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Public discussions on social media platforms are an intrinsic part of online information consumption. Char-
acterizing the diverse range of discussions that can arise is crucial for these platforms, as they may seek to
organize and curate them. This paper introduces a computational framework to characterize public discussions,
relying on a representation that captures a broad set of social patterns which emerge from the interactions
between interlocutors, comments and audience reactions.

We apply our framework to study public discussions on Facebook at two complementary scales. First, we
use it to predict the eventual trajectory of individual discussions, anticipating future antisocial actions (such
as participants blocking each other) and forecasting a discussion’s growth. Second, we systematically analyze
the variation of discussions across thousands of Facebook sub-communities, revealing subtle differences (and
unexpected similarities) in how people interact when discussing online content. We further show that this
variation is driven more by participant tendencies than by the content triggering these discussions.

CCS Concepts: • Information systems → Social networks; Data mining;

Keywords: public discussions; conversations; Facebook; interaction patterns

ACM Reference Format:
Justine Zhang, Cristian Danescu-Niculescu-Mizil, Christina Sauper, and Sean J. Taylor. 2018. Characterizing
Online Public Discussions through Patterns of Participant Interactions. In Proceedings of the ACM on Human-
Computer Interaction, Vol. 2, CSCW, Article 198 (November 2018). ACM, New York, NY. 27 pages. https:
//doi.org/10.1145/3274467

1 INTRODUCTION
Public discussions on social media platforms—featuring open participation and interactions between
strangers—are increasing in their societal prominence. With almost half of social media users taking
to these platforms to converse about events and ideas [3], open discussion spaces such as Facebook
Pages, Twitter threads and subreddits have become virtual public squares with important social
potential [13, 32, 55].
By virtue of their vibrancy and reach, public discussions motivate many intriguing and con-

sequential lines of inquiry. Characterizing individual discussions is especially important for the
platforms that foster them, as they seek to organize, curate and ultimately improve venues for
interaction. For instance, platform maintainers may wish to identify salient properties of a discus-
sion that signal particular outcomes such as sustained participation [9] or future antisocial actions
[16], or that reflect particular dynamics such as controversy [24] or deliberation [29]. More broadly,
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by characterizing individual discussions we can better understand the spaces spanned by large
collections of discussions and explore the contextual factors driving their diversity.
Efforts to analyze and curate public discussion spaces are complicated by the heterogeneity

of the interactional patterns they exhibit. Systems supporting online public discussions have
affordances that distinguish them from other forms of online communication. Anybody can start a
new discussion in response to a piece of content, or join an existing discussion at any time and at
any depth. Beyond textual replies, interactions can also occur via reactions such as likes or votes,
engaging a much broader audience beyond the interlocutors actively writing comments.

This multivalent action space gives rise to salient patterns of interactional structure: they reflect
important social attributes of a discussion, and define axes along which discussions vary in inter-
pretable and consequential ways. In fact, previous studies have examined and demonstrated the
relevance of several predefined properties such as popularity [72] or reciprocity [6]. How can we
more broadly account for a richer set of (potentially unknown) interactional patterns that encode
meaningful properties of public discussions, and are predictive of their outcomes?

Our approach is to construct a representation of discussion structure that explicitly captures the
connections fostered among interlocutors, their comments and their reactions in a public discussion
setting.We devise a computational method to extract a diverse range of salient interactional patterns
from this representation—including but not limited to the ones explored in previous work—without
the need to predefine them. We use this general framework to structure the variation of public
discussions, and to address two consequential tasks predicting a discussion’s future trajectory:
(a) a new task aiming to determine if a discussion will be followed by antisocial events, such as
the participants blocking each other, and (b) an existing task aiming to forecast the growth of a
discussion [9].
We find that the features our framework derives are more informative in forecasting future

events in a discussion than those based on the discussion’s volume, on its reply structure and on
the text of its comments, and add further predictive information to strong extraneous features such
as the temporal rate at which the discussion develops and the number of people who view it.
We additionally use this framework to structure and qualitatively interpret the space of public

discussions across thousands of Facebook Pages—sub-communities on the platform that serve as
vibrant venues for interaction. This analysis reveals several naturally interpretable dimensions of
public discussions. For instance, in the case of news-based discussions, we find that mainstream
print media (e.g., The New York Times, The Guardian, Le Monde, La Repubblica) is separable
from cable news channels (e.g., CNN, Fox News) and overtly partisan outlets (e.g., Breitbart, Sean
Hannity, Robert Reich) on the sole basis of the structure of the discussions they trigger (Figure 4).
As can be noted from these examples, one of the virtues of our method is that it can draw analogies
in discussion characteristics across different languages.
Finally, we show how this framework can provide insights into the factors mediating such

differences in interactional structure. In a controled setting, we contrast two natural sources of
variation—the triggering content, or participant tendencies—finding that the participant can be a
stronger driver of structural differences than the content discussed.

