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Abstract

We extend our earlier mean field approximation of the Bolker-Pacala model of
population dynamics by dividing the population into N classes, using a mean field
approximation for each class but also allowing migration between classes as well as
possibly suppressive influence of the population of one class over another class. For
N =2, we obtain one symmetric non-trivial equilibrium for the system and give global
limit theorems. For N = 2, we calculate all equilibrium solutions, which, under addi-
tional conditions, include multiple non-trivial equilibria. Lastly, we prove geometric
ergodicity regardless of the number of classes when there is no population suppres-
sion across the classes.
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1 Introduction

The Bolker-Pacala (BP) model of population dynamics, from biology, involves pro-
cesses of birth, death, and migration, as well as competition or suppression. In a previous
paper [1], we analyzed a mean-field approximation of the BP model, obtaining results
such as local and global central limit theorems for population size. While that model
treated basic population questions, in this paper we extend the mean-field approach to
address additional topics.

Specifically, we consider a population now divided into N classes or “boxes," and an-
alyze a mean-field approximation for each box. We allow the possibility of migration be-
tween boxes and of competitive effects or the suppression of the population in one box
by the population in other boxes. While it is possible to think of the boxes as geographi-
cal areas, it is perhaps most intriguing to view them as segments of a population such as

*This work was supported in part by NSF grant DMS-1515800 and by PSC-CUNY grant #68170-00 46 and by
funds provided by UNC Charlotte.


http://arxiv.org/abs/1610.09569v1

social classes. In this case, the N-box BP model becomes a model of social stratification.
Migration between boxes corresponds, then, to social mobility with the parameters for
migration giving the rates of social mobiliy. The parameters for competition within boxes
may correspond to constraints, such as economic constraints, on the size of classes. It is
questionable whether suppression across classes would exist or whether these parameters
would be 0.

For N =2 and 3 we obtain two new results:

e first, allowing suppression of population across boxes creates the possibility of more

than one non-trivial equilibrium population level;

¢ second, when there is only one non-trivial equilibrium, such as in the absence of
such cross-box suppression, the equilibrium level is not affected by migration from
one box to another.

The paper is laid out as follows. In Section 2, we describe the N-box mean field Bolker-
Pacala model. In the following Sections 3 and 4, we give a global analysis, showing the
existence of one symmetric, non-trivial equilibrium point, and presenting global limit
theorems for N = 2. Exact results for NV = 2 are given there. In Section 5, we establish the
geometric ergodicity of the process regardless of the number of boxes when population
suppression from other boxes is 0, and gives the equilibrium point when internal compe-
tition is identical for all boxes.

2 Preliminaries: description of the process

We begin with an introduction of the general Bolker-Pacala model, which can be formu-
lated as follows. There is some initial homogeneous population on R, that is, a locally
finite point process

no (') = #(particles in T at time ¢ =0),

where I denotes a bounded and connected region in R?. We refer to individual members
of the population as particles and the location of a particle on R? as the site of that particle.
For instance, one can consider ny(I') to be a Poissonian point field with intensity p > 0,
ie.,

(pISn*
k!
where S c T and |S| represents the (finite) Lebesgue measure of S, and the number of
points in each set of any disjoint collection of subsets of I is independent. The following

rules dictate the evolution of the field:

P{ny(S) = k} = exp(—pISI)

, k=0,1,2,...

i) Each particle, independent of the others, during time interval (¢, t+d t) can produce
a new particle (offspring or seed) with probability fdt + o(d 2) = Atdt+ o(dt?),
A* > 0. The initial particle remains at its initial position x but the offspring jumps
to X + z+ dz with probability

at(z)dz, A" = f at(x)dx.

R4



Note that this can be seen equivalently as two random events, the birth of a particle
and its dispersal, as in Bolker and Pacala’s presentation [2, 3], or as a single random
event, as in our model. (We stress that this differs from the classical branching pro-
cess, in which the “parental” particle and its offspring commence independent mo-
tion from the same point.) We will assume that all offspring evolve independently
according to the same rules.

ii) Each particle at point x during the time interval (¢, #+d t) dies with probability pd ¢+
o(dt?), where p is the mortality rate.

iii) The competition factor leads to many interesting properties in this model. If two
particles are located at the points x, y € R?, then each of them dies with probability
a (x—y)dt+o(d ) during the time interval (¢, f + dt) (due to independence, the
probability that both die is o(d £2)). This requires, of course, that a™ (-) be integrable;
set

A" = fa_(z)dz.
R4
The total effect of competition on a particle is the sum of the effects of competition
with all individual particles.

