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Abstract

We extend our earlier mean field approximation of the Bolker-Pacala model of

population dynamics by dividing the population into N classes, using a mean field

approximation for each class but also allowing migration between classes as well as

possibly suppressive influence of the population of one class over another class. For

N ≥ 2, we obtain one symmetric non-trivial equilibrium for the system and give global

limit theorems. For N = 2, we calculate all equilibrium solutions, which, under addi-

tional conditions, include multiple non-trivial equilibria. Lastly, we prove geometric

ergodicity regardless of the number of classes when there is no population suppres-

sion across the classes.

2010 MSC: 92D25 (primary); 60J10 (secondary)

1 Introduction

The Bolker-Pacala (BP) model of population dynamics, from biology, involves pro-

cesses of birth, death, and migration, as well as competition or suppression. In a previous

paper [1], we analyzed a mean-field approximation of the BP model, obtaining results

such as local and global central limit theorems for population size. While that model

treated basic population questions, in this paper we extend the mean-field approach to

address additional topics.

Specifically, we consider a population now divided into N classes or “boxes," and an-

alyze a mean-field approximation for each box. We allow the possibility of migration be-

tween boxes and of competitive effects or the suppression of the population in one box

by the population in other boxes. While it is possible to think of the boxes as geographi-

cal areas, it is perhaps most intriguing to view them as segments of a population such as

∗This work was supported in part by NSF grant DMS-1515800 and by PSC-CUNY grant #68170-00 46 and by

funds provided by UNC Charlotte.
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social classes. In this case, the N -box BP model becomes a model of social stratification.

Migration between boxes corresponds, then, to social mobility with the parameters for

migration giving the rates of social mobiliy. The parameters for competition within boxes

may correspond to constraints, such as economic constraints, on the size of classes. It is

questionable whether suppression across classes would exist or whether these parameters

would be 0.

For N = 2 and 3 we obtain two new results:

• first, allowing suppression of population across boxes creates the possibility of more

than one non-trivial equilibrium population level;

• second, when there is only one non-trivial equilibrium, such as in the absence of

such cross-box suppression, the equilibrium level is not affected by migration from

one box to another.

The paper is laid out as follows. In Section 2, we describe the N -box mean field Bolker-

Pacala model. In the following Sections 3 and 4, we give a global analysis, showing the

existence of one symmetric, non-trivial equilibrium point, and presenting global limit

theorems for N ≥ 2. Exact results for N = 2 are given there. In Section 5, we establish the

geometric ergodicity of the process regardless of the number of boxes when population

suppression from other boxes is 0, and gives the equilibrium point when internal compe-

tition is identical for all boxes.

2 Preliminaries: description of the process

We begin with an introduction of the general Bolker-Pacala model, which can be formu-

lated as follows. There is some initial homogeneous population on R
d , that is, a locally

finite point process

n0(Γ)= #(particles in Γ at time t = 0),

where Γ denotes a bounded and connected region in R
d . We refer to individual members

of the population as particles and the location of a particle onR
d as the site of that particle.

For instance, one can consider n0(Γ) to be a Poissonian point field with intensity ρ > 0,

i.e.,

P {n0(S) = k} = exp(−ρ|S|)
(ρ|S|)k

k!
, k = 0,1,2, . . .

where S ⊂ Γ and |S| represents the (finite) Lebesgue measure of S, and the number of

points in each set of any disjoint collection of subsets of Γ is independent. The following

rules dictate the evolution of the field:

i) Each particle, independent of the others, during time interval (t , t+d t) can produce

a new particle (offspring or seed) with probability βd t + o(d t 2) = A+d t + o(d t 2),

A+ > 0. The initial particle remains at its initial position x but the offspring jumps

to x + z +d z with probability

a+(z)d z, A+ =
∫

Rd

a+(x)d x.

2



Note that this can be seen equivalently as two random events, the birth of a particle

and its dispersal, as in Bolker and Pacala’s presentation [2, 3], or as a single random

event, as in our model. (We stress that this differs from the classical branching pro-

cess, in which the “parental" particle and its offspring commence independent mo-

tion from the same point.) We will assume that all offspring evolve independently

according to the same rules.

ii) Each particle at point x during the time interval (t , t+d t) dies with probabilityµd t+
o(d t 2), where µ is the mortality rate.

iii) The competition factor leads to many interesting properties in this model. If two

particles are located at the points x, y ∈R
d , then each of them dies with probability

a−(x − y)d t +o(d t 2) during the time interval (t , t +d t) (due to independence, the

probability that both die is o(d t 2)). This requires, of course, that a−(·) be integrable;

set

A− =
∫

Rd

a−(z)d z.