To summarize, in this work we:

Introduce a framework that characterizes public discussions in terms of the interaction
patterns within (§3) and use it to study public discussions on Facebook (§4);
Apply this framework to forecast the future trajectory of a discussion and introduce the new
task of determining whether a discussion will be followed by future antisocial actions (§5);
Structure and qualitatively interpret the variation in discussions among thousands of Facebook
sub-communities, and analyze factors driving this variation (§6).
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To encourage further studies of interaction patterns in public discussions, especially in settings
beyond Facebook Pages, we release the code implementing our methodology as part of the Cornell
Conversational Analysis Toolkit.1

2 RELATEDWORK
Characterizing discussions. Our present work relates to several prior computational studies
that have sought to characterize public discussions, largely through examining how discussion
properties vary along small sets of predefined axes including participant focus [9], controversy
[24, 28] and deliberativeness [5, 29]. Other studies have focused on identifying informative features
of particular types of discussions, such as conflicts [34, 40] and collaborations [17]. A larger body of
work has explored numerous qualitative aspects of the individual interactions that comprise online
discussions, like supportiveness [20] and antisocial behavior [14, 16, 77]. These studies collectively
suggest that across the broader online landscape, discussions take on multiple types and occupy a
space parameterized by a diversity of axes—an intuition reinforced by the wide range of ways in
which people engage with social media platforms such as Facebook [25]. With this in mind, our
work considers the complementary objective of exploring and understanding the different types of
discussions that arise in an online public space, without predefining the axes of variation.
Predicting discussion trajectory.Many previous studies have sought to predict a discussion’s
eventual volume of comments with features derived from their content and structure, as well as
exogenous information [8, 9, 30, 69, inter alia]. Our work addresses similar tasks in predicting a
discussion’s growth; we compare the performance of our approach to baselines from Backstrom et al.
(2013), as well as structural features used in other studies. Building on the practical focus of these
tasks on forecasting future states, as well as on prior studies of the phenomena of antisocial behavior
[14, 16, 77, 79], we also introduce the new task of predicting whether blocking—an indicator of
such behavior—will later occur, given the dynamics of an ongoing discussion.
Models of discussion structure. Our approach to representing discussions draws on previously
proposed computational models of online discussion structure which focus on capturing relations
between comments in a public discussion (see Aragón et al. (2017c) for a survey). Many such studies
operate on the reply-tree structure induced by how successive comments reply to earlier ones in
a discussion rooted in some initial content. Starting from the reply-tree view, these studies seek
to identify and analyze salient features that parameterize discussions on platforms like Reddit
and Twitter, including comment popularity [72], temporal novelty [39], root-bias [28], reply-depth
[41, 50] and reciprocity [6]. Other work has taken a linear view of discussions as chronologically-
ordered comment sequences, examining properties such as the arrival sequence of successive
commenters [9] or the extent to which commenters quote previous contributions [58].

The representation we introduce extends the reply-tree view of comment-to-comment relations
to explicitly model relations between discussion participants over the entire course of their com-
menting activity in a discussion, hence adding a more interlocutor-driven view of the ensuing social
interactions. In this way, our representation encapsulates many of the discussion features previously
examined in computational work, and additionally addresses new features at the granularity of
participants. Our model also integrates audience reactions into the reply structure—an important
aspect of public discussions mostly overlooked in previous work.
Graph-based representations of social interactions. Our model of discussions echoes other
graph-based approaches to modeling social relations (see Leskovec et al. (2014) for a survey).
We draw high-level parallels between our approach and these representations, which embed
information about people and the interactions between them in the nodes and edges of a graph.

1http://convokit.cornell.edu
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These studies have largely considered the social structure of entire communities induced over the
course of many different discussions [12, 43, 44, 46], applying the models formulated to tasks such
as detecting factions [1, 24], identifying influential individuals [40, 51] or investigating social tie
breaks [35]. In contrast, our work focuses specifically on modeling interactions within individual
discussions; we note that a representation of discussions could be extended to complement studies
of their underlying context.
Language and discourse structure.Ourwork complements prior literature focusing on analyzing
discussions according to the language they contain. These studies have used linguistic features
of discussion comments to capture attributes such as the sentiment among participants [74], the
quality of comments [13], the discourse acts which occur in a conversation [78], the discourse
structure across a discussion [56] and the interplay between the comments and the characteristics
of the surrounding context [15]. Our present approach focuses on representing a discussion on the
basis of its structural rather than linguistic attributes; as such, we offer a coarser view of the actions
taken by discussion participants that more broadly captures the nature of their contributions across
contexts which potentially exhibit large linguistic variation. Future work could combine linguistic
and structural insights to offer a more holistic view of discussions.
Sociological frameworks for analyzing conversational structure. While our methodology
draws primarily from prior computational studies, our present work also runs parallel to a large
body of social science literature that has likewise sought to analyze and categorize conversations
according to their interactional structure. Such approaches have yielded theoretical frameworks to
formally examine discussions such as conversational analysis [64] and interaction process analysis
[11]. These works have modeled dynamics such as turn-taking [57], conversation-closings [61] and
reciprocity [2] as being “interactionally controled” and negotiated by the participants; many of
these structural aspects of discussions are also addressed in our computational framework.

