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In addition to having a detailed understanding
of the artifacts they intend to create, designers
need to guide the software tools they use.

BY STEFAN SEIDEL, NICHOLAS BERENTE, ARON LINDBERG,
KALLE LYYTINEN, AND JEFFREY V. NICKERSON

Autonomous
Tools

and Design:

A Triple-Loop
Approach to
Human-Machine
Learning

DESIGNERS INCREASINGLY LEVERAGE autonomous
software tools that make decisions independent of the
designer. Examples abound in virtually every design
field. For example, semiconductor chip designers

use tools that make decisions about placement and
logic checking. Game designers rely on software that
generates initial drafts of virtual worlds. Autonomous
tools employ artificial intelligence methods, including
machine learning, pattern recognition, meta-heuristics,
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key insights

B Autonomous tools are able to generate
remarkable design outcomes, but
designers using them also need to change
the way they do their design work.

m Designing with autonomous tools requires
that designers understand and actively
interact with the “mental models” of the
tools, in addition to the design artifact
and the design process, what we call the
“triple loop” model of learning.

m Designers working with autonomous
tools need to build capabilities
described here in terms of framing,
evaluating, and adjusting to navigate
this new design process.
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and evolutionary algorithms to gen-
erate design artifacts beyond any hu-
man’s capabilities.

Anaive view suggests these tools will
someday replace human designers in
the design process. An alternative per-
spective is that humans will continue
to play an important role but also that
thisrole is changing. To account for the
changing role of humans in design pro-
cesses powered by autonomous tools,
we describe in this article a “triple-loop
approach” to human-machine learn-
ing. Increasing amounts of design ac-
tivity are most certainly being carried

out by autonomous tools, but humans
must still actively frame, evaluate, and
adjust the “mental” models embed-
ded in autonomous tools, in the form
of algorithms.” Organizations employ-
ing autonomous tools in their design
processes must thus account for these
activities in their design processes.

a We say “mental model embedded in an au-
tonomous tool” to indicate that just as hu-
man designers have mental models that guide
their design activity, including their use of
tools, autonomous tools also have models that
guide their design activity. Both types of model
change over time.
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In what follows, we describe our
triple-loop approach, followed by illus-
trative examples from research into the
design of semiconductors, video games,
software interfaces, and artificial intelli-
gence. We conclude by identifying prac-
tices that enable designers to frame,
evaluate, and adjust the mental models
embedded in autonomous tools.

Design as Triple-Loop
Human-Machine Learning

Design processes are a form of knowl-
edge-intensive work that relies on de-
signers’ capacity to learn. In his semi-
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nal work, Chris Argyris>** explained
how humans, in knowledge-intensive
work, follow a double-loop process of
learning. In the context of design work,
the first loop involves learning about
the design artifact. As designers experi-
ment with alternatives, they correct er-
rors and respond to feedback on design
results (see Figure 1, loop 1). The sec-
ond loop involves a designer’s reflec-
tion on the ongoing process of design.
Over time, designers learn, through re-
flection, to adjust their approaches and
discover new processes and perhaps in-
corporate new tools that help them ex-
pand their thinking around the process
of design. The second loop captures
meta-level learning about the design
process (see Figure 1, loop 2), highlight-
ing how designers reflect on the mental
models—goals, cognitive rules, and
reasoning—they apply.

Triple-loop human-machine learn-
ing occurs whenever humans and
autonomous computational tools in-
teract in generating design outcomes.
It is important for designers to under-
stand how their own mental models in-
teract with mental models embedded
in the logic of autonomous tools. This
process is distinct from conventional
design work where tools are limited
to supporting ongoing design tasks
but do not play an independent role in
shaping design outcomes.

Argyris calls mental models “mas-
ter programs.” In the case of design-
ing with autonomous tools, the mas-
ter program of the designer—the
“designer’s mental model”—may not
be aligned with the master program of
the autonomous tool, or “autonomous
tool mental model,” for a variety of rea-
sons, including, for example, that the
design activity usually involves more
than one person; the designer using
the tool is probably not the same per-
son who programmed the tool; mul-
tiple designers may have different con-
ceptions about what a master program
does; and these conceptions may differ
from what the programmers intended.
Moreover, programmers may move on
to other projects, along with the de-
signers who originally informed the
design of the tools; increasingly, nei-
ther the tool programmers nor the de-
signers understand the implications of
their decisions on what the tool is able
to do. The mental models of designers

Itis important

for designers

to understand how
their own mental
models interact
with mental models
embedded in

the logic of
autonomous tools.
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and those embedded in autonomous
tools as master programs for design
activity thus capture a mutual learn-
ing process, suggesting a third loop in
the classic model of the design process
(see Figure 2).

