N, p ≥ 1, ν > 0, T > 0, 0 ≤ λ ≤ 1
2 and 0 < κ ≤ 1, 

there exists a constant C = C(n, p, ν, T, λ, κ) such that for every 0 ≤ s ≤ t ≤ T and 
0 < γ < γ0, one has

E sup
0≤r≤t

‖R:n:
γ,t(r, ·)‖pC−ν−2λ ≤ C tλ p + Cγp(1−κ) , (4.5)

E sup
0≤r≤t

‖R:n:
γ,t(r, ·) −R:n:

γ,s(r ∧ s, ·)‖pC−ν−2λ ≤ C |t− s|λ p + Cγp(1−κ) , (4.6)

E sup
0≤r≤t

‖R:n:
γ,t(r, ·) −R:n:

γ,t(r ∧ s, ·)‖pC−ν−2λ ≤ C |t− s|λ p + Cγp(1−κ) . (4.7)

The same bounds hold for R:n:
γ,t,m.

Proposition 4.2. For x ∈ Λε, let

Qγ,t(s, x) = [Rγ,t(·, x)]s − 〈Rγ,t(·, x)〉s . (4.8)

For any t ≥ 0, κ > 0 and 1 ≤ p < +∞, there exists C = C(t, κ, p) such that for 
0 < γ < γ0,

E sup
x∈Λε

sup
0≤s≤t

|Qγ,t(s, x)|p ≤ Cγp(1−κ).

The same bound holds for Qγ,t,m, that is, the same process as Qγ,t but defined via Mγ,m

instead of Mγ .
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One important result is that these iterated integrals are almost Hermite polynomials 
with renormalization constant chosen as [Rγ,t(·, x)]s.

Proposition 4.3. Define

E:n:
γ,t(s, x) def= Hn(Rγ,t(s, x), [Rγ,t(·, x)]s) −R:n:

γ,t(s, x) , (4.9)

for any x ∈ T
2. Here, we view [Rγ,t(·, x)]s as defined on all of T2, by extending it as 

a trigonometric polynomial of degree ≤ N . Then for any n ∈ N, κ > 0, t > 0 and 
1 ≤ p < ∞, there exists C = C(n, p, t, κ) > 0 such that for every sufficiently small 
γ > 0,

E sup
x∈T2

sup
0≤s≤t

|E:n:
γ,t(s, x)|p ≤ Cγp(1−κ).

The same bound holds for E:n:
γ,t,m – the same process as E:n:

γ,t but defined via Mγ,m instead 
of Mγ .

Proof of Propositions 4.1–4.3. For the case of the Kac Ising model, these results are 
Prop. 4.2, Lemma 5.1 and Prop. 5.3 in [33]. Several modifications of these proofs are 
necessary for the case of our Blume–Capel model.

The first necessary modification is due to the difference in the scalings (2.13)
and (2.14). This difference comes into play via the estimates on the kernels Kγ and 
P γ
t used throughout the proofs. We list all these kernel estimates in Appendix A. These 

estimates with modifications in the second regime lead to the desired bounds mutatis 
mutandis.

Another necessary modification of the proof for the case of our Blume–Capel model is 
due to the fact that the martingale we use to build Z :n:

γ is different. For Proposition 4.1, 
the only place where the martingale enters into play is [33, Lemma 4.1], which is a 
consequence of Burkholder–Davis–Gundy inequality. The proof of that lemma only used 
two facts that depend on the martingale. First, a jump of the spin at ε−1z causes a jump 
of size 2δ−1ε2Kγ(y − z) for Mγ(y), and in our case this becomes an upper bound of the 
jump size since a spin could jump by 1 or 2. Second, in the quadratic variation of Mγ

which was given by

d

dt
〈Mγ(·, x),Mγ(·, y)〉t = 4c2γ,2

∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)Cγ

(
t, z

)
,

and Cγ is a rate function therein which is bounded between 0 and 1. For our case, in the 
quadratic variation given in (3.8), one also has

0 ≤
∑

(σ̄ − σ(α−1s, ε−1z))2Cγ

(
s, z, σ̄) ≤ 5 . (4.10)
σ̄∈{±1,0}
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Since the desired bound in [33, Lemma 4.1] allows a proportionality constant, nothing 
else needs to be proved.

For Proposition 4.2, by Burkholder–Davis–Gundy inequality, one needs to bound the 
quadratic variation 〈Qγ,t(·, x)〉t, which can be again explicitly expressed as in the case 
for Rγ,t(·, x) in (4.4); using the bound (4.10) one eventually obtains

〈Qγ,t(·, x)〉t ≤
Cε6

αδ4

t∫
0

∑
z∈Λε

ε2(P γ
t−s �ε Kγ)4(z) ds .

Using the bound ‖P γ
t−s �ε Kγ‖L∞(Λε) ≤ C γ2

ε2 and (ε2γ4/αδ4) ≤ 2γ2 which turn out to 
hold in both regimes, the proof of [33, Lemma 5.1] again goes through.

Proposition 4.3 is then a consequence of the first two propositions by the proof in [33], 
and therefore nothing needs to be re-proved. �

One then has the following tightness and convergence results.

Proposition 4.4. For every m ∈ N and ν > 0, the family {Z :n:
γ,m, γ ∈ (0, 13 )} is tight on 

D(R+, C−ν). Any weak limit is supported on C(R+, C−ν). Furthermore, for any p ≥ 1
and T > 0, we have

sup
γ∈(0, 13 )

E sup
0≤t≤T

∥∥Z :n:
γ,m(t, ·)

∥∥p
C−ν < ∞ . (4.11)

Proof. Once Proposition 4.1 (in particular the bounds (4.5) and (4.6)) is shown, this 
tightness result follows in exactly the same way as [33, Proposition 5.4]. �

Recall that we have defined Z :m: below (2.25).