The total effect of competition on a particle is the sum of the effects of competition

with all individual particles.

Here we have interacting particles, in contrast to the usual branching process. One can

expect physically that for arbitrary non-trivial competition (a− ∈C (Rd ), A− > 0), there will

exist a limiting distribution of the particles. At each site x ∈R
d , with population at time t

given by n(t , x), three rates are relevant, the birth rate β and mortality rate µ, each propor-

tional to n(t , x) and the death rate due to competition, proportional to n(t , x)2. Heuristi-

cally, when n(t , x) is small the linear effects will dominate. Thus, if β > µ the population

is expected to increase. As the population grows and n(t , x) becomes large enough, how-

ever, the quadratic effect due to competition will become increasingly dominant, which

will prevent unlimited population growth. At present, this fact has been proven only un-

der strong restrictions on a+ and a− [5].

3 The N -box model

In the first part of Section 3.1, we recall the mean-field approximation to the Bolker Pacala

model from [1], in which we considered the 1-box model. In Section 3.2, we generalize our

mean-field approximation to the N -box model.

3.1 The 1-box model

The mean field approximation, “1-box model” of the BP process from [1] led to the special

Markov chain: the logistic random walk on the half-axis Z+ = {0,1,2, . . .}. In this model,

we considered a system of particles (thinking of particles as individual members of some

population). All particles live on the lattice, Zd . Each lattice point x has an associated

square x+ [0,1)d , and the number of particles at x represents the number of inhabitants

in the continuous model of that square in R
d that is associated with x ∈Z

d .

3



We let QL ⊂Z
d be a box with |QL| = L, L a large parameter, and suppose that no parti-

cles exist outside of QL .

We modify the notation from [1] slightly to match the notation in this paper. We recall

the migration rate between sites on the lattice and competition rate, at which a particle at

x outcompetes another particle at y, in the 1-box model:

a+(x,y) ≡
a+

L
for x,y ∈QL ∩Z

d ,

a−(x,y) ≡
a−

L2
for x,y ∈QL ∩Z

d

for constants a+, a− ≥ 0. With such rates, the distribution of a particle after a jump due to

migration is uniform on QL . Let β and µ be the birth and mortality rates, respectively. We

assume that β>µ.

If n(t ,x) represents the number of particles at site x ∈ QL ∩Z
d (we do not restrict the

number of particles per site), then

NL(t) =
∑

x∈QL∩Zd

n(t ,x)

is the total number of particles in QL at time t . NL(t) is a Markov process, which we call

the “logistic” Markov chain.

The transition rates for NL(t) are

P
(

NL(t +d t) = j |NL(t)= n
)

=







nβd t +o(d t 2) if j = n+1

nµd t +a− ·n2/L d t +o(d t 2) if j = n−1

o(d t 2) otherwise

We observe that if NL(t) is large, the random walk has a left drift, whereas if NL(t) is small,

the random walk has a drift to the right. An important point is the equilibrium point, n∗
L ,

where the rates to the left and to the right are equal, that is,

βn∗
L =µn∗

L +
a− ·n∗2

L

L
,

Thus,

n∗
L =

⌊

L(β−µ)

a−

⌋

.

We showed in [1] that as L →∞, NL(t) tends quickly to a neighborhood of n∗
L and after-

ward fluctuates randomly around n∗
L . See [1] for further results including a local Central

Limit Theorem and large deviations.

3.2 The N -box model

The more general N -box model gives rise to a random walk on

(Z+)N = {(n1,n2, . . . ,nN ) |ni ∈Z+,1 ≤ i ≤ N }.

4



Consider a system of N disjoint rectangles Qi ,L ⊂R
2, i = 1,2, . . . , N , with

∣

∣Qi ,L ∩Z
2
∣

∣= L.