Here we have interacting particles, in contrast to the usual branching process. One can
expect physically that for arbitrary non-trivial competition (a~ € C(R%), A~ > 0), there will
exist a limiting distribution of the particles. At each site x € R, with population at time ¢
given by n(z, x), three rates are relevant, the birth rate f and mortality rate u, each propor-
tional to n(t, x) and the death rate due to competition, proportional to n(t, x)%. Heuristi-
cally, when n(t, x) is small the linear effects will dominate. Thus, if § > u the population
is expected to increase. As the population grows and n(t, x) becomes large enough, how-
ever, the quadratic effect due to competition will become increasingly dominant, which
will prevent unlimited population growth. At present, this fact has been proven only un-
der strong restrictions on a* and a~ [5].

3 The N-box model

In the first part of Section 3.1, we recall the mean-field approximation to the Bolker Pacala
model from [1], in which we considered the 1-box model. In Section 3.2, we generalize our
mean-field approximation to the N-box model.

3.1 The 1-box model

The mean field approximation, “1-box model” of the BP process from [1] led to the special
Markov chain: the logistic random walk on the half-axis Z, = {0,1,2,...}. In this model,
we considered a system of particles (thinking of particles as individual members of some
population). All particles live on the lattice, Z¢. Each lattice point x has an associated
square x + [0, D4, and the number of particles at x represents the number of inhabitants
in the continuous model of that square in R that is associated with x € 2.



Welet Q; c 7% be a box with |Qrl = L, L alarge parameter, and suppose that no parti-
cles exist outside of Q;.

We modify the notation from [1] slightly to match the notation in this paper. We recall
the migration rate between sites on the lattice and competition rate, at which a particle at
x outcompetes another particle aty, in the 1-box model:

+
at(x,y)= % forx,ye Q.nz%,

a (x,y) = % forx,ye Qrn z¢

for constants a*,a” = 0. With such rates, the distribution of a particle after a jump due to
migration is uniform on Qr. Let § and p be the birth and mortality rates, respectively. We
assume that > p.

If n(¢,x) represents the number of particles at site x€ Qr N 74 (we do not restrict the
number of particles per site), then

Ni(H= Y n(x

xeQnz4

is the total number of particles in Q; at time ¢. N (f) is a Markov process, which we call
the “logistic” Markov chain.
The transition rates for Ny (t) are

nﬁdt+0(dt2) ifj=n+1
P(NL(t+dt)=jINL()=n)={ npdt+a -n*/Ldt+o(dr®) ifj=n-1
o(dt?) otherwise

We observe that if Ny (#) is large, the random walk has a left drift, whereas if Ny (#) is small,
the random walk has a drift to the right. An important point is the equilibrium point, n;,
where the rates to the left and to the right are equal, that is,

= —+ ,
Bry = pn; L
Thus,
« | LB-p
nL_{ a J

We showed in [1] that as L — oo, Ny (1) tends quickly to a neighborhood of n; and after-
ward fluctuates randomly around n; . See [1] for further results including a local Central
Limit Theorem and large deviations.

3.2 The N-box model

The more general N-box model gives rise to a random walk on

@ )N ={(n,ny,...,nN) |n;€Z,,1<i <N},



Consider a system of N disjoint rectangles Q; R2,i=1,2,...,N, with
2| _
|Q,',L nz | =L

As in the usual BP model, introduce the migration potential a* and the competition po-
tential a~ that are constant on each Q; 1. Forx€ Q; ,y€ Qj 1,

ar(xy) = a;; /1%, i,j=12,...,N, 3.1)
and
aj (x,y) = a;rj/L, i,j=1,2,...,N. (3.2)

Specifically, ai‘j indicates the depressive effect on the population in box i due to the pop-

ulation in box j (i.e., competition between boxes i and j), while “Z (x,y) is the rate of
migration fromx€ Q; toy€ Q; 1.
Let Uﬁ.\il Q;,r = Qr. Then set

N N
Af= ) a'xy)=) aj, Aj=) a xy)=} a;
veor = year j=1

Assume that
Al A s A<oo

uniformly in L. In this setup, the number of squares N is fixed. The parameters ;, u; >0
represent the natural (biological) birth and death rates of particles in box i, i = 1,..., N,
respectively.