Proposition 4.5. For every m ∈ N and n ∈ N, the processes (Z :1:
γ,m, . . . , Z

:n:
γ,m) defined above 

converge (jointly) in law to (Z :1:, . . . , Z :n:) with respect to the topology of D(R+, C−ν)n.

Proof. Since by Proposition 4.4 for every n, the family of vectors (Z :1:
γ,m, . . . , Z

:n:
γ,m), 

γ ∈ (0, 13 ) is tight with respect to the topology of D(R+, C−ν)n, we only need to show 
convergence of the finite dimensional distributions. We follow the diagonal argument as 
in [33, Theorem 6.2]. Define

Rt(s, x) def=
√

2/βc

s∫
r=0

Pt−r dW (r, x) ,

where βc is a critical value of β as above. The process s �→ Rt(s, x) for s < t is a 
continuous martingale. For n > 1 define
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R:n:
t (s, x) def= n

s∫
r=0

R:n−1:
t (r, x) dRt(r, x) = Hn (Rt(s, x), 〈Rt(·, x)〉s) . (4.12)

For s < t R:n:
t (s, x) is a regular approximation of the limiting objects Z :n:(t, ·); indeed, 

as discussed in [33, (3.10)], for all ν > 0, 0 ≤ λ ≤ 1, p ≥ 2 and T > 0, there exists 
C = C(ν, λ, p, T ) such that

E‖Z :n:(t, ·) −R:n:
t (s, ·)‖pC−ν−λ ≤ C|t− s|λp

2 (4.13)

for all 0 ≤ s ≤ t ≤ T . Write

Zγ = (Z :1:
γ,m, . . . , Z

:n:
γ,m) , Z = (Z :1:, . . . , Z :n:) ,

Rγ,t = (R:1:
γ,t,m, . . . , R

:n:
γ,t,m) , Rt = (R:1:

t , . . . , R:n:
t ) .

Fix K ∈ N and t1 < t2 < . . . < tK . Let F : (C−ν)n×K → R be bounded and uniformly 
continuous. For s1 < t1, . . . , sK < tK ,∣∣EF

(
Zγ(t1), . . . ,Zγ(tK)

)
− EF

(
Z(t1), . . . ,Z(tK)

)∣∣
≤ E

∣∣F (
Zγ(t1), . . . ,Zγ(tK)

)
− F

(
Rγ,t1(s1), . . . ,Rγ,tK (sK)

)∣∣
+
∣∣EF

(
Rγ,t1(s1), . . . ,Rγ,tK (sK)

)
− EF

(
Rt1(s1), . . . ,RtK (sK)

)∣∣
+ E

∣∣F (
Rt1(s1), . . . ,RtK (sK)

)
− F

(
Z(t1), . . . ,Z(tK)

)∣∣ .
(4.14)

The estimates (4.13) and (4.7) yield moment bounds of arbitrary order of ‖Zγ(ti) −
Rγ,ti(si)

∥∥
(C−ν)n uniformly in γ. We can thus make the first and the third terms on the 

right-hand side of (4.14) small uniformly in γ by choosing |ti − si| small enough.
Some extra care has to be taken in the case of our model for the second term on the 

right-hand side of (4.14). By Proposition 4.3, it suffices to show that

H�(Rγ,ti,m(si, x), [Rγ,ti,m(·, x)]si) � = 1, . . . , n, i = 1, . . . ,K

converges in law to (Rt1(s1), . . . , RtK (sK)) in (C−ν)K . By (4.12) and Proposition 4.2, it 
suffices to show the two convergences in law

(
Rγ,t1,m(s1), . . . , Rγ,tK ,m(sK)

)
−−−→
γ→0

(
Rt1(s1), . . . , RtK (sK)

)
,(

〈Rγ,t1,m(·, ·)〉s1 , . . . , 〈Rγ,tK ,m(·, ·)〉sK
)
−−−→
γ→0

(
〈Rt1(·, ·)〉s1 , . . . , 〈RtK (·, ·)〉sK

)
,

for a suitable topology, e.g. (L∞)K in the first convergence and (Lp)K for p large 
enough for the second convergence. For the first convergence, note that Rγ,ti,m(si) =
P γ
ti−siZγ,m(si). [33, Corollary 8.7] then gives an error control if P γ

ti−si is replaced by 
the continuous heat kernel Pti−si . So the first convergence follows from Theorem 3.3
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(convergence of Zγ(t)), continuity of the mapping Pti−si and the continuous mapping 
theorem.

Regarding the second convergence, recall the explicit expression (4.4) for the quadratic 
variation 〈Rγ,ti,m(·, x)〉si . The constant c2γ,2 is deterministically close to 1 by (2.15), and 
therefore Proposition 3.4 shows that the quadratic variation 〈Rγ,ti,m(·, x)〉si is given by

2
βc

si∫
0

∑
z∈Λε

ε2 (P γ
ti−r �ε Kγ

)2(z − x) dr

up to an error Ẽt(s) which satisfies E‖Ẽt(s)‖pLp(T2) → 0. This expression in turn converges 
to the limiting object 〈Rti(·, ·)〉si by the calculation as in [33, (6.14)]. �

We now summarize the results obtained above and prove our main result, Theorem 2.5.
To show the convergence of discrete evolution (3.1) to the solution of

X(t, ·) = PtX
0 +

t∫
0

Pt−s �
(
a1X(s, ·) − ac(4ac − 1)β3

c

3(2ac + 1)2 X :3:(s, ·)
)
ds

+ Z(t, ·) on T
2

(4.15)

in the first regime and

X(t, ·) =PtX
0 +

t∫
0

Pt−s �
(
− 20

9 X :5:(s, ·) + a3X
:3:(s, ·)

+a1X(s, ·)
)
ds + Z(t, ·) on T

2

(4.16)

in the second regime, we need to control the following error terms.
(1) The error Eγ in (3.1) arising from the Taylor expansion in Section 2.
(2) In the second regime the discrepancies caused by Cβ,θ �= −20

9 , the coefficient 
in front of X3

γ − 3cγXγ in (2.18) is not exactly a3, and the coefficient in front of Xγ

in (2.18) is not exactly a1; similarly in the first regime there are also such discrepancies 
of coefficients comparing with (2.16).

