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1. Introduction

1.1. Overview of results

The aim of this paper is to study stability of stationary solutions to a class of non-
local semilinear parabolic equations applying the Feynman–Kac formula. Namely,
we wish to investigate bounded solutions to the following equation

∂

∂t
u(x, t) = (LJu)(x, t) + V (u(x, t))u(x, t), x ∈ Rd, t > 0, (1.1)

where LJ = J ∗u−‖J‖L1u, cf. (1.3), is a generator of a pure jump Markov process,
V : Cb(Rd) → Cb(Rd) is a bounded locally Lipschitz mapping, and the initial condi-
tion u(·, 0) ∈ Cb(Rd) belongs to a neighborhood of u ≡ 0. Note that the Feynman–
Kac formula for diffusion processes with time-dependent potentials is known (see
[8, Theorem 5.7.6]). However, the corresponding result for general Lévy processes
seems to be proved only recently in [12], where compactly supported smooth initial
conditions were assumed. We relax assumptions on the initial conditions, consider-
ing bounded continuous functions Cb(Rd) and prove the Feynman–Kac formula for
the generator LJ (see Propositions 2.1 and 2.2). We propose also sufficient condi-
tions for the asymptotic stability of the zero solution to (1.1) uniformly in space
(see Theorem 2.1), and apply this to a particular equation

∂

∂t
u(x, t) = κ+(La+u)(x, t) + κ−(θ − (a− ∗ u)(x, t))u(x, t), (1.2)

where κ±, m > 0, θ := κ
+−m
κ− > 0, and a± are probability kernels (see [1, 4, 6, 9,

10, 13]). Equation (1.2) may be considered as a non-local version of the classical
logistic equation (see (3.2) below). There are two constant solutions to (1.2), u ≡ 0
and u ≡ θ. Different properties and the long-time behavior of solutions to (1.2),
were considered in [5].

We are interested to find sufficient conditions which ensure that a solution
to (1.2) converges to the constant nonzero solution u ≡ θ uniformly in space.
Applying Theorem 2.1, we prove (see Theorem 3.4) that a bounded initial con-
dition, which is separated from zero, tends to θ > 0 exponentially fast if only
Jθ(x) = κ+a+(x) − θκ−a−(x) ≥ 0, for all x ∈ Rd. The condition on Jθ may be
relaxed under more restrictive assumptions on the initial condition. Namely, intro-
ducing a parameter in the initial condition and considering the analytical decom-
position of the corresponding solution with respect to the parameter, one can show
that if ‖Jθ‖L1 < κ+ and if the initial condition lies in a ball centered at θ, then the
solution tends to θ exponentially fast (see Theorem 4.1). An example of a parame-
ter constructed by a stationary random field provides an enhanced asymptotic for
the convergence (see Theorem 4.2).

1.2. Basic notations

Let B(Rd) be the Borel σ-algebra on the d-dimensional Euclidean space Rd, d ≥ 1.
Let Cb(Rd) and Bb(Rd) denote the spaces of all bounded continuous, respectively,
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bounded Borel measurable functions on Rd. The functional spaces become Banach
ones being equipped with the norm

‖v‖∞ := sup
x∈Rd

|v(x)|.

For any J ∈ L1(Rd) := L1(Rd, dx) and v ∈ Bb(Rd), one can define the classical
convolution

(J ∗ v)(x) :=
∫

Rd

J(x − y)v(y)dy.

Let J ∈ L1(Rd) be non-negative. Consider the following bounded operator (in
any of the Banach spaces above)

(LJv)(x) :=
∫

Rd

J(x − y)(v(y) − v(x))dy = (J ∗ v)(x) − µv(x), (1.3)

where µ :=
∫

Rd J(y) dy > 0.
Let Xt be a jump-process with the state space (Rd,B(Rd)) and the natural

filtration Ft = σ(Xs | s ≤ t) whose generator is LJ (for details see [3]). It is well
known that Xt is a Markov process and, for all s, t ≥ 0, f ∈ Bb(Rd), the following
equation holds,

E[f(Xt+s)|Xt] = E[f(Xt+s)|Ft] =
∫

Rd

f(y)p(Xt − y, s)dy

= (p ∗ f)(Xt), (1.4)

where p(x, t) is the transition density of Xt. Namely, p(x, 0) = δ(x) and p(x, t)
satisfies the following equation

∂p

∂t
(x, t) = (LJp)(x, t), x ∈ Rd, t > 0.

