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STOCHASTIC TELEGRAPH EQUATION LIMIT

FOR THE STOCHASTIC SIX VERTEX MODEL

HAO SHEN AND LI-CHENG TSAI

(Communicated by Zhen-Qing Chen)

Abstract. In this article we study the stochastic six vertex model under the
scaling proposed by Borodin and Gorin, where the weights of corner-shape ver-
tices are tuned to zero, and prove their conjecture that the height fluctuation
converges in finite dimensional distributions to the solution of the stochastic
telegraph equation.

1. Introduction

The six vertex model is a model of tiling on subset Ω of Z
2, with each site

(x, y) ∈ Ω being tiled with the six types as depicted in Figure 1. The tiling obeys
the rule that each (solid) line connects to a neighboring line. See Figure 2 for a
generic realization for tiling. In this article we focus on the stochastic weights, with
b1, b2 ∈ (0, 1), as depicted Figure 1, and take the domain Ω := Z

2
≥0 to be the first

quadrant. Fix boundary conditions on the axes Z≥0 × {0} and {0} × Z≥0 that
indicate whether a given site along the axes has a line entering into Z

2
≥0. Starting

from the site (1, 1), we tile the given site with one of the six vertices with reference
to the incoming (bottom and left) line configurations and with probability given by
the weights. This tiling construction then progresses sequentially in the linear order
(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . to the entire quadrant. For a given tiling
one associates a height function, H(x, y). This is a Z≥0-valued function defined on
(x, y) ∈ Z

2
≥0, so that, once interpreting a given tiling as non-intersecting lines, the

level sets of H(x, y), x, y ∈ Z≥0 are exactly these non-intersecting lines, with the
convention H(0, 0) := 0. See Figure 2.
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I II III IV V V I

1 1 b1 b2 1− b1 1− b2

Figure 1. Six vertices with their weights.

Initiated in [GS92], the Stochastic Six Vertex (S6V) model has caught much
attention. Being a special case of the six vertex model, it describes phenomena in
equilibrium statistical mechanics. On the other hand, the S6V model also connects
to non-equilibrium growth phenomena within the Kardar–Parisi–Zhang (KPZ) uni-
versality class. In particular, [BCG16] proved that, starting with step initial con-
dition, the height fluctuation converges at one-point to GUE Tracy–Widom dis-
tribution. One-point convergence under different initial conditions (including the
stationary case) was obtained in [AB16,Agg16], and [BBCW17] studied a half-space
version of the S6V model and demonstrated that its one-point asymptotics match
the prediction from other models in the KPZ class. In a related but slightly dif-
ferent direction, there has been study where one tunes the weights simultaneously
with spacetime scaling in order to observe the Stochastic Partial Differential Equa-
tion (SPDE) limit. In [BO17] it is shown that under a certain tuning of the weights,
one-point distribution of the S6V model converges to that of the KPZ equation. For
a higher-spin generalization of the S6V model (see [CP16,BP16]), [CT17] obtained
a microscopic Hopf–Cole transform and showed convergence to the KPZ equation
at the process level. For S6V under the scaling b1/b2 → 1, b1, b2 → b ∈ (0, 1), the
convergence to the KPZ equation was obtained in [CGST18] via a Markov duality
method.

Figure 2. The height function.
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Recently, Borodin and Gorin [BG18] proposed a new scaling: with L → ∞ being
the scaling parameter,

b1 = exp
(
−β1

L

)
, b2 = exp

(
−β2

L

)
,(1.1)

and scale space being L: x, y �→ L−1x, L−1y, where β1, β2 ∈ (0,∞), β1 �= β2,
and fixed. They showed that, under this scaling, the exponential height function
converges to the solution of the telegraph equation (TE). To state this result
precisely, let us prepare some notation. Set q := b1/b2, q := eβ1−β2 and consider

φ(x, y) := qH(x,y) = q
1
LH(x,y) = e

β1−β2
L H(x,y).(1.2)

For given Lipschitz functions χ, ψ : [0,∞) → R with χ(0) = ψ(0), it is known
([BG18, Proposition 4.1, Theorem 4.4]) that the TE

∂xyΦ+ β2∂xΦ+ β1∂yΦ = 0, x, y > 0, Φ(x, 0) = χ(x), Φ(0, y) = ψ(y)(1.3)

admits a unique solution. More explicitly, consider the Riemann function [BG18,
eq. (39)]

R(x, y) =
1

2πi

∮
C
exp

[
(β1 − β2)

(
−x

z

z + β2
+ y

z

z + β1

)]
(β2 − β1) dz

(z + β1)(z + β2)
,(1.4)

where the integration goes in the positive direction and encircles −β1 but not −β2.
The solution Φ of (1.3) is given by

Φ(x, y) = ψ(0)R(x, y) +

∫ y

0

R(x, y − y′)
(
ψ′(y′) + β2ψ(y

′)
)
dy′(1.5)

+

∫ x

0

R(x− x′, y)
(
χ′(x′) + β1χ(x

′)
)
dx′.

Definition 1.1. For given f : Z≥0 → R and g ∈ Z
2
≥0 → R, let fL(x) := f(Lx)

and gL(x, y) := g(Lx,Ly) denote the corresponding scaled functions, and linearly
interpolate to be functions on R+ and R

2
+. Here, the linear interpolation from

1
LZ≥0 to R is unique: for a, b := a+ 1

L ∈ 1
LZ≥0 and x ∈ (a, b),

fL(x) :=
x− b

a− b
fL(a) +

x− a

b− a
fL(b).

To linearly interpolate from ( 1
LZ≥0)

2 to R
2
+, we fix a diagonal direction, say north-

east-southwest, and cut each square [i, i + 1]× [j, j + 1], i, j ∈ Z≥0, on the integer
lattice into two triangles, diagonally along the prescribed direction: This gives a

triangulation on Z
2
≥0 and hence on ( 1

LZ≥0)
2, from which we construct a unique

linear interpolation: each generic x ∈ R
2
+ is in a unique triangle, say abc, and gL(x)

is given by linearly interpolating gL(a), gL(b), and gL(c) (three points determines
a plane).

Licensed to Univ of Wisconsin, Madison. Prepared on Sun Jun 16 09:20:11 EDT 2019 for download from IP 128.104.46.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2688 H. SHEN AND L-C. TSAI

Theorem 1.2 ([BG18, Theorem 5.1]). Fix Lipschitz functions χ, ψ : [0,∞) →
R, and let Φ be the unique solution of the telegraph equation (1.3) with boundary
conditions χ, ψ given by (1.5). If, as L → ∞, we have

sup
x∈[0,a]

|φL(·, x)− χ(x)| → 0 and sup
x∈[0,a]

|φL(0, ·)− ψ(x)| → 0,

for each a < ∞, then, as L → ∞,

sup
(x,y)∈[0,a]2

∣∣φL(x, y)− Φ(x, y)
∣∣ −→P 0, sup

(x,y)∈[0,a]2

∣∣ 1
LHL(x, y)− h(x, y)

∣∣ −→P 0,

for each a < ∞, where h := logq Φ.

As noted in [BG18, Remark 5.3], rewriting equation (1.3) in terms of h-deriva-
tives, and sending q → 0, one obtains a nonlinear PDE that was observed in
[BCG16,RS16] in the L → ∞ scaling limit but with b1, b2 fixed. Such a nonlinear
PDE corresponds to the inviscid/hyperbolic scaling limit in the context of hydro-
dynamic limits. This is in contrast with the aforementioned SPDE-limit results,
where the underlying hydrodynamic limits sit in the viscous/hyperbolic regime.
Given such an intriguing feature, [BG18] further investigated the random fluctua-
tions of φ and H around their respective means. Our work here follows this study
of random fluctuations.