(3) The operator Ext which extends a function on Λε to a function on T2 defined 
in (2.35) does not commute with powers. As in [33] this is dealt with by decomposing 
the field Xγ into a “high” and a “low” frequency part

X low
γ

def=
∑

2k< N
20

δkXγ , Xhigh
γ

def=
∑

2k≥ N
20

δkXγ , (4.17)

where we refer to [33, (A.7)] for the precise definition of the operator δk (we recall that 
N ≈ γ−2 in the first regime and N ≈ γ−3 in the second regime). For X low

γ the operator 
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Ext does commute with the powers appearing below and we need to control the error 
caused by the high frequencies.

(4) Recall that in the discussion on the limiting SPDE, the actual renormalization 
constant used to define the Wick powers Z :n:

ε in (2.25) is a time-dependent constant cε(t), 
and the time-dependent coefficients ak(t) is introduced in place of the time-independent 
ones ak in order to take care of the difference between cε(t) and cε, i.e. to guarantee 
that (2.27) holds. For the discrete model, we have cγ �= cε, and we will introduce the 
approximate time-dependent renormalization constant

cγ(s, x) def= [Rγ,s(·, x)]s (4.18)

(and extend this to all x ∈ T
2 as a trigonometric polynomial). So we need to control the 

error caused by the fact that Eq. (2.27) does not exactly hold anymore if the subscript ε
in (2.27) is replaced by γ.

(5) The error from P γ
t X

0
γ �= PtX

0.
(6) The processes Z :n:

γ,m are defined via iterated integrals, which are not exactly the 
same as Hermite polynomials with constant cγ(s, x) (see Proposition 4.3).

(7) Δ �= Δ̃γ .
In the following Lemma we control the errors from (1)–(4). We will frequently use the 

fact that an L∞(Λε) bound on Xγ can be extended to an L∞(T2) bound by loosing an 
arbitrarily small power of γ ([33, Lemma B.6]), and the fact that the L∞ norm can be 
bounded by the C−ν norm of Xγ multiplied by a factor γ−bν ([33, Lemma B.3]) if X̂γ

has vanishing frequency larger than γ−b (b = 2, 3 depending on the regime).
Before stating the lemma, we recall that the constant cε is defined in (2.24), the 

constant cε(t) is defined in (2.26), the constant cγ is defined in (2.36), the constant cγ(t, ·)
is defined in (4.18), the constant a1 (resp. a1 and a3) are introduced in (2.17) (resp. (2.21)) 
in the first (resp. second) regime. The constants a(ε)

k (t) are defined in (2.27), and here 
we will use the ε → 0 limits of them: in the second regime, by (2.28) and (2.29) with a5
substituted by − 9

20 we define a1(s), a3(s) as ε → 0 limits of a(ε)
1 (s), a(ε)

3 (s), namely

a3(s) − a3 = −9
2 c̄(s) , a1(s) − a1 = 3a3c̄(s) −

27
4 c̄(s)2 , (4.19)

where ̄c(s) def= limε→0(cε(s) −cε) (see (2.31) for existence of this limit). In the first regime 

we simply define a1(t) = 3a3c̄(s) + a1 = −ac(4ac−1)β3
c

(2ac+1)2 c̄(s) + a1.

Lemma 4.6. For every t ≥ 0, we have on T2 (we drop the space variables for readability)

Xγ(t) = P γ
t X

0
γ +

t∫
0

P γ
t−sKγ �

(
− ac(4ac − 1)β3

c

3(2ac + 1)2
(
X3

γ(s) − 3cγ(s)Xγ(s)
)

+ a1(s)Xγ(s) + Err(1)(s)
)
ds + Zγ(t)

(4.20)
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in the first scaling regime and

Xγ(t) = P γ
t X

0
γ +

t∫
0

P γ
t−sKγ �

(
− 9

20

(
X5

γ(s) − 10cγ(s)X3
γ(s) + 15cγ(s)2Xγ(s)

)
+a3(s)

(
X3

γ(s) − 3cγ(s)Xγ(s)
)

+ a1(s)Xγ(s) + Err(1)(s)
)
ds + Zγ(t)

(4.21)

in the second scaling regime, such that the following holds. For every T > 0 and κ > 0, 
there exists C = C(T, κ, ν) such that for all 0 ≤ s ≤ T , x ∈ T

2 and sufficiently small 
γ > 0

|Err(1)(s, x)| ≤ C γ−30ν−κ
(
‖Xγ(s, ·)‖7

C−ν + 1
)

×
(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2) + ‖Qγ,s(s, ·)‖L∞(Λε) + |Ẽ(s, x)|
)
,

(4.22)

where Ẽ is defined in (3.19). Here Err(1) is different in the two regimes but the bound 
holds for both regimes.

