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Abstract In this paper we study the dynamics of a layer of incompressible viscous fluid
bounded below by a rigid boundary and above by a free boundary, in the presence of a
uniform gravitational field. We assume that a mass of surfactant is present both at the free
surface and in the bulk of the fluid, and that conversion from one species to the other is
possible. The surfactants couple to the fluid dynamics through the coefficient of surface
tension, which depends on the surface density of surfactants. Gradients in this concentration
give rise to Marangoni stress on the free surface. In turn, the fluid advects the surfactants
and distorts their concentration through geometric distortions of the free surface. We model
the surfactants in a way that allows absorption and desorption of surfactant between the
surface and bulk. We prove that small perturbations of the equilibrium solutions give rise
to global-in-time solutions that decay to equilibrium at an exponential rate. This establishes
the asymptotic stability of the equilibrium solutions.
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36 I. Tice, L. Wu

1 Introduction
1.1 Model Presentation: Soluble Surfactants

Surfactants (a portmanteau for “surface active agents”) are chemicals that can change the
strength of surface tension when they collect at fluid free interfaces. Variations in the surfac-
tant concentration on the surface also give rise to tangential surface forces called Marangoni
forces. The surfactant dynamics are driven by several effects: absorption and desorption
from the free surface, fluid transport along the surface and in the bulk, and both bulk and
surface diffusion. We refer to the books [9, 17] and the review [21] for a more thorough dis-
cussion of surfactant physics. In manufacturing and industrial applications surfactants are
a fundamental tool for stabilizing bubble formation in processes such as foaming, emulsi-
fying, and coating (see the books [19, 20] for an exhaustive list of surfactant applications).
Surfactants also play a critical role in preventing the collapse of the lungs during breathing
(see [14] and the references therein) and are currently being developed as tools to aid in drug
delivery in the lungs (see for example [4, 18]).

We consider a model of surfactants in which a single layer of fluid occupies the three-
dimensional domain £2(¢) with free boundary surface I"(¢). In order to allow for surfactants
concentrated on the free surface and in the bulk, we define the surface concentration ¢(-, ) :
I'(t) — [0, 00) as well as the bulk concentration B(-, 1) : 2(t) — [0, 00). The coefficient of
surface tension on I"(¢) depends on the surfactant concentration ¢ via a relation o = o (¢),
where we assume that the surface tension function satisfies:

o € C3([0, 00)) (L

o is positive and strictly decreasing. '
The latter assumption comes from the fact that surfactants decrease the surface tension in
higher concentration, and the former assumption is merely a technical assumption needed
for our PDE analysis.

We will assume that the fluid is incompressible and viscous (with viscosity @ > 0) and
that a uniform gravitational field —ges; = (0, 0, —g) € R is applied to the fluid (here g > 0).
The fluid and surfactant dynamics then couple through the following system of equations
(see [9, 17] for derivations and precise definitions of the operators: we will soon reformulate
these equations so do not fully define the operators here)

Ou+u-Vu+Vp=puAu— ge; in £2(t)
Vou=0 in 2()
pv—uVu+Vulyy=—o (5)7—[11([)11 —Vrp(o (@) onl(r) (12)
D6 +¢Vrgy-u=yArpyé—pVb-v on I' (1)
ab+u-Vb=pAb in 2(t)
BVb-v=w(,b) on I'(1).

Here V(, denotes the surface gradient on I'(¢), D, is a temporal derivative along the flow-
ing surface, V(- is the surface divergence, A, is the surface Laplacian, y > 0 is the
surface surfactant diffusion constant, § > 0 is the bulk surfactant diffusion constant, and
Hr () is twice the mean-curvature operator on I"(¢). The first two equations in (1.2) are the
usual incompressible Navier-Stokes equations. The third equation is the balance of stress
on the free surface, and the right-hand side shows that two stresses are generated by the
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Dynamics and Stability of Surface Wave with Surfactant 37

surfactants. The first term is a normal stress caused by surface curvature, and the second
is a tangential stress, known as the Marangoni stress, caused by gradients in the surfactant
concentration on the surface. The fourth equation in (1.2) shows that the surface surfactant
concentration changes due to flow on the surface as well as diffusion and the normal deriva-
tive of b, and the fifth equation is a advection-diffusion equation for the bulk surfactant
concentration.

The sixth equation in (1.2) is of fundamental importance in surfactant modeling, as it
gives the law for the conversion of bulk surfactant into surface surfactant at the free interface.
We refer, for instance, to the book [9] for a derivation of such a law from physical kinetic
arguments. More recent work [7, 8, 11] has derived laws of a similar form for two-phase
flows using free-energy arguments. Here the function w : [0, 00) x [0, 0c0) — R describes the
surfactant flow from the surface to bulk phase. We will assume that w obeys the following:

w € C*([0, 00) x [0, 00))
there exists f € C*([0, 00); [0, 00)) such that w(c,b) > 0 ¢ ¢ > f(b) (1.3)
f'(b) >0forallb>0.

In the parlance of surface chemistry, the set {w(c, b) = 0} is called an isotherm. It represents
the values of surface and bulk surfactant that do not result in conversion between species, and
consequently any equilibrium configuration must lie on the isotherm. Our first assumption
on w is purely technical, but the second and third indicate that the isotherm is given as the
graph of the function f. The sign condition on f’ guarantees that more surface surfactant is
needed to form equilibrium when more bulk surfactant is present in the fluid. As an example,
in the Langmuir absorption model (see for instance [9]) we have

w(c,b) = —b(ky — c) + koc for physical constants k;, k; > 0. (1.4)

In this case f(b) =bk,/(k, + b).

Surfactants have been extensively studied in the physics literature, and we will not at-
tempt to survey that literature here. In contrast, they have not received extensive atten-
tion in the mathematics literature. Kwan-Park-Shen [16], Xu-Li-Lowengrub-Zhao [25], and
Barrett-Garcke-Niirnberg [2] developed numerical studies of surfactant dynamics. The local
well-posedness of a two-phase bubble model without gravity was proved by Bothe-Priiss-
Simonett [6] in the context of diffusion-limited absorption, which means that the last con-
dition in (1.2) is replaced by the condition ¢ = f(b) so that the surfactant phases are in
constant equilibrium. The linear stability of the same model was studied by Bothe-Priiss [5].
In [15] Kim-Tice studied the dynamics of surfactants without absorption and proved the
existence of global-in-time solutions near equilibrium as well as their asymptotic stability.
Diffuse interface models with absorption laws similar to (1.2) have also recently been stud-
ied by Garcke-Lam-Stinner [11] and Abels-Garcke-Lam-Weber [1].

The principal goal of the present paper is to extend the techniques developed in [15]
to handle the absorption model presented in (1.2). We will construct global solutions near
equilibrium and prove their long-time decay to equilibrium.

1.2 Problem Presentation: Formulation of Equations

We now give a precise description of the equations of motion. To begin we assume that the
fluid occupies a three-dimensional domain £2 (¢) that is horizontally periodic with a flat rigid
bottom and free upper surface:

R)={ye X xR:—L3y < y; <n(t, y1. »)}. (1.5)
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38 I. Tice, L. Wu

Here the horizontal cross-section is given by
Y =(LT) x (L,T)=[R/LZ) x (R/L,Z), (1.6)

where L, L, > 0 are fixed periodicity lengths and L3 > 0 is the fixed depth. The upper
free surface is the graph of the free surface function 7 : [0, 0c0) x ¥ — (—L3, 00). We will
denote the fixed lower boundary by

Ypy={ye X xR:y;=—Ls}, (1.7
and the moving upper boundary by

roy={yeZxR:ys=n,y.m} (1.8)

which is the graph of the unknown function 7.

For each ¢ > 0, the dynamics of the fluid and surfactants are described by the following
unknowns. The fluid velocity and pressure are u(-, 1) : 2(t) — R and p(-, 1) : 2(t) — R,
and the free surface function is n(-,#) : ¥ — R. It will be convenient to study the projection
onto X' of the surface surfactant concentration, so we define ¢(-, 1) : X — R via ¢(y,, t) =
¢V, N(¥s, 1), 1) where é(-, t) is defined on the moving surface I"(¢) and y, = (y1, y2) € X.
To be consistent with the new notation we also write I;(-, )= l;(-, t): 2(t) — [0, o0) for the
bulk surfactant concentration. It will also be convenient to redefine the pressure by subtract-
ing off the hydrostatic pressure, i.e. to set p(-, 1) : $2(t) = R via p(x,1) = p(x,1) + gx3.