For an interval I ⊂ R+ := [0,∞), consider the Banach spaces Cb(I → E) of
continuous E-valued functions on I, where E is a space above, with the norm

‖u‖I := sup
t∈I

‖u(·, t)‖∞.

For the simplicity of notations, we set, for any T2 > T1 ≥ 0, T > 0,

XT1,T2 := Cb([T1, T2], Cb(Rd)), XT := X0,T , X∞ := Cb(R+, Cb(Rd)),

with the corresponding norms ‖ · ‖T1,T2 , ‖ · ‖T , ‖ · ‖.

2. The Feynman–Kac Formula and Stability

Let u = u(x, t) describe the local density of a system at the point x ∈ Rd, d ≥ 1,
at the moment of time t ∈ R+. Prove now a version of the Feynman–Kac for-
mula for the time-dependent potential and operator LJ , cf. e.g., [2, Theorem 2.5],
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[8, Theorem 5.7.6]. Consider a perturbed equation
∂

∂t
u(x, t) = (LJu)(x, t) + W (x, t)u(x, t), t ∈ [0, T ],

u(x, 0) = u0(x) ∈ Cb(Rd),
(2.1)

where W ∈ XT . Then, clearly, (2.1) has a unique solution in XT . The following
theorem states that the solution will satisfy the Feynman–Kac formula.

Proposition 2.1. Let u solve (2.1) for t ∈ [0, T ]. Then

u(x, t) = Exu0(Xt) exp
(∫ t

0

W (Xt−s, s)ds

)
, x ∈ Rd, t ∈ [0, T ]. (2.2)

Proof. For f ∈ XT , we denote

(Qf)(x, t) =
∫ t

0

∫
Rd

p(x − y, t − s)W (y, s)f(y, s)dyds. (2.3)

By Duhamel’s formula,

u(x, t) = (p ∗ u0)(x, t) + (Qu)(x, t) = (p ∗ u0)(x, t) + (Q(p ∗ u0 + Qu))(x, t)

= (p ∗ u0)(x, t) + (Q(p ∗ u0))(x, t) + Q2((p ∗ u0) + Qu)(x, t)

= . . . (by induction)

=
n∑

j=0

(Qj(p ∗ u0))(x, t) + (Qn+1u)(x, t). (2.4)

By (1.4) and (2.4),

(p ∗ u0)(Xt−s, s) = E[u0(Xt) | Ft−s],

(Q(p ∗ u0))(Xt−s, s) =
∫ s

0

∫
Rd

p(Xt−s − y, s − τ)W (y, τ)(p ∗ u0)(y, τ)dydτ

=
∫ s

0

E[W (Xt−τ , τ)(p ∗ u0)(Xt−τ , τ)|Ft−s]dτ

=
∫ s

0

E[W (Xt−τ , τ)E[u0(Xt)|Ft−τ ]|Ft−s]dτ

= E

[
u0(Xt)

∫ s

0

W (Xt−τ , τ)dτ |Ft−s

]
,

where the last equality holds by the tower rule and Fubini’s theorem. One can
continue then

(Q2(p ∗ u0))(Xt−s, s)

=
∫ s

0

E[W (Xt−τ , τ)(Q(p ∗ u0))(Xt−τ , τ)|Ft−s]dτ
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=
∫ s

0

E

[
W (Xt−τ , τ)E

[
u0(Xt)

∫ τ

0

W (Xt−σ, σ)dσ|Ft−τ

]∣∣∣∣Ft−s

]
dτ

= E

[
u0(Xt)

∫ s

0

∫ τ

0

W (Xt−τ , τ)W (Xt−σ, σ)dσdτ |Ft−s

]
=

1
2

E

[
u0(Xt)

∫ s

0

W (Xs−τ , τ)dτ |Ft−s

]
.