Remark 4.7. Recall the stopping time τγ,m defined in (3.5). Denote by Xγ,m the solution 
to (4.21) with Zγ replaced by Zγ,m and Err(1) replaced by Err(1)m which is equal to Err(1)

before the time τγ,m and is set to 0 after τγ,m. Taking the Lp(T2) norm on both sides 
of (4.22), one has the bound

‖Err(1)m (s, ·)‖Lp(T2) ≤Cγ−(30ν+κ)
(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2)

+ ‖Qγ,s(s, ·)‖L∞(Λε) + ‖Ẽ(s, ·)‖Lp(T2)

)
,

(4.23)

where C depends on T, m, p, κ, ν.

Proof of Lemma 4.6. We first consider the second regime. With the choice of parameters 
as in (2.21), or equivalently (2.19) and (2.20), the discrete evolution (3.1) can be written 
as

Xγ(t, ·) =P γ
t X

0
γ +

t∫
0

P γ
t−sKγ �

(
Cβ,θX

5
γ(s, ·) +

(9
2 cγ + a3

)
X3

γ(s, ·)

+
(
− 3cγa3 −

27
4 c2γ + a1

)
Xγ(s, ·) + Eγ(s, ·)

)
ds + Zγ(s, ·) on Λε.

We apply Ext on both sides, and compare it with the continuous equation (4.21). We 
then have
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Err(1) = err(1) + err(2) + err(3) , (4.24)

where the error terms are given by

err(1)(s) = Eγ(s) +
(
Cβ,θ + 9

20

)
Ext(X5

γ(s)) ,

err(2)(s) = − 9
20

(
Ext

(
X5

γ(s)
)
− (Ext Xγ(s))5

)
+

(9
2 cγ + a3

)(
Ext

(
X3

γ(s)
)
− (Ext Xγ(s))3

)
,

err(3)(s) =
(9

2 cγ + a3 −
9
2 cγ(s) − a3(s)

)
X3

γ(s)

−
(27

4 c2γ + 3a3cγ − a1 −
27
4 cγ(s)2 − 3a3(s)cγ(s) + a1(s)

)
Xγ(s) ,

where in the expression of err(3) and also below we simply denote Xγ = ExtXγ . The 
analysis for err(1) and err(2) follow essentially the same way as in [33, Proof of Lemma 7.1], 
so we will only write down the bounds we eventually obtain for these errors.

For the first term err(1), using the assumption (2.21) on (β, θ), and the definition 
of Cβ,θ, one has |Cβ,θ + 9

20 | ≤ Cγ2cγ . Then by the definition of Eγ in (2.12), and that 
cγ has only logarithmic divergence, we can finally get that for any arbitrary small κ > 0∥∥err(1)(s, ·)

∥∥
L∞(T2) ≤ C(κ, ν)γ2−κ−30ν(‖Xγ(s, ·)‖7

C−ν + 1
)
.

For the second term err(2), by decomposing Xγ into low and high modes as in (4.17), 
we can obtain the bound

‖err(2)(s, ·)‖L∞(T2) ≤ C(κ)γ−κ−15ν‖Xhigh
γ (s, ·)‖L∞(T2)‖Xγ(s, ·)‖4

C−ν . (4.25)

In order to control the term err(3), we first consider the quantity

cγ − cγ(s, x) + lim
ε→0

(cε(s) − cε) , (4.26)

which is called cγ − cγ(s, x) + A − A(s) in [33, Proof of Lemma 7.1] (see the definition 
of Aε(s) below [33, (3.11)]); note that the ε → 0 limit is well-defined as discussed 
around (2.31) in the proof of Lemma 2.3. By the definition of cγ in (2.36), the definition 
of cγ(s, x) in (4.18), and (2.31), we have that for x ∈ T

2, (4.26) is equal to

∑
ω∈{−N,...,N}2

ω �=0

|K̂γ(ω)|2

4βcγ−b(1 − K̂γ(ω))
− [Rγ,s(·, x)]s + s

2βc
−

∑
ω∈Z

2

ω �=0

exp(−2sπ2|ω|2)
4βcπ2|ω|2 .

Here b = 4 and βc = 3 since we are considering the second regime. Recall from (4.8) that 
for x ∈ Λε, [Rγ,r(·, x)]r = 〈Rγ,r(·, x)〉r +Qγ,r(s, x). According to (4.4) we get for x ∈ Λε
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〈Rγ,s(·, x)〉s

= c2γ,2

s∫
0

∑
z∈Λε

ε2(P γ
s−r �ε Kγ

)2(x− z)
∑

σ̄∈{±1,0}
(σ̄ − σ(α−1r, ε−1z))2Cγ,m

(
r, z, σ̄) dr

= 2
βc

s∫
0

∑
z∈Λε

ε2(P γ
s−r �ε Kγ

)2(x− z) dr + err(4)(s, x) + Ẽs(s, x)

= 1
2βc

s∫
0

∑
ω∈{−N,...,N}2

exp
(
− 2r

γb

(
1 − K̂γ(ω)

)) ∣∣K̂γ(ω)
∣∣2 dr + err(4)(s, x) + Ẽs(s, x)

= s

2βc
+

∑
ω∈{−N,...,N}2

ω �=0

∣∣K̂γ(ω)
∣∣2

4βcγ−b
(
1 − K̂γ(ω)

)(1 − e
− 2s

γb

(
1−K̂γ(ω)

))
+ err(4)(s, x) + Ẽs(s, x)

where err(4) is the error that arises by replacing c2γ,2 in the second line by 1, and Ẽ

is defined in (3.19). By |c2γ,2 − 1| ≤ γ2 and 
∫ s

0
∑

z∈Λε
ε2 (P γ

t−r �ε Kγ

)2(z − x) dr ≤
C log γ−1 ≤ C(κ)γ−κ one has |err(4)(s, x)| ≤ Cγ2−κ. Proposition 3.4 gives the stochastic 
bound on Ẽs(s, x).