The scope of such sociological approaches has largely been confined to synchronous discussions
in dyads or groups where the “attention of the members tend to focus on single members” [11],
though some works have also applied such frameworks to manually examine interactions in
asynchronous online settings [47, 60, 66, 68]. Our automated approach enables the analysis of
discussions in the latter setting at a much larger scale. In addition, we also address some novel
particularities of this crucially different context. For instance, our model quantifies the degree to
which participant (and audience) attention is distributed across multiple members of the discussion,
and accounts for their ability to join and exit at arbitrary points in the interaction—an affordance
specific to online public discussions.

3 REPRESENTING PUBLIC DISCUSSIONS
In this section, we describe our framework for characterizing public discussions in terms of a rich
set of interaction patterns exhibited by their structure. Our approach proceeds in two steps. First,
we construct a representation of discussion structure that formalizes the intuition of capturing
relationships between discussion participants. This representation extends previous computational
approaches that model the relationships between individual comments, and more thoroughly
accounts for aspects of the interaction that arise from the specific affordances offered in public
discussion venues, such as the ability to react to content without commenting. Next, we develop a
method to systematically derive features from this representation, hence producing an encoding of
the discussion that reflects the interaction patterns encapsulated within the representation, and
that can be used in further analyses.
Prior work: Reply-tree models.We build up our framework starting from the reply-tree model
of discussion structure proposed in prior work [4]. Formally, a reply-tree represents a discussion
as a graph wherein comments are denoted by nodes, and replies from one comment to another
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C0c3c0

C1 c1
C2 c2

C3 c4

Fig. 1. Hypergraph representation of the first five comments of an example discussion (https://fb.com/
10151367865459999), capturing relationships between actors and comments (thin edges) and among actors
(thick edges). A legend can be found in Table 1; multiple edges from one (hyper)node to another are visually
grouped to denote hyperedges. To reduce clu�er, node node edges (denoting replies between comments)
are not shown and audience hypernodes (represented as filled circles) are grouped.

Hypergraph object Discussion entity Notation Depiction in Figure 1
Node comment c squares
Hypernode actor (commenter or audience reactor) C circles (empty or filled,

respectively)
Edge (node node) responses (replies or reactions) r (not shown)
Hyperedge
(hypernode node)

responses from actor to comment C c thin blue (reaction) &
red (reply) arrows

Hyperedge
(hypernode hypernode)

responses from actor to actor C C thick blue & red arrows

Table 1. Hypergraph objects, discussion entities, notation and corresponding depictions in Figure 1.

are denoted by edges. In this way, discussions are modelled as collections of comments that are
connected by the replies occurring amongst them. Interpretable properties of the discussion can
then be systematically derived by quantifying structural properties of the underlying graph: for
instance, the indegree of a node signifies the propensity of a comment to draw replies.

3.1 Extending the reply-tree model: A hypergraph representation
In extending the reply-tree model, we note that many potentially meaningful interaction patterns
arise at the level of discussion participants, and the (transient yet structured) relationships fostered
among them. For instance, different interlocutors may exhibit varying levels of engagement or
reciprocity. Activity could be skewed towards one particularly talkative participant or balanced
across several equally-prolific contributors, as can the volume of responses each participant receives
across the many comments they may author. The varied and relatively free-form action space of
public discussions also carries social signals beyond those embedded in comment-to-comment
replies. In particular, the nature of the interactions could further be informed by responses from
the non-commenting audience, who passively but nonetheless selectively react to the interlocutors
(e.g., via likes and voting).

Our approach seeks to cohesively and more thoroughly address these intuitions by characterizing
discussions as collections of actors in addition to comments. Beyond representing individual
comments and replies as in a reply-tree, we also represent participants—in terms of the set of
actions they take over the entire discussion—and relations between participants—in terms of
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the set of replies and reactions one actor directs at another. We model this actor-focused view
of discussions with a graph-based representation that augments the reply-tree model with an
additional superstructure. To aid our following explanation, we depict the representation of an
example discussion thread in Figure 1; Table 1 summarizes the correspondence between discussion
entities and abstract graph objects, which we describe next.

