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Abstract—Modern information theory is largely developed in connection with random elements
residing in large, complex, and discrete data spaces, or alphabets. Lacking natural metrization and
hence moments, the associated probability and statistics theory must rely on information measures
in the form of various entropies, for example, Shannon’s entropy, mutual information and Kullback—
Leibler divergence, which are functions of an entropic basis in the form of a sequence of entropic
moments of varying order. The entropic moments collectively characterize the underlying probability
distribution on the alphabet, and hence provide an opportunity to develop statistical procedures for
their estimation. As such statistical development becomes an increasingly important line of research
in modern data science, the relationship between the underlying distribution and the asymptotic
behavior of the entropic moments, as the order increases, becomes a technical issue of fundamental
importance. This paper offers a general methodology to capture the relationship between the rates
of divergence of the entropic moments and the types of underlying distributions, for a special class
of distributions. As an application of the established results, it is demonstrated that the asymptotic
normality of the remarkable Turing’s formula for missing probabilities holds under distributions with
much thinner tails than those previously known.
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1. INTRODUCTION

The asymptotic methods in statistics, as well as in general mathematics, require some regularity
conditions on the objects of the study. However the powerful utility of asymptotic methods can also bring
fundamental understanding to statistics theories even under highly discrete models. A good illustration
of such a case is the “missing probability” estimator, known as Turing’s formula, attributed mainly to
Alan Turing. A partial goal of this article is to demonstrate that the central limit theorem for Turing’s
formula holds under tail conditions that were previously unknown.

Toward that end, consider a countably infinite alphabet 2~ = {{;; k > 1} along with an associated
random element X and its probability distribution p = {py; k > 1}. Let, forevery v, v =1,2,---,

Go=> pr(l—pp)" (1)

k>1

be referred to as the v** entropic moment. The sequence ¢ = {¢,;> 1}, known as the entropic basis,
plays a fundamental role in the theory of probability and statistics on alphabets.
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Zhang and Grabchak [10] established a characterization theorem with regard to ¢, which states that,
assuming p is non-increasing, p and ¢ uniquely determine each other. This characterization theorem,
bypassing the fact that there exit no natural moments for the random element X on alphabet 27, allows
statistical inference on the underlying distribution p by means of estimating the entropic moments.
The entropic moments as defined in (1) offer a fundamental shift in the probabilistic and statistical
paradigm on alphabets, irom the one based on likelihood (the p;’s) to the one based on entropic moments
(the ¢,’s). The shifted paradigm brings about many advantages in statistical inference on alphabets,
particularly with regard to modern information theory where data space is of very high dimension
often without a universally suitable metric. Let {X;;¢ =1,--- ,n} be an identically and independently
distributed (iid) sample of size n drawn from 2" under p. Let the sample data be summarized into
letter frequencies {Yy; k > 1} and relative letter frequencies {py = Yx/n;k > 1}. Zhang and Zhou [9]
established unbiased estimators Z, of ¢, for all v from v =1 up to v = n — 1. The availability of these
unbiased estimators provide an opportunity to further explore the practical and the theoretical potential
of the new paradigm.

As in all probability and statistical development, an issue of essential importance is to understand
and describe the tail tightness of underlying probability distributions. Within the new paradigm, it is of
primary interest to understand the relationship between the tail decay rate of the underlying distribution
p as k — oo and the decay rate of ¢, as v — oc.

To serve that interest, Zhang [8] made an attempt to define domains of attraction for probability
distributions on the alphabet using

To = VG (2)
as a tail index. To see (,, and hence equivalently 7, is tail-relevant, one needs only to consider a two-
stage sampling scheme, in which an éid sample of size n, say { X1, -, X, }, is taken first and then an

additional observed X, is taken. The probability that X,,11 is a letter not observed in the ¢id sample
of size n is

P (NP { X1 # Xi}) = Y P (Xi # b | X1 = ) P(Xp1 = £)
k>1

=> pe(1—pr)" = Ga-
E>1
In this sampling scheme, one may think of ¢,, as the probability of a new discovery.