Let u(x, y) := φ(x, y)− E[φ(x, y)]. Let U(x, y) denote a centered Gaussian field
on R+, with covariance

E[U(x, y)U(x′, y′)] =

∫ x∧x′

0

∫ y∧y′

0

R(x− x, y − y) R(x′ − x, y′ − y) D(x, y) dxdy,

where

D(x, y) := (β1 + β2)∂xΦ · ∂yΦ+ β2(β2 − β1)∂xΦ · Φ− β1(β2 − β1)Φ · ∂yΦ.(1.6)

The following is our main result.

Theorem 1.3. Under the same assumptions as in Theorem 1.2, as L → ∞,
√
LuL → U in finite dimensional distributions.

Corollary 1.4. Under the same assumptions as in Theorem 1.2,

1√
L

(
H(Lx,Ly)−E[H(Lx,Ly)]

)
→ Ũ(x, y) :=

U(x, y)

(β1 − β2)Φ(x, y)

in finite dimensional distributions.

Remark 1.5. It is readily checked that

U(x, y)
law
=

∫ x

0

∫ y

0

R(x− x′, y − y′)ξ(x′, y′)
√
D(x′, y′)dx′dy′,

where ξ(x, y) denotes the Gaussian white noise on R
2
+. Given such stochastic inte-

gral representation, we can also view U as the solution of the stochastic telegraph
equation (STE) with zero boundary condition, i.e.,

∂xyU + β2∂xU + β1∂yU =
√
Dξ, x, y ≥ 0, U(x, 0) = U(0, y) = 0.(1.7)
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Alternatively, substituting U = (β1 − β2)ΦŨ in (1.7) and using (1.3), we have the

equation for Ũ :

∂xyŨ + β1∂yŨ + β2∂xŨ + (β1 − β2)(∂yŨ∂xh+ ∂xŨ∂yh)(1.8)

= ξ ·
√
(β1 + β2)∂xh∂yh− β2 ∂xh+ β1 ∂yh.

Corollary 1.4 was conjectured in [BG18, Conjecture 6.1], based on observations
through a four-point relation and (separately) through a variational principle and
contour integrals. For the low density regime (see [BG18, Section 7] for the precise
meaning), the analog of Corollary 1.4 was established in [BG18, Theorem 7.1].
The main step toward proving such Gaussian limits is to show convergence of the
variance. Referring to (1.6), we see that the variance involves Φ and its gradients:
one term is quadratic in gradients, and the other terms are linear in gradients. In the
low density regime, the quadratic-gradient term vanishes in the limit L → ∞, and,
through integration by parts, [BG18] reduced convergence of the linear-gradient
terms to convergence of φ (i.e., the law of large numbers result in Theorem 1.2),
thereby showing the convergence of u.

For the general case (i.e., non-low-density) considered here, one needs to address
the convergence of the quadratic-gradient term. The main tool we use here is
the discrete, integrated form [BG18, eq. (85)] of the STE. From this equation we
develop expressions of discrete gradients of φ. These expressions permit calculations
of moments of the terms in question, and from this we obtain decorrelation through
contracting the discrete analog of ξ.

Remark 1.6. We remark that after we posted our paper, the authors of [BG18] also
found a proof of this conjecture which is different from our proof. The paper [BG18]
will be updated to include their proof. We are thankful for the communications
with the authors of [BG18].

2. Preliminaries

In this section we prepare a few tools for subsequent analysis. Recall from
[BG18, Theorem 3.1] that φ defined in (1.2) satisfies a ‘four-point relation’:

φ(x+ 1, y + 1)− b1φ(x, y + 1)− b2φ(x+ 1, y) + (b1 + b2 − 1)φ(x, y)(2.1)

= ξd(x+ 1, y + 1).

Here, ξd(x, y) is a process on Z
2
>0 that plays the role of ξ (spacetime white noise)

in the discrete setting. In particular, with ∇xf(x) := f(x+ 1)− f(x) denoting the
forward discrete gradient acting on a designated variable x, one has

E
[
ξd(x+ 1, y + 1) | H(u, v), u ≤ x or v ≤ y

]
= 0,(2.2)

E
[
ξd(x+ 1, y + 1)2 | H(u, v), u ≤ x or v ≤ y

]
=

(
b2(1− b1) + b1(1− b2)

)
∇xφ(x, y)∇yφ(x, y)

+ b1(1− b2)(1− q)φ(x, y)∇xφ(x, y)

− b1(1− b1)(1− q)φ(x, y)∇yφ(x, y).

(2.3)
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Recall from [BG18, eq. (45)] the discrete Riemann function

(2.4) Rd(x, y) =
1

2πi

∮
− 1

b2(1−b1)

(
1 + b1(1− b1)z

1 + b2(1− b1)z

)x (
1 + b2(1− b2)z

1 + b1(1− b2)z

)y

× (b2 − b1) dz

(1 + b2(1− b1)z)(1 + b1(1− b2)z)
,

where the integration goes in the positive direction and encircles − 1
b2(1−b1)

but not

− 1
b1(1−b2)

. We will also be using the notation R̃d(x, y) := Rd(x, y)1{x≥0}1{y≥0}.

Recall from [BG18, eq. (85)] the following summation representation of φ:

φ(x, y) = φ(0, 0)Rd(x, y) +
∑

y′∈Z>0

R̃d(x, y − y′)
(
φ(0, y′)− b2φ(0, y

′ − 1)
)

+
∑

x′∈Z>0

R̃d(x− x′, y)
(
φ(x′, 0)− b1φ(x

′ − 1, 0)
)

+
∑

x′,y′∈Z>0

R̃d(x− x′, y − y′)ξd(x′, y′).

(2.5)

Set φ(x, y) := E[φ(x, y)]. Since on the r.h.s. of (2.5) only the last term is random,
we have

u(x, y) := φ(x, y)−E[φ(x, y)] =
∑

x′,y′∈Z>0

R̃d(x− x′, y − y′)ξd(x′, y′),(2.6)

φ(x, y) = φ(0, 0)Rd(x, y) +
∑

y′∈Z>0

R̃d(x, y − y′)
(
φ(0, y′)− b2φ(0, y

′ − 1)
)

+
∑

x′∈Z>0

R̃d(x− x′, y)
(
φ(x′, 0)− b1φ(x

′ − 1, 0)
)
.

(2.7)

Hereafter, we use c(a, b, . . .) < ∞ to denote a generic finite constant that may
change from line to line but depends only on the designated variables a, b, . . . . The
parameters β1 �= β2 are considered fixed, so their dependence will be omitted.