The first loop in the triple-loop
model is similar to the original loop
in the double-loop model, involving
designers and tools interacting to
generate design outcomes. However,
in the triple-loop model, it is the tool
that primarily generates the design
alternatives. A given configuration of
the tool generates alternatives from
a set of input parameters and then
evaluates them according to a set of
predefined criteria.

The second loop can take two alter-
native forms—human learning or ma-
chine learning—as in Figure 2, loop 2a
and loop 2b. From a human perspec-
tive, the second loop involves the hu-
man designer evaluating the alterna-
tives and modifying input parameters,
tool settings, and evaluation criteria
for a given design problem in order
to run the next round of generating
design alternatives. The second loop,
from a machine perspective, involves
the program learning from designer
feedback in the design process in order
to modify itself and improve its model
so it can generate better alternatives in
subsequent rounds of design activity.

The third loop involves human
designers learning about the men-
tal model embedded in the tool and/
or the tool learning about the human
designers’ mental models—through
either explicit feedback or analyzing
the usage patterns of the human de-
signers. The machine models of de-
signers are sometimes called “user
models.”* When machines run learn-
ing algorithms, the human designers
may not fully understand the compu-
tations. What they thought the tool
would do may or may not be what it
actually does or was even designed
to do, though designers collect feed-
back that can help them align their
mental models and the mental mod-
els embedded in the tool (such as by
adjusting the algorithm used). This
process of learning about the mental
model embedded in the autonomous
tool and modification of the tool con-
stitutes a second meta-level of learn-
ing during design processes involving



autonomous tools. Moreover, the tool
may change its own model as it relates
to what the human wants and how the
human perceives the tool; this may
result in changes in the interface or
the design parameters being applied.
Much like two people with different
mental models learn from each other
and work together to reconcile their
mental models, autonomous tools
and humans likewise have different
models related to design goals and
processes they may seek to reconcile
through various loops of learning.

Ilustrations
Here, we provide four examples of
triple-loop human-machine learning,
including in semiconductor design,
software interface design, video game
design, and artificial intellgence de-
sign. They highlight different aspects
of the interaction between designers
and autonomous tools.
Semiconductor design at Intel and
AMD. Since the early 2000s, a new
breed of tooling strategies based on
genetic algorithms has emerged in
semiconductor design, commonly
called “physical synthesis.” Such tools
offer a powerful way to improve the
productivity of physical chip design
by autonomously generating full lay-
out solutions for whole sections of a
chip (such as caches and USB ports).
Major semiconductor manufacturers,
including Intel and AMD, use the pro-
gram-synthesis approach to generate
full-layout designs of particular chip
sections for a given set of parameter
values. A program-synthesis designer
starts each design cycle by defining
a new set of design-parameter values
that specify directions and constraints
for the design search to be carried out
by the tool (see Figure 3). When a solu-
tion is found through such search, the
tool autonomously delivers a complete
design solution for the given layout
problem. After each such cycle, the
designer manipulates the design by
modifying the parameters based on
the design outcomes generated during
the previous cycle. Designers refer to
the automated generation of design al-
ternatives as “experiments” for a given
set of parameters and interact with the
algorithmic results in order to evaluate
alternatives, given the input param-
eters and design goals (see Figure 2,

loop 1). Designers then learn from the
experiments in a way that helps them
improve the input parameters for the
next round of experiments, as in Figure
2, loop 2. Developers of the algorithms
interact with the chip designers in or-
der to learn how the chip designers
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change the parameters interactively
after evaluating design outcomes. The
developers learn about the effects of
the mental models embedded in the
tools, as well as the designers’ mental
models. This involves learning about
the specific assumptions of the design-

Figure 1. Double-loop learning; based on Argyris.>*

e

Figure 2. Triple-loop human-machine learning with autonomous tools.
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Figure 3. Computational design tool for semiconductor design.