Another way to view (, as a tail-relevant index is to associate it with the remarkable Turing’s formula.
Letting

mo =Y prl[Yi =0], (3)
k>1

the total probability associated with the letters of the alphabet not observed in an iid sample of size n,
and

Ny =) 1y, =1],
k>1

the number of letters of 2™ observed exactly once in the sample, Turing’s formula, introduced by Good
(1953) but largely credited to Alan Turing, is defined to be
n

[t is well known that Turing’s formula is a good estimator of my. Statistical properties of Turing’s formula
have been studied for quite a long time, more notable ones include [4, 2, 1, 5]. For a comprehensive
introduction to the topic, interested readers may refer to [6]. g is also known as the “missing probability”
and as such is a characteristic of the tail of the underlying distribution. Yet,

E(mo) = > pr(l—pr)" = Cn.

k>1
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Surrogating the tail properties of {py; k > 1} in {(,; v > 1}, Zhang[8] established that a distribution
has finitely many positive py > 0, that is, the alphabet is finite, if and only if 7,, converges to zero
exponentially fast in n, that for distributions with exponentially decaying tails, e.g., pj, o< e=** or thinner
tails, 7, perpetually oscillates between two distinct positive constants without a limit, and that for
distributions with thicker tails, lim sup 7,, — oo. These results allow a definition of domains of attraction
on the alphabet. The domain with limsup 7, — oo is named the Turing-Good family which includes
many thicker tailed distributions. As it turned out, the Turing-Good family can be fruitfully further
partitioned into sub-domains with various divergence rates of 7, = v(, in v for different classes of
prcharacterized by the decay rates in k.

To put the above mentioned problem in a broader perspective, the iid sample {X;;i = 1,--- ,n} may
be considered as a result of a generalized Maxwell-Boltzmann scheme of allocating n particles one
by one to a sequence of boxes labelled ¢x, k = 1,2, - -, according to p. In this case, Y} is the number

of particles landed in the k" box. Y}, k > 1, are also known as the occupation numbers and satisfy
> 1o, Y = n. Consider the variable

Ny =) 1[Yi(n) =17] (5)
k=1

for » > 1. N, represents the number of the boxes with occupation number being exactly r. Many
statistical and probability problems are related to the vector of the occupation numbers,

(N17"' 7Nm), (6)
for a fixed integer m > 0, specifically noting that for any fixed r,r =1,--- ,m,
n
EN — T _ n—r = _ T ‘s _ n—r = _
: <7«> SR =) = (1= ) S P - )™ = e,
k>1 k>1

113 ”

where “x<” indicates equality in rate of convergence or divergence, i.e., if a, < b, then there exist
constants ¢; and ¢y satisfying ¢ijco > 0 such that ¢; < a,, /b, < ¢ to be distinguished from “~”, which
indicates equality in relative limit, i.e., if a,, ~ b, then a,, /b, — 1.

The main objective of this paper is to introduce a general analytical methodology to capture and
describe the divergence rates of 7., in general and 7, = 71, in specific for well-behaved underlying
distributions in the Turing-Good family. The main results are presented in Section 2. The paper is
concluded with an application to the condition of asymptotic normality for Turing’s formula, which
is only known to be supported by thick tailed distributions with, e.g., power tails, such as p oc k=
where A > 1, in the existing literature. In the application given in Section 3, it is demonstrated that
the said normality holds for distributions with much thinner tails than previously known, e.g., those with
near-exponential tails such as py oc exp(—k/(log k)?) where 3 > 2. It is also demonstrated that the said

normality does not hold for distributions with exponentially decaying tails such as, e.g., py o< e7*.

2. ASYMPTOTIC ANALYSIS OF ENTROPIC MOMENTS
2.1. Conditions
The following conditions are assumed in order to establish the asymptotic properties of the entropic
moments.
(A1) Assume that the sequence {py} is decreasing no faster than exponential decay, i.e., there exists
an appropriate constant «vin (0, 1) such that

Pk+1
Pk

a< <1. (7)

(A2) Assume that there exists a smooth C%(R. ) interpolation p(x), z > 0, for the probabilities py, k =
1,2,..., such that p = p(k) for all k, p(0) < oo, p'(z) < 0 for > x¢ where x is a sufficiently
large number, and p’(x) is monotone increasing.
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(A3) Assume the underlying interpolation p(z) satisfies

(logp(x)) = I;((Z)) 70, z—o00, and (8)
o pPx)
wan;o D) 0. (9)

(A4) Assume

(@) p(@)p(@) — (P (x))?
<p<x>> = R =0

(A5) Assume that there exists a constant «y in the interval [0, 1], such that

lim sup P (x)p(z) — [p'(2)]?

o 7% A

[t will be shown that “typical” distributions p satisfy these conditions in Section 3.