In the following, we will employ the horizontal differential operators

2 2
V.F=Y (3Fe) and V,-G=)Y (G (1.9)

i=1 i=l

acting on scalar and vector fields, respectively. Similarly, we define v, = (v;, ;) to be the
horizontal components of outward unit normal vector on the moving surface:

-V, 1
V=(V1,Vz,v3)=w. (1.10)
VI+ VP
The surface differential operators are defined as
14 19xn|* 91mdan
or) = - , 1.11
S N T N P (10
14 19in|? 91ndan
orp = 0 — a1, 1.12
R Z N E T (12
011 9an
ors = 0 + 0. 1.13
=T T T e (1.13)
Then we have for f a scalar and g a vector field defined in X,
3 3
Vrf=) (rife) and Vr-g=Y (drig). (1.14)

i=1 i=1
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Dynamics and Stability of Surface Wave with Surfactant 39

Also, for F and G defined in I'(¢),
VrF=Vr(Fon) and Vy-G=Vp-(Gon). (1.15)

Thus, we define the surface Laplacian A =V - Vp. 5
The fluid, surface, and surfactant unknowns (u, p, n, ¢, b) must satisfy the following sys-
tem of equations:

ou+u-Vu+Vp=puAu in £2(¢),
V-u=0 in 2(1),
(pl — uDu)v =gnv —o (CO)H(n)v — Vro(c) onl'(2),
u=0 on X,
0m=u3 —u1dyn —u20y,n on I'(t),
0+ u-Vie+Vr-u=yAré—pVb-v on (1),
db—4u-Vb=BAb in 2(1), (1.16)
BVb-v=w,b) on I'(1),
Vb-v=0 on X,
u(t =0)=uop in £29,
nt=0)=no on X,
b(t =0) = by in £2o,
c(t=0)=c¢y on X.

The first set of equations describes the motion of fluid under the influence of surfactant
and the second set describes the absorption and desorption of surfactant with convection
and diffusion both on the surface and in the bulk. Here viscosity u, gravity g, convection
strength B, and diffusion strength y are positive constants, / the 3 x 3 identity matrix,
(Du);j = dju; + d;u; the symmetric gradient, and the mean-curvature operator is

V.
Hn)=V, | ———— ). 1.17
() ( *I-FIV*?IIz) (L.17)

Note that the gravitational term has shifted from the first to the third equation due to the
switch in pressure unknowns p > p described above.

Employing a standard scaling argument in space and time, we can eliminate two of the
physical constants at the expense of possibly renaming the rest. We will do this in order to
set © = g = 1. We will employ this convention throughout the rest of this paper. Also, we
assume the initial surface 7 satisfies the zero-average condition

/ no =0, (1.18)
b
and the total mass of surfactant
1+|V*n0|2+/ by:=M > 0. (1.19)
2@

Standard calculations, which we omit here for the sake of brevity, show that these conditions
persist in time, i.e.

/r;(-,t):O and f&(-,;),/1+|v*n(-,t)2+/ bo(.t)y=M (1.20)
x x (1)
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40 I. Tice, L. Wu

for + > 0. Note, though, that the latter condition only guarantees that the total surfactant
mass is preserved in time. The portion of mass in each phase (bulk and surface) does not
have to be preserved.

1.3 Energy-Dissipation Structure

We may follow the computations in [15], with the help of Lemma A.2, to derive the follow-
ing energy-dissipation structure from the fluid equations:

d 1/ , 1 ) 1 ) -
—\ = [ue] +—/ [n] +—/ | D Z—/U(C)(Vr'u) 14+ |V.n|%
dr (2 ) 2J)s 2 Jaw z

(1.21)

The first term in parentheses is the kinetic energy of the fluid (the density is 1), and the
second term is the total gravitational potential energy (we have set g = 1 at this point)
stored in the fluid. The third term on the left is the viscous dissipation (with u = 1). We
might hope to use similar computations with ¢ and b to produce further energy-dissipation
equations that sum with the above to produce an equation with no exchange terms on the
right. Unfortunately, this does not work if we directly work with the & and b. Instead we
extend an idea used in [5, 15] for the case without absorption and in [10] for a related
thin-film model, which shifts from an L?-based estimate to a more complicated estimate
related to the free energy associated to o (we refer to [22] for a discussion of the relevant
thermodynamics). To this end, for any r € (0, co) we define the auxiliary functions ¢, ¢, :
[0, 00) — R via

6 () =s<0(r) - / if)alz) =0 (s) —s/s 7@y, (122)
r r < r Z
s / 4 f@s) 7
6, (s) :c0+/ Mdz—s[ '@ (123)
0 f(Z) r Z

for a constant Cy > 0 chosen such that ¢,(s) > 0 for all s > 0. This is possible since
f'(0) > 0 implies that

lim z2f'(2) _ 0 ?f f(0)>0 (1.24)
=0 f(2) 1 if £(0)=0.
Note also that
K O_/(Z) , r
0<s<r=|s dz| <lo’lL>o,ps log| = ), (1.25)
N 4 s

so the o’ integral in the definition of ¢, is well-defined for all s > 0. A similar argument
shows that the second integral in the definition of ¢, is well-defined even when f(0) = 0.
By construction, we have

s f(s) 7
;;(s):—/ UZ(Z)dz and ¢;(s):—/ 7@y, (1.26)

Z
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Dynamics and Stability of Surface Wave with Surfactant 41

as well as

5 (5), ¢, (), 5/ (), ¢/ (s) > 0, (1.27)
5 (s) = sg/(s) =0 (s). (1.28)
Moreover, ¢, attains its minimum at s = r and ¢, attains its minimum if there exists s > 0

such that f(s) = r. With these auxiliary functions in hand, we may then follow [15], using
the identities in Lemma A.3, to see that

d ~ "y ~ 1o~ ~ I
5/ () 1+|V*77|2+)’/ ¢ (C)IVr6|2v1+|V*n|2+/ §(©w(C b)Y 1+ |Vin|?
X X X
=/ o (O)(Vr-w)y/1+ |V, (1.29)
x

and

d ~ . - ~
T ¢r(b) + B d’ﬁ/(b)IVbIZ—/ ¢, (D)o(C, b)Y 1+ |Vin> =0. (1.30)
X

dr Jou 2@

Summing up (1.21), (1.29), and (1.30), we obtain the full energy-dissipation structure:

d(lf ||2+1/||2+ ¢<E>+/c<~> TV |2)
.\ A u a n r r(C «1
dr\2 Jou 2)s 200 b

+<1/ IDu|2+/3/ ¢>;/<15>|V15|2+y/ @il 1+|V*n|2>

2 ) () z

+/(C,’(E)—¢£(5))w(5,5)«/1+|V*n| =0. (1.31)
)

The terms appearing on the first and second lines of the energy-dissipation equality are
clearly positive semi-definite, but at first glance it is not clear that the term on the third line
possesses a good sign. To show that this is in fact true we first note that the definitions of ¢,
and ¢, allow us to compute

fb) o’'(2)

(/@) — ¢, (D)) (E, b) = (/ dz)w(&, b). (1.32)

Employing the assumptions on o (1.1) and @ (1.3), we then find that

. 1@ 5 _
E>f(b)=>[ Gz(z)dz>0 and w(é,b) >0,
C (1.33)
- fb) 7 _
5<f(b)$f Gz(z)dz<0 and w(¢, b) <0.

Thus, in both cases we have
f (6@ — ¢,(B))w(@ b)Y/ 1+ [V = 0. (134)
z
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42 I. Tice, L. Wu

Therefore, if we define

1 1 ~ -
E=—/ |u|2+5/ i+ ¢r<b>+/ CYIENT (1.35)
£2(t) X (1) X

2

D=—f IDu|2+ﬁf ¢!<5>|v5|2+yf ¢ (@IVré*V1+ V2
() (1) >
+/(c;@—¢;<5))w(6,5>¢1+|w|2, (1.36)
P

then we know E and D are positive semi-definite and satisfy the energy-dissipation equation

£ + D =0. (1.37)
dt '

1.4 Equilibria

We now turn our attention to a discussion of the equilibrium solutions. Assume we have a
time-independent solution. This assumption and (1.37) imply that D = 0, and hence

Dul* = ¢/ (D)|Vh|* = ¢/ (©)|Vrél* = (¢/(6) — ¢.(h))w(E, b) =0. (1.38)

Since u = 0 on X, we then know from Korn’s inequality that # = 0. This and the first equa-
tion in (1.16) then imply that p = po is a constant. Considering that ¢, and ¢, are strictly
convex, we know Vb = V¢ = 0. Hence, we have b = by € (0, 00), ¢ = ¢ € (0, 00). Plug-
ging this information into the third equation of (1.16) then shows that po = gn — o (co) H(n))
on X, and upon integrating and using the zero-average condition for n given in (1.20), we
find that

oLle—/Po—/ gn —o(co)Vs - (W>—0~ (1.39)

Thus 0 = pg = gn — o (co) H (1), and upon multiplying by 7 and integrating by parts, we see
that
V.l

Y1+ Va2

from which we deduce that n = 0. Thus p =1 =0, and the equilibrium domain is the flat
slab X' x (—Ls3, 0). Furthermore, by and ¢y must preserve the total mass as in (1.20),

0:/ glnl* + o (co) (1.40)
»)

|2|2co+|9|3b0=/ Co+/ by=M, (1.41)
s 2

where | - |; denotes k-dimensional Lebesgue measure, as well as satisfy the condition
w(co, bp) = 0. The latter requires that f(by) = co. Since f' > 0, for given total mass
M > | X[, f(0), we have a unique solution by, co = f(by) > 0.