Lemma 2.1. For any k = (k1, k2) ∈ Z
2
≥0 we write |k| = k1 + k2 and ∂k = ∂k1

x ∂k2
y

and ∇k = ∇k1
x ∇k2

y . Given any m ∈ Z>0 and a < ∞,∑
0≤|k|≤m

|∂kR(x, y)| ≤ c(a,m), ∀(x, y) ∈ [0, a]2,(2.8)

∑
0≤|k|≤m

|Lk∇kRd(x, y)| ≤ c(a,m), ∀(x, y) ∈ ([0, aL] ∩ Z)2,(2.9)

lim
L→∞

sup
(x,y)∈([0,aL]∩Z)2

∑
0≤|k|≤m

|∂kR( xL ,
y
L )− Lk∇kRd(x, y)| = 0.(2.10)

Proof. Consider the formula (1.4) for R, and fix a contour C as described therein.
This is a closed curve of finite length, and along the contour z ∈ C are bounded in
absolute value, i.e., |z| ≤ c. Each of the factors in the integrand is bounded over

[0, a]2 uniformly in z ∈ C. Moreover, each ∂x brings down a factor − (β1−β2)z
z+β2

, and

each ∂y brings down a factor (β1−β2)z
z+β1

; these are all bounded uniformly in z ∈ C.
From these discussions we conclude (2.8).
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Noting that (2.9) follows from (2.8) and (2.10), we now move on to proving (2.10).
Apply changes of variables to (2.4): z = Lz̃/(β1β2), x = Lx̃, y = Lỹ. Then

Rd(x̃, ỹ) =
1

2πi

∮
− β1β2

Lb2(1−b1)

(
β1β2 + Lb1(1− b1)z̃

β1β2 + Lb2(1− b1)z̃

)Lx̃ (
β1β2 + Lb2(1− b2)z̃

β1β2 + Lb1(1− b2)z̃

)Lỹ

· Lβ1β2(b2 − b1) dz̃

(β1β2 + Lb2(1− b1)z̃)(β1β2 + Lb1(1− b2)z̃)
,

(2.11)

where the integration goes in the positive direction and encircles − β1β2

Lb2(1−b1)
but not

− β1β2

Lb1(1−b2)
. Indeed, as L → ∞, − β1β2

Lb2(1−b1)
→ −β2 and − β1β2

Lb1(1−b2)
→ −β1. This

being the case, we fix a contour C′ (independently of L) that goes in the positive
direction encircling −β2 but not −β1. It is readily checked that uniformly over
z̃ ∈ C′ and x̃, ỹ ∈ [0, a], as L → ∞,(

β1β2 + Lb1(1− b1)z̃

β1β2 + Lb2(1− b1)z̃

)Lx̃

−→ exp
(
(β1 − β2)

(
− x̃

z̃

z̃ + β2

))
,

(
β1β2 + Lb2(1− b2)z̃

β1β2 + Lb1(1− b2)z̃

)Lỹ

−→ exp
(
(β1 − β2)

(
− ỹ

z̃

z̃ + β1

))
,

Lβ1β2(b2 − b1)

(β1β2 + Lb2(1− b1))(β1β2 + Lb1(1− b2)z̃)
−→ − (β2 − β1)

(z̃ + β1)(z̃ + β2)
.

Using this in (2.11) gives uniformly over x̃, ỹ ∈ [0, a] as L → ∞,

Rd(x̃, ỹ) −→ − 1

2πi

∮
C′
exp

(
(β1 − β2)

(
− x̃

z̃

z̃ + β2
+ ỹ

z̃

z̃ + β1

)) (β2 − β1) dz̃

(z̃ + β1)(z̃ + β2)
.

(2.12)

Note that, compared to (1.4), the r.h.s. of (2.12) has a different contour C′ and
an outstanding negative sign. However, as noted in [BG18] (see comments after
equation (39) therein), the integrand in (1.4) and (2.12) has no pole at |z̃| = ∞, so
the contour C′ can be deformed to −C (the orientation changes after deformation),
matching the r.h.s. of (2.12) to (1.4). This proves (2.10) for |k| = 0. As for |k| > 0,

note that each L∇x applied to (2.4) brings a factor L(b1−b2)(1−b1)z
1+b2(1−b1)z

, and each L∇y

brings a factor L(b2−b1)(1−b2)z
1+b1(1−b2)z

. These factors converge uniformly over z̃ ∈ C′ to
(β1−β2)z̃

z̃+β2
and (β1−β2)z̃

z̃+β1
, respectively. Hence (2.10) follows. �

Lemma 2.2. Given a < ∞, we have, for all (x, y) ∈ ([0, aL] ∩ Z)2,

|φ(x,y)|+ |L∇xφ(x, y)|+ |L∇yφ(x, y)| ≤ c(a),(2.13)

|φ(x,y)|+ |L∇xφ(x, y)|+ |L∇yφ(x, y)| ≤ c(a),(2.14)

sup
(x,y)∈[0,a]2

|φL(x, y)− Φ(x, y)| −→ 0, as L → ∞.(2.15)

Proof. Given Lemma 2.1, (2.14)–(2.15) are readily verified from (2.7). As for (2.13),
recall that q := eβ1−β2 is fixed. Indeed, since H(0, 0) := 0 by definition and

∇xH(x, y) ∈ {0, 1} and ∇yH(x, y) ∈ {0, 1}, we have φ(x, y) := q
1
LH(x,y) ≤ q

2La
L =

c(a) and |L∇βφ(x, y)| = |L(q 1
L∇aH(x,y) − 1)φ(x, y)| ≤ c(a), for β = x, y. �
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2692 H. SHEN AND L-C. TSAI

Lemma 2.3. For any k ∈ Z>0,

E
[
|ξd(x+ 1, y + 1)|k

∣∣H(x′, y′), x′ ≤ x or y′ ≤ y
]
≤ c(k)L−k−1,(2.16)

|ξd(x+ 1, y + 1)| ≤ cL−1,(2.17)

for all (x, y) ∈ Z
2
≥0, L ≥ 1.

Proof. First, conditioning H(x′, y′), x′ ≤ x or y′ ≤ y for ξd(x + 1, y + 1) amounts
to conditioning on incoming line configuration into the site (x + 1, y + 1). There
are four cases pertaining to such conditions, and in each case ξd(x + 1, y + 1) is
computed in [BG18, Proof of Theorem 3.1], using the ‘four-point relation’ (2.1).
We record the results of their computation here and examine the asymptotics in L
of the values of ξd and their probabilities in each case. In the following, vertices of
type I–V I refers to those depicted in Figure 1.

(1) No line enters into the vertex (x+ 1, y+ 1) from below or from the left: In
this case the vertex is of type I, whereby ξd(x+ 1, y + 1) = 0.

(2) Two lines enter into the vertex (x+1, y+1), one from below and one from
the left: In this case the vertex is of type II, whereby ξd(x+ 1, y+ 1) = 0.

(3) One line enters into the vertex (x+1, y+1) from below, but no line enters
from the left: In this case the vertex is of type IV with probability b2 and

|ξd(x+ 1, y + 1)| = |qh(q−1 − b1)(1− q)| ≤ cL−2

or of type V I with probability 1− b2 ≤ cL−1 and

|ξd(x+ 1, y + 1)| = |qhb1(q − 1)| ≤ cL−1.

(4) One line enters into the vertex (x+1, y+1) from the left, but no line enters
from below: In this case the vertex is of type III with probability b1 and

|ξd(x+ 1, y + 1)| = |qh(1− b1)(q − 1)| ≤ cL−2

or of type V with probability 1− b1 ≤ cL−1 and

|ξd(x+ 1, y + 1)| = |qhb1(1− q)| ≤ cL−1.

The conditional moments bound (2.16), and the uniform bound (2.17) readily fol-
lows from the preceding discussion. �

3. Proof of Theorem 1.3 and Corollary 1.4

3.1. Proof of Theorem 1.3. Write ⇒ for convergence in distribution. Hereafter
throughout the article, we fix (x1,y1), . . . , (xn,yn) ∈ R

2
+. Our goal is to prove

(
√
Lu(Lxi, Lyi))

n
i=1 ⇒ (U(xi,yi))

n
i=1. To simplify notation, we work under the

consent that whenever the arguments of u are not integers, we take the integer
parts of them, e.g., u(Lxi, Lyi) := u(�Lxi�, �Lyi�). A similar convention is adopted
without being explicitly stated for processes over integers.