In our representation, individual nodes, denoting comments, are organized into sets of nodes, i.e.,
hypernodes, denoting commenters. We also represent each non-commenting reactor as a hypernode
with no constituent nodes; these correspond to the passive audience that only contributes reactions
(e.g., likes). In the subsequent text, we additionally make reference to a special hypernode: the
initiator C0, who authors the initial comment c0 in the discussion thread. Note that we consider
both commenters and audience members as actors participating in the thread.

Edges in our representation denote responses and can have two possible types. As in a reply-tree,
a reply-edge r exists between nodes c and c whenever comment c is a reply to c ; additionally, a
reaction-edge r exists between a hypernode C and a node c whenever the corresponding actor
C reacts to comment c . Relationships between actors are modeled as the collection of individual
responses they exchange. Our representation reflects this by organizing edges into hyperedges:
a hyperedge between a hypernode C and a node c contains all responses an actor directed at a
specific comment, while a hyperedge between two hypernodes C and C contains the responses
that actor C directed at any comment made by C over the entire discussion.

In the subsequent text, we refer to this representation of a discussion as a hypergraph, borrowing
terminology from prior work concerning higher-order groupings of nodes and edges in graph-based
representations of entities such as entire online communities [12, 46, inter alia].

3.2 Extracting discussion features
We now describe our procedure for extracting features of a discussion from its hypergraph-based
representation. At a high level, our features are statistics describing different structural properties
of the hypergraph that correspond to interactional patterns of potential social significance. For
instance, the distribution of node indegrees encodes the relative popularity of comments; the
maximum node indegree then quantifies the level of activity directed at the most popular comment.
Our method derives such features by systematically enumerating distributions of hypergraph
structures (e.g., node indegree distributions), and then applying several aggregate statistics to
summarize these distributions (e.g., taking a maximum over indegrees). In this way, we arrive at
quantitative characterizations of a wide range of discussion attributes, encompassing and extending
many of the discussion properties considered in previous work. In total, our procedure yields 454
features; subsequently, we will either use the full feature set (§5) or reduce the dimensionality of
this feature set for interpretability (§6).
Modeling roles with degree distributions. Comments and actors play different roles over the
course of a discussion: for instance, some comments and actors might be more popular than others
in receiving responses, while some actors might be more prolific in contributing them. Such roles
are represented in the hypergraph model through various degree distributions which count the
number of (hyper)edges attached to each corresponding node and hypernode, where indegree
distributions reflect comment or actor popularity, and outdegree distributions model actor activity.
The mixture of roles within one discussion varies across different discussions in intuitively

meaningful ways. For instance, some discussions are skewed by one particularly active participant,
while others may be balanced between two similarly-active participants who are perhaps equally
invested in the discussion. We quantify these dynamics by taking several summary statistics of
each in/outdegree distribution in the hypergraph representation, such as their maximum, mean
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Attribute Interpretation Possible values
Node-type Accounts for the volume of responses emitted or

received by comments, or by actors (see Table 1)
node node, node hypernode,
hypernode node,
hypernode hypernode

Edge-type Distinguishes response types all edges, reactions only, replies only
Discussion-
level

Distinguishes responses towards the initial com-
ment, vs. embedded in the midst of the discussion

all edges, mid-thread edges only

Table 2. A�ributes of different subsets of (hyper)edges used to derive features from the hypergraph, their
interpretations and the possible values they can take.

and entropy, producing aggregate characterizations of these properties over an entire discussion.
We list all statistics computed in the appendices (Table 4).

Actor and comment roles can be further informed by the nature of the responses exchanged.
First, the depth of responses is a potentially salient attribute examined in previous work [28]: replies
embedded in the middle of a discussion might imply more investment from the participants than
those directed towards the initial comment. Indeed, in public discussions occurring on Facebook or
Reddit, participants can respond to the initial comment without reading any downstream replies.
This contrast can be captured by separately considering degree distributions among the subset of
(hyper)edges directed at comments in the middle of the thread, in addition to the full set of edges.
Second, the type of response can also disambiguate between levels of engagement—a reply plays a
more active role in the interaction than a reaction—as well as valence—potentially signaled by the
presence of positive reactions. To reflect this contrast, we separately consider degree distributions
in (hyper)edges containing reply- or reaction-edges.
We systematically account for such salient attributes by defining subgraphs comprised of the