In the same manner, we can prove, by induction, the following equality

(Qn(p ∗ u0))(Xt−s, s) =
1
n!

E

[
u0(Xt)

(∫ s

0

W (Xs−τ , τ)dτ

)n∣∣∣∣Ft−s

]
. (2.5)

By (2.4) and (2.5) (with s = t),

u(x, t) =
n∑

j=0

Ex[(Qj(p ∗ u0))(X0, t)] + (Qn+1u)(x, t)

= Ex

u0(Xt)
n∑

j=1

1
n!

(∫ s

0

W (Xs−τ , τ)dτ

)n
 + (Qn+1u)(x, t). (2.6)

We write Q̃ for the operator defined by (2.3) with W substituted by |W |. It follows
easily that the equation similar to (2.5) holds for Q̃. In particular, for u0 ≡ 1 and
s = t,

(Q̃n1)(x, t) = Ex[(Q̃n1)(X0, t)] =
1
n!

Ex

[(∫ t

0

|W (Xt−τ , τ)|dτ

)n
]
.

Hence

‖Qnu‖T ≤ ‖Q̃n1‖T ‖u‖T ≤ T n

n!
‖W‖n

T ‖u‖T .

As a result, for n → ∞, (2.6) yields (2.2), that completes the proof.

Consider now a general semi-linear evolution equation with the generator LJ :
∂

∂t
u(x, t) = (LJu)(x, t) + V (u(x, t))u(x, t), t > 0

u(x, 0) = u0(x) ∈ Cb(Rd),
(2.7)

where V : Cb(Rd) → Cb(Rd) is a bounded locally Lipschitz mapping, i.e.

‖V (u)‖∞ ≤ Mc‖u‖∞, ‖V (u) − V (v)‖∞ ≤ Mc‖u − v‖∞, (2.8)

provided that ‖u‖∞ ≤ c, ‖v‖∞ ≤ c. Then, evidently, ‖V (u)u − V (v)v‖∞ ≤ (1 +
c)Mc‖u−v‖∞, and hence, by e.g., [11, Theorem 1.4], there exists a Tmax ≤ ∞, such
that the initial-value problem (2.7) has a unique mild solution u on [0, Tmax ), i.e.
u that solves the integral equation

u(x, t) = etLJ u0(x) +
∫ t

0

e(t−s)LJ (V (u(x, s))u(x, s))ds.

1850037-5
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Moreover, Tmax < ∞ implies that limt↑Tmax ‖u(·, t)‖∞ = ∞. Note also that since
LJ is a bounded operator, then the mild solution will be classical, i.e. u ∈ XT , for
any T < Tmax , and u(x, t) is differentiable in t w.r.t. the norm in Cb(Rd).

By Proposition 2.1, the following Feynman–Kac-type expression holds for the
solution to (2.7).

Proposition 2.2. Let (2.8) hold and u be the unique classical solution to (2.7) on
[0, T ], T < Tmax . Then

u(x, t) = Ex

[
u0(Xt) exp

(∫ t

0

V (u(Xt−s, s))ds

)]
, x ∈ Rd, t ∈ [0, T ]. (2.9)

Denote

X k,l
T = {f ∈ X∞|k ≤ f(x, t) ≤ l, x ∈ Rd, t ∈ [0, T ]}, k, l ∈ R.

The following theorem provides sufficient conditions for the stability of the station-
ary solution u ≡ 0 to (2.7),

Theorem 2.1. Let there exist p : R2 → R+ such that, for any k ≤ 0, l ≥ 0,

(V f)(x, t) ≤ −p(k, l), x ∈ Rd, t ∈ [0, T ], f ∈ X k,l
T ,

p(k, l) ≤ p(λk, λl), λ ∈ [0, 1].
(2.10)

Suppose that u0 ∈ E is such that, for some c ≤ 0 and d ≥ 0,

c ≤ u0(x) ≤ d, x ∈ Rd.