Given the expression (2.6) of u, we proceed via the martingale Central Limit
Theorem (CLT) (as in [BG18] for the low density regime). To this end we linearly
order points on Z

2
>0 as

(x(1), y(1)) := (1, 1), (x(2), y(2)) := (2, 1), (x(3), y(3)) := (1, 2),(3.1)

(x(4), y(4)) := (3, 1), · · · .
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Consider the discrete time process M(t) ∈ R
d, t = 1, 2, . . . ,

M(t) := (Mi(t))
n
i=1, Mi(t) :=

t∑
s=1

√
LR̃d(Lxi − x(s), Lyi − y(s)) ξd(x(s), y(s)).

(3.2)

It follows from (2.2) that M(t) is a martingale. Recall that, by definition, R̃d(x, y)
carries indicator functions forcing x, y ≥ 0. Hence, for some large enough c∗ < ∞,

M(c∗L
2) = M(c∗L

2 + 1) = · · · = M(∞) = (
√
Lu(Lxi, Lyi))

n
i=1.(3.3)

Let F (t) := σ(M(1), . . . ,M(t)) denote the canonical filtration of M(t), and recall
that cross variance of M is defined as

〈Mi,Mj〉(t) :=
t∑

s=1

E
[
(Mi(s)−Mi(s− 1))(Mj(s)−Mj(s− 1))

∣∣F (s− 1)
]
.(3.4)

Put R̃(x, y) := R(x, y)1{x≥0}1{y≥0}, and recall the definition of D(x, y) from (1.6).
We set

Qij :=

∫
R

2
+

R̃ij(x, y)D(x, y)dxdy, R̃ij(x, y) := R̃(xi − x,yi − y)R̃(xj − x,yj − y).

(3.5)

The martingale CLT from [HH14] applied to M(t) gives

Theorem 3.1 ([HH14, Corollary 3.1]). If, for any i, j = 1, . . . , n and ε > 0,

L2c∗∑
s=1

E
[
(Mi(s)−Mi(s− 1))21{|Mi(s)−Mi(s−1)|>ε}

]
−→ 0,(Lind)

〈Mi,Mj〉(L2c∗) =⇒P Qij ,(QV)

then

M(c∗L
2) =⇒ (U(xi,yi))

n
i=1.

Remark 3.2. Note that even though [HH14, Corollary 3.1] is stated for an R-valued
martingale, generalization to R

n-value is standard, by projection M(t) ∈ R
n onto

arbitrarily fixed v ∈ R
n.

Given Theorem 3.1, it suffices to check the conditions (Lind)–(QV). The former
follows at once from the fact that |ξd(x, y)| ≤ cL−1 (from Lemma 2.3), which makes
the indicator functions in (Lind) zero for all large enough L. We hence devote the
rest of the article to proving (QV). From (2.3) we calculate the cross variance
(defined in (3.4)) as

〈Mi,Mj〉(c∗L2) = L−2
c∗L

2∑
s=1

R̃d
ij(x(s), y(s))D

d(x(s), y(s);φ),(3.6)

Licensed to Univ of Wisconsin, Madison. Prepared on Sun Jun 16 09:20:11 EDT 2019 for download from IP 128.104.46.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2694 H. SHEN AND L-C. TSAI

where

R̃d
ij(x, y) := R̃d(Lxi − x, Lyi − y)R̃d(Lxj − x, Lyj − y),(3.7)

Dd(x, y;φ) := γxy · L∇xφ(x, y) · L∇yφ(x, y) + γx · φ(x, y) · L∇xφ(x, y)(3.8)

+ γy · φ(x, y) · L∇yφ(x, y),

γxy := L(b2(1− b1) + b1(1− b2)), γx := L2(b1(1− b2)(1− q)),(3.9)

γy := −L2(b1(1− b1)(1− q)).

Recall that φ(x, y) := E[φ(x, y)]. Compare (3.5) and (3.6)–(3.8). The main step
toward proving (QV) is to show that, in (3.8), we can approximate φ, L∇xφ, and
L∇yφ by their continuum counterparts Φ, ∂xΦ, and ∂yΦ, in a suitable sense under
the limit L → ∞. With this in mind, we decompose 〈Mi,Mj〉(L2c∗)−Qij = S1+S2,
where

S1 := L−2
c∗L

2∑
s=1

R̃d
ij(x(s), y(s))D

d(x(s), y(s);φ)−Qij ,(3.10)

S2 := L−2
c∗L

2∑
s=1

R̃d
ij(x(s), y(s))

(
Dd(x(s), y(s);φ)−Dd(x(s), y(s);φ)

)
.(3.11)

Here, S2 records the difference of replacing φ, L∇xφ, and L∇yφ with their respec-

tive expectations φ, L∇xφ, and L∇yφ, while S1 accounts for the difference between

φ, L∇xφ, and L∇yφ with their corresponding terms in continuum Φ, ∂xΦ, and ∂yΦ.
In particular, note that S1 is deterministic. We will show separately that S1 → 0
and S2 →P 0:

Proposition 3.3. For fixed i, j ∈ {1, . . . , n}, with S1 and S2 defined in (3.10)–
(3.11), we have, as L → ∞, (a) S1 → 0 and (b) S2 →P 0.

Proposition 3.3 verifies the condition (QV) and hence completes the proof of
Theorem 1.3. The proof of Proposition 3.3 is carried out in Sections 4–5.

3.2. Proof of Corollary 1.4. Fix a < ∞. Throughout this proof we assume
x, y ∈ [0, aL] ∩ Z and write c = c(a) to simplify notation. The first step is to
express H in terms of φ. To this end, write

H(x, y) = L logq
(
φ(x, y)

)
= L logq

(
φ(x, y) + u(x, y)

)
.(3.12)

Recall that φ = q
1
LH and that H(0, 0) := 0 and H is 1-Lipschitz (from the definition

of height function). Hence

1
c ≤ φ(x, y) ≤ c, 1

c ≤ φ(x, y) ≤ c, x, y ∈ [0, aL] ∩ Z.(3.13)

In (3.12), Taylor expand the function logq(φ+ u) in u to the first order. With the
aid of preceding bounds, we have

H(x, y) = L logq(φ(x, y)) +
L

φ(x,y) log q
u(x, y) + LR(x, y),(3.14)

for some remainder R such that

|R(x, y)| ≤ cu2(x, y).(3.15)
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Take expectation in (3.14), and subtract the result from (3.14). With E[u(x, y)]
= 0, we have

H(x, y)−E[H(x, y)] = L
φ(x,y) log q

u(x, y) + L
(
R(x, y)−E[R(x, y)]

)
.

Recall the scaling convention from Definition 1.1. Divide both sides by
√
L. With

log q = β1 − β2, we have

1√
L

(
HL −E[HL]

)
= 1

φL(β1−β2)

√
LuL +

√
L

(
RL −E[RL]

)
.(3.16)

From Theorem 1.3 we already have
√
LuL → U in finite dimensional distribu-

tions. This together with (2.15) and (3.13) gives 1
φL(β1−β2)

√
LuL → Ũ in finite

dimensional distributions. To control the last term in (3.16), we calculate the sec-
ond moment of u(x, y) from (2.6). By (2.2), the discrete noise ξd(x, y), x, y ∈ Z>0

are uncorrelated, so E[u(x, y)2] =
∑

x′,y′∈Z>0
R̃d(x− x′, y − y′)2E[ξd(x′, y′)2]. Fur-

ther using the bounds on Rd from Lemma 2.1 and the bound on E[ξd(x′, y′)2] from
Lemma 2.3, we conclude that E[u(x, y)2] ≤ cL−1. Combining this with (3.15) gives
E|R(x, y)| ≤ cL−1. From this, we see that the last term in (3.16) converges to zero
in finite dimensional distributions. This completes the proof.