“Quite Universal Circuit Simulator” is hosted on Sourceforge (http://sourceforge.net/projects/qucs/)
and made available under the GNU General Public License version 2.0.
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ers while rooting out inefficiencies of
the tools by updating and rewriting the
source code for the tools, as in Figure 2,
loop 3. Tool developers then carefully
calibrate the mental models embed-
ded in the autonomous tool to fit with
the mental models of the designers.
Software interface design at Adobe
Labs. Interface designers today make
extensive use of machine learning
to improve interface designs. For ex-
ample, researchers at Adobe Labs cre-
ated tools intended to control complex
user processes.”® In particular, visual
designers wanted to be able to control
procedural models that render com-
plex shapes (such as trees and bushes)
by growing them artificially from digi-
tal seeds into mature plants. Designers
had difficulty harnessing these models
because the array of approximately 100
parameters controlling such a growth
process had to be manipulated in
unison, thereby making it an incred-
ibly complex problem space. Machine
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learning provided a solution, enabling
Adobe Labs’ developers to reduce this
high-dimensionality problem to a
three-dimensional space comprehen-
sible by human designers. Moreover,
the three-dimensional space was con-
trollable through three slider bars. Us-
ing this intuitive interface, designers
can more easily configure the model
to match a given image. The example
shows that autonomous tools do not
have to correspond precisely to the
mental models of humans. Instead,
they often provide an expressive but
low-dimensional interface. Humans
learn through interacting with this
interface, and the machine and the
human both participate in learning.
The interface amplifies the ability of
a human designer to explore a large
design space. In this design process,
the autonomous tools create an inter-
face a designer can use to generate al-
ternative outputs, as in Figure 2, loop
1. Through practice, designers learn
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how to control the outputs (see Figure
2, loop 2). Over time, the designer’s ex-
perience can be used to refine the in-
terface, as in Figure 2, loop 3. In such
user-interface design, the machine-
learning system begins with the goal
of reducing the dimensionality of the
interface from 100 dials to three slider
bars. Although the mental model of the
human can never be entirely aligned
with the underlying mental model em-
bedded in the tool due to the limits of
human cognition, the new interface
provides a level of abstraction neces-
sary for effective learning.

Designing Landscapes at Ubisoft.
Tools have a long track record in vid-
eo game development. Algorithmi-
cally generated content may include
a variety of game elements, including
textures, buildings, road networks,
and component behaviors like explo-
sions.” In extreme cases, autonomous
tools are able to generate large parts
of the game content that only later are




combined with specific handcrafted
elements. Hence, the interplay of auto-
mated and manual generation of con-
tent is crucial to game development,
as humans are looking for a rich and
unique experience, and undirected
automated generation could lead to re-
sults that are not perceived as authen-
tic. Ubisoft’s Ghost Recon Wildlands, an
action-adventure game originally pub-
lished in 2017, is an example in which
designers used autonomous tools to
generate the game environment.'” De-
signers handcrafted elements in the
game environment while algorithms
procedurally generated much of the
background content. In this process,
the tools would generate, say, large
amounts of detailed terrain; the Fig-
ure 4 screenshots show how the terrain
evolved as a road network was added
procedurally, based on a few waypoints
on a landscape. The designers would
then modify the terrain further and
create extra detail.

Some areas of the game environ-
mentwere still generated in a tradition-
ally manual fashion. The combined
process required selecting appropri-
ate tools and models that would align
with the game idea in a way that was
shared by a team of Ubisoft designers
and developers. This example of “hy-
brid” development highlights how,
although the tool autonomously gen-
erated significant portions of the de-
sign, designers still had a significant
role in the design process. In such a
“hybrid” model of autonomous de-
sign, the tool and the designer jointly
generate the design in a given prob-
lem space (see Figure 2, loop 1); based
on feedback generated by the tool, de-
signers make adjustments and design
decisions (see Figure 2, loop 2); and
the team learns holistically from the
experience of using the tool, reflecting
on the alignment of their mental mod-
els with the outcomes of the use of the
tool (see Figure 2, loop 3).

Artificial intelligence design and At-
ari games. Many researchers today en-
gage in designing artificial intelligence
solutions, using machine learning in
their solutions. For example, research-
ers recently created an artificial intel-
ligence system to play Atari games.
The experimental system was a deep
convolutional neural network with
inputs wired to a video game display

Tool developers
then carefully
calibrate the mental
models embedded
in the autonomous
tool to fit with

the mental models
of the designers.
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and outputs wired to a joystick control-
ler.’® The system used a reinforcement-
learning algorithm to train itself. After
training, it scored as well or better than
humans on 29 out of 49 Atari games.
But some games proved challenging
for the algorithm, and games that re-
quire a player to acquire objects early
in the game that will prove useful only
near the end were especially difficult
for the algorithm. Taking such deci-
sions across long time scales is more
difficult to learn than are subsecond
reactions to, say, attacking enemies.
As a result, the designers of the system
made modifications to the training al-
gorithm that significantly increased
its performance on difficult games,
though they still require hundreds of
hours of training.® In this case, when
the algorithm is exposed to gameplay
events, it learns, as in Figure 2, loop 1).
When the machine fell short on cer-
tain games, the designers adjusted the
training regimen (see Figure 2, loop 2).
In creating the system, the designers
first created an environment tools ex-
plore and receive feedback on, similar
to the way humans interact with the
physical environment.