Then, for any T > 0, there exists a unique u ∈ XT , which satisfies the Feynman–
Kac formula (2.9). Moreover, u ∈ X c,d∞ , ‖u(·, t)‖E does not increase in time, and if
p(c, d) > 0, then ‖u(·, t)‖E converges to zero exponentially fast, namely,

lim sup
t→∞

ln ‖ut‖
t

≤ −p(0, 0). (2.11)

Proof. Let us introduce the following operator: we set, for a w ∈ X∞,

[Ψwt](x) = Ex

[
u0(η(t)) exp

(∫ t

0

[V wt−s](η(s))ds

)]
, x ∈ Rd, t ∈ I.

Then, for any w ∈ X c,d
T ,

ce−tp(c,d) ≤ [Ψwt](x) ≤ de−tp(c,d), x ∈ Rd, t ∈ [0, T ]. (2.12)

Since p is non-negative, one gets Ψ(X c,d
T ) ⊂ X c,d

T . Since |e−x − e−y| ≤ |x− y| for all
x, y ≥ 0, then, for all v, w ∈ X c,d

T , t ∈ [0, T ], the following estimate holds

|[Ψwt](x) − [Ψvt](x)| ≤ dTM‖v − w‖∞,

where M = Mmax{−c,d} is defined by (2.8). Hence Ψ is a contraction map on X c,d
T

for T = 1
2dM . Therefore, there exists a fixed point u ∈ X c,d

T . By (2.12), the function

1850037-6
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u satisfies the following estimate

ce−tp(c,d) ≤ u(x, t) ≤ de−tp(c,d), x ∈ Rd, t ∈ [0, T ].

Hence, c1 ≤ u(x, T ) ≤ d1, x ∈ Rd, where c1 = ce−Tp(c,d), d1 = de−Tp(c,d). We can
repeat the proof on [T, 2T ] to extend u to X c,d

2T , so that the following estimate holds

c1e
−(t−T )p(c1,d1) ≤ u(x, t) ≤ d1e

−(t−T )p(c1,d1), x ∈ Rd, t ∈ [T, 2T ].

By induction, u can be extended to X c,d
nT . Then, for any n ∈ N, x ∈ Rd and

t ∈ [nT, (n + 1)T ],

cne−(t−nT )p(cn,dn) ≤ u(x, t) ≤ dne−(t−nT )p(cn,dn), (2.13)

where c0 = c, d0 = d, cn = cn−1e
−Tp(cn−1,dn−1) and dn = dn−1e

−Tp(cn−1,dn−1).
Hence, there exists a unique u ∈ X c,d

∞ , such that (2.9) and (2.13) hold. Since p is
non-negative, {cn} is increasing and {dn} is decreasing. Moreover,

cn = λcn−1, dn = λdn−1, λ = e−Tp(cn−1,dn−1) ∈ [0, 1]

together with (2.10) yield that p(ck, dk) ≤ p(cn, dn), for k ≤ n. Therefore, ‖u(·, t)‖E

does not increase in time. Let us prove by induction the following inequalities

cke−T (n−k)p(ck,dk) ≤ cn, 0 ≤ k ≤ n, (2.14)

dke−T (n−k)p(ck,dk) ≥ dn, 0 ≤ k ≤ n. (2.15)

The case n = 1 is obvious. Let (2.14) and (2.15) hold for 0 ≤ k ≤ N . We prove
them for 0 ≤ k ≤ N + 1. Since cN ≤ 0, we have

cN+1 = cNe−Tp(cN ,dN ) ≥ cNe−Tp(ck,dk) ≥ cke−κ
−T (N+1−k)p(ck,dk).

Hence (2.14) is proved. Similarly, the following estimate yields (2.15)

dN+1 = dNe−Tp(cN ,dN) ≤ dNe−Tp(ck,dk) ≥ dke−T (N+1−k)p(ck,dk),

where 0 ≤ k ≤ N . By (2.14) and (2.15) with k = 0, both {cn} and {dn} converge
to zero exponentially fast if only p(c, d) > 0. Therefore, for t ∈ [nT, (n + 1)T ],

ln ‖ut‖
t

≤ ln max{dn,−cn}
Tn

,

and, by (2.14), (2.15), we have, for k ≥ 0,

lim sup
t→∞

ln ‖ut‖
t

≤ −p(ck, dk).