2.2 Main Results
Let

Sypp=n" Zp’,;e_”pk and Trm =n" Zp2(1 — )" (10)

k>1 k>1
Lemma 1. Foranyr > 1, there exists a positive constant C,(«) (with « involved in (7)) such that

Sy > Cr(a). (11)

Proof. The function f.(z) =2"e™™, x > 0, takes the maximum value r"e™" at the point z = r. Let
x, = x,(n) be the point at which np(z,) = r. Let k,(n) be the greatest integer less or equal to z,. It
follows from condition (A1) that
r r
Prrn) Z > Phe(n)+1 2 OPho(n) and  r < npy, ) < o

and hence

Proposition 1. For everyr > 0, as n — oo, 7.y, ~ Sy p.

A proof of Proposition 1 is given in the Appendix.
Proposition 2. /] S, ,, — oo, then, for any fixed r > 1,
Sy~ /Ooo(np(:r))’"e_”p(x) dr +0O(1) = I, + O(1), (12)
where

L= [ pte)ye ) do (13)
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This is the simplest case of Euler—MacLaurin formula, based on the monotonicity of f,.(x) = z"e™*
for0<z<randz >r.

Proposition 3. Under conditions (A1)—(A5),

p(xy)
I, = , 14
" a) o
where x, = x,(n) is the root of np(x,) = r.
A proof of Proposition 3 is given in the Appendix.
Propositions 1, 2, and 3 lead to the following theorem.
Theorem 1. Under conditions (A1)—(A5),
_ plar)
Trm Sr,n =~ ‘ /(Ilfr)" (15)

where x, is the value of x such that np(x) = r.

3. CLASSES OF FUNCTIONS

In this section, it is demonstrated that conditions (A1)—(Ab) are satisfied by several classes of well-
behaved distributions p.

3.1. Power-Decaying Functions

Consider a power-decaying function

A

P@)= (i B>

where A and T are appropriate positive constants. Then
p(z)=—Apx+T)""  pl@)= AB(B+1)(z+T)""7
p"(@)p(x) — [P/ (2)]? = A*B(a +T)~2,

Therefore
togpte)) = ") = —pa+ 1) 10
o Zf; = Jim D =0
<1;((:E))> R L)
lim sup P P ~ D@ _ 1
@)y 5

Therefore all the conditions (A1)—(Ab) are satisfied.
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3.2. Super Power-Decaying Functions
Let
p(z) = Aexp [— log? (z —l—T)], 8>1,
where A and T are appropriate positive constants. Then p(x) may be re-expressed as
pla) = Az + T) Tl DI,

and therefore may be viewed as a power-decaying function with an increasing power, albeit very slowly.
Then

og(x A-1
p(z) = —Aﬂ[l g;+—;T)] exp[—logﬂ(a:+T)],
2[log(x 2p-2 og(x A2 og(z — (B -
P =4’ [li(::z@] i Plioste+ 1) <x[l+gT()2+T) B exp [ - 1082w +7],
and

A?B{[log(x + T))7*[log(a + T) — (8 — 1)]}

P (@)p(z) — [ @) = exp [ - 2l0g( + 7).

(x+T)2
Therefore
(x og(x A1
togp(ayy =70} = PO
. p?(x) — lim (x+T)exp [ — logﬁ(x + T)] _
e D (x) oot A1 =5
z—o0 p'(x)  w—o0 B[log(z + T)]
P@)\ _ p'(@)p(x) - (¢ (z))
() =" 0" =0
g P OP) — @) _ L og(a +T) — (8- 1) _
T—00 (p/(fL’))2 T—00 I} logﬁ (.T + T) ’

that is, all the conditions (A1)—(Ab5) are satisfied.

3.3. Sub-Exponential Functions
Let

p(z) =A™, 0<p<1,
where A is an appropriate positive constant. Then
P) = —Apzr~te
p”(m) — Ap2x2(p—1) —zf Ap( _ ) p—2 —xp

p'(@)p(x) — [p'(2)]> = —A%p(p — D)2l 272",
Therefore
(log p(x))" = ((;E)) = —pz’~1 10,
lim pz(ac) = lim —A P =0
Z—00 p/(x Z—00 p ’
P’ (x)p(x) — (19’(:1?))2 i ? L
hii‘ip ) I

that is, all the conditions (A1)—(Ab5) are satisfied.
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3.4. Near-Exponential Functions

_ x+T
Let p(z) = Ae 1ee’@+17) 3> 0, where A and T are appropriate positive constants. Then