In summary, we have the equilibrium configuration

u=0
n_o (1.42)
(co, by) =0

| Xaco + 82|30 = M

@ Springer



Dynamics and Stability of Surface Wave with Surfactant 43

where ¢y, by € (0, 00) are uniquely determined by the choice of mass 0 < | X[, f(0) < M <
o0 and the form of the surfactant flux function w.

It is worth noting that in the definition of ¢, and ¢, above we have that ¢, obtains its
minimal value at s = r and ¢, obtains its minimum at s such that f(s) = r. If we choose
r = ¢o then the minimal value of ¢, is obtained at ¢y and the minimal value of ¢, is obtained
at f(co) = bo. Thus (1.37) suggests that the equilibrium configuration will be dynamically
stable.

We conclude our discussion of the equilibria by introducing some notation that will be
useful later. We linearize w around (cy, by) as

w(co+h, by +d) = w(co, by) + weoh + wpod

1
+ Zhd/ (1 = s5)0pw(co + sh, by + sd)ds
0
1
+h2/ (1 = $)3.cw(co + sh, by + sd)ds
0

1
+ d2/ (1 = $)dppw(co + sh, by + sd)ds
0

= w(co, bo) + weoh + wpod + O(|hI* + |d|*)
= weoh + wpod + O (|1 + |d|?), (1.43)

where we have written
Weo = aca)(Co, b()) and wpo = 8;,60(00, bo) (144)

Since w(f (b), b) =0 for all b > 0, we may differentiate to see that

weo f'(bo) + wpo =0, (1.45)
which implies
D0 _ ' (by). (1.46)
(OF0)]

Also, since w(c, b) > 0 leads to ¢ > f(b), we have w.y > 0 and wpy < 0.
1.5 Reformulation

In order to work in a fixed domain, we employ a frequently used transformation: see [3, 12,
13, 15, 23]. We define the equilibrium fluid domain £ via

R={ye X xR:—-L3<y; <0}, (1.47)

which possesses X as upper boundary and X}, as lower boundary. We can then view 7
as defined on X'. Assume 7 is the harmonic extension of 7 into X' x (—o0, 0) defined as
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44 I. Tice, L. Wu

in (B.1). Define mapping

D:235x=(x1,Xx2,Xx3) > <x1,x2,X3 + n(x, t)(l + z—3>> € (). (1.48)
3

We may easily check that @ maps X' to I"(¢) and maps X}, to X,. The Jacobian and trans-
form matrices are

1 0 0 1 0 —AK
Vo=|0 1 0] and A=vo)T=[0 1 —-BK|, (1.49)
A B J 0 0 K
where
. 97 . 97
A= p=i
axl 8)62
_ i} (1.50)
J=14 L f o K= =142
- L, dx; A a Ly

Note that J = det V@, and that in principle J could vanish. We prevent this in our anal-
ysis by working in a small energy regime (see Lemma 4.1), which imposes a bound on 7
sufficient to guarantee that J > 0 and that @ is a diffeomorphism.

In this new coordinate system, (1.16) is transformed into

du—fLKdu+u-Vau—Aqu+Vap=0 in 2,

Vi-u=0 in £2,

(pI —Du)N =N — o (@) HMN — /1 +|V.n|26'(6)Vré on X,

u=0 on X,

on=u-N on X,
~ .~ - ~ N

oc+u-Vic+cVrp-u=yArc — pVpb - — on X, (1.51)
~ L _ _ V1+ Vil

0,b— MLKd3b+u-Vaib=BAb in £2,
B N L

Vb —— =w(c, b) on X,
V1|V

83b:0 on Eb.

Here we have defined the transformed operators as follows:
(Vaf)i=Ai;0; f,
Va-g=A;0;8,
Auf=Va-Vaf,
N = (=din, —dn, 1),
(Dau)ij = A Oguj + Ajrdku;,

(1.52)

Salp,u) =pl —Du,

where the summation should be understood in the Einstein convention. If we extend the
divergence V 4- to act on symmetric tensors in the natural way, then a straightforward com-
putation reveals V4 - S4(p, u) = V4 p — A 4u for vector fields satisfying V4 - u = 0.
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Dynamics and Stability of Surface Wave with Surfactant 45

1.6 Perturbation

We will study the case when the initial data is a perturbation of the equilibrium. Define the
perturbation as ¢ = ¢ — ¢g and b = b — by, then (u, p, n, ¢, b) satisfies

u—qNLKdGu+u-Vau—Aqu+Vap=0 in 2,
Vai-u=0 in £2,
(pI =D )N =nN —o(c+co)) HMN —/1+|Ven2c'(c+co)Vrc on X,
u=0 on X,
on=u-N on X,
N
oc+u-Vic+ (c+co))Vr-u=yArc— Vb ——— on X,
) N
;b —NLKd3b+u-Vaib=BA4b in £2,
N
Vb ————— =w(c+ ¢, b+ by) on X,
V14 1Vanl?
83b=0 on Eb.
(1.53)

In the following, we will write oy = o (¢o) and o) = o' (co).

2 Main Results and Discussion
2.1 Main Result

To properly state the main results we must first define energy and dissipation functionals
that will be used throughout the paper. We define the full energy to be

_ 2 2 2 2 2 22
€ = Il +13il0 ) + 12131y F Wl + Noml? 5 lotnl,-1 s,

+ ||b||%.]2(g) + ||8tb||§.10(9) + ”c”§12(2) + ”al‘C”i]O(z)v (21)
and full dissipation to be

2
1

2 2 2 2 2 2
D = ullys gy + 10l o) + 1PN 520y + IIHIIH%(D + HB’WHH%(:) + |7 n”m(:)

F 1By + 1861210, + 1615y + 121l 5 2.2)

Here the spaces H* denote the usual L?-based Sobolev spaces of order s.
Now we present the main theorem on a priori estimates for solutions to (1.53).

Theorem 2.1 (Proved later in Theorem 7.1) Suppose that (u, p, n, ¢, b) solves (1.53) on the
temporal interval [0, T]. Let £ and D be as defined in (2.1) and (2.2). Then there exists a
universal constant 0 < § (independent of T) such that if

T
sup £(t) <6 and / D(t)dt < oo, (2.3)
0

0<t<T
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then

T
sup eME(r) + f D(t)dt < E(0) (2.4)
0

0<t<T

forallt €0, T], where A > 0 is a universal constant.

This theorem tells us that if solutions exist for which the energy functional £ remains
small and the dissipation functional is integrable in time, then in fact we have much stronger
information: the energy decays exponentially and the integral of the dissipation is controlled
by the initial energy. In order for this result to be useful we must couple it with a local ex-
istence result. By now it is well-understood how to construct local-in-time solutions for
solutions to problems of the form (1.53) once the corresponding a priori estimates are un-
derstood: we refer for instance to [12, 23, 24] for local existence results in spaces determined
by energies and dissipations of the form (2.1) and (2.2), and to [6] for results that employ
L?-maximal regularity techniques. Consequently, in the interest of brevity, we will not at-
tempt to prove a local existence result in the present paper. Instead we will simply state the
result that one can prove by modifying the known methods in straightforward ways.

Given the initial data u, 1o, Co, l;o, we need to construct the initial data d,u(-, 0), 9;n(-, 0),
9,;¢(+,0), 9,b(-,0), and p(-,0). To construct these we require a compatibility condition for
the data. To state this properly we define the orthogonal projection onto the tangent space of
the surface I"(0) = {x3 = no(x,)} according to

Moyv = v — (v - No)NolNp| 2 (2.5)

for No = (—d1n9, —921m0, 1). Then the compatibility conditions for the data read

TTy(D 4yuoNo) — /1 + [Vinol?0'(€0) V6o =0 on X
Vg tto=0 in 2 (2.6)
up=0 on X,

where here Ay and I are determined by 7g. To state the local result we will also need to
define H' :={u € H'(2) | u|5, = 0} and

Xr={ueL*([0,T];H") | Vaw -u(t) =0forae.r}. 2.7)
Having stated the compatibility conditions, we can now state the local existence result.