The population in each square Q; 1, i =1,..., N, at time ¢ will be represented by

n(t):{nl(t))nZ(ﬂ)---ynN(t)}y (33)

a continuous time random walk on (Z,)" with rates obtained from, for i, j=12,...,N,

n(t+dtin(t) (3.4)
e; W. pI. ﬁini(t)dt+0(dt2)
, de s O N d a2
—e W. pr. uin;(Hdt+ 7 ]Z:laijn](t) t+o(dt?)

ej—e; W.prL n,-(t)a;’jdt+0(dt2), jAi

=n(t)+< N
0 w.pr. 1= ) (Bi+u)ni(t)dt
i=1
1 —_
_Z;m(tmi(tmiidH;j”i(t)“;rj +o(df?)

other w. pr. o(d t2)

where e; is the vector with 1 in the ;" position and 0 everywhere else.



We define the transition function p (n(t),n(¢) + k) from the principal probabilities above,
that is,

pm()n(r) +k) (3.5)
Bin;(1) k=e;
N
pin,-(t)+niTmZai_jnj(t) k=-e;
Jj=1
ni(t)aj; k=ej—e; j#i
=4 N 1 )
—;(ﬁi+,ui)ni(f)—Z;jni(t)nj(f)aij“' k=0
+Zni(t)a;fj
iJ
0 all other k

4 Global analysis for N boxes

4.1 Preliminaries

Let us temporarily fix L. We set

n; (1)

=z (1), i=1,...,N.
3 i (1)

Define .
fr(z(0),k) = zp(n(t),n(t) +k),

where z(1) = (z1(1),...,zn (1), n(t) = (n1 (1),...,ny (1), and k = (ky,..., kn), k; = 1,0, or —1
fori=1,...,N, and p is the transition function (3.5). Then

Bizi k=e;, i=1,...,N
,ul-zl-+al.‘iz§+2ai_jzizj k=—e;, i=1,...,.N
. A
azjzi kzej—ei, Lj=1,...,N;i#]
[rEDR) = -y N (Bi+pzi(0) k=0

—LZi,jzi(t)zj(t)alTj

+Xij zi(Dag;
0 otherwise

Note that f7 (z(#),k) does not, in fact, depend on L.
Set the migration rate out of box i

+ . +
M = Z_“i,j'
j#i



For the functional limit theorems to follow, define fori =1,..., N,
1
Fi@®):= ) kif@®),)(Bi—pi—M)zi—a;,2; =Y a;jzizj+ ) ajzj (4.1
ki=—1 Jj#i Jj#i
and consider the system of differential equations

@ =F(z(1)) (4.2)
dr '

An equilibrium for the system occurs precisely at the points where
0=F(z), (4.3)

with one solution being z = 0.
Set p; := B; — u; — M. In matrix form, we have the equation

21 Z%
A +B =0,
ZN ZJZV
where B is a diagonal matrix:
+ + +
p1 ay, az, ay ~
+ + + a
ai, p2 as, ay I
a2 0
A= , B=
. . a_
N,N
+ + ’
ayy ay N PN

When a;r I 0 and a; i = 0,7 # j, that is, there is no migration between boxes and no

suppression across boxes, there is a unique non-zero equilibrium

zZi = w, i=1,..,N.

a; ;

This is, as would be expected, essentially the equilibrium for N distinct, independent “sin-
gle box" mean field Bolker Pacala models, as found in [1].

4.2 More on equilibrium points

We assume, in this section, symmetric conditions, that is, that conditions are identical for
all boxes. Thus, the biological birth and mortality rates are the same in each box:

Bi=Pandpyu; =y, i=1,2,....
The “inner” competition rates within boxes are equal, satisfying

ar = a;, i=1,2,...



and “outer” competition (from box to box) is the same
ag:= al-_j, i #].
We also set the common migration rate

+ . +
a’:=ag;,

i#].
So that the system does not inevitably die out, we assume that > p.