4. Proof of Proposition 3.3(a)

Recall that (x1,y1), . . . , (xn,yn) ∈ R
2
+ are points fixed previously. Hereafter, we

fix further i, j ∈ {1, . . . , n}. Recall from Lemma 2.2 that φL(x, y) = φ(Lx,Ly) con-
verges uniformly to Φ. On the other hand, from the summation representation (2.7),
it is not hard to check that L∇xφ(Lx,Ly) �→ ∂xΦ and L∇yφ(Lx,Ly) �→ ∂yΦ in

general.1 That is, derivatives of φ do not converge pointwisely. Given that the
quantities D and Dd (defined in (1.6) and (3.8)) involve gradients, in order to show
S1 → ∞, one needs to exploit the sum over s in (3.10), as well as the integral
over x, y in (3.5). The sum and integral smear out the possibly fluctuating deriva-
tives. In the following two lemmas we expose the aforementioned smearing effect
via integration-by-parts and summation-by-parts formulas.

Let Lip(R+) and Lip(R2
+) denote the spaces of functions that are uniformly

Lipschitz respectively over compact subsets of R+ and R
2
+. Following the preceding

discussion, instead of Lipschitz norms, we equip Lip(R+) and Lip(R2
+) with the

topology of uniform convergence over compact subsets. Recall that R̃ij(x, y) :=

R̃(xi − x,yi − y)R̃(xj − x,yj − y). For α = x, y, consider the map

Vα : Lip(R2
+) −→ R, Vα(Φ) :=

∫
R

2
+

R̃ij(x, y) ∂αΦ(x, y) · Φ(x, y) dxdy.(4.1)

For given χ, ψ ∈ Lip(R+), let Φ = Φ(χ, ψ) defined through (1.5). Consider the
following map Vxy : Lip(R+)× Lip(R+) → R:

Vxy(χ, ψ) :=

∫
R

2
+

R̃ij(x, y) ∂xΦ(x, y) · ∂yΦ(x, y) dxdy, Φ = Φ(χ, ψ) via (1.5).

(4.2)

1This lack of convergence can also be seen from the fact that the left hand side remains a
discrete random variable taking values in {0,± ln q} in the limit, so there is no way for it to
converge to ∂Φ.
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Lemma 4.1. For α, β ∈ {x, y}, the maps Vα : Lip(R2
+) → R, Vxy : Lip(R+)

2 → R

are continuous (under uniform topology, as declared previously).

Proof. We begin with Vα. Take α = x to simplify notation. The case α = y follows
exactly the same. To simplify notation, set x := xi ∧ xj and y := yi ∧ yj and
Rij(x, y) := R(xi−x,yi−y)R(xj−x,yj−y). In (4.1), writing ∂xΦ ·Φ = 1

2∂x(Φ
2),

we have

Vx(Φ) =
1

2

∫ x

0

∫ y

0

Rij(x, y) ∂x(Φ
2(x, y)) dxdy.

Integration by parts in x gives

Vx(Φ) =
1

2

∫ y

0

Rij(x, y)Φ
2(x, y)

∣∣∣x=x

x=0
dy − 1

2

∫ x

0

∫ y

0

∂xRij(x, y) · Φ2(x, y)dxdy.

(4.3)

Given that Rij is smooth (from Lemma 2.1), from (4.3) it is clear that Vx is
continuous in Φ.

Turning to Vxy, take the x-derivative in (1.5) to get ∂xΦ(x, y) = R(0, y)χ′(x) +
G(x, y), where

G(x, y) := ψ(0)∂xR(x, y) + β1R(0, y)χ(x)

+

∫ y

0

∂xR(x, y − y′)
(
ψ′(y′) + β2ψ(y

′)
)
dy′(4.4)

+

∫ x

0

∂xR(x− x′, y)
(
χ′(x′) + β1χ(x

′)
)
dx′.

Note thatG involves the derivatives χ′ and ψ′. We integrate by parts to separate the
dependence on χ′ and ψ′ from the dependence on χ and ψ. To state this precisely,
consider the set K that consists of finite linear combinations of the expressions

∂k1R(x− x1, y)χ(x1), ∂k2R(x, y − y2)ψ(y2),(4.5) ∫ x

0

∂k3R(x− x′, y)χ(x′)dx′,

∫ y

0

∂k4R(x, y − y′)ψ(y′)dy′,

where ki = (ki, k
′
i) ∈ Z

2
≥0 are multi-indices (defined in Lemma 2.1) with |ki| ≤ 3,

x1 ∈ {0, x}, and y2 ∈ {0, y}. That is,

K :=
{ ∑

αterm ·
(
term in (4.5)

)}
.(4.6)

In (4.4), integrating by parts in y′ and in x′ respectively for the first and second
integrals, we have

∂xΦ(x, y) = R(0, y)χ′(x) + ∂xR(x, 0)ψ(y) +Ky,(4.7)

for some Ky such that Ky, ∂yKy ∈ K . A similar calculation applied to ∂yΦ gives

∂yΦ(x, y) = R(x, 0)ψ′(y) + ∂yR(0, y)χ(x) +Kx,(4.8)

for some Kx such that Kx, ∂xKx ∈ K .
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Inserting (4.7)–(4.8) into (4.2) gives

Vxy(χ, ψ) =I
(
R(0, y)χ′(x) · R(x, 0)ψ′(y)

)(4.9a)

+ I
(
R(0, y)χ′(x) · ∂yR(0, y)χ(x)

)
+ I

(
∂xR(x, 0)ψ(y) · R(x, 0)ψ′(y)

)
(4.9b)

+ I
(
R(0, y)χ′(x) · Kx

)
+ I

(
Ky · R(x, 0)ψ′(y)

)
(4.9c)

+ I
(
(∂xR(x, 0)ψ(y) +Ky) · (∂yR(0, y)χ(x) +Kx)

)
,(4.9d)

where

I(f) :=
∫ x

0

∫ y

0

Rij(x, y)f(x, y)dxdy.(4.10)

To complete the proof, we next argue that each term in (4.9a)–(4.9d) is a continuous
function of (χ, ψ). For (4.9d), we indeed have ∂xR(x, 0)ψ(y), ∂yR(0, y)χ(x) ∈ K .
Consequently, the expression

(∂xR(x, 0)ψ(y) +Ky) · (∂yR(0, y)χ(x) +Kx)

defines a continuous function of (x, y, χ, ψ) ∈ R
2
+ × C(R+)

2. Given this property
and referring to (4.10), we see that the term in (4.9d) is a continuous function of
(χ, ψ). Turning to (4.9c), we note that the terms involve χ′ and ψ′. We integrate
by parts in x and y, respectively, for the first and second terms in (4.9c). This
removes the derivatives on χ and ψ. Further, Kx and Ky remain K -valued upon
differentiating in x and y, respectively. From this, we see that the terms in (4.9c)
are continuous functions of (χ, ψ). Moving on to (4.9b), we write

R(0, y)χ′(x) · ∂yR(0, y)χ(x) = R(0, y)∂yR(0, y) · 1
2
d
dxχ(x)

2,

∂xR(x, 0)ψ(y) · R(x, 0)ψ′(y) = R(x, 0)∂xR(x, 0) · 1
2
d
dyψ(x)

2.