Theorem 2.2 Let uy € H*(£2), no € H3(X), & € HX(X), by € H*(2), and assume that
no satisfies (1.18) and (¢, 50) satisfy (1.19), where M > | X|, f (by) is the equilibrium mass
associated to the equilibrium surfactant concentration (cy, bg) given in (1.42). Further as-
sume that the initial data satisfy the compatibility conditions of (2.6). Let T > Q. Then there
exists a universal constant k > 0 such that if

01220y + 10135, + 10 — colPia s, + 180 — Boll3 gy < k. 2.8)

then there exists a unique (strong) solution (u, p, 1, c, b) to (1.53) on the temporal interval
[0, T'] satisfying the estimate

T T
sup 600+ [ DO+ [ (IO 1 5, + 1860110 a1 + 150, . S EO)
0<r<T 0 0
2.9)
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Moreover, 1 is such that the mapping @ (-, t), defined by (1.48), is a C' diffeomorphism for
eacht €[0,T].

Remark 2.3 All of the computations involved in the a priori estimates that we develop in
this paper are justified by Theorem 2.2.

The local existence and a priori estimate then combine to yield the following global-in-
time existence and decay result.

Theorem 2.4 Let ug € H*(£2), no € H3(X), & € HX(X), by € H*(2), and assume that
no satisfies (1.18) and (¢y, l;o) satisfy (1.19), where M > | X|, f (by) is the equilibrium mass
associated to the equilibrium surfactant concentration (cy, by) given in (1.42). Further as-
sume that the initial data satisfy the compatibility conditions of (2.6). Then there exists a
universal k > 0 such that if

luoll 22y + ol g3 sy + llbo — boll g2y + I€o — coll g2(xy < &, (2.10)

then there exists a unique solution (u, p,n,c,b) to (1.53) in the global temporal interval
[0, 00) and a universal constant A > 0 such that

sup eME() + /OOD(t)dt < £(0). 2.11)
0

t€[0,00)
Moreover, 1 is such that the mapping @ defined by (1.48) is a C' diffeomorphism.

Proof This follows from Theorems 2.1 and 2.2 in a standard way. See the proof of [15,
Theorem 3] for details. d

Remark 2.5 Theorem 2.4 can be interpreted as an asymptotic stability result: the equilibria
u=0,p=0,n=0,¢=cyand b = by are asymptotically stable, and solutions return to

equilibrium exponentially fast.

Remark 2.6 The surface function 7 is sufficiently small to guarantee that the mapping
@ (-, 1), defined in (1.48), is a diffeomorphism for each ¢ > 0. As such, we may change
coordinates to y € §2(¢) to produce a global-in-time, decaying solution to (1.2).

2.2 Plan of Paper and Summary of Arguments

Define the horizontal energy

é=2( [loaP +5 [JeaP+ 2 [ (9.0f

la]<2
—oof’ (bo)/’aozb’ + 20 /|aa |> (2.12)
26‘()

and the horizontal dissipation

" ﬂaéf'(bo)f w2
= Do%u _ Vo*b
=> ( / | e RACE

|or<2

Co

+ 7 °/|v 9| ﬁ —f’(bo)a“b)2>, (2.13)
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where o = (a; o, @z, o3) with a3 = 0 is the temporal and spatial derivatives index with
lo] = 200 4+ 0 4+ a0 + 3.

The global well-posedness and exponential decay follow from a delicate nonlinear en-
ergy method. As in [13, 15, 23, 24], we utilize energy and dissipation with higher-order
derivatives. This includes the following three steps:

(1) Horizontal energy-dissipation estimates: We apply horizontal derivatives (i.e. 9, d,, and
;) to the equations and employ a variant of the basic energy-dissipation equality (1.37)
to get estimates. The horizontal derivatives are needed because they are the only ones
compatible with the boundary conditions. Since the derivatives do not commute with
the operators in (1.53) we arrive at an equality of the form

e -
I +D=1 (2.14)
for a nonlinear interaction term Z.

(2) Nonlinear estimates: Here we seek to bound Z by the full energy and dissipation £ and
D in the form |Z| < +/ED, which means Z can be absorbed into D on the left side of
the energy-dissipation equality for small £. This particular structure is essential for the
absorbing argument.

(3) Comparison estimates: We utilize the horizontal energy and dissipation to control their
“full” counterparts defined in (2.1) and (2.2). Up to error terms we show that

E<Eand DD, (2.15)

which can then be used to get bounds and decay estimates for the full energy and dissi-
pation.

We follow this general outline here as well, but there are a couple interesting new features
in the analysis.

Averaging estimate of ¢ and b. In order to prove exponential decay we must first prove
the coercivity estimate £ < D. The techniques for estimating the non-surfactant terms here
can be found in [15], so it is the pair of surfactant terms that are of primary interest. Roughly
speaking, we need to bound ||c|| yo 5y and [|b]| yo o) With [|Vicll o sy and ||V o o). When
the masses of & and b are conserved separately in the dynamics, this estimate may be proved
via the Poincaré-Wirtinger inequality and estimates of the averages. However, the absorption
and desorption of surfactant between surface and bulk yield non-constant averages of ¢
and b. To get around this problem we introduce an enhanced Poincaré-type inequality, which
combines the bound of ¢ and b in one step, i.e. for C € H'(X) and B € H'(2) satisfying

/C+/B:Q (2.16)
X 2

IC mocs) + 1Bl moce) S IVeCllgoczy + IV Bllgo) + € = f'B) B o5 (217

we prove

where C and B can be variants of ¢ and b. We thus see an interesting feature of the dynamics:
the conservation of the sum of two quantities combines with the linearization of the flux
function w to provide a coercivity estimate for both surfactant phases at once.

Nonlinear estimate of w. The linearization (1.43) of w plays a key role in the deriva-
tion of the full energy-dissipation structure and the estimate of higher-order derivatives. As
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Lemmas 3.1 and 3.2 reveal, the quantity ¢ — f’(bg)b creates a non-negative bound for the
interaction between ¢ and b and helps also in the above averaging estimate. Furthermore,
the integral form of w(cy + ¢, by + b) — w(cy, by) — woc — wpob leads to small constants
which assist in the absorbing of nonlinear term Z.

2.3 Definitions and Terminology

‘We now mention some of the definitions, bits of notation, and conventions that we will use
throughout the paper.

Einstein summation and constants: We will employ the Einstein convention of summing
over repeated indices for vector and tensor operations. Throughout the paper C > 0 will
denote a generic constant that can depend on the parameters of the problem, and £2, but
does not depend on the data, etc. We refer to such constants as “universal.” They are allowed
to change from one inequality to the next. We will employ the notation a < b to mean that
a < Cb for a universal constant C > 0.

Norms: We write H*(£2) with k > 0 and H*(X) with s € R for the usual Sobolev spaces.
We will typically write H° = L?. To avoid notational clutter, we will avoid writing H*(£2)
or H*(X) in our norms and typically write only || - || for H*(£2) norms and | - || 5., for
H*(X') norms.

3 Perturbation Form

In this section, we introduce two types of formulation for system (1.53) which will assist the
estimate of temporal and horizontal derivatives.

3.1 Geometric Perturbed Form

Here we consider the first linearized formulation of (1.53), which we can think of as a
geometric perturbed form due to the appearance of the geometric coefficients A, K, etc.
We will state the formulation for the unknowns (v, g, &, h, d), with given forcing terms
F!,..., F7 defined on appropriate sets. In later applications the unknowns will correspond
to the solution or its derivatives, and the forcing terms will have specific structures related to
the solution and its derivatives (see below for the specific forms). The geometric perturbed
linear equations are then:

v — LK v+u-Viv+Vs -Sav,g)=F' ing2,
Vi-v=F? in £2,
S, YN =EN — 09 AEN — 0 Vih + F3 on X,
v=0 on X,
E=v-N+F* on X, (3.1)
h+coVi-v=yAh—BVad -N + F> on X,
9d — dNLKdsd +u-Vad=BAsd+ F° in 2,
Vad - N =w.h + wpd + F’ on X,
03d =0 on X.