As a result, (2.11) holds, because p(ck, dk) is increasing in k. This proves the
theorem.
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3. Spatial Logistic Equation

We will consider the following equation for a bounded function u(x, t), which
describes the (approximate) value of the local density of a system of particles
distributed in Rd according to the so-called spatial logistic model. More detailed
explanation and historical remarks can be found in [5, Subsection 6.1]. Namely, let
ut(x) := u(x, t), x ∈ Rd, t ∈ I be a classical solution in E to the equation

∂ut

∂t
= κ+[La+ut](x) + (κ+ − m)ut(x) − κ−ut(x)(a− ∗ ut)(x). (3.1)

In particular, u(x, 0) = u0(x), x ∈ Rd. Here κ+La+ is a generator of the underlying
random walk, cf. (1.3):

[La+h](x) = (a+ ∗ h)(x) − h(x), x ∈ Rd,

which spends exponentially distributed random time τ in each particular position x,
P{τ > ρ} = e−κ

+ρ, and it makes a jump x → x+ X, thereafter, where the random
variable X has the distribution density a+(x). The constant β = κ+ − m > 0
is the difference between the biological rate β of the birth of a new particle and
the mortality rate m. The last term in (3.1) describes the competition between
particles, the potential κ−a−(x− y) presents the interaction between two particles
located at the points x, y ∈ Rd. Equation (3.1) is similar to the well-known logistic
ordinary differential equation:

∂w

∂t
(t) = βw(t) − κ−w(t)2, (3.2)

whose partial solution is the constant θ := β
κ− . All other positive solutions tend

exponentially fast to θ. Equation (3.1) has the same solution u(x, t) ≡ θ, x ∈ Rd,
t ≥ 0 (we suppose

∫
R

a±(y)dy = 1). This important particular solution is the
exponentially stable attractor for (3.1). We will study the neighborhood of the
attractor, using variations of u0. Let us denote, for any h ∈ E,

[Fh](x) = (κ+ − m)h(x) − κ−h(x)(a− ∗ h)(x), x ∈ Rd.

Then (3.1) has the following form
∂ut

∂t
(x) = κ+[La+ut](x) + [Fut](x) x ∈ Rd, t ∈ I,

u(x, 0) = u0(x) x ∈ Rd.

(3.3)

The analysis of the nonlinear parabolic equation (3.1) will be based on integral
equations. The first of them is given through the standard Duhamel’s formula.

Lemma 3.1. Function u solves (3.3) iff it satisfies the following equation

ut = eκ
+tLa+ u0 +

∫ t

0

e−(t−s)κ+La+ [Fus]ds, t ∈ I. (3.4)
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This equation has the Volterra form and can be used for the existence–
uniqueness theory (see [5]).

Theorem 3.1. Let u0 ∈ E be non-negative. Then, for each T > 0, there exists a
unique non-negative classical solution to (3.3) in XT .

Now we will estimate solution to (3.3) from below. Let u0 be a constant function

u0 ≡ q0 ∈ (0, θ).

Then the corresponding solution to (3.3) is the function

qt =
θ

1 + e−βt
(

θ
q0

− 1
) .

By Theorem 3.1, this solution is unique. Let us fix κ ∈ [0, θ]. We make the following
assumption

Jκ(x) := κ+a+(x) − κκ−a−(x) ≥ 0, x ∈ Rd. (A1)

Theorem 3.2. Let (A1) hold with κ = q0 ∈ (0, θ). Suppose that

u0(x) ≥ q0, x ∈ Rd,

where u0 ∈ E. Then the corresponding to u0 solution ut to (3.3) satisfies the fol-
lowing inequality

ut(x) ≥ qt, x ∈ Rd, t > 0.

Proof. Let us fix T > 0. Define vt = eKt(ut − qt), t ∈ [0, T ], where K will be
defined later. The function vt satisfies the following linear equation

∂vt

∂t
(x) = [Gtvt](x), x ∈ Rd, t ∈ [0, T ], (3.5)

v0(x) = u0(x) − q0, x ∈ Rd, (3.6)

where, for all w ∈ E,

[Gtw] := κ+(a+ ∗ w) − κ−qt(a− ∗ w) − κ−w(a− ∗ ut) − mw + Kw.