Therefore up to the terms Qγ,s(s, x), err(4)(s, x) and Ẽs(s, x), the quantity (4.26) is 
equal to

∑
ω∈{−N,...,N}2

ω �=0

∣∣K̂γ(ω)
∣∣2

4βcγ−b
(
1 − K̂γ(ω)

)e− 2s
γb

(
1−K̂γ(ω)

)
−

∑
ω∈Z

2

ω �=0

exp(−2sπ2|ω|2)
4βcπ2|ω|2 . (4.27)

We bound the sums over |ω| < γ−2 and |ω| ≥ γ−2 separately. In the case |ω| < γ−2 we 
use the fact that according to Lemma A.1 γ−4(1 − K̂γ(ω)) approximates π2|ω|2 up to 
an error ≤ Cγ2|ω|3 (which implies in particular that K̂γ(ω) approximates 1 up to an 
error ≤ Cγ4|ω|2). For |ω| ≥ γ−2 we treat the two sums separately and use Lemma A.2
which yields in particular the upper bound |K̂γ(ω)| ≤ C|γ2ω|−2 as well as the lower 
bound 1 − Kγ(ω) ≥ 1. After some calculations (the details of which are as in [33, 
Equation (7.7)]) we conclude that (4.27) is bounded by Cγ

2
3 s−

1
3 .

Now to really bound the coefficients appearing in err(3)(s, x), note that the coefficient 
of X3

γ(s) in err(3)(s, x) can be expressed as

9
2 cγ + a3 −

9
2 cγ(s) − a3(s) = 9

2(cγ − cγ(s) + c̄(s))

which is exactly the quantity (4.26) we have bounded times 92 . Furthermore, the absolute 
value of the coefficient of Xγ(s) in err(3)(s, x) is∣∣∣27

c2γ + 3a3cγ − a1 −
27

cγ(s)2 − 3a3(s)cγ(s) + a1(s)
∣∣∣
4 4
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=
∣∣∣27

4

(
c2γ − cγ(s)2

)
+ 3

(
a3cγ + 9

2 c̄(s)cγ(s) − a3cγ(s)
)

+ 3a3c̄(s) −
27
4 c̄(s)2

∣∣∣
= 27

4

∣∣∣cγ(s) + cγ − c̄(s) + 4
9a3

∣∣∣ · ∣∣∣cγ − cγ(s) + c̄(s)
∣∣∣

≤ C(κ)γ−κ
∣∣cγ − cγ(s) + c̄(s)

∣∣
where in the second line we applied (4.19), the third line is obtained by elementary 
factorization, and in the last line we have used that each term in cγ(s) + cγ − c̄(s) + 4

9a3
is bounded by ≤ C log γ−1 uniformly in s. So the bound of this coefficient again boils 
down to the bound on (4.26).

The Ẽ dependent terms in err(3) are

−9
2 Ẽs(s, x)X3

γ(s, x) + 27
4

(
cγ(s) + cγ − c̄(s) + 4

9a3

)
Ẽs(s, x)Xγ(s, x) (4.28)

whose absolute value is bounded by

C(ν, κ)γ−10ν−κ
(
‖Xγ(s, ·)‖3

C−ν + 1
)
|Ẽs(s, x)| .

Summarizing all the above bounds we obtain (4.22).
The proof for the first regime is analogous and is thus omitted; in particular we can 

obtain bounds with slightly larger (but still negative) powers of γ and lower powers of 
‖Xγ(s, ·)‖C−ν than that in (4.22) but the latter is sufficient for our purpose. �

The error (5) is bounded by [33, Lemma 7.3] as

sup
0≤t≤T

‖P γ
t X

0
γ − PtX

0‖C−ν ≤ C‖X0 −X0
γ‖C−ν + C̄γ

κ
2 → 0 (4.29)

for every T > 0, where C̄ depends on ν, κ, T and ‖X0
γ‖C−ν+κ .

In the sequel, we let n̄ = 3 in the first regime and n̄ = 5 in the second regime.
At this stage, note that if we define

Xγ,m(t, ·) def= PtX
0 + Zγ,m(t, ·) + ST (Zγ,m, Z

:2:
γ,m, · · · , Z :n̄:

γ,m)(t, ·) , (4.30)

where ST is the solution map defined in Theorem 2.4, then by the convergence 
in law of (Zγ,m, Z :2:

γ,m, · · · , Z :n̄:
γ,m) with respect to the topology of L∞([0, T ], C−ν)n̄ to 

(Z, Z :2:, · · · , Z :n̄:), and by the continuity of the map ST as stated in Theorem 2.4, one 
has that Xγ,m converges in law to X.

