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1. Introduction
1.1. Overview of results

The aim of this paper is to study stability of stationary solutions to a class of non-
local semilinear parabolic equations applying the Feynman-Kac formula. Namely,
we wish to investigate bounded solutions to the following equation

%u(x,t) = (Lyu)(z,t) + V(u(z, t))u(z,t), =R t>0, (1.1)
where Ly = J«u— | J||p1u, cf. (1.3), is a generator of a pure jump Markov process,
V. Cp(RY) — Cy(R?) is a bounded locally Lipschitz mapping, and the initial condi-
tion u(-,0) € Cyp(R?) belongs to a neighborhood of u = 0. Note that the Feynman—
Kac formula for diffusion processes with time-dependent potentials is known (see
[8, Theorem 5.7.6]). However, the corresponding result for general Lévy processes
seems to be proved only recently in [12], where compactly supported smooth initial
conditions were assumed. We relax assumptions on the initial conditions, consider-
ing bounded continuous functions C,(R¢) and prove the Feynman-Kac formula for
the generator L; (see Propositions 2.1 and 2.2). We propose also sufficient condi-
tions for the asymptotic stability of the zero solution to (1.1) uniformly in space
(see Theorem 2.1), and apply this to a particular equation

%u(x, t) = s (Loyru)(x,t) + 2 (0 — (a= *u)(z,t))u(z, t), (1.2)

where »*,m > 0, 0 := ”;—im > 0, and a™ are probability kernels (see [1, 4, 6, 9,
10, 13]). Equation (1.2) may be considered as a non-local version of the classical
logistic equation (see (3.2) below). There are two constant solutions to (1.2), u = 0
and u = 0. Different properties and the long-time behavior of solutions to (1.2),
were considered in [5].

We are interested to find sufficient conditions which ensure that a solution
to (1.2) converges to the constant nonzero solution v = 6 uniformly in space.
Applying Theorem 2.1, we prove (see Theorem 3.4) that a bounded initial con-
dition, which is separated from zero, tends to 6 > 0 exponentially fast if only
Jo(x) = »tat(z) — 03 a(x) > 0, for all x € R% The condition on Jy may be
relaxed under more restrictive assumptions on the initial condition. Namely, intro-
ducing a parameter in the initial condition and considering the analytical decom-
position of the corresponding solution with respect to the parameter, one can show
that if ||Jg||z1 < > and if the initial condition lies in a ball centered at 6, then the
solution tends to 6 exponentially fast (see Theorem 4.1). An example of a parame-
ter constructed by a stationary random field provides an enhanced asymptotic for
the convergence (see Theorem 4.2).

1.2. Basic notations

Let B(R?) be the Borel o-algebra on the d-dimensional Euclidean space R?, d > 1.
Let Cyp(R?) and By(R?) denote the spaces of all bounded continuous, respectively,
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bounded Borel measurable functions on R?. The functional spaces become Banach
ones being equipped with the norm

[v]lo = sup [v(z)].
z€ERC

For any J € L'(RY) := L'(R%, dx) and v € B,(R?), one can define the classical
convolution

(o)) = [ I =)oty

Let J € L'(R?) be non-negative. Consider the following bounded operator (in
any of the Banach spaces above)

(Lyv)(z) = 9 J(z = y)(v(y) —v(@))dy = (J *v)(x) — po(z), (1.3)

where = [, J(y) dy > 0.

Let X; be a jump-process with the state space (R B(RY)) and the natural
filtration F;, = 0(X;|s < t) whose generator is L; (for details see [3]). It is well
known that X; is a Markov process and, for all s, > 0, f € By(R?), the following
equation holds,

B (X111 X0 = ELF (el = [ £ =350y

= (p* f)(X), (1.4)
where p(x,t) is the transition density of X;. Namely, p(z,0) = 6(z) and p(x,t)

satisfies the following equation

o

ot

For an interval I C Ry := [0,00), consider the Banach spaces Cy(I — E) of
continuous E-valued functions on I, where F is a space above, with the norm

(z,t) = (Lyp)(x,t), z€RY t>0.