At a higher level of abstraction,
the process can be viewed as part of
a meta learning process in which hu-
mans create autonomous machines,
monitor their progress, and iterate
across multiple configurations of the
machines while ultimately confront-
ing the limits of both machine and hu-
man intelligence (see Figure 2,loop 3).
The shortcomings of the algorithm in-
deed pose a challenge some research-
ers argue are best addressed through
techniques developed in cognitive sci-
ence.’ Even the use and development
of autonomous systems are examples
of triple-loop learning, as these sys-
tems need to be designed, monitored,
and improved by humans.

Designers and Triple-Loop

Design Activities

Traditional designers intentionally
craft artifacts by applying their deep
knowledge of materials and tools,
moving them forward toward a pre-
ferred, future condition.'! However,
autonomous tools change the role
of designers, including focus, activi-
ties, and required skills. Designers
are increasingly focused on manag-
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Figure 5. Shifting control in design processes.
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Description

Framing Parameterization

Designers have a deep understanding of the
software tool and its parameters, as well as some
understanding of the consequences of setting
specific parameters; and

They formulate hypotheses with regard to what sets
of inputs will have the desired design consequences
in lieu of carrying out the entire design process in an
incremental, iterative, primarily manual fashion.

Process
Analysis

Evaluation

Designers evaluate the overall design outcome,
investigating sources of misalignment, as in
assumptions embedded in the tool; and

They formulate hypotheses about the process and
test whether they hold.

Adjustment Modifying

Algorithms

Designers continuously align their mental models with
mental models embedded in the autonomous tools;

They consider how changes in the constraints and
propensities of the tool may require changes in their
mental models in terms of assumptions and goals; and

They consider how changes in assumptions and goals
may require changes in the mental models embedded in
the autonomous tools.

ing tools—and their embedded men-
tal models—and understanding the
often-surprising behaviors of tools as
they generate design artifacts. This
new type of designer needs a better
understanding of the tools, in addi-
tion to a detailed understanding of
the underlying anatomy of the artifact
to be designed. The locus of control
of the design process is moving away
from the designer toward the tool and
its underlying model. An important
causal force behind the tool is the tool
designer who defines and implements
the algorithmic choices. The tool de-
signer thus creates the initial version
of the mental model embedded in the
tool, a model that will change as the
tool itself learns. As illustrated in our
examples, there can be different de-
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grees to which control shifts toward
the tools and away from the designer
(see Figure 5).

Rather than incrementally build
and modify design artifacts, designers
become engaged in new design prac-
tices that fall into three categories:
framing, evaluation, and adjustment.

Framing. “Framing” occurs as de-
signers, based on their mental mod-
els, construct their understanding
of the problem situation or task and
thus how the tool, with its underly-
ing, embedded mental model, should
be used, thereby making decisions
about the solution space. The actual
design activity is thus informed by
both the mental model of the design-
er and the mental model embedded
in the autonomous tool.

VOL. 62 | NO.1

Framing in the examples outlined
earlier notably involves specification
of varying sets of inputs that can in-
clude numerical and non-numerical
variables, thus enabling the tool to
do its work. This is the process of
“parameterization,” which requires
a deeper understanding of the tool,
as well as an intuitive understand-
ing of both the problem space being
worked on and the solution space
of the tool so hypotheses can be for-
mulated with regard to what sets of
inputs will have the desired design
consequences. Parameterization thus
precedes the actual design process
(see Figure 2, loop 1) and follows the
evaluation of the design product.

Evaluation. Once the autonomous
tool has generated outcomes, these
outcomes must be evaluated to in-
form decisions about further design
actions (see Figure 2, loop 1), as well
as to inform the mental model of the
designers (see Figure 2, loop 2a) and
the mental models embedded in au-
tonomous tools being used (see Fig-
ure 2, loop 2b). While loop 1 activi-
ties lead to a different use of the tool
through, say, a different set of input
parameters, loop 2 activities lead to
changes in mental models that affect
future design decisions.