The next result records the energy-dissipation equation associated to this problem.
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Lemma 3.1 We have

d /1 1 o —o! /(b —o!
d —/J|v|2+—/ |s|2+—°/ v, 1 %0 (b)) J|d|2+—°/ IhP
dr\2 o 2 P> 2 b 2C() o 2C() >
1 _ / /b _ ’
+<—/ JID o2 + 2P0 G0 0)/ J|VAd|2+—yG°/ |V*h|2>
2 Jq Co 2 c Jx

+ o / (h = f'(bo)d)(weoh + wpod)
€o z

:/Jv-Fl—l—/JqFZ—/v-F3+/(E—GOA*S)F4
2 2 ) X

’
—0,
0
+

/th+M/ 1are + 2% [ (= pwoayF. (3.2)
co Jx Co 2 C Jx

Proof Multiplying Jv on both sides of the Navier-Stokes equations and integrating over £2,
we have

/Jv-a,u+/ Jv~(—a,ﬁZKa3u+u-vAu)+f Jv-(VA-SA(v,q)):/Jv-Fl.
2 2 2 2
(3.3)

We may directly compute

d 3
—(/ Jv-8,v>+/Jv-(—8,ﬁLK33v—|—u-VAv)
d /1 1 1 .
=—(=[ JpP)-= 8]2—/83'L 2—/32
dt<2f9 |v|) 2/9: vF +3 | @il Eﬂ?IvI
—/(VA-M)|UZ|+f(u-N)\v2|
2 o

:i<l/ J|v|2>. (3.4)
a\2/,

Also, we know

/ Jv-(VA~SA(v,q))
2

:—/ Jq(VA-v)+£/ JI]D)Av|2+/(8(v,q)N)-v
2 2J)e b

:—/ Jsz—i-l/ J|1D>Av|2+/(gN—aoA*gN).v—ao’/ V*h-v—i-/ F3 ..
2 2 2 X ) X
(3.5)

‘We may continue computing

/ EN — 00 AEN) v = / (& — 00 E) (3,6 — FY)
) )

_d(! 2 % 2 / B .
_d[<2/2|$| +5 /Ema >+ E—aAHFL (6)
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In surface surfactant equation, multiplying _C—Zoh on both sides and integrating over X', we

have
d
a(20/E|h|2>+aofv;1u+”Ofwhﬁ —Po /h(VAdN)

— % [ hps. (3.7
C Jy

b
In surface surfactant equation, multiplying M

over §2, we have
( "of bo) / J|d|> 4 ZPuf b0 / J194ap — —£% f £ bo)d(Vad - N)
dr Co I?) Co xz

= /Q JAF®. (3.8)

Jd on both sides and integrating

Note that
[ = o) ad a0 = [ (= Ga)ocs + o)+ [ (= 5 w0d) P
z z z
3.9)
Summarizing all above, we have the desired result. O

We will mainly use this form to study the estimate of temporal derivative. We apply 0,
operator on the unknown variables and let (v, ¢, &, h,d) = (d,u, 9, p, 9,1, d,c, d;b). In this
situation, we have

Fl= FU L 12 4 p13 4 pl4 (3.10)
FM' = 8,0, 1LK)dsu;, (3.11)
F? = =0 A ity + 8, Aiwdep, (3.12)
F' = 0, Aj0y (Aim it j + Ajm Ot (3.13)
F = At (8, Auduj + 8, A590u,), G.14)

F? = —8,A;9u;, (3.15)

F3= P34 F32 4 p33, (3.16)

F.3’1 =n- p)a,M + (Aikakuj + Ajkakui)a,J\/'j + (atAikakuj + 8tv4jkak”i)/\/‘v 3.17)
F? = =0 (@03, cHN; — (0(€) — 00) 3, HN; — (009, H — 000, A, N;
— o (&) HIN;, (3.18)
V.n-V.,0
F¥ = —%a/(é) — T+ [V.l2e" (@)8,E(V o),
«1

1+ |V*77|20/(5)Vi(v* : V*)atc

— V14V’ (@) (3,vi (vs - V)E 4 i (3,vy - V)T, (3.19)
F*=8,V.n-u, (3.20)
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FS = F5!' 4 F52, 3.21)
F¥' =0,(—u-Vic—cVr-u+y(Arc— Aye) —co(Vr - u— Vi - u)), (3.22)
F32 = — B8, Ai) b N; — BAydcb(3N7), (3.23)
F6 — F6,1 + FG,Z + F6,3, (324)
F' = 8,(3,1LK)d3b, (3.25)
P = —8,(u;Aj)db, (3.26)
FIG’3 = B0 Ak 0k Ajim 0 + BA 10k 0; Api 0, (.27
F'=F" 4 F"?, (3.28)
F' = =0, Ai) %bN; — Ay kb (B, N7), (3.29)
F7? = 3,(w(E, b) — weoc — wpob). (3.30)

3.2 Linear Perturbed Form

Now we consider the second linearized formulation of (1.53), which we call the linear per-
turbed form due to the lack of geometric terms. Again we phrase the problem for unknowns
(v,q,&, h,d) with given forcing terms now called VAR AR though in later use the un-
knowns will be related to the solution and its derivative and the forcing terms will have

specific forms. The systems is:

8,v—Av—|—Vq:Zl in $2,
V.v=2Z> in £,
(g —Dv)es =&e3 —opAbes — oy Vih + Z® onZX,
v=0 on X,
& =v3+ Z* on X,
h+coVe-v=yAh — Bdd+ Z° on X,
8,d=pAd+ Z° in £2,
agd = a)c()h + a)bod + Z7 on Z,
03d =0 on X,.

(3.31)

The next result records the energy-dissipation equation associated to this problem.

Lemma 3.2 We have

d 1 2 1 2 0y 2 Of(bO)
(L e+ S [ )

1 _ i /b _
+<_/ Dup + Boy f'( o)/ v + J/UO/ IV*hlz)
2 Jq Co 2 c Jx

+ =bo / (h = £ (b)d) (@eoh + wpod)
Co x

:/U-Zl—i—/(qu—v-VZz)—fv~Z3+/(§—UOA*E)Z4
2

/Eth —of’ (bo)fd26 Poy /h f'(bo)d)Z’

Co
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Proof From the Navier-Stokes equations, we have
d+V-Sw,q)=0v—Av+Vq-VZ*=27'-VZ° (3.33)

Multiplying v on both sides of Navier-Stokes equations and integrating over £2, we have

d1f||2+1f|m>|2+f<s ALE) ’/Vh
—\ = v — v — O V3 — O -V
dtZQ 29 5 08 % 3 OZ‘*

:/u-zl+/(qz2—u-vzz)—/v-z3. (3.34)
2 2 X

Also, we have

/ (& —00A)v; = / (& —o0A8)(0E — Z%)
P> b

—i l 2, % 2\ _ _ "
_dt<2/2|‘§| ) /ISW@') /2(5 00 AE)ZY.  (3.35)

—0

In surface surfactant equation, multiplying ?"h on both sides and integrating over X', we
have

d _ / — / _ ! _ /
—< ‘70/ |h|2>+o(;/v*h-v+ﬂ/ |v*h|2+ﬁ/ha3d:ﬂ/hz?
dr \ 2¢o Jx = Co = Co b5 c Jy

(3.36)
In surface surfactant equation, multiplying %ﬁ/(ko)d on both sides and integrating over £2,
we have
d /=o' f (b _ " (b _ ’
—<7"°f ®o) / |d|2) + Ll G / vap — —b% / ' (bo)disd :/ dze.
dr 2¢9 2 Co 2 co Js o
(3.37)
Note that

/ (h— f'(bo)d)0dsd = / (h = f'(bo)d)(wecoh + wpod) + / (h— f'(bo)d)Z". (3.38)
X X P
Summarizing all above, we have the desired result. O