As in the usual BP model, introduce the migration potential a+ and the competition po-

tential a− that are constant on each Qi ,L . For x ∈Qi ,L ,y ∈Q j ,L ,

a−
L (x,y) = a−

i j /L2, i , j = 1,2, . . . , N , (3.1)

and

a+
L (x,y) = a+

i j /L, i , j = 1,2, . . . , N . (3.2)

Specifically, a−
i j

indicates the depressive effect on the population in box i due to the pop-

ulation in box j (i.e., competition between boxes i and j ), while a+
L

(x,y) is the rate of

migration from x ∈Qi ,L to y ∈Q j ,L .

Let
⋃N

i=1
Qi ,L =QL . Then set

A+
i :=

∑

y∈QL

a+(x,y)=
N
∑

j=1

a+
i j , A−

i :=
∑

y∈QL

a−(x,y) =
N
∑

j=1

a−
i j

Assume that

A+
i , A−

i ≤ A <∞

uniformly in L. In this setup, the number of squares N is fixed. The parameters βi ,µi > 0

represent the natural (biological) birth and death rates of particles in box i , i = 1, . . . , N ,

respectively.

The population in each square Qi ,L , i = 1, . . . , N , at time t will be represented by

n(t) = {n1(t),n2(t), . . . ,nN (t)}, (3.3)

a continuous time random walk on (Z+)N with rates obtained from, for i , j = 1,2, . . . , N ,

n(t +d t |n(t)) (3.4)

= n(t)+



















































































ei w. pr. βi ni (t)d t +o(d t 2)

−ei w. pr. µi ni (t)d t +
ni (t)

L

N
∑

j=1

a−
i j n j (t)d t +o(d t 2)

e j −ei w. pr. ni (t)a+
i j d t +o(d t 2), j 6= i

0 w. pr. 1−
N
∑

i=1

(βi +µi )ni (t)d t

−
1

L

∑

i , j

ni (t)n j (t)a−
i j d t +

∑

i , j

ni (t)a+
i j +o(d t 2)

other w. pr. o(d t 2)

where ei is the vector with 1 in the i th position and 0 everywhere else.
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We define the transition function p (n(t),n(t)+k) from the principal probabilities above,

that is,

p(n(t),n(t)+k) (3.5)

=















































































βi ni (t) k = ei

µi ni (t)+
ni (t)

L

N
∑

j=1

a−
i j n j (t) k =−ei

ni (t)a+
i j k = e j −ei , j 6= i

−
N
∑

i=1

(βi +µi )ni (t)−
1

L

∑

i , j

ni (t)n j (t)a−
i j+ k = 0

+
∑

i , j

ni (t)a+
i j

0 all other k

4 Global analysis for N boxes

4.1 Preliminaries

Let us temporarily fix L. We set

ni (t)

L
:= zi (t), i = 1, . . . , N .

Define

fL (z(t),k) :=
1

L
p(n(t),n(t)+k),

where z(t)= (z1(t), . . . , zN (t)), n(t)= (n1(t), . . . ,nN (t)), and k = (k1, . . . ,kN ), ki = 1,0, or −1

for i = 1, . . . , N , and p is the transition function (3.5). Then

fL(z(t),k) =



















































βi zi k = ei , i = 1, . . . , N

µi zi +a−
i ,i

z2
i
+

∑

j 6=i

a−
i , j zi z j k =−ei , i = 1, . . . , N

a+
i , j

zi k = e j −ei , i , j = 1, . . . , N ; i 6= j

−
∑N

i=1(βi +µi )zi (t) k = 0

−L
∑

i , j zi (t)z j (t)a−
i j

+
∑

i , j zi (t)a+
i j

0 otherwise

Note that fL(z(t),k) does not, in fact, depend on L.

Set the migration rate out of box i

M+
i :=

∑

j 6=i

a+
i , j .
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For the functional limit theorems to follow, define for i = 1, . . . , N ,

Fi (z(t)) :=
1

∑

ki=−1

ki f (z(t), ·)
(

βi −µi −M+
i

)

zi −a−
i ,i z2

i −
∑

j 6=i

a−
i , j zi z j +

∑

j 6=i

a+
j ,i z j (4.1)

and consider the system of differential equations

dz(t)

d t
= F(z(t)) (4.2)

An equilibrium for the system occurs precisely at the points where

0 = F(z), (4.3)

with one solution being z ≡ 0.