Therefore, it remains to compare Xγ,m and Xγ,m. The idea is to follow a discrete 
version of Da Prato–Debussche argument [13], namely, setting

vγ,m(t, x) def= Xγ,m(t, x) − Zγ,m(t, x) − P γ
t X

0
γ(t, x) x ∈ T

2 ,

vγ,m(t, x) def= Xγ,m(t, x) − Zγ,m(t, x) − PtX
0(t, x) x ∈ T

2 ,
(4.31)
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and we compare vγ,m and vγ,m. Define

Z̃ :k:
γ,m

def=
k∑

�=0

(P γ
t X

0
γ)k−�Z :�:

γ,m , Z
:k:
γ,m

def=
k∑

�=0

(PtX
0)k−�Z :�:

γ,m . (4.32)

Note that if the above Wick powers were defined via Hermite polynomials rather than 
iterated integrals then the above identities would follow from basic properties of Hermite 
polynomials Hk(x + y) =

∑k
�=0 x

�Hk−�(y).
Now it is straightforward to check that vγ,m satisfies

vγ,m(t) = −
t∫

0

Pt−sΨγ,m(s) ds , (4.33)

where we have set

Ψγ,m(s) def= ac(4ac − 1)β3
c

3(2ac + 1)2
3∑

k=0

(
3
k

)
Z

:k:
γ,m(s) v3−k

γ,m (s) − a1(s)
(
vγ,m(s) + Zγ,m(s)

)
(4.34)

in the first regime and

Ψγ,m(s) def= 9
20

5∑
k=0

(
5
k

)
Z

:k:
γ,m(s) v5−k

γ,m (s) − a3(s)
3∑

k=0

(
3
k

)
Z

:k:
γ,m(s) v3−k

γ,m (s)

− a1(s)
(
vγ,m(s) + Zγ,m(s)

) (4.35)

in the second regime. On the other hand, by Lemma 4.6 and (4.31), vγ,m satisfies (on T
2)

vγ,m(t) = −
t∫

0

P γ
t−sKγ �

(
Ψγ,m(s) + Err(1)m + Err(2)m (s, ·)

)
ds , (4.36)

where Ψγ,m(s) is defined in the same way as (4.34) or (4.35) with Z
:k:
γ,m, Zγ,m re-

placed by Z̃ :k:
γ,m, Z̃γ,m and vγ,m replaced by vγ,m. Here the term Err(1)m was estimated 

in Lemma 4.6, and Err(2)m controls the error (6) i.e. the fact that the iterated integrals do 
not exactly coincide with Hermite Polynomials. In fact, the difference between Hermite 
polynomials and iterated integrals was already bounded in Lemma 4.3. Relying on these 
bounds and using (4.32) it is straightforward (see [33, Lemma 7.4] for the analogous 
details in the Kac–Ising case) to check that in both regimes one has for 0 ≤ s ≤ T

‖Err(2)m (s, ·)‖L∞(T2) ≤ C(T, ν, κ)
(
1 + s−3ν−κ + ‖vγ,m‖4

C
1
2

) 5∑
k=2

‖E:k:
γ,s,m(s, ·)‖L∞(T2)

(4.37)
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where E:n:
γ,t(s, x) was introduced in Proposition 4.3. The following estimate holds in both 

regimes.

Lemma 4.8. For every 0 ≤ t ≤ T and sufficiently small γ > 0, we have

‖vγ,m(t, ·) − vγ,m(t, ·)
∥∥
C

1
2
≤C1

t∫
0

(t− s)− 1
3 s−

1
6 ‖vγ,m(s, ·) − vγ,m(s, ·)‖C 1

2
ds

+ C1(γ
κ
2 + ‖X0

γ −X0‖C−ν ) + Err(3)(t) , (4.38)

where the constant C1 depends on ν, κ, T , ‖X0‖C−ν+κ , ‖X0
γ‖C−ν+κ as well as the random 

quantities sup0≤s≤T ‖vγ,m(s, ·)‖C 1
2
, sup0≤s≤T ‖vγ,m(s, ·)‖C 1

2
, and

sup
0≤s≤T

‖Z :k:
γ,m(s, ·)‖C−ν for k = 1, . . . , n̄ .

There exists some p ≥ 2, such that the error term Err(3) satisfies that for every T ≥ 0
and 0 < λ ≤ 1

2

E sup
0≤t≤T

∣∣Err(3)(t)
∣∣p ≤ C2γ

λ , (4.39)

for a constant C2 = C2(p, T, λ).

Proof. Using (4.33)–(4.36), we get that for any t ≥ 0 and γ > 0,

vγ,m(t, ·) − vγ,m(t, ·) = −
t∫

0

(
Pt−s − P γ

t−s � Kγ

)
Ψγ,m

(
s
)
ds

−
t∫

0

P γ
t−s � Kγ �

(
Ψγ,m(s) − Ψγ,m(s)

)
ds (4.40)

+
t∫

0

P γ
t−s � Kγ �

(
Err(1)m (s, ·) + Err(2)m (s, ·)

)
ds ,

where Ψγ,m(s) was defined in (4.35) and Ψγ,m(s) was defined below (4.36). The rest of the 
proof relies on the crucial multiplicative inequality [33, Lemma A.5] which is the linchpin 
around which the Da Prato–Debussche argument revolves (see [13, Proposition 2.1] for a 
similar result); it states that if β < 0 < ν with ν + β > 0, then there exists a constant C
depending only on ν and β such that

‖Z1 Z2‖Cβ ≤ C‖Z1‖Cν ‖Z2‖Cβ . (4.41)
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Proceeding as in the proof of [33, Lemma 7.5], which uses the above multiplicative 
inequality, together with the (discrete) heat kernel estimates in Sec. 8 of that reference, 
we can bound ‖Ψγ,m(s)‖C−ν in (4.40) in terms of ‖vγ,m(s, ·)‖C 1

2
and ‖Z:k:

γ,m(s, ·)‖C−ν where 

ν < 1
2 , and the latter quantity is by (4.32) further bounded in terms of ‖Z :k:

γ,m(s, ·)‖C−ν

and ‖X0‖C−ν . Therefore the C 1
2 norm of the first term on the RHS of (4.40) can be 

eventually bounded by Cγ
1
2 where C may depend on all the quantities stated in the 

lemma, and the small factor γ 1
2 arises from a bound on 

∥∥(Pt − P γ
t � Kγ

)∥∥
C−ν→C

1
2
.