We will mainly use this form to study the estimate of spatial derivative. In the sys-
tem (1.53), we have

du—Au+Vp=G! in £2,

V.-u=G? in 2,

(pI —Du)es = nes — opAnes — oy Ve + G* onX,

u=0 on X,

9 =u3+G* on X, (3.39)
dc+coVy-u=Awc— b+ G’ on X,

9,b=Ab+ G° in £2,

b = woc + wpob + G’ on X,

03b=0 on X},
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where
Gl — Gl,l + Gl,2 +Gl.3 +Gl,4 +Gl’5, (340)
G = (8 — Aipd;p, (3.41)
G)* = uj A, (3.42)
G!? = (K*(1+ A% + B?) — 1)d53u; — 2AK d13u; — 2BK drsu;, (3.43)
G/t = (=K*(1+ A* + B?)3J + AK*(81J + 33A) + BK*(9,J + ;B)
— K(01A + 9,B))d3u;, (3.44)
G = 8,iLK du;, (3.45)
G* = AKduy + BK d3us + (1 — K)d3u3, (3.46)
G3 — G3"1 + G3,2 + G3,3 + G3‘4, (3'47)
p—n—20u; — AKdzuy)
G* =9y | —0u; — dus + BKd3u; + AK 331 (3.48)
—01uz — Kosuy + AKozus
—0huuy — dup + BKozu; + AKdzu, (K — 1)o3u; + AK d3u3
+ | p—n—2(0uy — BKdzuz) + | (K —1Dou; + BKadsus |,
—ohuz — Kosuy + BK0zus3 2(K — 1)03us3
G*? = (0(0) — 09) Awnes + o (O (H — AN + 0 (D) AN — e3), (3.49)
G = (W— l)a/(E)V*c + (o’(E) — aé)V*c
1+ Vi[>0’ (€)(Vre — Vio), (3.50)
G** =0/ (E)v, - Vyces, (3.51)
G* = —0ynuy — dynua, (3.52)
G’ =G> + G2, (3.53)
G'=—u-Vi—cVr-ut+y(Arc—Ave) —co(Vr-u—V, -u), (3.54)
G>? = B(3,b — AK33b)011 + (b — BK330)0,n + B(K — 1)33b, (3.55)
G6 — G6,1 4 G6,2 4 66,3 4 G6'4, (3.56)
G¥' = u; A b, (3.57)
G{? = B(K*(1+ A® + B?) — 1)d33b — 2AK d13b — 2BK d3b, (3.58)
Gy = B(=K (14 A + B?)33J + AK*(,J + 03A) + BK*(3:J + 3:B)
— K(81A + 0,B))dsb, (3.59)
G = 3,1LK d3b, (3.60)
G'=G"+G"?2, (3.61)
G"!' = (8,b — AK33b)31n + (8,6 — BK33b)d,n + (K — 1)93b, (3.62)
G = w(¢, b) — woc — wpob. (3.63)
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4 Preliminary Estimates

In this section, we mainly cover some preliminary estimates in energy-dissipation estimates,
nonlinear estimates and comparison estimates.

4.1 A Basic Lemma

The following lemma provides basic estimates for terms that appear frequently in our anal-
ysis.

Lemma 4.1 There exists a universal 0 < § < 1 such that l:f”?’}”H% - < &, then the following
holds

(1) We have
1
I — Ulro2y + 1Al ooy + 1Bllre2) < T 4.1
1K lLeo(2) + I AllL= @) < 1. 4.2)

(2) The mapping @ is a diffeomorphism from §2 to §2(t), and ||n||L~x) < L3/2.
(3) Forallve H'(2) withv =0 on X}, we have

/lID)v|2§/ J|]D)Av|2+CO\/E/ |Dv|?. (4.3)
2 2 2
(4) Forall v € H'(£2) we have
[vur = [ 1vaue s covE [ v (4.4)
2 2 2
(5) We have the pointwise bounds
Co Co co . 3co
- ¢, S =6, 4.5)
2 2 2 2
bO bO b() ~ 3b0
—Z<b< 2, “<ph< = 4.6
2 - T2 2 - T 2 (4.6)

Proof See the proof of [15, Lemma 4.1] with obvious modifications. The last inequality
involving by can be proved as for cy. a

4.2 Temporal Estimates

Now we turn our attention to estimating various nonlinearities that appear when we consider
the temporally-differentiated problem.

Lemma 4.2 Suppose £ <8< 1.Let F', ..., F7 be as defined in Sect. 3.1. We have

<VEVD, 4.7

3

SEz, (4.8)

17E oy + 17 oy + 1E* L ogsy + 19 F* loge

/ JF?%p
fe)

(£2) HO(Z)

fJantp—B,/ JF?%p
2 2

HO(Z‘)

<VED,
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/ Fd,¢
bl

|7

<SWVED, (4.9)

VEVD. (4.10)

H[)(E) S

Proof Equations (4.7) and (4.8) can be proved as [15, Theorem 4.2]. For (4.9), we already
know the estimate of F>!, so we only need to bound

F3% = —B(0, Ai) kb N; — BAideb(9N). (4.11)
We directly estimate
| 7> w0z S 13 Vil o) VDl sy (1 + 1Vanlloos) )

F18:Vanll oy VDl L) (14 1 Vil oo 3))

.
S0l 3 o IVl (L IVanl g )

+ ||8fn||H1<,s>IIVbIIH%@)(l + IIVﬁIIH%(z))
S 10l blase (L+ 1015 ) SVEVD. (4.12)
Thus,
VE F>?0,c| S [F> | o l0ccllmogs) S VED. (4.13)
For (4.10), we need to estimate
F'=F" 4 F"% (4.14)
FP' = —(0, A1) bN; — Aidib (B, N7), (4.15)
F7? = 3,(w(C, b) — weoc — wpob). (4.16)
It is easy to see
[E™ oy = BIE> o ) S VEVD. (4.17)

On the other hand, using Taylor expansion as in (1.43), we obtain

7,2 2 2
IF72] ocsy < (IBrcllmocsy + N8Bl gogs) ) (el oo csy + 1Bl Lz + el fo sy + 181705 )

< (19,¢ o;b cll b c|? b3
N(” t ||H0():)+|| t ||H1(:z))(|| ||H%(Z)+” ||H2(SZ)+|| ||H%(2>+|| ||H2(Q))

S VEVD. 4.18)

Therefore, we know
[E7] o ) < VEVD. (4.19)
O
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4.3 Spatial Estimates

Now we control various nonlinearities that appear in the spatially-differentiated problem.

Lemma 4.3 Suppose £ <8 < 1. Let G', ..., G be as defined in Sect. 3.2. We have

16 12y + 16 |2y +1G°] 3 5, + 1G] 55 167 s

16 @ + 16713, 5, S VEVD, (4.20)
16 oy + 1G° Loy +1G°] 4 5, +1G° 03 5 167 L0,

+ 6oy + 16714 5, S (“21)
[8.G*] 1 5, S VEVD. 4.22)

Proof In (4.20), the estimates of G', G2, G*, G*, 3,G*, G>! and G°® can be proved as [15,
Theorem 4.3]. It suffices to estimate G = G7! + G7? since G>? = BG’'. By (B.5) with
r=s,=s5= %,wehave

|G™ ”H%m = ||(81b — AK330)d1n + (326 — BKd3b)dn + (K — 1)83b||H%(2)
S+ IIVﬁIIH%(z))IIVbIIH%(E)IIVnIIH%(D HIVAll 5 5 VoI5 o
Sl s, 1Bl S VEVD. (4.23)
Using Taylor expansion as (1.43), we obtain
||G7,2 ”H% = ”a)(E, b) — weoc — whob”H%(Z)

1
2
N ||w||c4(||C||H3(z> + ||b||H3(9))(||C||H2(z> + ||b||H2(:z)) ’/ s(1—s)ds
0

SVEVD. (4.24)

Similarly, in (4.21), the estimates of G', G2, G, G*, G>! and G° can be proved as before.
By (B.6) with r =s; = 1 and s, =2, we estimate G as

7,1 _
lG ||H%(E) = || (816 — AK330)3 11 + (06 — BK d3b)0rn + (K — 1)83b||H%(2)
S+ IIVﬁIIHz(z))IIVbIIH%(DIIVnIIHz@) HIViIll s VAL y
S Inllass 1P r2e) S E€- (4.25)

Also, using Taylor expansion as (1.43), we get

16721 14 5, = (@.5) = waac = o]

1
H2 (X H2(X)

1
3/ s(1 —s)ds
0

5 ||CU||C3(||C||H2(£) + ||b||H2(.Q)) SE. (4.26)

O
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5 Energy-Dissipation Estimates

In this section, we begin to investigate the energy-dissipation structure for temporal and
horizontal derivatives. Define

]-'=/ JF2p+1/(J—1)|a,u|2+M/(J—1)|a,b|2. (5.1
Q 2Jq 2¢o 2

Theorem 5.1 Suppose

T
sup £(1) <K 1, / D(t)dt < o0. 5.2)
1€[0,T] 0
We have

d - _

3 E-P+DSVeED. (5.3)

Proof We apply operator 0% for o = (g, &1, tt2, 0) to the system (1.53) and estimate each
term. We divide it into several steps:

Step 1: Temporal derivatives.
We apply 9, to system (1.53), which yields F', ..., F’ as defined in Sect. 3.1. Then we have
from Lemma 3.1 that

< /Jlaz P+ /|3ﬂ]| + = /IV dml?