[[ullr == supl|u(-,t)|[-
tel
For the simplicity of notations, we set, for any 7> > 71 > 0, T' > 0,
Xr, 1, = Cp([T1, Ta), Co(RY)),  Xp = Ko,  Xoo 1= Cp(Ry, Cp(R?)),

with the corresponding norms || - |7,z || - |7, || - |I-

2. The Feynman—Kac Formula and Stability

Let u = u(x,t) describe the local density of a system at the point z € R%, d > 1,
at the moment of time ¢ € R;. Prove now a version of the Feynman-Kac for-
mula for the time-dependent potential and operator Ly, cf. e.g., [2, Theorem 2.5],
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[8, Theorem 5.7.6]. Consider a perturbed equation

%u(x,t) = (Lyu)(x,t) + W(z, t)u(z,t), te][0,T],
(2.1)

u(z,0) = ug(z) € Cp(RY),

where W € Xp. Then, clearly, (2.1) has a unique solution in A7p. The following
theorem states that the solution will satisfy the Feynman—Kac formula.

Proposition 2.1. Let u solve (2.1) for t € [0,T]. Then
t
u(z,t) = E*ug(X;) exp (/ W(Xt_s,s)d8>, reRY te[0,T]. (2.2)
0
Proof. For f € X7, we denote

@@t = [ [ s =t = W) S0 )dyis (2.3
By Duhamel’s formula,
u(z,t) = (pxuo)(x,t) + (Qu)(x,t) = (p* uo)(x,t) + (Q(p * uo + Qu))(x, t)
= (p * uo)(z,) + (Q(p * uo))(x,t) + Q*((p * uo) + Qu)(z,1)

... (by induction)

n

=Y (Q(p*uo))(,t) + (Q" ) (w,1). (2.4)

=0
By (1.4) and (2.4),
(p * uo)(Xt—s,s) = E[uo(X¢) | Fi—s),

Q) (Xier9) = [ [ b0 = s = W 7)o+ ) s
. /OSE[W(Xt_T,T)(p*uo)(Xt_T,T)U:t_s}dT
- /0 B (Xo, 7V Efuo(X0) | Fos| Fos]dr

=E |:U0(Xt)/ W(Xt_T,T)dT|ft_5 s
0

where the last equality holds by the tower rule and Fubini’s theorem. One can
continue then

(Q2(P *ug))(Xi—s, 5)

-/ CEIW(Xs— s 7)(Qp # 10)) (Xer 7| Fr o]
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= /0 E [W(Xt_f, 7)E

(X)) /0 "W a)da|.7-}_7-]

.7:,5_5:| dr
=E |:’LLO(Xt)/ / W(Xt7-7T)W(Xto-,0)d0'd7'|fts:|
0o JO

_ %E {uo(Xt) /0 ) W(XH,T)dTmS}
In the same manner, we can prove, by induction, the following equality
Qs ) (Xirrs) = 1 |10 ([ WX 7))
By (2.4) and (2.5) (with s = 1),

]—"ts} . (2.5)
ulz,t) = S E7(Q7 (p * uo))(Xo, )] + (Q" u)(x, )
j=0

_Ee uo(Xt)21% (/OSW(XS-,—,T)dT> QW) (@ t). (2.6)

We write Q for the operator defined by (2.3) with W substituted by |W|. It follows
easily that the equation similar to (2.5) holds for @. In particular, for ug = 1 and

s =1,
~ ~ 1 t n
(@) =B @Kot = 5 | ([ Wt nlar) .
! 0
Hence
n An ™ n
1Q™ullr < 1Q"1Ir llullr < — Wiz llullz-

As a result, for n — oo, (2.6) yields (2.2), that completes the proof. O

Consider now a general semi-linear evolution equation with the generator L :
0
—u(z,t) = (Lyu)(x,t) + V(u(z, t)u(z,t), t>0
ot (2.7)
u(z,0) = up(z) € Cp(RY),
where V : Cy(R?) — Cy(R?) is a bounded locally Lipschitz mapping, i.e.
V(@)oo < Mellulloc, [[V(u) = V(0)]loo < Mc[lu—vl|oo, (2.8)
provided that ||u]|ec < ¢, [[v]|oc < ¢. Then, evidently, [|[V(u)u — V(v)v]leo < (1 +

¢)M.||u—v]||0o, and hence, by e.g., [11, Theorem 1.4], there exists a Tipax < 00, such
that the initial-value problem (2.7) has a unique mild solution u on [0, Tiax ), i.€.

u that solves the integral equation

w(z, t) = e ug(z te(t_s)L" u(z,s))u(x,s))ds.
(2,1) o+ [ (V (u(z, $))ulz, 5))d
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Moreover, Tiax < oo implies that limyyr,,, [|u(-,t)]|c = 00. Note also that since
Ly is a bounded operator, then the mild solution will be classical, i.e. u € X, for
any T < Tyax, and u(z, ) is differentiable in ¢ w.r.t. the norm in C,(R%).