Given these expressions, integrating by parts in x and y, respectively, for the first
and second terms in (4.9b), we conclude that the terms are continuous functions of
(χ, ψ). Finally, for (4.9a), straightforward integration by parts in x and y verifies
that the term is a continuous function of (χ, ψ). �

Next we turn to the discrete analog of Lemma 4.1. Recall that R̃d
ij(x, y) :=

R̃d(Lxi − x,yi − y)R̃(Lxj − x,yj − y). For α = x, y, set

vα := L−2
∑

x,y∈Z>0

R̃d
ij(x, y) (L∇αφ(x, y))φ(x, y),(4.11)

vxy := L−2
∑

x,y∈Z>0

R̃d
ij(x, y) (L∇xφ(x, y)) (L∇yφ(x, y)).(4.12)

Recall the scaling notation and interpolation convention from Definition 1.1.

Lemma 4.2. Abusing notation, we write Vxy(φL) := Vxy(φL(·, 0), φL(0, ·)). Then,
as L → ∞, ∑

α=x,y

∣∣vα − Vα(φL)
∣∣ + ∣∣vxy − Vxy(φL)

∣∣ −→ 0.
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Proof. We begin by bounding |vα−Vα(φL)|. Take α = x to simplify notation. The
case α = y follows exactly the same. Let ṽx denote the analog of vx where the last
factor φ(x, y) in (4.11) is replaced by φ(x+ 1, y). Using

∇f(x) · f(x+ 1) + f(x) · ∇f(x) = ∇f2(x)(4.13)

for f(x) = φ(x, y), we have

1

2
(vx + ṽx) =

1

2L2

∑
x,y∈Z>0

R̃d
ij(x, y)L∇x

(
φ
2
(x, y)

)
.

Set Rd
ij(x, y) := Rd(Lxi−x, Lyi− y)R(xj −x,yj − y), and recall that x := xi∧xj

and y := yi∧yj . Further, given the bounds on Rd from Lemma 2.1 and the bound

on ∇xφ from Lemma 2.2, we have |vx − ṽx| ≤ cL−1, so

vx =
1

2L2

∑
x,y∈Z>0

R̃d
ij(x, y)L∇x(φ(x, y)

2) + r(4.14)

=
1

2L2

Lx∑
x=1

Ly∑
y=1

Rd
ij(x, y)L∇x(φ(x, y)

2) + r,

for some remainder term r such that |r| ≤ cL−1. In (4.14), applying summation by
parts

b∑
i=a

f(i) · ∇g(i) = f(i− 1)g(i)
∣∣i=b+1

i=a
−

b∑
i=a

∇f(i− 1) · g(i)

in the variable x gives

vx =
1

2L

Ly∑
y=1

Rd
ij(x− 1, y)φ(x, y)2

∣∣∣x=Lx+1

x=1

− 1

2L2

Lx∑
x=1

Ly∑
y=1

L∇xRd
ij(x− 1, y) · φ(x, y)2 + r.

Given Lemmas 2.1–2.2, within the last expression, replacing Rd(x, y) with R( xL ,
y
L )

and L∇xRd(x, y) with ∂xR( xL ,
y
L ) only introduces errors that converge to zero as

L → ∞. This gives

vx =
1

2L

Ly∑
y=1

Rij(
x−1
L , y

L )φL(
x
L ,

y
L )

2
∣∣∣x=Lx+1

x=1
(4.15)

− 1

2L2

Lx∑
x=1

Ly∑
y=1

L∇xRij(
x−1
L , y

L ) · φL(
x
L ,

y
L )

2 + r′,

for some r′ such that |r′| → 0, where Rij is defined in the proof of Lemma 4.1.
Compare (4.3) and (4.15). Since {φL}L ⊂ C([0,x] × [0,y]) is equicontinuous, and
since R is smooth, in (4.15) replacing sums with integrals and replacing L∇x with
∂x only introduces errors that converge to zero as L → ∞. From this we conclude
that |vx − Vx(φL)| → 0.
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Turning to showing that |vxy − Vxy(φL)| → 0, we rewrite (2.7) in a way similar

to (1.5) (note that φ = φ along the axises {0} × Z≥0 and Z≥0 × {0}):

φ(x, y) = φ(0, 0)Rd(x, y)

+ L−1

y∑
y′=1

R̃d(x, y − y′)
(
L∇y′φ(0, y′ − 1) + L(1− b2)φ(0, y

′ − 1)
)

+ L−1
x∑

x′=1

R̃d(x− x′, y)
(
L∇x′φ(x′ − 1, 0) + L(1− b1)φ(x

′ − 1, 0)
)
.

(4.16)

Define the discrete analog of K (as in (4.6)):

K d :=
{∑

αL,term ·
(
term in (4.17)

)
: #{αL,term �= 0} ≤ c, lim

L→0
αL,term ∈ R

}
,

where, with ki = (ki, k
′
i) ∈ Z

2
≥0 being multi-indices with |ki| ≤ 3 and with x1 ∈

{0, x}, y2 ∈ {0, y}, and ji, j
′
i, j

′′
i ∈ {0,±1,±2}, the terms read

L−|k1|∇k1Rd(x− x1 + j1, y)χ(x1 + j′1), L−|k2|∇k2Rd(x, y − y2 + j2)ψ(y2 + j′2),

L−1
x∑

x′=1

L−|k3|∇k3Rd(x− x′ + j3, y + j′3)χ(x
′ + j′′3 ),

L−1

y∑
y′=1

L−|k3|∇k3Rd(x+ j4, y − y′ + j′4)ψ(y
′ + j′′4 ).

(4.17)

Under the preceding setup, we perform procedures analogous to those leading
up to (4.7)–(4.8), with (4.15) in place of (1.5), vxy in place of Vxy, Rd and L∇xRd

in place of R and ∂xR, and (φ(·, 0), φ(0, ·)) in place of (χ, ψ). This gives

L∇xφ(x, y) = Rd(0, y) · L∇xφ(x, 0) + L∇xRd(x, 0) · φ(0, y) +Kd
y ,(4.18)

L∇yφ(x, y) = Rd(x, 0) · L∇yφ(0, y) + L∇yRd(0, y) · φ(x, 0) +Kd
x,(4.19)

for some Kd
α such that Kd

α, L∇αKd
α ∈ K d. For our purpose it is more convenient

to change φ(0, y) �→ 1
2 (φ(0, y) + φ(0, y + 1)) and φ(x, 0) �→ 1

2 (φ(x, 0) + φ(x+ 1, 0))

in (4.18)–(4.19). To this end, using the bounds on L∇αRd from Lemma 2.1 and
the bound on ∇αφ from Lemma 2.2, we write

L∇xφ(x, y) = Rd(0, y) · L∇xφ(x, 0) + L∇xRd(x, 0) · 1
2

(
φ(0, y) + φ(0, y + 1)

)(4.18’)

+Kd
y + r1,

L∇yφ(x, y) = Rd(x, 0) · L∇yφ(0, y) + L∇yRd(0, y) · 1
2

(
φ(x, 0) + φ(x+ 1, 0)

)(4.19’)

+Kd
x + r2,

for some r1, r2 such that |r1|, |r2| ≤ cL−1.
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Inserting (4.18’)–(4.19’) into (4.12) gives

vxy(χ, ψ) = Id
(
Rd(0, y)L∇xφ(x, 0) · Rd(x, 0)L∇yφ(0, y)

)
(4.20a)

+ Id
(
Rd(0, y) · L∇xφ(x, 0) · L∇yRd(0, y) · 1

2

(
φ(x, 0) + φ(x+ 1, 0)

))
+ Id

(
L∇xRd(x, 0) · 1

2

(
φ(0, y) + φ(0, y + 1)

)
· Rd(x, 0) · L∇yφ(0, y)

)(4.20b)

+ Id
(
Rd(0, y)L∇xφ(x, 0) · Kd

x

)
+ Id

(
Kd

y · Rd(x, 0)L∇yφ(0, y)
)

(4.20c)

+ Id
((

L∇xRd(x, 0) · 1
2

(
φ(0, y) + φ(0, y + 1)

)
+Kd

y

)
·
(
L∇yRd(0, y) · 1

2

(
φ(x, 0) + φ(x+ 1, 0) +Kd

x)
))(4.20d)

+ r′,

where Id(f) := L−2
∑Lx

x=1

∑Ly
y=1 Rd

ij(x, y)f(x, y). Here r′ collects all the terms
that involve r1 and r2 from the expansion. Given the bounds from Lemmas 2.1
and 2.2, we indeed have |r′| ≤ cL−1. Also, using (4.13) for f(x) = φ(x, 0) and for
f(y) = φ(0, y), we rewrite the terms in (4.20b) as

Id
(
Rd(0, y) · L∇yRd(0, y) · L∇x

(
φ(x, 0)2

))
(4.20b’)

+ Id
(
L∇xRd(x, 0) · Rd(x, 0) · L∇y

(
φ(0, y)2

))
.