Set pi :=βi −µi −M+
i

. In matrix form, we have the equation

A







z1

...

zN






+B







z2
1
...

z2
N






= 0,

where B is a diagonal matrix:

A =



















p1 a+
2,1 a+

3,1 . . . a+
N ,1

a+
1,2 p2 a+

3,2 . . . a+
N ,2

...
. . .

...
...

. . .
...

a+
1,N

. . . a+
N−1,N

pN



















, B =













a−
1,1

a−
2,2 0

0
. . .

a−
N ,N













.

When a+
i , j

= 0 and a−
i , j

= 0, i 6= j , that is, there is no migration between boxes and no

suppression across boxes, there is a unique non-zero equilibrium

zi =
βi −µi

a−
i ,i

, i = 1, ..., N .

This is, as would be expected, essentially the equilibrium for N distinct, independent “sin-

gle box" mean field Bolker Pacala models, as found in [1].

4.2 More on equilibrium points

We assume, in this section, symmetric conditions, that is, that conditions are identical for

all boxes. Thus, the biological birth and mortality rates are the same in each box:

βi ≡β and µi ≡µ, i = 1,2, . . . .

The “inner” competition rates within boxes are equal, satisfying

a−
I := a−

i i , i = 1,2, . . .

7



and “outer” competition (from box to box) is the same

a−
O := a−

i j , i 6= j .

We also set the common migration rate

a+ := a+
i j , i 6= j .

So that the system does not inevitably die out, we assume that β>µ.

We begin with the case of two boxes (N = 2) or classes. The system (4.2) may have up

to four distinct non-negative singular points, that is, solutions of (4.3). All four solutions

are real and non-negative only if

a−
O > a−

I and β−µ> 2a+ a−
O +a−

I

a−
O
−a−

I

(4.4)

They are as follows:

1) The trivial singular point, an unstable equilibrium for β>µ, at (0,0).

2)
(

β−µ
a−

I
+a−

O
,

β−µ
a−

I
+a−

O

)

, which always exists, even when (4.4) is not satisfied.

3)








β−µ−2a+

2a−
I

+
√

(β−µ−2a+)2(a−
O
−a−

I
)2−4a−

I
a+(a−

O
−a−

I
)(β−µ−2a+)

2a−
I

(a−
O
−a−

I
) ,

β−µ−2a+

2a−
I

−
√

(β−µ−2a+)2(a−
O
−a−

I
)2−4a−

I
a+(a−

O
−a−

I
)(β−µ−2a+)

2a−
I

(a−
O
−a−

I
)









4)








β−µ−2a+

2a−
I

−
√

(β−µ−2a+)2(a−
O
−a−

I
)2−4a−

I
a+(a−

O
−a−

I
)(β−µ−2a+)

2a−
I

(a−
O
−a−

I
)

,

β−µ−2a+

2a−
I

+
√

(β−µ−2a+)2(a−
O
−a−

I
)2−4a−

I
a+(a−

O
−a−

I
)(β−µ−2a+)

2a−
I

(a−
O
−a−

I
)









Proposition 4.1. In the event that all four equilibria exist, the third and fourth equilibria

are stable while the second one is a saddle point and is not stable.

Proof. For the stability of the third and fourth, a computation shows that the eigenvalues

of the Jacobian matrix of F(z) = (F1(z),F2(z)) with F1 and F2 as in (4.1) at an equilibrium

point z∗ = (z∗
1 , z∗

2 ),

J
(

z∗
)

=
(

β−µ−a+−2a−
I

z∗
1 −a−

O
z∗

2 a+−a−
O

z∗
1

a+−a−
O z∗

2 β−µ−a+−2a−
I z∗

2 −a−
O z∗

1

)

are of the form

λ1 =
A+

p
B

2a−
I

(a−
O
−a−

I
)

and λ2 =
A−

p
B

2a−
I

(a−
O
−a−

I
)

8



for the third and fourth equilibrium points, where

A = (a−
O −a−

I )((µ−β)a−
O +2a+(a−

O +a−
I )),

B =
(

a−
I −a−

O

)2
[

β2
(

−2a−
I +a−

O

)2 +
(

a−
O

)2
(2a++µ)2

+4
(

a−
I

)2
(

−3
(

a+)2 +µ2
)

−4a−
I a−

O

(

2
(

a+)2 +3a+µ+µ2
)

−2β
(

4µ
(

a−
I

)2 +
(

a−
O

)2
(2a++µ)−2a−

I a−
O(3a++2µ)

)]

.