By Theorem 3.1, there exists M > 0, such that

ut(x) ≤ M, x ∈ Rd, t ∈ [0, T ].

Define K := κ−M + m. Since qt ≤ q0 for t ≥ 0, we have, by (A1) with κ = q0, that
[Gtw](x) is non-negative for all t ∈ [0, T ] and for all non-negative w ∈ E. Therefore,

vt(x) = exp
(∫ t

0

Gsds

)
v0(x) ≥ 0, x ∈ Rd, t > 0,

since v0 is non-negative. Hence, ut(x) ≥ qt, x ∈ Rd, t ∈ [0, T ]. Since T is arbitrary,
the same holds for any t > 0.
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Remark 3.1. (cf. [5, Proposition 3.4]) In a similar way, it can be shown that if
(A1) holds with κ = θ, and u0 ∈ E is such that 0 ≤ u0(x) ≤ θ, x ∈ Rd, then the
corresponding solution satisfies the following inequality

0 ≤ ut(x) ≤ θ, x ∈ Rd, t > 0.

The following theorem shows, based on the Feynman–Kac formula, that ut sat-
isfies another integral equation.

Theorem 3.3. Let (A1) holds with κ = θ. Suppose that u ∈ XT , T ∈ (0,∞], is the
solution to (3.1) with an initial condition u0 ∈ E. Then u satisfies the following
formula, for all x ∈ Rd, t ∈ [0, T ],

u(x, t) = θ + Ex

[
(u0(Xt) − θ) exp

(
−κ−

∫ t

0

(a− ∗ ut−s)(Xs)ds

)]
,

where X0 = x.

Proof. Let us denote gt := ut − θ. If ut solves (3.1), then gt satisfies the following
equation 

∂gt

∂t
(x) = [LJθ

gt](x) − κ−gta
− ∗ gt − βgt, x ∈ Rd, t ∈ I,

g(x, 0) = g0(x) = u0(x) − θ, x ∈ Rd,

(3.7)

where LJθ
is defined by (1.3), for J = Jθ = κ+a+−κ−θa−. We set

[V h](x) = −κ−(a− ∗ h)(x) − β, x ∈ Rd, h ∈ E.

For such V and the generator LJ = LJθ
of the jump-process Xt, we apply Propo-

sition 2.2 to the solution of (3.7)

g(x, t) = Ex

[
g0(Xt) exp

(∫ t

0

[V gt−s](Xs)ds

)]
, x ∈ Rd, t ∈ [0, T ]. (3.8)

Substituting gt = ut − θ into the previous representation completes the proof.

The following theorem shows the asymptotic stability of the positive stationary
solution.

Theorem 3.4. Let (A1) holds with κ = θ. Suppose that u0 ∈ E is an initial
condition to (3.1), such that

c1 ≤ u0(x) ≤ c2, x ∈ Rd,

where 0 ≤ c1 ≤ θ and c2 ≥ θ. Then there exists a unique solution u ∈ X∞ to (3.1).
Moreover, u ∈ X c1,c2∞ , ‖ut − θ‖E does not increase in time, and if c1 > 0, then
‖ut − θ‖E converges to zero exponentially fast, namely

lim sup
t→∞

ln ‖ut − θ‖
t

≤ −β.
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Proof. We consider gt = ut − θ. By Theorems 3.1 and 3.3, there exists a unique
solution g ∈ X∞ to (3.7), and this solution satisfies (3.8). The rest of the proof
follows from Theorem 2.1 with p(c, d) = p(c) = κ−(θ + c).

4. Stability on the Initial Condition

We will be interested in initial conditions of the following form

u0(x, λ) = θeλξ(x), (4.1)

where ξ : Rd → R. Since the operator La+ is linear and bounded on E, and F

is analytic on E, then the solution u to (3.3) depends analytically on the initial
condition u0 (see e.g., [7, Theorem 3.4.4, Corollaries 3.4.5, 3.4.6]). Hence, by (4.1),
the E-valued function λ 
→ u(·, t, λ) is analytic on R for each t ≥ 0. Therefore, for
all λ ∈ R, it is given by the following series

u(·, t, λ) =
∑
n≥0

λn

n!
kn,t(·), (4.2)

where

kn,t(·) :=
∂nu

∂λn
(·, t, 0) ∈ E, n ≥ 0. (4.3)

We substitute (4.2) in (3.4).