/ _ - 1ogrz++TT 1 — A
Ple) = —de toetenr [[logu + 1) flog(e + TW“} and
1" _ - logza:f’;“ 1 B i
pl(z) = Ae fost=+nl” [[log(:r +T)°  [log(z +T)]ﬁ+1}
S 3 1 3 B+1
+ Ae o=+ x+T [[log(:r +T))P*1 [log(x + T)ﬁ+2] '
Therefore
,_P(x) _ B B 1
(ogp(@)) =00y = Ltog(a + 19541 ~ ftog(ar + T)]ﬂ] 1o
i p*(z) lim fA[log(w +1))° 0
z—o0 p/ () oo e[log(lr+T)]ﬁ (log(:f—i-T) — 1)
(p/(sw)/_ 8 [ 1 _ B+l ]>o
p(x)’  x+ T |[log(x+T)]P+  [log(x +T)+2]| =7
s P @PE) — @2 <mlog<z + D)) (1= oiain) ) :0
e (v(2))2 i +T (1=l

that is, all the conditions (A1)—(Ab5) are satisfied.

3.5. Distributions on the Margin

Consider several distributions on the “margins”, very slow-decaying distributions or the distributions
with the exponential decaying tails. Two examples are given below.

Example 1. Let p, = c(klog®k)~', k > e, be a probability distribution for some constant ¢. Then

*  nc ne
Sin= ) npre "Pk N/ exp | — dt
L zk: Pk . tlog?t p( tlog2t>

Put tlog?t = y. Then t = y(log?t)~! and successive approximations yield the following:

toly) ~ %, il Y !

log®y’ YT og(ylog?y) ~ (logy + 2loglog y)?

Y 2loglogy -1 Y 2loglogy
= 5 (1+ = 5 (1= — ).
log”y logy log=y logy
Therefore

© o7y d 2d
Stp ~ nc/ € y2 dy (d:p = g — 3y >
e ylogy logy log”y

:nc/ - dz (y=mnz)

e/n 2(logn + log 2)?

é e : p 1/6 6_2 p 00 6_2 p
e /e/n 2(logn + log 2)? aF nc/é 2(log n + log 2)? Zhme /1/5 2(logn + log 2)? :

for some small § > 0.
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As it is easy to verify, the first term in above expression is (Q(n(log2 n)~!), the middle term is also
O(n(log®n)~1). For the last term,

nc/oo e dz nc/oo 1 dz—nc/oo dlog 2 o
1/ #(logn + log 2)? 1/ #(logn +log 2)? N 1/5 (logn +1log2)?  logn
Also note that

p"(x)p(z)
(#'(z))

(i.e., condition (A5) is not satisfied) and zy ~

— 2, x — 00

n
logZn”

Example 2. Consider the geometric distribution with p,, = pg*~!, p+¢=1,p>0, ¢ >0, and k =
1,2,.... For fixed n, one can find kg = ko(n) such that

npg™~t > 1 and npg™ <1

from which one gets

to = | 0610+ 10 (V)] (16)

where | x| denotes the largest integer no greater than x.

Putting npgho—1 = e it follows that

et 1o (1) [ty s (2] - [ (7)1

noting that x — |z is the fractional part of z.

The function a(n), 0 < a(n) <log(1/q), is a periodic function of the argument log;/, n with
periodicity 1. It follows that

_ PN eY .Y _ 2,
Sin = E npre "k = %" + ge®e 1 4 gPe¥e T ...

This function is bounded, strictly positive and periodic with periodicity 1. The same is true for
Son = Zk21(npk)2e_"pk and for its higher order counterpart S,.,, 7 > 3.

4. CENTRAL LIMIT THEOREM OF TURING’S FORMULA

Let T,, be Turing’s formula given in (4) and my be the missing probability as defined in (3). The
following sufficient normality condition is due to [7].

Proposition 4. Foranye > 0, let k., = max{k : p > e\/7,/n}. Then

nn ) N (17)
VE(ND) + 2E(N2)
if 7 — oo and
kepe V™ — 0. (18)
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Suppose py = ce %1080 for k > ko where ko > 1 is a positive integer, and ¢ > 0 and 8 > 2 are
constants. It is easily verified, by Theorem 1, that

Tn = nC1n < (loglog n)ﬁ — 00. (19)

Therefore to establish the asymptotic normality of (17), it suffices to show that (18) holds. For any given
e >0, let 2 ,, be the root of

p(z) = ce~*/(logn)” — s\/m
n
and let k. ,, = max{k : k < x.,,}. Let 2, be the root of

1

— ce—%/(og2)? _
p(z) = ce n

and let k,, = max{k : k < z,,}. [t may be verified that
xn =< (loglogn)(logn).