Recall that, in the proof of Lemma 4.1, we processed the terms in (4.9a)–(4.9d)
through integration by parts so that the resulting expressions do not involve deriva-
tives of χ or of ψ. Here, similarly processing (4.20a), (4.20b’), and (4.20c)–(4.20d)
(via summation by parts) gives expressions that do not involve discrete gradients of
φ(x, 0) or of φ(0, y). Given that {φL(x, y)}L ⊂ C([0,x] × [0,y]) is equicontinuous,
and given the bounds from Lemma 2.1, within the processed expressions of (4.20a),
(4.20b’), and (4.20c)–(4.20d), replacing Rd and L|k|∇kRd with R and ∂kR and re-
placing the sums with integrals only causes errors that converge to zero as L → ∞.
From this we conclude that |vxy − Vxy(φL)| → 0. �

Based on Lemmas 4.1–4.2, we finish the proof of Proposition 3.3(a). With S1

defined in (3.10), referring to (1.6), (3.8), (4.1)–(4.11), and (4.11)–(4.12), we de-
compose S1 =

∑
β=xy,x,y

∑
i=1,2 S

i
1β, where

S1
1xy := (γxy − β1 + β2)vxy, S1

1x := (γx − β2(β2 − β1))vx,

S1
1y := (γy + β1(β2 − β1))vy,

S2
1xy := (β1 + β2)

(
vxy − Vxy(Φ)

)
, S2

1x := β2(β2 − β1)
(
vx − Vx(Φ)

)
,

S2
1y := −β1(β2 − β1)

(
vy − Vy(Φ)

)
.

For S1
1β , β = xy, x, y, it is readily checked from Lemma 2.2 that |vβ| ≤ c. From (3.9),

we have that γxy → (β1 + β2), γx → β2(β2 − β1), and γy → −β1(β2 − β1). Hence

S1
1β → 0. As for S2

1β, β = xy, x, y, further decompose vβ−Vβ(Φ) = (vβ−Vβ(φL))+

(Vβ(φL)−Vβ(Φ)). Using Lemmas 4.1–4.2 and (2.15) to bound the respective terms,
we conclude that S2

1β → 0.
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5. Proof of Proposition 3.3(b)

The proof begins by deriving a summation representation for L∇xφ and L∇yφ.
To this end, rewrite (2.5) as

φ(x, y) = φ(x, y) +
∑

x′∈(0,x]

∑
y′∈(0,y]

Rd(x− x′, y − y′)ξd(x′, y′).

Take discrete derivatives on both sides to get

L∇xφ(x, y) = L∇xφ(x, y) +Bx(x, y) + Fx(x, y),(5.1)

L∇yφ(x, y) = L∇yφ(x, y) +By(x, y) + Fy(x, y),

where

Bα(x, y) :=
∑

x′,y′∈Z>0

L∇αR̃d(x− x′, y − y′)ξd(x′, y′),(5.2)

Fx(x, y) := L
∑

y′∈Z>0

R̃d(0, y − y′)ξd(x+ 1, y′),(5.3)

Fy(x, y) := L
∑

x′∈Z>0

R̃d(x− x′, 0)ξd(x′, y + 1).

Lemma 5.1. For any fixed a ∈ [1,∞) and f : Z2
≥0 → R, α = x, y, we have

sup
x,y∈[0,aL]∩Z

E[(Bα(x, y))
2] ≤ c(a)L−1, sup

x,y∈[0,aL]∩Z

E[(Fα(x, y))
2] ≤ c(a).

Proof. For simpler notation, throughout the proof we write c = c(a),
Calculate the second moment of Bα(x, y) (5.2). By Lemma 2.1, the variables

ξd(x, y), x, y ∈ Z
2
>0 are uncorrelated, so

E[(Bα(x, y))
2] =

∑
x′,y′∈Z>0

(
L∇αR̃d(x− x′, y − y′)

)2
E

[
ξd(x′, y′)2

]
.(5.4)

By Lemma 2.1, the term L∇αR̃d(x − x′, y − y′) is bounded by c. With x′, y′ ∈
[0, aL] ∩ Z, the number of terms within the sum is ≤ cL2. By Lemma 2.3, the
E[ξd(x, y)2] ≤ cL−3. From these discussions, we conclude the desired bound for
Bα.

We now turn to bounding Fα. Take α = x to simplify notation. Following the
same argument for obtaining (5.5), here we have

E[(Fx(x, y))
2] = L2

∑
y′∈Z>0

(
R̃d(0, y − y′)

)2
E

[
ξd(x+ 1, y′)2

]
.(5.5)

By Lemma 2.1, the term R̃d(0, y − y′) is bounded by c. With y′ ∈ [0, aL] ∩ Z, the
number of terms within the sum is ≤ cL. By Lemma 2.3, the E[ξd(x, y)2] ≤ cL−3.
From these discussions, we conclude the desired bound for Fα. �

Having established Lemma 5.1, we now proceed to bounding S2. To simplify
notation, set

L−2
c∗L

2∑
s=1

f(x(s), y(s)) := Σ∗
L(f).

First, recall from (3.11) and (3.8) that S2 involves the term φ(x, y)L∇xφ(x, y) and
φ(x, y)L∇yφ(x, y) via Dd(x, y;φ). From Theorem 1.2 and (2.15), we have that
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‖φL − φL‖C(R2
+) → 0, as L → ∞. From this, together with the bound (2.13) on φ

and the bounds on Rd from Lemma 2.1, we see that

Σ∗
L

(
R̃d

ij ·
(
γxφL∇xφ− γxφL∇xφ+ γyφL∇yφ− γyφL∇yφ

))
−→P 0.

Granted this, instead of showing S2 →P 0, it suffices to show Ŝ2 →P 0, where

(5.6) Ŝ2 := L−2
c∗L

2∑
s=1

R̃d
ij(x(s), y(s)) ·

(
D̂d(x(s), y(s);φ, φ)−Dd(x(s), y(s);φ)

)
,

D̂d(x, y;φ, φ) := γxy · L∇xφ(x, y) · L∇yφ(x, y) + γx · φ(x, y) · L∇xφ(x, y)(5.7)

+ γy · φ(x, y) · L∇yφ(x, y).

Now, insert the expressions (5.1) for L∇xφ(x, y) and L∇yφ(x, y) into the r.h.s.
of (5.7), and plug the result into (5.6). Expanding the result accordingly, we have
that, for some bounded, deterministic fBB , fBF , gBF , . . . : Z

2
>0 → R,

Ŝ2 = Σ∗
L

(
fBB(BxBy)

)
+Σ∗

L

(
fBBx + gBBy

)
+Σ∗

L

(
fBFBxFy + gBFByFx

)
+Σ∗

L

(
fFFx + gFFy

)
+Σ∗

L

(
fFFFxFy

)
:= KBB +KB +KBF +KF +KFF .