We begin with the case of two boxes (IV = 2) or classes. The system (4.2) may have up
to four distinct non-negative singular points, that is, solutions of (4.3). All four solutions
are real and non-negative only if

+ 0T a

ao>a; and f-pu>2a (4.4)

ap—a;

They are as follows:
1) The trivial singular point, an unstable equilibrium for § > p, at (0,0).

2) ( By _B-p

— =, == —
ap +ao a +ao

), which always exists, even when (4.4) is not satisfied.

3)
pp—2at  \/(B-u—2a")(ag-a;?—4a; a* (ag-a;) (B-p-2a*)
2a; + 2a;(agp—a;) ’
pop-2a* _ \/B-p-2a"2(ay=a;)’~4a} a* (ay—a;)(p-p-2a*)
2a; 2a; (agp—ay)
4)
f-pu—2a* \/(ﬁ—,u—Za*)Z(aa—a;)Z—4a;a*(aa—a;)(ﬁ—u—Za*)
2a; - 2a; (ag—ay) ’
Bp-2a* \/(ﬁ—p—ZLz*)Z(aa—a;)z—4a;a*(aa—a;)(ﬁ—y—Za*)
2a1‘ 2a1‘(a(‘)—al‘)

Proposition 4.1. In the event that all four equilibria exist, the third and fourth equilibria
are stable while the second one is a saddle point and is not stable.

Proof. For the stability of the third and fourth, a computation shows that the eigenvalues
of the Jacobian matrix of F(z) = (F;(z), F»(z)) with F} and F, as in (4.1) at an equilibrium
point z* = (z7, z5),

J(z) = ﬁ—,u—a:—Za_I_z*f—aazz* cf’—a(_)_zf* n
a’—agz, p—u—a"—2a;z; —agyz,
are of the form VB VB
A+VB A-VB
. and A,

- Za;(aa—al‘) - Za;(aa—al‘)



for the third and fourth equilibrium points, where
A= (ag—ap) (- Plag+2a’ (ag+ap),
B = (a7 - ap)* | 8% (-2a; + ag)’ + (ap)* 2a* +p)?
+4(a;)’ (—3 (a*)? +,u2) —4aj ag (2 (a*)* + 3a+,u+,u2)
2B (ap(a;)* + (ap)’ @a* +p) -2a; ag3a* +2w))|.

It follows that A < 0 since the first factor of A is positive and the second factor of A is
negative by (4.4). Since A <0, B < 0 implies that the real part of each eigenvalue, ®(1;) <0,
i =1,2, and, therefore, the claimed stability. If B > 0, then consider

A2~ B =4 (a; —ap)’ (p~2a" ~p) (B~ p) (af - ap) +2a" (g +a7)]

By (4.4), B—2a* — u> 0, since
ag+aj
—>1
g =4
and also by (4.4),
(B-p)(a; —ag)+2a* (ag+a;) <0,
we conclude that R(A;) <0, i = 1,2, in this case as well.
To see that the second equilibrium point is not stable in this case, one can similarly
evaluate the eigenvalues of the Jacobian matrix. A proof for general N is given below, thus
we omit the details here. O

However, if (4.4) is not satisfied, then we have only one non-trivial singular point,

Pow b
&ﬁﬂ3@+%y
which is a stable equilibrium in this case. Note that this is the only non-trivial equilibrium
if ay =0, i.e., there is no suppression across boxes or classes. This is the same equilibrium
point, then, that is found for single boxes in the absence of any migration or mobility.

Note, also, that even if ag>a; the existence of the third and fourth equilibria depends
on low rates of migration between boxes (or social mobility between classes); these equi-
libria vanish if a* is too great. This is somewhat contrary to what one might suppose, that
low rates of migration or mobility would keep the equilibria inside boxes at or near the
original equilibria.

For three boxes or classes, N = 3, the results are similar. In particular, two equilibria
always exist:

1) The trivial singular point, an unstable equilibrium for § > y, at (0,0,0), and

2) ( B-p B-p B-p )

= =, —= =, —= —
a; +2aO a; +2ao a; +2aO

If population suppression across boxes or classes does not occur, a,, = 0, the second of
these is the only non-trivial equilibrium. Otherwise, under additional conditions, includ-
ing again, sufficiently low migration between boxes, multiple equilibria can exist.