∑
n≥0

λn

n!
kn,t = eκ

+tLa+
∑
n≥0

θλnξn

n!
+

∫ t

0

e−(t−s)κ+La+

F
∑
n≥0

λn

n!
kn,s

 ds.

Hence, the nth Taylor coefficient satisfies the following equation

kn,t = θ[eκ
+tLa+ ξn] +

∫ t

0

e−(t−s)κ+La+

×
(

(κ+ − m)kn,s − κ−
n∑

l=0

(
n

l

)
kl,s(a− ∗ kn−l,s)

)
ds, n ≥ 0.

Therefore,
∂kn,t

∂t
(x) = κ+[La+kn,t](x) + (κ+ − m)kn,t(x)

−κ−
n∑

l=0

(
n

l

)
kl,t(x)(a− ∗ kn−l,t)(x), x ∈ Rd, t ∈ I, (4.4)

where kn,0(x) = θξn(x).

Theorem 4.1. Let ξ ∈ E and γ = κ+ − ‖Jθ‖L1 > 0. Then the following estimate
holds

‖ut(·, λ) − θ‖E ≤ θe−γt

(
γ

2β
−

√
γ2

4β2
− (e|λ|‖ξ‖E − 1)

γ

β

)
,

if only |λ| < 1
‖ξ‖E

ln( γ
4β + 1).
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Proof. We will estimate kn, n ≥ 0. By (4.4), k0 ≡ θ. The function k1 satisfies the
following equation

∂k1,t

∂t
(x) = (Jθ ∗ k1,t)(x) − κ+k1,t(x), x ∈ Rd, t ∈ I,

where k1,0(x) = θξ(x). Since γ = κ+ − ‖J‖L1, we have

k1,t(x) ≤ e−γt‖k1,0‖E = θe−γt‖ξ‖E, x ∈ Rd, t ≥ 0. (4.5)

Suppose that

‖kl,t‖E ≤ Clθe
−γt‖ξ‖l

E, t ∈ I, 1 ≤ l ≤ n − 1,

where Cl is a positive constant. (Note that, by (4.5), C1 = 1.) Estimate kn. By the
mild form of (4.4), the following inequality holds

‖kn,t‖E ≤ e−γt‖kn,0‖E + κ−
∫ t

0

e−γ(t−s)
n−1∑
l=1

(
n

l

)
‖kl,s‖E‖kn−l,s‖Eds

≤ e−γt‖kn,0‖E + κ−
∫ t

0

e−γ(t+s)
n−1∑
l=1

(
n

l

)
ClCn−lθ

2‖ξ‖n
Eds

≤
(

1 +
β

γ

n−1∑
l=1

(
n

l

)
ClCn−l

)
θ‖ξ‖n

Ee−γt.

Therefore, by induction,

‖kn,t‖E ≤ θCn‖ξ‖n
Ee−γt, n ≥ 1, (4.6)

where

Cn =

(
1 +

β

γ

n−1∑
l=1

(
n

l

)
ClCn−l

)
, C1 = 1. (4.7)

Put C0 = 0. Consider the following generating function:

H(x) :=
∑
n≥0

Cn

n!
xn.

By (4.7), H satisfies the following equation:

H(x) = ex − 1 +
β

γ
H2(x).

Since H(0) = C0 = 0 and the function z → √
1 − z is analytic for |z| < 1, one has

H(x) =
γ

2β
−

√
γ2

4β2
− (ex − 1)

γ

β
, x < ln

(
γ

4β
+ 1

)
. (4.8)

Therefore, by (4.2), (4.6) and (4.8), we have

‖ut(·, λ) − θ‖E ≤
∑
n≥1

θCn
|λ|n‖ξ‖n

E

n!
e−γt = θH(|λ|‖ξ‖E)e−γt,

if only |λ|‖ξ‖E < ln( γ
4β + 1). This proves the theorem.