As parameters can be changed and
various design alternatives explored,
autonomous tools allow more itera-
tions of the design outcome and thus
for experimentation. For instance,
Ubisoft’s video game Ghost Recon Wild-
lands presents an experience to users
that is possible only because a rela-
tively small team of designers could ex-
perimentwith various computationally
generated design outcomes.

Because the algorithmic process-
es of autonomous tools are typically
complex, they tend to overwhelm hu-
mans’ bounded cognitive abilities.
It is difficult for human designers to
predict what the tools will produce, so
they must be able to evaluate the de-
sign products generated by the tool.
Such evaluation may range from spe-
cific aspects of the outcome (such as
elements in the game space of a video
game) to some holistic outcome (such
asin the process of generating the lay-
out for a semiconductor chip). Once
a tool has been run, and has gener-
ated outputs, designers evaluate the



outputs in a way that leads to new hy-
potheses with regard to what sets of
input parameters should be tested in
the next batch of experiments.

Adjustment. Evaluation by human
designers can lead to the adjustment
of parameter values (see Figure 2, loop
1) or even to changes in the mental
model embedded in the autonomous
tool, resulting in changes in the algo-
rithms used; moreover, it might also
change the mental models of human
designers in terms of goals, cogni-
tive rules, and underlying reasoning.
Changes of the mental model embed-
ded in the autonomous tool could
change the tool’s constraints and pro-
pensities and require changes to the
mental models of designers; likewise,
changes in the mental models of de-
signers could require changes to the
algorithms and thus the mental model
embedded in the tool. Following each
experiment, designers might thus
have to continuously reconcile their
mental models with the counterpart
models embedded in the autonomous
tool (see Figure 2, loop 3).

In order to change the mental model
embedded in an autonomous tool, de-
signers have to modify the underlying
algorithm. The original mental model
embedded in the tool—the one imple-
mented by the tool designer—can thus
evolve over time.

Competencies related to these de-
sign practices become critically im-
portant for achieving complex design
outcomes. Having a detailed under-
standing of the designed artifact, as
well as of the consequences of specific
local decisions, becomes less impor-
tant. This explains why, in the context
of, say, chip design, we see software
engineers displacing electrical engi-
neers with a deep understanding of
physical aspects of chip design. Be-
cause the design is increasingly medi-
ated by software that needs to be pa-
rameterized and evaluated, designers’
software skills become crucial; the
table here outlines key implications
in terms of emergent interrelated de-
signer activities.

Some substitution of human de-
sign activity through autonomous
tools is indeed occurring. To a cer-
tain degree, demand for specific,
manual-type competencies in design
professions, including software de-

velopment, is decreasing, while the
demand for skills focused on how to
work with software tools is increas-
ing. Organizations need to engage
more effectively with new forms of
autonomous tools supporting design
processes. This is not simply a shift
of tasks from humans to machines
but a deeper shift in the relationship
between humans and machines in
the context of complex knowledge
work. The shift puts humans in the
role of coaches who guide tools to
perform according to their expecta-
tions and requirements (see Figure
2, loop 1) or in the role of laboratory
scientists conducting experiments to
understand and modify the behavior
of complex knowledge artifacts (see
Figure 2, loop 2 and loop 3).

The Road Ahead
Engaging with autonomous tools re-
quires reshaping the competencies
designers need. Designers envision
certain results and thus need to inter-
actwith autonomous tools in ways that
help them realize their design vision.
At the same time, the use of autono-
mous tools opens unprecedented
opportunities for creative problem
solving. Consider the example of vid-
eo game production, where autono-
mous tools are increasingly able to
procedurally generate artifacts of a
scope and scale that was not possible
in the past. Future designers will con-
stantly be challenged to rethink their
mental models, including their gen-
eral approach to design. The continu-
ous reconciliation of mental models
embedded in both designer cogni-
tion and their tools is an extension
of traditional design processes that
involve artful making where human
actors gradually adjust their mental
models to converge on solutions.’
The proposed three-loop model
contributes to the ongoing debate on
how artificial intelligence will change
knowledge work, challenging knowl-
edge workers to operate at a different
level. Designers may become increas-
ingly removed from the actual artifact
but still use tools to create artifacts of a
complexity never imagined before.
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