It follows that A < 0 since the first factor of A is positive and the second factor of A is

negative by (4.4). Since A < 0, B ≤ 0 implies that the real part of each eigenvalue, ℜ(λi ) < 0,

i = 1,2, and, therefore, the claimed stability. If B > 0, then consider

A2 −B =−4a−
I

(

a−
I −a−

O

)2 (

β−2a+−µ
)[(

β−µ
) (

a−
I −a−

O

)

+2a+ (

a−
O +a−

I

)]

By (4.4), β−2a+−µ> 0, since
a−

O +a−
I

a−
O
−a−

I

> 1

and also by (4.4),
(

β−µ
)(

a−
I −a−

O

)

+2a+ (

a−
O +a−

I

)

< 0,

we conclude that ℜ(λi ) < 0, i = 1,2, in this case as well.

To see that the second equilibrium point is not stable in this case, one can similarly

evaluate the eigenvalues of the Jacobian matrix. A proof for general N is given below, thus

we omit the details here.

However, if (4.4) is not satisfied, then we have only one non-trivial singular point,

(

β−µ

a−
I
+a−

O

,
β−µ

a−
I
+a−

O

)

,

which is a stable equilibrium in this case. Note that this is the only non-trivial equilibrium

if a−
O = 0, i.e., there is no suppression across boxes or classes. This is the same equilibrium

point, then, that is found for single boxes in the absence of any migration or mobility.

Note, also, that even if a−
O > a−

I the existence of the third and fourth equilibria depends

on low rates of migration between boxes (or social mobility between classes); these equi-

libria vanish if a+ is too great. This is somewhat contrary to what one might suppose, that

low rates of migration or mobility would keep the equilibria inside boxes at or near the

original equilibria.

For three boxes or classes, N = 3, the results are similar. In particular, two equilibria

always exist:

1) The trivial singular point, an unstable equilibrium for β>µ, at (0,0,0), and

2)
(

β−µ
a−

I
+2a−

O
,

β−µ
a−

I
+2a−

O
,

β−µ
a−

I
+2a−

O

)

.

If population suppression across boxes or classes does not occur, a−
O = 0, the second of

these is the only non-trivial equilibrium. Otherwise, under additional conditions, includ-

ing again, sufficiently low migration between boxes, multiple equilibria can exist.
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Proposition 4.2. For N ≥ 2, the points 0 and z∗ ∈R
N with

z∗
i =

β−µ

a−
I
+ (N −1)a−

O

are equilibrium points of (4.2), with z∗ being stable only when

(

β−µ
)(

a−
O −a−

I

)

< N a+ (

a−
I + (N −1)a−

O

)

(4.5)

Proof. One can check that 0 and z∗ are equilibrium points by plugging them directly into

(4.3). To see that z∗ is stable under the condition (4.5), we again consider the Jacobian of

F(z) = (F1(z), . . . ,FN (z)) with Fi as in (4.1) with entries given by

(

J
(

z∗
))

i j =
{

β−µ− (N −1)a+−2a−
I

z∗
i
−a−

O
(N −1)z∗

i
, i = j ,

a+−a−
O z∗

i
, i 6= j

Given the special form of this matrix, the distinct eigenvalues are

λ1 =
(β−µ)

(

a−
O −a−

I

)

−N a+ (

a−
I + (N −1)a−

O

)

a−
I
+ (N −1)a−

O

and λ2 =µ−β.

To see this, note that

(

J
(

z∗
)

−λ1IN

)

i j = a+−
a−

O
(β−µ)

a−
I
+ (N −1)a−

O

,

where IN is the N × N identity matrix, for all i , j = 1, . . . , N . This matrix has rank 1, thus

the eigenspace of λ1 is (N −1)-dimensional and so the multiplicity of λ1 is N −1. To check

that λ2 is an eigenvalue with multiplicity 1, we note that

(

J
(

z∗
)

−λ2IN

)

i j =







−(N −1)
[

a+− a−
O

(β−µ)

a−
I
+(N−1)a−

O

]

, i = j ,

a+− a−
O (β−µ)

a−
I
+(N−1)a−

O
i 6= j

If we add each of rows 2 through N to the first row of J (z∗)−λ2IN , we obtain a zero row

and it follows that

J
(

z∗
)

−λ2IN

has rank N −1. Thus λ2 is an eigenvalue of J (z∗) of multiplicity 1.