- b
+ =8O [ aop+ 52 [ o)
2C0 2C0

1 _ b o
+<—/ JIDAB,u|2+Mf JIV.Adb + —L20 /|v 8,c|>
2 o Co Co

J— 0/
N f 0 / (3¢ — £ (b0)3:D) (Weodyc + wpod;b)
0 X

=/ Jou- F! +/ J8,pF2—/ a,u.F3+f(a,n—aoA*a,n)F4
2

e+ =L [ gappe B0 [ e roman)r’. s

¢ Jx

For the first and fourth terms inside the time derivative, we write

1 A~ /b 1 ) /b
_/ J|3[M|Z+M J|3tb|2: _/ |a,u|2+M/ |3rb|2
2 0 2C0 7] 2 7] 2C0 7]
1 2
+§ (J —1)|0,u|

+ 2%/ o) / J=Dlab2 (55

200
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in order to eliminate the J factors and absorb the error terms with (J — 1) into F. We may
estimate the right-hand side of (5.4) as

d
RHS S 119l oy | F' | o) + & /JpF2+ /p(8,1F2+18,F2)
X

+ 10:ull oy “ F? ” HO(Z)

+ 118:bll yoce | T FC

+ 181 = o0 A3l o) | F* | o sy + ‘ /2 dcF? .

+ Haf"+ f,(bO)afbHHO():) H F’ HHO():)' (5.6)
Combining this estimate with Lemmas 4.1 and 4.2 then shows that
%(%/Qm,mu;/ ol + 2 /IV anf? + —% “"”/ b
)
( /|ID)8, o Pt ("0)/ \Va,b2+ ¥ 0/ v, a,c|>
+ %)% /E (¢ — ' (b0)3,b) (@eodsc + wpod;b) SVED (5.7)

Step 2: Spatial derivative—second order.
We apply 9% with o9 = 0 and || =2 to system (1.53), which produces forcing terms
G', ..., G" as defined in Sect. 3.2. Then from Lemma 3.2 we have

« « —Uéf/(bo)/ a2

dt<f| |+/|a|+ /|va e anb|
+=2 e, f\a“c\)

( /|]D>8" —PooS” (bO)/|va“b| + 0/|V 8“c|>

_'800

/ (0%c — f(b0)3*b) (wc0d* ¢ + wpod*b)
X
=/ 8“u~3°‘G1+/ (8"p8°‘G2—8°‘u~V8“G2)—/ u-0"G’
2 2 X
+/(3“n—aoA*8“n)8“G4+_—%/ 39c0 G
z ¢ Jyx

—o! f'(b /
_,_M/ 3abaaG6+&/ (0%c+ f'(bo)0“b)d*G’. (-8)
Co 2 Co )
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Assume 9% = 3797 for |¢#| = |p| = 1. We may integrate by parts on the right-hand side to
obtain

RHS:—/ 8a+ﬂu-a(pGl +/(8”‘p3“G2—8°‘+’9u-V8‘”G2)—/ aau.aaGCs
2 2 X
+/(8‘”n—croA*8“’ )oe G 4 —2 /a‘”” Ciden
z Co
A~/ /b
4+ Z%/ (o) 0)/ a“”bawc;u@/(a“c+f’(bo)a“b)a“c;7
2 ¢ Jx

S ||u||H3(m HGI ”Hl(g) + ||P||H2(.Q) ||G2H H2(2)
|6°]

+llcllmss) “G5 “HI(E) + 101132y ||G6||H1(.(2)

1-12(2) H%(Z‘)

+ linll |G s

HZ():)} H2(2>

+ (el 5 5, F1PLs@)|C7] 5 (5.9)

We then employ Lemma 4.3 to deduce that

o
i (5 [l 5 [ ool
0 az—%f(bo)/az —_0(3/0,2)
+% /Ew*a off + =20 [ Jarpf 4 32 [ Jac
_ /g _ ’
+<1/ Do 4 —P%S (b0 (bO)/yva“b|2+—’/"°/\v*a“c|2>
2 Q Co 2 Co )

J— 0'/
4 =P

Co

/ (8%c — f'(B0)3°b) (we0d"c + wpod*b) S VED (5.10)
)

whenever || =2 and ag = 0.

Step 3: Spatial derivative—first order and zeroth order.
We apply 0% with oqp = 0 and || < 1 to system (1.53). An argument simpler than the one
used in Step 2 shows that (5.10) holds also for this range of «.

Step 4: Conclusion.

To complete the estimate we sum (5.7) with (5.10), with the latter applied for all || <2 and
oy = 0. O
6 Comparison Estimates

In this section, we turn to the crucial comparison estimate between horizontal quantities and
full quantities.

6.1 Preliminaries

The next result is the key to proving coercivity of the dissipation over the energy space. It is
a Poincaré-type inequality for pairs of functions.
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Lemma 6.1 For C € H'(X) and B € H'(R2) satisfying

/C—i—/B:O,
b Q

we have

6.1)

ICHaocs) + 1 Bllno) S IV=Cllnogs) + 1V Bluog) + € = f'00) B o5, (62)

Proof Assume this claim is not true. Then we can find {C,, B, };2 | satisfying

[ [ 5.
X 2

such that
I1Cullgocsy + 1 Bullgooy = 1.
and
, 1
IV2Cullocsy + VBl goay + | Co = f'(Bo) By ”Ho(z) =
This implies

1Cullg1 sy =2, | Bull gy < 2.

Thus, we can extract weakly convergent subsequence

C,— Cy inH'(2),

B, — By in H'(£2).
Also, by compactly embedding theorem and trace theorem, we know

C,— Cy inH(Y),

B, — By in H(),

B, — By in H(X).

e+ [ Bi=o,
X 2

1Coll o5y + 1 Boll wo(y = 1,

This implies

and by weak lower semi-continuity,

IV.Coll goczy + 1V Boll moay + | Co — ' B0) Bo | o5, < 0-

Naturally, (6.14) yields that Cy and By are constants satisfying

Co— f'(bo)By =0, | X2Co + [£2]3By =0

6.3)

6.4)

(6.5)

(6.6)

6.7)
(6.8)

(6.9)
(6.10)
(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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Since f'(by) > 0, the only solution to this linear system is Cy = By = 0. This contradicts the
normalization condition (6.13). Therefore, the claim is verified. O

We next use Lemma 6.1 to derive a useful estimate.

Lemma 6.2 Assume £ <8 < 1. We have

/c + /b‘S\/E-F\/E\/B. (6.16)
b)) 2
Proof We decompose

/Ec:fx((c(ﬁc‘)—c())

= (/ (Co+C)\/1+|V*77|2—|)3|Co>+[(c‘o+0)(1—v1+|V*n|2)’ (6.17)
X X

/Qb:/Q((bo+b)—bo)

= (/ J(bo+b)—|.Q|3b0>+/(bo+b)(l—J), (6.18)
2 2

which, using the conservation of surfactant mass (1.20), implies
/xc+/gb= </ (co+o)v1+ IV*nl“r/ J(bg+b) — | X|2co — |~Q|3bo>
f(c0+c) VI+1V.P) /(b0+b)(1—1)
/(c0+c) VI+Vanl?) /(b0+b)(1—1) (6.19)

Let K.[n] = [5(co+c)(1 —/1+|V.nl?) and Ky[n] = [, (bo + b)(1 — J). Since for £ <
8 < 1, Lemma 4.1 guarantees that

%sco—i—cg%, (6.20)
”20 <by+b< 3'2’0 (6.21)
for ¢y and by the positive equilibrium constants, we have
|Kenl] S 10l sy < 10115, < VD +VEVD. (6.22)
[Kolnl| < Wil S iy, SVD+VEVD. (6.23)
Define
K.[n] Ky[n]
C=c—Tg  B=b- |(”2|3 : (6.24)
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which yields

/C—i—/ B=0. (6.25)
b)) 2

IC T mocs) + 1Bl o) S IVCllgoczy + 1V Bllgoy + [ € = /o) B|| o 5, (6:26)

Based on Lemma 6.1, we have

Then by the triangle inequality we know

lellaocs) + 161l o) S Vel mos) + VBl no) + [le = £/ B0)b] o5,
K.[n] H Ky[n]
HO(X) |~Q|3

H nl [ (bo)Kpln]
[ 21> [£2]3

HO(2)

H()(Z)
SVD+ |Kelnl| + | Kol
<VD+VEVD. (6.27)

By Cauchy’s inequality, our desired result naturally follows. ]

6.2 Energy Comparison Estimates

Now we use various auxiliary estimates to control the full energy functional in terms of the
horizontal energy.

Theorem 6.3 Suppose £ <5 <K 1. We have

ESE+EL (6.28)
Proof 1t suffices to prove

e L A O o T R o LA ()

3 1$>))
The previous four terms can be estimated as [15, Theorem 5.2], so we focus on the last term.
Now, according to (1.53), we have

—BAb=—3,b+ G° in £2,
33b = w.C + a)bob + G7 on 2, (630)
33[7 =0 on Z[,.