The C 1
2 norm of the second term on the RHS of (4.40) can be bounded in the same 

way using the multiplicative inequality (4.41) and heat kernel estimates, by

C

t∫
0

(t− s)− 1
3 s−

1
6 ‖vγ,m(s) − vγ,m(s)‖C 1

2
ds + C‖X0

γ −X0‖C−ν + Cγ
κ
2 ,

where again C may depend on all the quantities stated in the lemma.
Now we consider the C 1

2 norm of the last term on the RHS of (4.40). We use [34, 
Rem. 3.6 and Prop. 3.7] which state that the space Lp is continuously embedded in B0

p,∞
and the latter is further continuously embedded in Bα

∞,∞ (i.e. the space Cα) provided that 
α + 2/p = 0. Thus applying (4.23), we have that for any κ̄ > 0 there exists C = C(p, ̄κ)
such that

∥∥∥ t∫
0

P γ
t−s � Kγ � Err(1)m (s, ·) ds

∥∥∥
C

1
2
≤ C

t∫
0

(t− s)−
1
4− 1

p−κ̄
∥∥Err(1)m (s, ·)

∥∥
Lp(T2) ds

≤ Cγ−(30ν+κ)
t∫

0

(t− s)−
1
4− 1

p−κ̄
(
γ

2
3 s−

1
3 + ‖Xhigh

γ (s, ·)‖L∞(T2)

+ ‖Qγ,s(s, ·)‖L∞(Λε) + ‖Ẽ(s, ·)‖Lp(T2)

)
ds

≤ Cγ
2
3−(30ν+κ)

t∫
0

(t− s)−
1
4− 1

p−κ̄s−
1
3 ds

+ Cγ−(30ν+κ)
( t∫

0

(t− s)−( 1
4+ 1

p+κ̄)p� ds
) 1

p�

×
(
‖Xhigh

γ ‖L∞(T2×[0,T ]) + ‖Qγ,s‖L∞(Λε×[0,T ]) + ‖Ẽ‖Lp(T2×[0,T ])

)

(4.42)

where p� is such that 1
p�

+ 1
p = 1. Choosing (and fixing from now on) p sufficiently large 

(depending only on κ̄) the above expression can be bounded by

C(T, p, κ̄)γ−(30ν+κ)
(
γ

2
3 + ‖Xhigh

γ ‖L∞(T2×[0,T ]) + ‖Qγ,s‖L∞(Λε×[0,T ]) + ‖Ẽ‖Lp(T2×[0,T ])

)
.
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We have Proposition 3.4 to bound Ẽ, Proposition 4.2 to bound Qγ . Regarding the 
term Xhigh

γ , which is equal to Zhigh
γ + vhigh

γ,m + (P γ
s X

0
γ)high, we can bound ‖ · ‖L∞(T2) of 

the last two quantities by Cγ1‖ · ‖C 1
2
. Finally for Zhigh

γ , by [33, Lemmas 4.6] with minor 
changes in the proof due to the scaling-regime-dependent definition (4.17) and kernel 
estimates in Appendix A, one has E‖Xhigh

γ (s, ·)‖pL∞ ≤ Cγp(1−κ). Therefore by choosing 
ν, κ small enough depending on the previously fixed p one has that

E sup
0≤t≤T

∥∥∥ t∫
0

P γ
t−s � Kγ � Err(1)m (s, ·) ds

∥∥∥p
C

1
2
≤ C(p, T )γ 1

2 .

Similarly for Err(2)m , invoking Proposition 4.3 to bound E:k:
γ,s,m, one has

E sup
0≤t≤T

∥∥∥ t∫
0

P γ
t−s � Kγ � Err(2)m (s, ·) ds

∥∥∥p
C

1
2
≤ C(p, T )γ

p
2 .

Therefore (4.39) is obtained. �
Now we prove our main theorem of the article.

Proof of Theorem 2.5. The proof is essentially the same as [33]; we give the proof for 
completeness. Our arguments hold for both scaling regimes. For r and m ≥ 1, we define 
the events AZ

r = AZ
r (γ, m), and AE = AE(γ, m) by

AZ
r

def=
{
‖Z :k:

γ,m‖C−ν ≤ r on [0, T ], k = 1, . . . , 5
}
,

AE def=
{

sup
0≤t≤T

∣∣Err(3)(t)
∣∣ ≤ γ

1
2p

}
,

where p is the constant in (4.39). For every m, r ≥ 1 and every bounded uniformly 
continuous mapping F : D([0, T ], C−ν) → R, we have∣∣E(F (Xγ,m)

)
− E

(
F (X)

)∣∣ ≤ ∣∣E(F (Xγ,m)
)
− E

(
F (X)

)∣∣
+ E

( ∣∣F (
Xγ,m

)
− F (Xγ,m)

∣∣1AZ
r ∩AE

)
+ ‖F‖L∞ P

(
AZ

r ∪ AE)
.

(4.43)

Recall that Xγ,m converges in law to X, see (4.30) and the discussion below it.
To bound the second term on RHS of (4.43), note that on the event AZ

r and by 
continuity of ST (Theorem 2.4), we have sup0≤t≤T ‖vγ,m(t)‖C 1

2
≤ C(T, r) for some finite 

constant C(T, r). Applying Gronwall’s inequality to the bound obtained in Lemma 4.8, 
one has that on the event AZ

r ∩ AE

‖vγ,m(t, ·) − vγ,m(t, ·)‖ 1 ≤ C
(
γ

κ
2 + ‖X0

γ −X0‖C−ν

)
(4.44)
C 2
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for all t ≥ 0 such that ‖vγ,m(t)‖C 1
2
≤ C(T, r) + 2. In particular for γ small enough, the 

right hand side of (4.44) is bounded by 1. By continuity of vγ and v̄γ (which follows by 
definition (4.31) – the jumps in the evolution of Xγ are all contained in the part Zγ,m), 
the bound (4.44) must actually hold for all t ∈ [0, T ].