λ1 < 0 precisely when condition (4.5) is satisfied and λ2 < 0 from our assumption that

β>µ.

4.3 Global limit theorems for N boxes

Here, we state a functional law of large numbers and functional central limit theorem,

following [7, 8]. We now allow L to vary, so we relabel slightly, setting

zLi (t) :=
ni (t)

L
, i = 1, . . . , N

and ZL(t) = (zL1(t), . . . , zLN (t)).
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Theorem 4.3 (Functional LLN). Let (z∗
1 , . . . , z∗

N ) denote a unique stable equilibrium for the

system given in (4.1) and (4.2). As L →∞,

ZL(t) → Z (t)= (z1(t), . . . , zN (t))

uniformly in probability, where Z (t) is a deterministic process, the solution of

d z j (t)

d t
= F j (z1(t), . . . , zN (t)), j = 1, . . . , N , (4.6)

z1(0) = z∗
1 , . . . , zN (0) = z∗

N .

with F1, . . . ,FN given in (4.1).

Next, define gi j (z1, ..., zN ):

gi i (z1, ..., zN ) : =
1

∑

ki=−1

k2
i f (z1, ..., zN , ·,ki , ·)

=βzi +µzi +a−
i i z2

i +
∑

j 6=i

(a−
i j zi z j +a+

i j zi +a+
j i z j ) (4.7)

gi j (z1, ..., zN ) = g j i (z1, ..., zN ) :=
1

∑

ki ,k j =−1

ki k j f (z1, ..., zN , ·,ki , ·,k j , ·)

=−a+
i j zi −a+

j i z j for i 6= j

Theorem 4.4 (Functional CLT). Let z∗ = (z∗
1 , ..., z∗

N ) denote a unique stable equilibrium for

the system given in (4.1) and (4.2). If
p

L (ZL(0)− z∗) = ζ0, the processes

ζL(t) :=
p

L(ZL(t)− z∗)

converge weakly in the space of cadlag functions on any finite time interval [0,T ] to an

Ornstein-Uhlenbeck process (OUP) ζ(t) with initial value ζ0, infinitesimal drift given by

q1 :=
∂F1

(

z∗
1 , ..., z∗

N

)

∂z1
, . . . , qN :=

∂FN

(

z∗
1 , ..., z∗

N

)

∂zN

and the infinitesimal covariance matrix with entries given by

ai j := gi j

(

z∗
1 , ..., z∗

N

)

.

Thus, for the single, symmetric positive equilibrium for N = 2, with a single inner

competition rate a−
I , a single outer competition rate a−

O , and a single migration rate a+,

the infinitesimal drift is:

q1 = q2 =
−a−

I (β−µ)

a−
I
+a−

O

−a+,

and the infinitesimal covariance matrix entries are:

a11 = a22 =
2(β−µ)(β+a+)

a−
I
+a−

O

, a12 = a21 =
−2a+(β−µ)

a−
I
+a−

O

.
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5 Ergodicity for N boxes

Assume there is no suppression of population across boxes, i.e., a−
i j

= 0 for i 6= j . We

also assume that a−
i i
> 0 for some i = 1, . . . , N . For N boxes, let {Xn }∞n=0 on (Z+)N be the

embedded discrete time random walk associated with the continuous random walk (3.3).

For x = (x1, . . . , xN ) ∈Z+
N , set

c(x) =
N
∑

i=1

(

βi +µi +
a−

i i

L
xi

)

xi +
N
∑

i , j=1,i 6= j

a+
i j xi .

{Xn } has transition probabilities, for x,y ∈ (Z+)N , x 6= 0

P (x,y) =
1

c(x)
·































βi xi if y = x+ei , i = 1, . . . , N

µi xi +
a−

i i

L
x2

i if y = x−ei , i = 1, . . . , N

a+
i j xi if y = x−ei +e j , i 6= j

0 otherwise

(5.1)

and for x = 0,

P (x,y) =







1

N
if y = 0+ei , i = 1, . . . , N

0 otherwise

(5.2)

Recall that we use ei ∈Z
N to denote the vector with 1 in the i th position and 0 everywhere

else, and 0 = (0, . . . ,0). We impose here a reflective barrier at 0 with (5.2).