Based on elliptic estimate in Lemma B.4, we have

K
1213 Jo

S 10:b1l ooy + ”G6” oy T ”310 +¢oVy -t — Aye — G°

1) ” HO(X)

+ ” G’ ” HO(®)
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6
S8l moge) + GO ooy + 19:cl o) + el sy + el s

+ ”G5 ” HO(X) + ”G7 ”HO(ZJ)
<Vé+e. 631)
Cauchy’s inequality implies
‘/ b’ Sbllgoy S \/E’ (6.32)
fe)

which further yields

1
||b||H1(.Q)§‘/ b“"Hb_—/b
2 1213 Jo

Further, we have

1
A
20 Ja

<VéEt+e<VéEre (633

H(2)

S 0Bl + G| yog) + l@coc +onb+ 67y

HX(2)
6 7
S1blo + G oy +lel 1 o + 1Bl + [G7] 1
<Véte. (6.34)
Hence, we know
||b||H2(m5V b‘+\/§+€§\/§+€. (6.35)
fe)
0
6.3 Dissipation Comparison Estimates
Next we control the full dissipation in terms of the horizontal dissipation.
Theorem 6.4 Suppose £ <5 < 1. We have
DSD+ED. (6.36)
Proof In the full dissipation
— 2 2 2 2 2 2112
D = ullya g + 1l @ + 1P gy + 11 3 10mi® s 4[5l
1120 + 18511 ) + €25, + 18115 (6.37)
the estimates of (u, p, n) can be proved as [15, Theorem 5.3], so it suffices to show
el + 10l + 161, + 186131 0, SVP+VEVD.  (638)
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Based on Lemma 6.2 and Poincaré-Wirtinger inequality, we have

<D+ VEVD. (6.39)

llel g3 sy < IVicllg2(s) + ‘/ ¢
=
Also, we know

‘/ 0,c
z

since woc + wpob = Co(c — f'(bg)b) for some constant Cy > 0. Hence, by Poincaré-
Wirtinger inequality,

S 1G] sy + lveoc + wsobll yocsy S VD + VEVD, (6.40)

13rcll sy S 1Vadecll s + V dic| <VD + VEVD. (6.41)
X

Then we need to reconsider the elliptic system (6.30) and try to bound by dissipation. Based
on elliptic estimate in Lemma B.4, we have
HY(2)

|SZ|3 2
SVD+\/—(€VID~ ( )

Combining this with Lemma 6.2, we have

1
iy
./:2‘ 1213 Ja

S ||3zb||H0(9) + ”G6”Ho(9) + [lweoc + whob”HO():) + HG7 ”Ho(;)

<VD+VEVD. (6.43)

HY(2)

”b”Hl(.Q) S

Further, we have

1
b——/b
1215 Ja

S 18:bll oy + H G° ”HO(Q) + H weoC + wpob + G’ ||

1
H2(9) H2(X)

S Wbl + 16 oy + el g o+ 1bliey + 1670y

<SVD+ VEVD. (6.44)

Similarly, we obtain

1
||b||H2(.Q)§‘/ b“"Hb_ /b
2 12213 Jo

On the other hand, by Cauchy’s inequality, we know

[
2

By the Poincaré-Wirtinger inequality, this implies

<D+ VEVD. (6.45)

H2(2)

S ” G° ” e T H weoC +wpob + G ”HO(E)

S 16 oy + llooe + wrobllocsy + [ G| o sy S VD +VEVD.  (6.46)

<VD+VEVD. (6.47)

10:61l g1 2y S NV:bll oy + ‘/ 0;b
2
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Therefore, we continue using elliptic estimate to obtain

1
A
2% Jo

S 10Dl + |G @) + oo +onob + 67| 5

H3(2)

S 10Dl + |G @y + Nl 3 o+ 1Bley + [G7] 3
<VD+ VEVD. (6.48)
Naturally, we have
1 —
1Bl oy < / b‘ 4 Hb - —/ b <D+ VEVD. (6.49)
Q |-Q|3 2 H3(2)

In summary, we have shown the desired estimate
18:bll 1) + b1l 30y S VD + VEVD. (6.50)
O

7 Proof of Main Results
We now synthesize the previous results to prove the main a priori estimates.

Theorem 7.1 Suppose (u, p, n, c, b) are solution to (1.53) in t € [0, T]. Then there exists a
universal 0 < § K 1 such that for any

T
sup £(t) <94, / D(t)dt < o0, (7.1)
1€[0,7] 0
we have
T
sup eME@) + / D(r)dr < £(0), (7.2)
1€[0,T] 0

for some universal X > 0.
Proof Theorems 6.3 and 6.4 justify
ESELE, D<DZD. (7.3)
Theorem 5.1 justifies
d - _
g E-PH+Ds0. (7.4)
Also, Lemmas 4.1 and 4.2 together with (7.3) show that

3 1 _
Fl< g+ cel = <Z + C«/E)E, (7.5)
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which implies that for § smaller than a universal constant

£ . 3€
—<E-—F< —. 7.6
27 -2 (7.6)
Hence, integrating over [0, 7] in (7.4), we have
T _ T B
f D(r)dt < (E(T) — F(T)) +/ D(t)dr < E(0) + F(0), (1.7
0 0
which further implies
T
/ D(t)dt < £(0). (7.8)
0
Also, it holds naturally that
E-F<ELSD, (7.9)
which means there exists A > 0 such that
d - _
g€~ DHFTME-F) =0 (7.10)
Therefore, this implies
EM) SEM) —F(t) SeM(E(0) — F(0) SeME(0), (7.11)
which yields our desired decay estimate. ]
Appendix A: Surface Differential Operators
The proof of following lemmas can be found in [15, Appendix A].
Lemma A.1 We have the following identities:
Vr-v=V,,=—H, (A.1)
L+ |Vinl? = —v,. - Viaim, (A2)
oV
0/ T+ [V = V<#) — dmH, (A3)
V1+[Vanl?
Vi f-v=0. (Ad)

Lemma A.2 We have the following identities:

/ o fo/ T4 Vol = — / (Forag + feuwH)IWI T [Vanl. (AS)
X P
/ VF-X\/l+|V*r]|2:—/-(X-U)H\/1+|V*77|2. (A.6)
X P
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Lemma A.3 Assume f € C*(R). Suppose ¢ and n satisfies

{3,E+M-V*5+5VF'M=J/AFE—X, (A7)

O — u-v)y1+[Vyl>=0

Then we have
d -
a/ F@OV14|Vinl?
z

= / (f©@ = fF©@E)Vr-u— f'@IVrel — f(@OX)V1+ Va2, (AS8)
X

Appendix B: Analytic Tools

We define the Poisson integral from X' to X' x (—o0, 0] as

P[f](x) — Z e27Tinx*eZ7T|n\x3 f(n), (Bl)
ne(L7'Z)x(L;'2)
where
2mnx*
(n)—/ f(x*) I.L, dx,. (B.2)

‘P is a bounded linear operator from H*(X') to H*3 (X x (—00,0]) for s > 0.
In what follows we recall that 2 = ¥ x (—L3, 0). The proof of following lemmas can
be found in [15, Appendix B].

Lemma B.1 We have for g > 1,

IVIPLA oy SIS (B.3)

A1 33
Lemma B.2 We have forq >1and s > 1,
IVIPLAY ooy S I Warass sy (B4
The same estimate holds for g =0 if f s f=0.

Lemma B.3 Let U denote either X or S2.

(1) Let 0 <r <s; <55 be such that sy > n/2. Let f € H"(U), g € H2(U). Then fg €
H"(U) and

I fellarwy S lasayllglas w). (B.5)

(2) Let O <r < sy <5 be such that s; >r +n/2. Let f € H"(U), g € H2(U). Then
fge H (U) and

I fellarwy S lasayllglas w). (B.6)
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(3) Let 0 <r <s; <s5 be such that s; >r +n/2. Let f € H*U), g € H2(U). Then
fge H'(U) and

I fellg—s ) SN la-r@)llglasw)- (B.7)
In the comparison estimate, we need the following classical elliptic estimate.

Lemma B.4 Assume ¢ € H™2(2) and € H 3/>(X) for r > 1. Then solutions to the
elliptic problem

—Ab=¢ in$2,
b=y on X, (B.8)
33b=0 on Eb,

satisfy the estimate

(B.9)

1
Hb - —/ b Séllar—20) + [
2

1$2]5 H" (2) 2(2)
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