By Proposition 2.1, the following Feynman—Kac-type expression holds for the
solution to (2.7).

Proposition 2.2. Let (2.8) hold and u be the unique classical solution to (2.7) on
[0,T], T < Tax . Then

u(z,t) = E® {uo(Xt)eXp (/Ot V(u(th,S))d8>], reRY tel0,T]. (2.9)

Denote
Xt ={f € Xk < f(x,t) <Lz e Rt €[0,T]}, kl€R.

The following theorem provides sufficient conditions for the stability of the station-
ary solution u = 0 to (2.7),

Theorem 2.1. Let there exist p : R> — R such that, for any k <0, 1> 0,

(Vi) (x,t) < —plk,1), zeR? te[0,T], ey,
(2.10)
p(k, 1) < p(Ak, M), A el0,1].

Suppose that ug € E is such that, for some ¢ <0 and d > 0,
c<up(x)<d, zeR%

Then, for any T > 0, there exists a unique uw € Xp, which satisfies the Feynman—
Kac formula (2.9). Moreover, u € X&%, ||u(-,t)|| g does not increase in time, and if
p(c,d) >0, then ||u(-,t)||g converges to zero exponentially fast, namely,

1
lim sup M < —p(0,0). (2.11)

t—oo

Proof. Let us introduce the following operator: we set, for a w € X,

[Tw,](z) = E* [uo(n(t))exp ( /0 t[ths](n(s))ds)]7 reRY tel

Then, for any w € quﬂ’d7
ce D) < [Wwy](z) < de” Dz eRY te0,T). (2.12)

Since p is non-negative, one gets \I'(X;’d) C X;’d. Since [e™* —e Y| < |z —y| for all
x,y > 0, then, for all v,w € Xé’d, t € [0,T], the following estimate holds

[[Ywe](z) — [Woi|(z)] < dTM|lv — w|o,
where M = M ax{—c,q} is defined by (2.8). Hence ¥ is a contraction map on X;:d
for T = . Therefore, there exists a fixed point u € X:,f’d. By (2.12), the function
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u satisfies the following estimate
ce D) <z t) < de D p e R tel0,T).

Hence, ¢; < u(z,T) < di, z € RY, where ¢; = ce TP d; = de=TP(D) We can
repeat the proof on [T, 2T to extend u to ng’fi , so that the following estimate holds

cre~t=Dplend) < u(z,t) < dle_(t_T)p(cl’dl), zeRY te [T,2T].

By induction, u can be extended to Xﬁ’qﬂi. Then, for any n € N, z € R? and
te[nT, (n+1)T],

cpe” EmnTIp(en.dn) < u(x,t) < dne_(t_”T)p(c"’d"), (2.13)

where ¢g = ¢, dy = d, ¢y, = cp_re” TPlen—1:dn-1) and d,, = d,,_je TP(en—1,dn-1)
Hence, there exists a unique u € X%, such that (2.9) and (2.13) hold. Since p is
non-negative, {¢,} is increasing and {d, } is decreasing. Moreover,

Cn=Xen_1, dn=2Ady_1, \=e TPln-1dn-1) g 1]

together with (2.10) yield that p(ck, di) < p(cp,dy), for k < n. Therefore, ||u(-,t)|| &
does not increase in time. Let us prove by induction the following inequalities

cpeT=Rplends) < o <k <p, (2.14)
dpe~T=Rp(eeds) > 4 <k <n. (2.15)

The case n = 1 is obvious. Let (2.14) and (2.15) hold for 0 < k& < N. We prove
them for 0 < k < N + 1. Since ¢y < 0, we have

CN41 = CNe_Tp(CN’dN) > CNe—TP(Cmdk) > Cke_"‘iT(N"'l_k)p(Ck»dk)'

Hence (2.14) is proved. Similarly, the following estimate yields (2.15)

dyi1 = dNe—TP(CN»dN) < dNe—TP(Cmdk) > dke_T(N+1—k)p(Ck7dk),

where 0 < k£ < N. By (2.14) and (2.15) with &k = 0, both {¢,} and {d,} converge
to zero exponentially fast if only p(e, d) > 0. Therefore, for ¢ € [nT, (n + 1)T7,