Theorem 5.1. A random walk with transition probabilities (5.1) and (5.2) is geometrically

ergodic. That is, it is positive recurrent with exponential convergence to a stable distribu-

tion.

Proof. Using Foster’s [6] criterion, [9, Theorem 15.01] (see also similar results in [4]) states

that if there is a function V : (Z+)N → R with V (x) ≥ 1 for all x ∈ (Z+)N such that, for a

bounded set B ⊂ (Z+)N , constant λ< 1, and constant b <∞,

∑

y∈(Z+)N

P (x,y)V (y)≤λV (x)+b1B (x), (5.3)

then the Markov chain with probability transition matrix P is geometrically ergodic. Here,

1B (x) is the indicator function of B . Let

V (x) =α||x||1 ,

where we will choose appropriate α > 1, and ||x||1 is the L1 norm of x. Note that, for

x ∈ (Z+)N ,

||x||1 =
N
∑

i=1

|xi | =
N
∑

i=1

xi .
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Then, for x ∉ B and if λα> 1, criterion (5.3) is equivalent to

(α−λ)
N
∑

i=1

βi xi + (1−λ)
N
∑

i=1

A+
i xi ≤

(

λ−
1

α

) N
∑

i=1

(

µi +
a−

i i

L
xi

)

xi (5.4)

for some λ< 1, where

A+
i :=

N
∑

j=1

a+
i j

is the total migration rate out of box i . Let

C1 = max
i

βi , C2 = max
i

A+
i , C3 = min

i

{

a−
i i

L
: a−

i i > 0

}

.

Then, for x ∈ (Z+)N with

||x||2 ≥
p

N (αC1 +C2)

C3 (λ−1/α)
, (5.5)

where

||x||2 =
(

N
∑

i=1

x2
i

)1/2

,

(α−λ)
N
∑

i=1

βi xi + (1−λ)
N
∑

i=1

A+
i xi ≤ (α−λ)C1||x||1 + (1−λ)C2||x||1

≤
p

N ((α−λ)C1 + (1−λ)C2) ||x||2
≤
p

N (αC1 +C2) ||x||2

≤C3

(

λ−
1

α

)

||x||22

≤
(

λ−
1

α

) N
∑

i=1

(

µi +
a−

i i

L
xi

)

xi ,

where the second inequaity is due to the Cauchy-Schwarz inequality, and the fourth in-

equality is due to our assumption (5.5). The other inequalities follow from the definitions

of C1,C2, and C3.

Thus, choose

M =
p

N (αC1 +C2)

C3 (λ−1/α)
,

and let

B =
{

x ∈ (Z+)N
∣

∣ ||x||2 ≤ M
}

.

Then B is a bounded set, V (x)≥ 1 on (Z+)N . Let

b = max

{∣

∣

∣

∣

∣

∑

y∈(Z+)N

P (x,y)V (y)−λV (x)

∣

∣

∣

∣

∣

: x ∈ (Z+)N , ||x||2 ≤ M

}

.

Then (5.3) is satisfied for all x ∈ (Z+)N .
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Suppose, finally, that we impose symmetric conditions on all of the boxes:

1) βi ≡β and µi ≡µ for all i , with β> µ,

2) migration rates between all boxes are equal to a+, that is, a+
i j
≡ a+ for all i , j ,

3) suppression of population within its own box occurs at the same rate for all boxes,

i.e., a−
i i
≡ a−

I for all i .

Then, as is directly checked, the random walk has at least one non-trivial equilibrium

point, that is, the drift vector

△x :=
∑

y

P (x,y)y−x = 0

(cf. [9]) at two points, the trivial point 0, and x, where

xi

L
=

β−µ

a−
I

for all components i . This follows from a computation for each component i that

(△x)i =
1

c(x)

[

(β−µ)xi −
a−

I

L
x2

i +a+( ∑

j 6=i

x j − (N −1)xi

)

]

.

The equilibrium result agrees with our earlier results in Proposition 4.2.
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