(hyper)edges that satisfy each combination of attribute values. The particular attributes we consider,
along with their possible values, are enumerated in Table 2. We can then define degree distributions
over each subgraph—i.e., the distributions of in/outdegrees comprised of edges within the respective
subgraph—from which we compute our thread features.
For instance, suppose we wish to characterize participants’ propensities to react to comments

in the midst of the discussion, beyond the initial comment. In the hypergraph, these participant-
to-comment reactions correspond to the subgraph consisting of hyperedges from hypernodes
to nodes (node-type attribute) with reactions (edge-type attribute) and that occur mid-thread
(discussion-level attribute). The outdegree distribution over this subgraph then reflects the rel-
ative contribution of such actions from each participant. One summary statistic we can then
compute on this distribution is the proportion of nonzero values, here representing actors’ propen-
sities to react to a comment other than the initial one. We refer to this feature with the short-
hand notation STATISTIC[DISTRIBUTION over ATTRIBUTES] as %_NONZERO[OUTDEGREE over C c

MID-THREAD REACTIONS]. Another statistic of the same distribution, the normalized maximum value
(NORM._MAX[OUTDEGREE over C c MID-THREAD REACTIONS]), reflects the intuition that some discus-
sions may skew towards one particularly active reactor, by quantifying the share of reactions they
contribute; while 2ND-LARGEST_ _LARGEST[OUTDEGREE over C c MID-THREAD REACTIONS] captures
the balance between the two most prolific actors in terms of the ratio of their reactions.
Modeling response types with edge distributions. Beyond characterizing actor and comment
roles within specific response types, we can also explicitly draw contrasts between the volumes of
each type of response in the discussion. To this end, in addition to separately considering degree
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A
C1c1

c2

B
c1

c2

C3

C
C1

C2

D
C1

C2 C3

E
C1

C2 C3

Fig. 2. The five hypergraph motifs we consider, representing higher-order interactional pa�erns.

distributions over different types of edges, we also compare the frequencies of (hyper)edges of each
type, representing reactions or replies.
As with the degree distribution features, we compute summary statistics of the distribution of

edge-types over subgraphs consisting of edge subsets specified by the node-type and discussion-level
attributes described in Table 2.2 These statistics, also listed in the appendices (Table 4), explicitly
compare the volume of reactions versus replies in the discussion. For instance, over the subgraph
comprised of hypernode node hyperedges, the proportion of hyperedges with replies that also have
reactions (%_REACTION_GIVEN_REPLY[EDGE-TYPE over C c]) reflects the propensity of discussion
participants to supplement a reply to a previous comment with a reaction.
Modeling complex interactional patterns with graphmotifs.We can also reason about more
complex patterns of social interaction occuring between multiple discussion participants, captured
in recurring higher-order structures, i.e., motifs in the hypergraph consisting of multiple nodes
and edges. For instance, prior literature [6] has examined reciprocity, where the target of a reply
returns to respond to the replier. In our hypergraph representation, this particular interactional
pattern is represented as subgraphs consisting of two nodes c1 and c2 and a hypernode C1, such
that there is a reply-edge c2 c1 and c1 is contained in (i.e., is authored by) C1 (Figure 2A);
reciprocity is then signaled by the presence of a C1 c2 response hyperedge. We quantify the
reciprocity present in the discussion with summary statistics on the distribution of response
(C1 c2) hyperedges, capturing the proportion of reciprocity motifs in the discussion where such
a hyperedge exists, along with the edge-type distribution statistics over the response hyperedges.
For instance, %_HAS_REACTION[RECIPROCITY MOTIF over MID-THREAD]measures how often the target
of a reply occurring in the midst of the discussion responds with a reaction.
Beyond reciprocity, other higher-order interaction patterns are also encapsulated in the hyper-

graph representation. In this work, we explore four additional examples of such patterns, each
consisting of two hyperedges as with the reciprocity motif; the motifs are depicted in Figure 2:

External reciprocity (Fig. 2B): Similar to reciprocity, we consider motifs where a new actor
C3 , C1 responds to c2, capturing the tendency of a comment to draw responses from actors
beyond its explicit target. We derive features from this motif analogous to that of reciprocity.
Dyadic interactions (Fig. 2C):We characterize dyadic relations between pairs of commenters
across the entire discussion (aggregating over individual reciprocal interactions), represented
as pairs of hypernodes and the hyperedges between them.3
Incoming triads (Fig. 2D): We consider the pairs of responses received by a commenter from
two other actors. Within a pair, congruent or contrasting actions could reflect a commenter’s
divisiveness in the discussion. These triadic relations are represented as motifs involving a
hypernodeC1 with incoming hyperedges from two other hypernodesC2 andC3. For instance,

2For the node-type attribute, because we are comparing reply- and reaction-edges, we only take edges originating from
hypernodes, as such edges can represent both replies and reactions.
3Here we only consider hypernodes for active commenters.
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a hypernode with many incoming triads consisting of two different edge-types potentially
reflects a particularly divisive commenter who may provoke silent approving reactions and
active rebukes from entirely disjoint sets of discussion participants; a thread containing many
such structures might then exhibit polarization [24].4
Outgoing triads (Fig. 2E): Analogous to incoming triads, we compare how an actor responds
to two other discussion participants, represented as motifs involving a hypernode with
outgoing hyperedges to two other hypernodes. For instance, an actor who has contrasting
views on two different people in the discussion could be represented as a hypernode with
outgoing hyperedges of different types, while more lively discussions might be indicated
by the presence of actors who actively respond to multiple participants, represented as a
preponderance of outgoing triads with two reply-edges.