In |luel]  Inmax{d,, —cn}
t - Tn '
and, by (2.14), (2.15), we have, for k > 0,

1
lim sup mal L ] <
t—00 t

—p(Ck, dk)'

As a result, (2.11) holds, because p(cy,dy) is increasing in k. This proves the
theorem. O
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3. Spatial Logistic Equation

We will consider the following equation for a bounded function u(x,t), which
describes the (approximate) value of the local density of a system of particles
distributed in R% according to the so-called spatial logistic model. More detailed
explanation and historical remarks can be found in [5, Subsection 6.1]. Namely, let
uy(z) = u(z,t), € R% t € I be a classical solution in E to the equation

s

ot
In particular, u(z,0) = ug(z), * € R%. Here st L,+ is a generator of the underlying
random walk, cf. (1.3):

= s [Lorud)(x) + (367 — m)ug(z) — 3¢ ue(z)(a™ * ug)(z). (3.1)

[Lo+h)(z) = (a* % h)(x) — h(z), zcR%

which spends exponentially distributed random time 7 in each particular position x,
P{r>p}= e*”+p, and it makes a jump x — x + X, thereafter, where the random
variable X has the distribution density a™(z). The constant § = 3" —m > 0
is the difference between the biological rate § of the birth of a new particle and
the mortality rate m. The last term in (3.1) describes the competition between
particles, the potential s~ a~ (z — y) presents the interaction between two particles
located at the points x,y € RY. Equation (3.1) is similar to the well-known logistic
ordinary differential equation:

%0 (1) = putt) = (0, (32)
whose partial solution is the constant 6 := %ﬂ, All other positive solutions tend
exponentially fast to 6. Equation (3.1) has the same solution u(z,t) = 6, 2 € R%,
t > 0 (we suppose fR a*(y)dy = 1). This important particular solution is the
exponentially stable attractor for (3.1). We will study the neighborhood of the
attractor, using variations of ug. Let us denote, for any h € E,

[Fh](z) = (5t —m)h(z) — 3 h(z)(a™ % h)(z), xR

Then (3.1) has the following form

et (0) = 5 (Lol (2) + [Fu(a) v € R, tel, (3.3)
u(z,0) = uo(x) © € R

The analysis of the nonlinear parabolic equation (3.1) will be based on integral
equations. The first of them is given through the standard Duhamel’s formula.

Lemma 3.1. Function u solves (3.3) iff it satisfies the following equation

¢
Up = e tlat ug —|—/ e (t=)x Lyt [Fuslds, tel. (3.4)
0
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This equation has the Volterra form and can be used for the existence—
uniqueness theory (see [5]).

Theorem 3.1. Let ug € E be non-negative. Then, for each T > 0, there ezists a
unique non-negative classical solution to (3.3) in Xr.

Now we will estimate solution to (3.3) from below. Let ug be a constant function
Ug = qo € (0,0)
Then the corresponding solution to (3.3) is the function
B 0
—Bt (0 _ ’

14e 5 (qo )
By Theorem 3.1, this solution is unique. Let us fix x € [0, f]. We make the following
assumption

qt

Jo(x) == staT(2) — ks a"(2) >0, z€R%L (A1)
Theorem 3.2. Let (Al) hold with k= qo € (0,0). Suppose that
'U;O(Qf) > qo, € Rd7

where uy € E. Then the corresponding to uy solution u; to (3.3) satisfies the fol-
lowing inequality

u(x) > q, x€ R?, ¢ > 0.

Proof. Let us fix T > 0. Define v; = eXt(u; — ), t € [0,T], where K will be
defined later. The function v; satisfies the following linear equation

%(w) = [Givi)(z), x€RY te(0,T], (3.5)
volx) = o(x) — g0, ¥ € RY, (3.6)
where, for all w € E,
[Giw] == 2t (at xw) — 3 qi(a™ *w) — 2 wla™ *u) — mw + Kw.

By Theorem 3.1, there exists M > 0, such that
u(r) <M, ze€RY te[0,T).