Write ‖ · ‖k := (E[| · |k])1/k for the k-th norm. By triangle inequality and Cauchy–
Schwarz inequality, for p ≥ 1,

‖KBB‖p ≤ Σ∗
L

(
|fBB| · (‖Bx‖2p‖By‖2p)

)
,

‖KB‖p ≤ Σ∗
L

(
(|fB|+ |gB |) · (‖Bx‖p + ‖By‖p)

)
,

‖KBF ‖p ≤ Σ∗
L

(
(|fBF |+ |gBF |) · (‖Bx‖2p‖Fy‖2p + ‖By‖2p‖Fx‖2p)

)
.

Given that fBB and fBF are bounded, applying Lemma 5.1 gives ‖KBB‖1, ‖KB‖2,
‖KBF ‖1 → 0.

It now remains to show that KF ,KFF →P 0. From (5.5) and (2.3), it is not
hard to check that E[Fx(x, y)

2] �→ 0 (so our bound in Lemma 5.1 is sharp). Given
this situation, unlike in the preceding, here we cannot apply triangle inequality to
pass ‖ · ‖1 into the sum Σ∗

L. Instead, we need to exploit the averaging effect of Σ∗
L.

This is done in the following lemma, which completes the proof.

Lemma 5.2. Given deterministic f : Z2
>0 → R and a < ∞, we have that

E
[(

L−2
∑

x,y∈[0,aL]∩Z

f(x, y)Fα(x, y)
)2]

≤ c(a)L−1‖f‖2L∞(Z2
>0)

, α = x, y,(5.8)

E
[(

L−2
∑

x,y∈[0,aL]∩Z

f(x, y)Fx(x, y)Fy(x, y)
)2]

≤ c(a)L−1‖f‖2L∞(Z2
>0)

.

(5.9)

In particular, ‖KB‖2 + ‖KFF ‖2 → 0.

Proof. Fix a ∈ [1,∞) and f : Z2
≥0 → R. To simplify notation, throughout the proof

we write c = c(a) and always assume (without explicitly stating) that variables
x, y, x1, etc., are in [0, aL] ∩ Z.
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We begin with the bound (5.8). Take α = x to simplify notation. Calculate
the l.h.s. of (5.8) from (5.3). By Lemma 2.1, the variables ξd(x, y), x, y ∈ Z

2
>0 are

uncorrelated, so

l.h.s. of (5.8)

= L−2
∑

(x1,y1),(x2,y2)

∑
y′
1,y

′
2

( 2∏
i=1

f(xi, yi)R̃d(0, yi − y′i)
)
E

[
ξd(x1+1, y′1)ξ

d(x2+1, y′2)
]

= L−2
∑

(x1,y1),(x2,y2),x1=x2

∑
y

( 2∏
i=1

f(xi, yi)R̃d(0, yi − y)
)
E

[
ξd(x1 + 1, y)2

]
.

By Lemma 2.1, the Riemann function R̃d is bounded, and by Lemma 2.3,

E[ξd(x1 + 1, y)2] ≤ cL−3.

With xi, yi, y ∈ [0, aL] ∩ Z, the number of terms within the sum is ≤ cL3+1. From
this we conclude that

l.h.s. of (5.8) ≤ cL−2L3+1‖f‖2L∞(Z2
>0)

L−3 ≤ cL−1‖f‖2L∞(Z2
>0)

.

We now move on to (5.9). Similarly to the preceding, we calculate

l.h.s. of (5.9) =
∑

(x1,y1),(x2,y2)

∑
x′
1,x

′
2,y

′
1,y

′
2

( 2∏
i=1

f(xi, yi)R̃d(0, yi − y′i)R̃d(xi − x′
i, 0)

)

·E
[ 2∏
i=1

ξd(xi + 1, y′i)
2∏

i=1

ξd(x′
i, yi + 1)

]
.

(5.10)

To bound the r.h.s. of (5.10), we proceed by discussing the relative location of the
following four points where ξd is evaluated:

(x(s1), y(s1)) := (x1 + 1, y′1), (x(s2), y(s2)) := (x2 + 1, y′2),

(x(s3), y(s3)) := (x′
3, y3 + 1), (x(s4), y(s4)) := (x′

4, y4 + 1).

Here, si ∈ Z>0 denotes the order of the point under the linear ordering (3.1). For
example, if (x2+1, y′2) = (2, 2), s2 = 3. Let s∗ = max{s1, . . . , s4} denote the maxi-
mal order among the four points, and let G (t) := σ(ξd(x(1), y(1)), . . . , ξd(x(t), y(t)))
denote the canonical filtration of ξd(x, y) under the linear ordering (3.1).

(1) The point (x(s∗), y(s∗)) is separated from the other three points. In this
case, first take conditional expectation E[ · |G (s∗ − 1)]. With the aid
of (2.2), we have

E
[ ∏
s∈{s1,...,s4}

ξd(x(s), y(s))
]
= E

[ ∏
s 
=s∗

ξd(x(s), y(s))E
[
ξd(x(s∗), y(s∗))|G (s∗ − 1)

]]
= 0.

(2) The point (x(s∗), y(s∗)) is identical with another point, and the other two
points are separated. Take s1 = s2 > s3 > s4 to simplify notation, and
other permutations follow exactly the same. In this case, take conditional
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expectations E[ · |G (s1 − 1)], E[ · |G (s3 − 1)], and E[ · |G (s4 − 1)] in order.
Using Lemma 2.3 for k = 2, 1, 1, respectively, we have

E
[ ∏
s∈{s1,...,s4}

ξd(x(s), y(s))
]
≤ cL−2−1L−1−1L−1−1 = cL−7.

(3) The point (x(s∗), y(s∗)) is identical with another point, and the other two
points are identical. Take s1 = s2 > s3 = s4 to simplify notation, and
other permutations follow exactly the same. In this case, take conditional
expectations E[ · |G (s1 − 1)], E[ · |G (s3 − 1)] in order. Using Lemma 2.3
for k = 2, 2, respectively, we have

E
[ ∏
s∈{s1,...,s4}

ξd(x(s), y(s))
]
≤ cL−1−2L−1−2 = cL−6.

(4) The point (x(s∗), y(s∗)) is identical with two other points, and the fourth
point is separated. Take s1 = s2 = s3 > s4 to simplify notation, and
other permutations follow exactly the same. In this case, take conditional
expectations E[ · |G (s1 − 1)], E[ · |G (s4 − 1)] in order. Using Lemma 2.3
for k = 3, 1, respectively, we have

E
[ ∏
s∈{s1,...,s4}

ξd(x(s), y(s))
]
≤ cL−1−3L−1−1 = cL−6.

(5) All four points are together. Using Lemma 2.3 for k = 4 gives

E
[ ∏
s∈{s1,...,s4}

ξd(x(s), y(s))
]
≤ cL−1−4 = cL−5.

Now, with xi, yi ∈ [0, aL] ∩ Z, the number of terms within the sum in (5.10) is
of order L8. Each contraction of points reduces the number of terms by L−2.
For example, the number of terms corresponding to case (2) is ≤ cL8−2, because
(x(s∗), y(s∗)) being joined once amounts to contracting one point. Following this
line of reasoning, the number of terms within each case (2)–(5) is bounded by cL6,
cL4, cL4, cL2, respectively. From these discussions, we bound the r.h.s. of (5.10)
by

l.h.s. of (5.8) ≤ cL6−7 + cL4−6 + cL4−6 + cL2−5 ≤ cL−1.

This concludes the proof. �
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