Where applicable, we extract features summarizing the distribution of the pairs of hyperedges
involved—for instance, the proportion of incoming triads in the discussion for which both hyper-
edges contain a reaction edge.
While we manually developed this small set of motifs based on prior intuitions about common

interaction patterns, future work could seek to discover novel interaction patterns by devising
ways to automatically extract frequently recurring motifs.

3.3 Embedding discussions in a latent low-dimensional space
To interpret the structure our model offers and address potentially correlated or spurious features,
we can perform dimensionality reduction on the feature set our framework yields. In particular, letX
be a N k matrix whose N rows each correspond to a thread represented by k features. We perform
a singular value decomposition on X to obtain a d-dimensional representation X X̂ = USVT

where rows ofU are embeddings of threads in the induced latent space and rows of V represent
the hypergraph-derived features.
Community-level embeddings. We can naturally extend our method to characterize online
discussion communities—interchangeably, discussion venues—such as Facebook Pages. To this end,
we aggregate representations of the collection of discussions taking place in a community, hence
providing a representation of communities in terms of the discussions they foster. This higher level
of aggregation lends further interpretability to the hypergraph features we derive.

In particular, we define the embedding ŪC of a community C containing threads t1 t2 tn as
the average of the corresponding thread embeddingsUt1 Ut2 Utn , scaled to unit 2 norm. Two
communities C1 and C2 that foster structurally similar discussions then have embeddings ŪC1 and
ŪC2 that are close in the latent space.

4 APPLICATION TO FACEBOOK PUBLIC DISCUSSIONS
We use our general framework to study discussions on Facebook Pages, a large scale setting that
underlines the capacity of the framework to generalize across, and capture meaningful variation
among contexts spanning a diverse range of topics, demographics, cultures and languages. We
note that the framework is also applicable in many other platforms and encourage such future
explorations by making our code publicly available in the Cornell Conversational Analysis Toolkit.5
Public discussions on Facebook Pages. Pages are sites containing publicly visible stories, or
posts. The various affordances available for Facebook users to engage with posts yield a diverse
range of interactions, making Pages particularly vibrant public discussion spaces. Any user can start
a discussion thread by writing an initial comment in response to a post, or reply to comments and

4Here we only consider active commenters as C 1.
5http://convokit.cornell.edu
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extend existing threads.6 Users can also engage with existing comments via reactions that express
simple, mostly-positive sentiments such as liking a comment short of writing a reply, similar to
voting on other platforms like Reddit.7 In our analyses, we take each initial comment to a post, along
with the comments and reactions in the ensuing thread, to comprise one discussion. Importantly,
this means that one post can potentially spur several diverging discussions.

The set of threads to a post may be algorithmically re-ordered based on factors like quality [13].
However, subsequent replies within a thread are always listed chronologically. We address elements
of such algorithmic ranking effects in our prediction tasks (§5).
Dataset. In the present work, we consider discussions taking place on 8,901 Pages which are the
most active on Facebook in fostering extended discussion threads. This subset accounts for a large
fraction of discussion comments made by users across all Pages, and hence offers an extensive view
of the dynamics of public discussions taking place on the platform.
Because our aim is to understand interaction patterns within engaged discussions, we restrict

our dataset to threads containing at least ten comments. To maintain consistency across threads of
varying lengths, we only consider replies and reactions receivedwithin a thread up to (and including)
the time that the tenth comment is authored. In this way we focus on the set of interactions within
the initial ten-comment prefix (though the prediction outcomes we consider in §5 occur after
this prefix).8 Unless otherwise stated, our subsequent analyses cover discussion threads that were
initiated between Nov. 1 and 7, 2017. We omit threads where the initial comment consists of the
initiator mentioning a Facebook friend, as this mechanism is primarily used to begin a conversation
between friends rather than a discussion amongst the broader public audience [13]. Taken together,
these filtering criteria yield a dataset of 929,041 discussion threads.
All data analyzed for this study was obtained from public Facebook Pages in accordance with