Define K := »~ M +m. Since ¢; < qo for t > 0, we have, by (A1) with kK = qo, that
[Giw](x) is non-negative for all ¢ € [0, T and for all non-negative w € E. Therefore,

t
ve(x) = exp </ Gsds) vo(z) >0, zeRY t>0,
0

since vg is non-negative. Hence, u¢(z) > q;, * € R, ¢ € [0,T]. Since T is arbitrary,
the same holds for any ¢ > 0. O
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Remark 3.1. (cf. [5, Proposition 3.4]) In a similar way, it can be shown that if
(A1) holds with x = 6, and ug € E is such that 0 < ug(z) < 6, z € R?, then the
corresponding solution satisfies the following inequality

0<wu(z)<6, zeRY t>0.

The following theorem shows, based on the Feynman—Kac formula, that u; sat-
isfies another integral equation.

Theorem 3.3. Let (Al) holds with k = 6. Suppose that u € Xp, T € (0,00], is the
solution to (3.1) with an initial condition ug € E. Then u satisfies the following
formula, for all x € R4, t € [0,T],

(@, t) = 0+ B | (ug(X,) — 0) exp <_%— /Ot(a— . ut_s)(Xs)ds)}
where Xo = .

Proof. Let us denote g, := uy — 6. If u; solves (3.1), then g; satisfies the following
equation

0
%('ZE) = [LJegt](x) — X gia * Gy — ﬂgta S Rd7 te Ia

(3.7)
9(x,0) = go(x) = uo(x) — 0, z € RY,

where L, is defined by (1.3), for J = Jy = »tat—» " 0a~. We set
[Vh)(z) = —» (a~ *h)(z) — 3, ze€RY hekFE.

For such V' and the generator L; = L, of the jump-process X;, we apply Propo-
sition 2.2 to the solution of (3.7)

g(x,t) =E" [go(Xt) exp (/Ot[Vgts}(Xs)ah’)], reRY tc[0,T]. (3.8)

Substituting g; = u; — 0 into the previous representation completes the proof. O

The following theorem shows the asymptotic stability of the positive stationary
solution.

Theorem 3.4. Let (Al) holds with k = 6. Suppose that ug € E is an initial
condition to (3.1), such that

c1 <wug(z) < sy, zERY

where 0 < ¢1 < 0 and co > 0. Then there exists a unique solution u € X to (3.1).
Moreover, u € X2 ||luy — O||g does not increase in time, and if ¢y > 0, then
|lus — 6]| g converges to zero exponentially fast, namely

lnHut — 0” < —ﬂ.

lim sup
t—o0

1850037-10
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Proof. We consider g; = u; — 6. By Theorems 3.1 and 3.3, there exists a unique
solution g € X to (3.7), and this solution satisfies (3.8). The rest of the proof
follows from Theorem 2.1 with p(c,d) = p(c) = 2~ (0 + ¢). m|

4. Stability on the Initial Condition
We will be interested in initial conditions of the following form

uo(x, \) = e @) (4.1)
where ¢ : R — R. Since the operator L,+ is linear and bounded on E, and F
is analytic on E, then the solution u to (3.3) depends analytically on the initial
condition ug (see e.g., [7, Theorem 3.4.4, Corollaries 3.4.5, 3.4.6]). Hence, by (4.1),

the E-valued function A\ +— u(-, ¢, A) is analytic on R for each ¢ > 0. Therefore, for
all A € R, it is given by the following series

n

u(-,t, )‘) = Z %kn,t(')» (4.2)

n>0
where
0"u
kn,t(') T 8)\”

We substitute (4.2) in (3.4).

A" _ % TtL 9)\n§n ! —(t—s)» L A"
kan,t_e Y — +/Oe at Fzmkns

n>0 n>0 ’ n>0

(,t,0) € E, n>0. (4.3)

Hence, the nth Taylor coefficient satisfies the following equation

t
feny = O™ that ¢ +/ e~ (t=)7" Lt
0

X ((%+ — Zn: ( )kl (a” x kin_z,s)> ds, n>0.