Since, for sufficiently large n, x, > x. 5, it follows that k, > k. ,,. By Proposition 4, the desired result

follows from the fact that, for sufficiently large n,
kepe V™ < ke sV < (loglog n)(log n)e V™ =< (log log n)(log n)e‘a(l‘)g10“5”)ﬁ/2 — 0. (20)
To see (20) is true, it suffices to note that
log [(log log n)(log n)e‘a(log log ”)5/2] = logloglogn + loglogn — £(log log n)ﬁ/2 — —00

for every given e > 0 when 3/2 > 1 or 8 > 2.

This example puts the distributions with near-exponential tails in the sub-domain supporting
asymptotic normality for Turing’s formula.

5. APPENDICES
5.1. Proof of Proposition 1

Sincep < —log(1 —p)forallp € (0,1), it follows that —npy, > nlog(1l — px), thate™Pk > (1 —pi)",
and therefore

Tem =17 Y PRl —pp)" <Y (npg)Te "k = Sy, (21)

k>1 k>1

Note that forany ¢ € (0,1),
> (npp) e = (L—pp)"] =D (npy)"[e"Pr — enloali=re)]

np2 np?
= D) (7 = e ) = S e (1 - )
k=1 k>1
'np2 np2
- Z (npy)"e Pk (1 —e 2 _) + Z (npy)" e~ " (1 e 2 _>
k:pk>n_(1_5) k:pkgn—(1—5)
1
k:pp<n—(1-9) n

Let § € (0,1/10) be a constant. Let Kj(n) be the largest integer such that pp > 1/n'~ for every
k < Ks(n). Noting that py, = o(1/k), it follows that K5 = o(n'~%).
Therefore
Snn = Trpn = Z(npk)T [e_npk _ (]_ _ pk)n] = Z(npk)r [e_”pk _ enlog(l_pk)]

k>1 k>1
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— P ((gmrpe _ gmnpe="TE =) T e~ MPk .
= Z(npk) e —e 2 = Z(npk) e l—e 2

k21 k>1
np2 np?
= Z (npy)"e Pk (1 —e 2" _) + Z (npy) e "Pk (1 e i _) .
k<Ks k>Ks

However,
np2
Z (npy) e "Px (1 —e 2 _) < K(;(n‘s)’"e_’"”(S < npl=0priem’ = o(1), n — oo,
k<Ks
which is negligible since S,.,, > C,(a)) by Lemma 1.
For the second summation, it follows that

np2
S e (1o ) < 5 o

k>Ks k>Ks

<Y e

k>K;

1 1
25 (Sm - 0(1)) nl-28"

That is to say,

1

Sr,n — Trn < (Sr,n - 0(1))711_25’

which leads to

(1 - nll_Qé)Sr,n < T (22)

The proposition is a direct result from equations (21) and (22).

5.2. Proof of Proposition 3

Consider the point z, = z,(n) such that

np(z,) =r, or p(z,) = ;, r=1,2,.... (23)
Write
I, = / [np(a:)]’"e_”p(x) dx + / ' [np(m)]re_"p(x) dor = I,’”vn + I,’fn (24)
s 0
Consider I, first. It is clear that
nre_T/ p"(z)dx §/ [np(x)]"e"P@) dg SnT/ p"(z) dz. (25)
Hence
I = /oo(np(x))re np(u’v)dx =n" /*oopr(m) dr =n" /oop(m)de(fE)
o Ty Ty Ty Tp,(m)
_ (@) % (p() v
T L L ) O
plz;) 1 /°° (p”(l’)p(w) - [p’(m)]2> r
=— + np(x))" dx.
pl(xe) s, (' (x))? ()

MATHEMATICAL METHODS OF STATISTICS Vol.27 No.1 2018



70 MOLCHANOV et al.
Due to inequality (25), conditions (A2) and (Ab), it follows that

I p(zr)

= . 26
r,n |p/(xr)‘ ( )

Now consider I}/, :

o 0 np(x
1= [ pte)ye e = [Cuptayye o)

—np/(x)

1 On 2)) e @) d(np(z)) = 1 np(O)ure“u
< (] J,, RN e dne(@) S o
_ mp(e) T4 1) _ T +1) ple)
onlp'(z)| 7 ro ()]

where D(r +1) = [ u"e “du is the Gamma function. The first inequality above is due to the fact
that p’(z) < 0 and p/(z) is monotone increasing. The second inequality above is due to the fact that

np(x,) = r and f"p(o)) u'e du < T'(r+1).

np(z,
Hence, it follows that

17, = Pl (27)

Equations (26) and (27) lead to the proposition.
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