Facebook’s Data Policy [23]; data was only handled by Facebook employees on Facebook servers.
The research plan passed a rigorous internal review process prior to performing the analyses,
with steps taken to handle the data ethically and preserve user privacy. Since we solely examined
historical data, no manipulation of any Facebook user’s site experience occurred.9

5 PREDICTING DISCUSSION TRAJECTORY
We now apply our framework to forecast a discussion’s trajectory—can interactional patterns signal
future thread growth or predict future antisocial actions? We address this question by using the
features our method extracts from the 10-comment prefix to predict two sets of outcomes that
occur temporally after this prefix. These prediction tasks have potential practical worth to platform
maintainers, who might seek to rank or highlight ongoing discussions at their early stages. The
tasks also test the extent to which early interaction patterns are systematically tied to eventual
trajectories, and the capacity of our approach to extract such signals beyond previous models of
discussion structure.

6We note that while subsequent replies in a Facebook discussion are not threaded, commenters explicitly indicate the target
of their reply by clicking a link on the relevant comment; the reply structure in a discussion is therefore clearly recoverable
from the data. Future work could account for further ambiguities in the reply structure.
7While multiple reaction types exist, likes are the default reaction and constitute the vast majority of reactions used; as
such, in this work we do not disambiguate between different reaction types.
8We chose a cut-off of ten comments based on rough heuristic considerations, seeking to analyze threads that were large
enough to foster a rich variety of interactional dynamics without prohibitively restricting the data size. We note that future
work could complement our length-controled analyses by considering the interplay between interactional dynamics and
discussion length—a point that we briefly examine in §5.
9Individual discussion threads the authors manually examined were taken from these public Pages, and examples in the
paper are provided via hyperlinks to not infringe on the users’ option to delete their past activity. All other analyses were
performed in aggregate over threads.
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In particular, we introduce a pair of new tasks directed at anticipating antisocial events:
Blocks:Will the initiator block another participant (i.e., prevent them from further interacting
with the blocker) in the 10-comment prefix?
Blocked:Will the initiator be blocked by another actor in the 10-comment prefix?

These tasks seek to detect early signals of blocking actions before they occur and while the
discussion is still ongoing, complementing studies which aim to diagnose antisocial behavior after
the discussion has ended [14, 16, 77, inter alia].10
While our main focus is on predicting participant blocking, we also consider two prediction

outcomes related to thread growth, testing our method on prior tasks found in the discussion-
modeling literature [9]:

Comment growth:Will the thread reach 15 comments or stop at 10?
Commenter growth:Will the number of commenters at least double in the next 10 com-
ments or stay the same?11

Controling for content.A discussion’s interactional structure and future outcome can be strongly
driven by the content triggering it. However, in a practical setting, much of the content discussed
in a particular venue may be out of the reach of a community maintainer to shift. For instance,
news articles on controversial issues may be especially susceptible to contentious discussions, but
this should not translate to barring discussions about controversial topics outright. Additionally,
in large-scale social media settings such as Facebook, the content spurring discussions can vary
substantially across different sub-communities, motivating the need to seek adaptable indicators
that do not hinge on content specific to a particular context.
Given these considerations, in each task we control for content in a paired prediction scheme,

discriminating between two threads rooted at the same post—e.g., which of two threads triggered
by the same post involves a participant who blocks the initiator. Each pair of threads is an instance
for the prediction task; as features we take the difference of the features of the two constituent
threads. We ensure that the data is balanced, with exactly half of the pairs having the first item in
the positive class (e.g., the thread is eventually followed by the block), and enforce that at most
one pair is taken from each post. This paired prediction setup is inspired by ordinal regression and
was used to control for content in previous tasks [67, inter alia]. While this controled formulation
increases the tasks’ difficulty, it also allows us to gauge the predictive power of our discussion
representation and focuses our inquiry on discussion dynamics beyond content-based correlates
(though practical applications could meld structural and content-based features).12
Classification protocol. For each task, we train logistic regression classifiers that use our full set
of hypergraph-derived features, grid-searching over hyperparameters with 5-fold cross-validation
and enforcing that no Page spans multiple folds.13 We evaluate our models on a (completely fresh)
heldout set of thread pairs drawn from the subsequent week of data (Nov. 8-14, 2017), addressing a
model’s potential dependence on various evolving interface features that may have been deployed
by Facebook during the time spanned by the training data. To further test the transferability of our