1=0
Therefore,
Ok 1 " .
5t (x) = " [Lovkn i) (@) + (57 —m)ky ()

— Z( )klt (™ % kp_14)(z), zeR? tel, (4.4)

where ky, o(z) = 07 (z).
Theorem 4.1. Let £ € E and v = s — ||Jg||p1 > 0. Then the following estimate

holds
2
lue(-,A) = O]l < B (% - \/4% — (ePllglz — 1)%)

if only |\ < m In(Z5 +1).
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Proof. We will estimate k,,, n > 0. By (4.4), kg = 0. The function k; satisfies the
following equation

k
aa;’t (x) = (Jo x k1.0)(x) — 5 ki s(z), z€RY tel,
where k1 o(z) = 0&(z). Since v = 3" — ||J| 1, we have
kre(z) < e Mkiolle =0 élls, @ eRY t20. (4.5)

Suppose that
|krille < Cile gl tel, 1<I<n—1,

where () is a positive constant. (Note that, by (4.5), C; = 1.) Estimate k,,. By the
mild form of (4.4), the following inequality holds

t n—1
n
b Mhnale+o [0S ()bl et
0 1=1

[k,

< eiﬁftHkn,OHE"*'%i/ e 1+ Z( )ClCnﬁQf%ds

ﬂn—l
< <1+—Z(l>c’l n- z) Blllme .
v =1

Therefore, by induction,

1Ko,

n—1
Cy = (1 + g 3 (7) C’lCn_l>, Cy = 1. (4.7)
=1

Put Cy = 0. Consider the following generating function:

H(x):= Z %x"

n>0

B <0G &)l n>1, (4.6)

where

y (4.7), H satisfies the following equation:

H(a:)ze”:—l—i-gHQ(a:).
Since H(0) = Cy = 0 and the function z — /1 — z is analytic for |z| < 1, one has
g " gl
H(z) = L — /Lo — (er —1)2 In(-L+1 4.
@)= g5/~ e = 03 w<m(f+1). (1.8

Therefore, by (4.2), (4.6) and (4.8), we have

A™ENE — -
) =0l < 3 0C, PR = pr(alels)e

n>1

if only [Al[|¢][z < In(z5 + 1). This proves the theorem. |
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Global stability in a nonlocal reaction-diffusion equation
Remark 4.1. Note that the estimate [A[[|{[|z < In(g5 + 1) holds if and only if the
initial condition satisfies
96_(4%“) < wup(z) < 96(17“).

Corollary 4.1. Let £ : R? x Q — R be a random field. Under the assumptions of
Theorem 4.1, the following estimate holds

E||ut(w, A) — 0l %
2

< 9220t <% _ E\/% _ (elAH\E(w)HE _ 1)%) , (4.9)

where sup,eq [Al[§(W)lle <In(ZF +1).

We apply now the general results to the specific case of the random initial data
and try to estimate the rate of convergence using L2-norm over a probability space.
Let us denote, for any f € L'(R9), its Fourier transform by

f) = /Rd e~ f(z)de, X eRY

Let p¢(x) be a transition probability density for the jump process with the generator
Ly for J = Jy (see (1.3) and (Al)). Introduce the following assumption

Jp is bounded. (A2)

Assumption (A2) is a sufficient condition to have p; — & € L%(RY) N L= (R?), t > 0.
The following theorem improves the estimate (4.9), when Jp is non-negative.

Theorem 4.2. Let (Al) holds with k = 0. Let {(z,w) be a homogeneous random
field with the following correlation function
B(z —y) = E¢(2)é(y), w,y € RY

Suppose that B € LY(R?) and its Fourier transform B satisfies the following
asymptotic
~ a

B()\)Nw, )\—>0,

where a € (0,d], a > 0. Suppose, moreover, that the function J is such that the
following estimate

JN) =1=bA” +o(Af), A—0,

~

where $ € (0,2], b > 0, and let the function x — sup|y <, J(A) be monotonically
decreasing in a neighborhood of 0. Then the following inequality holds

Ek2, < 0% 2P(Dyt"F + Dye 221,

where Dy, Dy, A are some fized positive constants and ki is given by (4.3).
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Proof. By assumptions of the theorem, p; * B € L*(R%) N L?(R?). Therefore,

Bt = 028 [ piw)ewdy [ e

=02 | i IESC)E W) = e [ )i () Bl — )y

Rd

_ 225t /]R B BYN)A = g2 /]R (BB

d
:026—25t/ 2T-DEB(\)an,
Rd

where Parseval’s theorem were used.
Therefore, by assumption on B and J there exist € > 0, 6 > 0 and A > 0 such
that

/ e2(f(>\)—1)t§()\)d/\§/ L_Za)e_ﬂb_s)mﬁtd/\—k/ e_QAtE()\)d/\
Rd Bs() Al R\ B (0)

S DltaTid + D2€_2At,

where D1 and Dy are some constants, that yield the statement. O
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