This together with (4.29), (4.31) implies that the second term on RHS of (4.43)
vanishes.

Regarding the last term in (4.43), it follows from (4.39) i.e. the bound for Err(3)(t)
and Chebyshev’s inequality that limγ→0 P(AE) = 1. For the event AZ

r , we know that the 
limiting quantities sup0≤t≤T ‖Z :k:(t)‖C−ν are finite a.s.; on the other hand it is easy to 
argue that the stopping time that ‖Z :k:

γ,m(t)‖C−ν first exceeds the value r will converge to2

the stopping time that ‖Z :k:(t)‖C−ν first exceeds the same value r. Thus we can choose 
r large enough, so that lim infγ→0 P(AZ

r ) is arbitrarily close to 1.
This proves that Xγ,m converges in law to X as γ tends to 0, for any fixed value 

of m. We can remove m by the same reasoning as above. The stopping time τγ,m defined 
in (3.5) converges in law to3 the stopping time τm defined in the same way for X, for 
every m. Moreover, we know from Theorem 2.4 that sup0≤t≤T+1 ‖X(t)‖C−ν is a.s. finite. 
Hence by choosing m = m(T, ε) sufficiently large, lim infγ→0 P(Xγ,m = Xγ) can be made 
arbitrarily close to 1. Therefore we have proved that Xγ also converges in law to X.

This concludes the proof of Theorem 2.5. Note that item (2) of the theorem is clearly 
just the degenerate case of the item (1) that the cubic term equals zero and therefore 
one obtains a linear limit. �
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Appendix A. Kernel estimates

We need some estimates about Kγ and P γ . In the case of the first scaling regime (2.13), 
these estimates are proved in [33, Section 8]. For the second scaling regime (2.14), we 
list all these results, without proving them since the proofs follow exactly the same way 
except that one simply applies the new scaling relations.

We begin with the Fourier transforms of these kernels. For ω ∈ {−N, . . . , N}2,

K̂γ(ω) =
∑
x∈Λε

ε2 Kγ(x) e−iπω·x = cγ,1
∑

x∈γZ2
�

γ2 K(x) e−iπ(ε/γ)ω·x , (A.1)

2 Outside a countable set of r that ‖Z:k:
γ,m(t)‖C−ν attains r as a local maximum with positive probability.

3 Outside a countable set for the same reason.



H. Shen, H. Weber / Journal of Functional Analysis 275 (2018) 1321–1367 1365
where K is the smooth function introduced in (2.2), γZ2
�

def= γZ2 \ {0}, and note that 
ε/γ ≈ γ in the first regime and ε/γ ≈ γ2 in the second regime. Also,

P̂ γ
t (ω) = exp

(
tγ−b(K̂γ(ω) − 1)

)
, (A.2)

where b = 2 in the first regime and b = 4 in the second regime.
We now list some estimates which state that some properties of K̂(γω) (resp. K̂(γ2ω)) 

also hold for K̂γ in the first (resp. second) regime, uniformly in γ.

Lemma A.1. The following statement holds with b = 1 in the first regime and b = 2 in 
the second regime. There exists C > 0 such that for all 0 < γ < 1

3 and for |ω| ≤ γ−b we 
have for j = 1, 2

∣∣γ−2b(1 − K̂γ(ω)) − π2|ω|2
∣∣ ≤ Cγb|ω|3 , (A.3)∣∣− γ−2b∂jK̂γ(ω) − 2π2ωj

∣∣ ≤ Cγb|ω|2 , (A.4)∣∣− γ−2b∂2
j K̂γ(ω) − 2π2∣∣ ≤ Cγb|ω| . (A.5)

Lemma A.2. The following statements hold with b = 1 in the first regime and b = 2 in 
the second regime. There exists C > 0 such that for all 0 < γ < 1

3 , ω ∈ [−N − 1
2 , N + 1

2 ]2
and j = 1, 2,

(1) (Estimates most useful for |ω| ≤ γ−b)

|K̂γ(ω)| ≤ 1 , |∂jK̂γ(ω)| ≤ Cγb
(
|γbω| ∧ 1

)
, |∂2

j K̂γ(ω)| ≤ Cγ2b . (A.6)

(2) (Estimates most useful for |ω| ≥ γ−b)

|γbω|2
∣∣K̂γ(ω)

∣∣ ≤ C, |γbω|2
∣∣∂jK̂γ(ω)

∣∣ ≤ Cγb, |γbω|2
∣∣∂2

j K̂γ(ω)
∣∣ ≤ Cγ2b. (A.7)

Furthermore, there exist constants C1 > 0 and γ0 > 0 such that for all 0 < γ < γ0 and 
ω ∈ [−N − 1

2 , N + 1
2 ]2,

1 − K̂γ(ω) ≥ 1
C1

(
|γbω|2 ∧ 1

)
. (A.8)

Lemma A.3. Let γ0 > 0 be the constant introduced in Lemma A.2. For every T > 0, 
there exists a constant C = C(T ) such that for all 0 < γ < γ0, 0 ≤ t ≤ T and x ∈ T

2, 
we have

∣∣P γ
t � Kγ(x)

∣∣ ≤ C
(
t−1( log(γ−1)

)2 ∧ γ−2b log(γ−1)
)
, (A.9)

where b = 1 in the first regime and b = 2 in the second regime.
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