1850037-12

St
oc

h.
 D

yn
. 2

01
8.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 U

N
IV

ER
SI

TY
 O

F 
N

O
R

TH
 C

A
R

O
LI

N
A

 @
 C

H
A

R
LO

TT
E 

on
 0

6/
11

/1
9.

 R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



September 5, 2018 12:2 WSPC/S0219-4937 168-SD 1850037 13–15

Global stability in a nonlocal reaction-diffusion equation

Remark 4.1. Note that the estimate |λ|‖ξ‖E < ln( γ
4β + 1) holds if and only if the

initial condition satisfies

θe−
(

γ
4β +1

)
< u0(x) < θe

(
γ
4β +1

)
.

Corollary 4.1. Let ξ : Rd × Ω → R be a random field. Under the assumptions of
Theorem 4.1, the following estimate holds

E‖ut(ω, λ) − θ‖2
E

≤ θ2e−2γt

(
γ

2β
− E

√
γ2

4β2
− (e|λ|‖ξ(ω)‖E − 1)

γ

β

)2

, (4.9)

where supω∈Ω |λ|‖ξ(ω)‖E < ln( γ
4β + 1).

We apply now the general results to the specific case of the random initial data
and try to estimate the rate of convergence using L2-norm over a probability space.
Let us denote, for any f ∈ L1(Rd), its Fourier transform by

f̂(λ) =
∫

Rd

e−iλxf(x)dx, λ ∈ Rd.

Let p̃t(x) be a transition probability density for the jump process with the generator
LJ for J = Jθ (see (1.3) and (A1)). Introduce the following assumption

Jθ is bounded. (A2)

Assumption (A2) is a sufficient condition to have p̃t − δ ∈ L2(Rd)∩L∞(Rd), t ≥ 0.
The following theorem improves the estimate (4.9), when Jθ is non-negative.

Theorem 4.2. Let (A1) holds with κ = θ. Let ξ(x, ω) be a homogeneous random
field with the following correlation function

B(x − y) = Eξ(x)ξ(y), x, y ∈ Rd.

Suppose that B ∈ L1(Rd) and its Fourier transform B̂ satisfies the following
asymptotic

B̂(λ) ∼ a

|λ|α , λ → 0,

where α ∈ (0, d], a > 0. Suppose, moreover, that the function Ĵ is such that the
following estimate

Ĵ(λ) = 1 − b|λ|β + o(|λ|β), λ → 0,

where β ∈ (0, 2], b > 0, and let the function x → sup|λ|≤x Ĵ(λ) be monotonically
decreasing in a neighborhood of 0. Then the following inequality holds

Ek2
1,t ≤ θ2e−2βt(D1t

α−d
β + D2e

−2∆t),

where D1, D2, ∆ are some fixed positive constants and k1,t is given by (4.3).
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Proof. By assumptions of the theorem, p̃t ∗ B ∈ L1(Rd) ∩ L2(Rd). Therefore,

Ek2
1,t = θ2e−2βtE

∫
Rd

p̃t(y)ξ(y)dy

∫
Rd

p̃t(z)ξ(z)dz

= θ2e−2βt

∫
Rd

p̃t(y)p̃t(z)Eξ(z)ξ(y)dydz = θ2e−2βt

∫
Rd

p̃t(y)p̃t(z)B(y − z)dydz

= θ2e−2βt

∫
Rd

̂̃pt(λ) ̂(p̃t ∗ B)(λ)dλ = θ2e−2βt

∫
Rd

( ̂̃pt(λ))2B̂(λ)dλ

= θ2e−2βt

∫
Rd

e2( bJ(λ)−1)tB̂(λ)dλ,

where Parseval’s theorem were used.
Therefore, by assumption on B̂ and Ĵ there exist ε > 0, δ > 0 and ∆ > 0 such

that∫
Rd

e2( bJ(λ)−1)tB̂(λ)dλ ≤
∫

Bδ(0)

a(1 + ε)
|λ|α e−2(b−ε)|λ|βtdλ +

∫
Rd\Bδ(0)

e−2∆tB̂(λ)dλ

≤ D1t
α−d

β + D2e
−2∆t,

where D1 and D2 are some constants, that yield the statement.
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