Proposition 4.2. For N = 2, the points 0 andz* € RN with

o P
' a;+(N-1Dag,
are equilibrium points of (4.2), withz* being stable only when
(B—u)(ag—a;)<Na* (a; +(N-1ag) (4.5)

Proof. One can check that 0 and z* are equilibrium points by plugging them directly into
(4.3). To see that z* is stable under the condition (4.5), we again consider the Jacobian of
F(z) = (F1(2),...,Fn(z) with F; as in (4.1) with entries given by

B-u—(N-1a* -2a;z; —a,(N-1)z;, i=],

at— asz;, i#]j

0, -]

Given the special form of this matrix, the distinct eigenvalues are

_ (B-w(ag-a;)-Na*(a; +(N-1ap)

M = =
a; + (N - l)ao

and Ay =pu-p.

To see this, note that

as(f—w
N MIy), . =at——9%—
(](Z ) 1 N)l] a aI_+(N—1)a6

where Iy is the N x N identity matrix, for all i, j = 1,..., N. This matrix has rank 1, thus
the eigenspace of 1, is (N —1)-dimensional and so the multiplicity of 1; is N —1. To check

that A, is an eigenvalue with multiplicity 1, we note that

oB-1) ..

~(N-1)|a" - =mnaz | i)
(](z*)_,lsz)ijz{ X ao[(ﬁ—m a; +(N-Day, o
T THNDag L7

If we add each of rows 2 through N to the first row of J (z*) — A2 I, we obtain a zero row
and it follows that

J(z") = A2In

has rank N — 1. Thus A, is an eigenvalue of J (z*) of multiplicity 1.
A1 <0 precisely when condition (4.5) is satisfied and A, < 0 from our assumption that

B> p. O

4.3 Global limit theorems for N boxes

Here, we state a functional law of large numbers and functional central limit theorem,
following [7, 8]. We now allow L to vary, so we relabel slightly, setting
n; (1)
L

zri(t) = , i=1,...,N

and Zr (1) = (z11(1),..., 2N (2)).

10



Theorem 4.3 (Functional LLN). Let (z7,...,zy,) denote a unique stable equilibrium for the
system given in (4.1) and (4.2). As L — oo,

Zi() — Z(O) = (z1(D),..., 2N (1)
uniformly in probability, where Z(t) is a deterministic process, the solution of

de(l’)
dt
21(0) = z{,...,zn(0) = zy.

=Fj(z1(0),...,zn(1)), j=1,...,N, (4.6)

with Fy,...,Fy given in (4.1).

Next, define g;;(z1, ..., 2n):

1
gii(zl)---)ZN):= Z kl?f(zl)---)ZN)'!kl')')
ki=-1

+

= Bzi + pzi + a;,z; + ) (ag;zizj + aj;zi + aj;zj) 4.7

— ij J
J#i

1
gij(Zl,---,ZN)=gji(Zly---»ZN) = Z kikjf(Zl,...,ZN,',ki,',kj,')
k,‘,kj:—l

_ —+ L =+ ) . .
=-a;;2i— a4}, fori #j

Theorem 4.4 (Functional CLT). Letz* = (z], ..., zy) denote a unique stable equilibrium for
the system given in (4.1) and (4.2). If\/Z(ZL(O) —z*) =y, the processes

{r(0) = VL(ZL(t) - 2%)

converge weakly in the space of cadlag functions on any finite time interval [0, T] to an
Ornstein-Uhlenbeck process (OUP) { (t) with initial value {y, infinitesimal drift given by

0F (z],.... z%) OFN (27, ... 23)
=, qn i=——————

q1:=

0z1 Ozy

and the infinitesimal covariance matrix with entries given by

a,-j = gij (Zik, e Z;]) .

Thus, for the single, symmetric positive equilibrium for N = 2, with a single inner
competition rate ar,a single outer competition rate ag, and a single migration rate a”,

the infinitesimal drift is: B
o Ta (B-p +
h=(=——_———4a,
a; +ag,
and the infinitesimal covariance matrix entries are:

2B-w(B+ar) —2a*(B-p)
S, - ar=a=—— —— .

apl = azz E— ~ra
ap+ag ap +ag

11



5 Ergodicity for N boxes

Assume there is no suppression of population across boxes, i.e., a;; = 0 for i #j. We
also assume that a; >0 for some i = 1,..., N. For N boxes, let {X,l}‘;l":0 on (Z4)" be the
embedded discrete time random walk associated with the continuous random walk (3.3).
Forx = (x1,...,xn) € Z+V, set

N a. N
121 +
cx=) ﬁ,-+,ul-+Txl- xit ) a;;Xi.
i=1 1j=1i#]

{X,} has transition probabilities, for x,y € ZHN, x#0

Bixi ify=x+e¢;,i=1,...,N
;i 5 . .
ixi+—x; ify=x-e;i=1,...,N
Pxy) =——70-: L (5.1)
cx) a;’jxl- ify=x-e;j+ej,i#j
0 otherwise

and forx=0,

1
— ify=0+e¢;,i=1,...,N
Pxy)={ N (5.2)

0 otherwise

Recall that we use e; € ZV to denote the vector with 1 in the i’ position and 0 everywhere
else, and 0 = (0,...,0). We impose here a reflective barrier at 0 with (5.2).

Theorem 5.1. A random walk with transition probabilities (5.1) and (5.2) is geometrically
ergodic. That is, it is positive recurrent with exponential convergence to a stable distribu-
tion.

Proof. Using Foster’s [6] criterion, [9, Theorem 15.01] (see also similar results in [4]) states
that if there is a function V : (Z4)Y — R with V(x) = 1 for all x € (Z;)" such that, for a
bounded set B = (Z+)V, constant A < 1, and constant b < oo,

Y Pxy)V(y) <AVX +blpx), (5.3)
YE(Z+)N

then the Markov chain with probability transition matrix P is geometrically ergodic. Here,
1 3(x) is the indicator function of B. Let

V) = a||x||1,

where we will choose appropriate a > 1, and |[x|[; is the L! norm of x. Note that, for
xe (Z)N,

N N
Xl =) 1xil =) x;.
i=1 i=1

12



Then, for x¢ B and if Aa > 1, criterion (5.3) is equivalent to

aj;
Mi+ Tx,- X (5.4)

N

N N 1
(@-D ) Bixi+(1-D) )Y Afx; < (A—E)Z
i=1

i=1 i=1

for some A < 1, where

is the total migration rate out of box i. Let

a.
C; =maxf;, C2=rn_axA;r, C3=m_in{%:ai_i>0}.
1 1 1

Then, forx € (Z,)N with

\/N(aC1+C2)
> 5.5
IIx]2 XY (5.5)
where
N 1/2
||x||2=(2x§) ,
i=1
N N
(@=A)Y Bixi+(1-A) Y Afxi<(@-A)Cilxlh +1-1) Cllxlly
i=1 i=1

<VN(@=M1)Ci+(1-1)C)Ixll
<VN(@aC; +GC)|xll2

1
scg(A——)an%
a

S(A—é)i

i=1

a;
Hit Txi Xi,

where the second inequaity is due to the Cauchy-Schwarz inequality, and the fourth in-

equality is due to our assumption (5.5). The other inequalities follow from the definitions
of Cl, Cg, and C3.
Thus, choose

_VN(@aC +Cy)

 GAA-1/a)

and let
B={xe @) |IIxllz < M}.

Then B is a bounded set, V(x) =1 on (Z4)". Let

b= max{ Y PxyVy-AV®|:xe @)V, Xl < M}.
ye@z )N
Then (5.3) is satisfied for all x € (Z,). O

13



Suppose, finally, that we impose symmetric conditions on all of the boxes:
1) B;=pPand y; = pforall i, with >y,
2) migration rates between all boxes are equal to a*, that is, a;fj =a* forall i, j,

3) suppression of population within its own box occurs at the same rate for all boxes,
ie,a;; =a; forall i.

Then, as is directly checked, the random walk has at least one non-trivial equilibrium
point, that is, the drift vector

AX:= ZP(x,y)y—x =0
y

(cf. [9]) at two points, the trivial point 0, and x, where

Xi _B-p

L a;

for all components i. This follows from a computation for each component i that

1 a;
(AX); = ) (B—p)xi — T’x,? + a+(jz#ixj ~(N-Dx;)|.

The equilibrium result agrees with our earlier results in Proposition 4.2.
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