10While blocking actions can also occur among other participants in the thread, we note that blocks involving the initiator
are fairly well-represented in our data: among all threads with at least 10 comments, the initiator was blocked by another
commenter in the prefix in 4.1% of threads, and blocks a prefix commenter in 4.8% of threads.
11To distinguish this task from predicting comment growth, we only consider threads which grow to at least 20 comments.
12To construct both the training and heldout datasets, on the comment-growth task, we randomly sample 50,000 thread
pairs from the respective time periods in our data; in the other tasks we take all possible pairs from each time period that
satisfy our controled framework.
13We use logistic regression classifiers from scikit-learn with 2 loss, standardizing features and grid-searching over C
= 0 001 0 01 1 . In the bag-of-words models, we tf-idf transform features, set a vocabulary size of 5,000 words and
additionally grid-search over the maximum document frequency in 0 25 0 5 1 .
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model across different settings and ensure that it is not simply performant on a particularly active
Page, we report accuracies macroaveraged per Page.14
Baselines. We compare the performance of our approach to a model accounting for volume
features like the number of actors in a discussion and the number of reactions to the prefix and
initial comment, reflecting a coarse-grained view of discussion structure. We also compare our
framework to prior reply-tree-only representations [6, 28, 39, 72] by considering a model that
only uses features derived from node node edges. We additionally compare our approach to the
arrival-sequence model in Backstrom et al. (2013), which considers the specific order in which
commenters contribute to a discussion. In this model, comments in a discussion are labeled with
the index in which their authors first contributed to the discussion, yielding features consisting
of the relative frequencies of subsequences of comments in the thread under this labeling. For
instance, (1 0 1 0 1) denotes a chain of comments where the initiator and the second commenter
alternate in authoring replies. We report results over subsequences of five comments.15 Finally,
we compare the strength of the structural signals reflected in our model with linguistic signals by
testing a bag-of-words (BOW) baseline using the concatenated text of the prefix comments.16
Extraneous reference points. As reference points, we also report the performance of classifiers
that account for extrinsic information about the thread, which would not necessarily be readily
visible to someone observing the discussion and are thus not modeled in our representation. We test
a model using the temporal rate of commenting, which was shown to be a much stronger signal
of thread growth than the structural properties considered in prior work [9]. We also considered a
model using the number of unique Facebook users who view the thread by the time of its 10th
comment. This latter model aims at addressing the possibility that some of our prediction outcomes
are strongly correlated with the level of exposure of the thread—which can be strongly driven by
Facebook’s internal ranking algorithm. Here, we use view count as a rough proxy for the differences
in thread visibility that can result from such positional effects [42].

5.1 Results
Table 3 shows Page-macroaveraged heldout accuracies for our prediction tasks. The feature set we
extract from our hypergraph significantly outperforms all of the baselines in each task. This shows
that interactional patterns occurring within a thread’s early activity can signal later events, and
that our framework can extract socially and structurally-meaningful patterns that are informative
beyond coarse counts of activity volume, the reply-tree alone and the order in which commenters
contribute, along with a shallow representation of the linguistic content discussed.
In both blocking-related tasks and in the commenter-growth task, our hypergraph features

also significantly outperform the extraneous reference points, showing that the structural patterns
we capture are not simply correlates of external dynamics reflected in commenting rate and view
count. In particular, our strong performance relative to rate in the commenter-growth task shows
that our method substantially improves upon prior structural approaches [9] that did not outperform
temporal rate on this task. While the view count features we considered only coarsely reflect the
impact of ranking on thread exposure, our performance relative to these features suggests that at
least at this level of approximation, our model captures informative signals of discussion trajectory
which are not completely subsumed by ranking effects. We note that the success of the extrinsic

14We also computed microaveraged heldout accuracies, along with heldout accuracies macroaveraged over Pages with
at least 10 thread pairs in the heldout set. Results are qualitatively similar with some gain or loss of significance in the
respective settings due to the differences in data size, and are omitted for space.
15We also tested a model using ten-comment subsequences, finding that it performed worse than the five-comment variant.
16We also considered a model which separately accounted for just the text of the initial comment, finding that it generally
performed worse than the model using the full text of the prefix.
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Task Hypergraph
features

Volume Reply-
tree

Arrival-
seq.

BOW Rate Views Rate
+views

Hypergraph
+rate +views

Blocks
(5,590)

64.4 **** 61.5 59.8 56.9 60.5 60.3 61.3 61.6 64.8 ****

Blocked
(44,641)

66.2 * 64.4 61.7 50.1 60.3 64.0 65.1 65.5 67.9 *

Comment-
growth
(50,000)

59.0 **** 54.9 53.9 53.4 53.2 87.2 67.5 87.6 88.2

Commenter-
growth
(14,739)

67.0 **** 63.1 62.8 54.5 54.4 57.5 56.6 63.0 69.7 ****

Table 3. Heldout set accuracies for each prediction task and feature set considered, macroaveraged per
Page. The size of the heldout set (pairs of threads) is listed in parentheses. For each task, a model using
our hypergraph features outperforms the baselines (le� side of table); a model combining hypergraph and
extraneous features outperforms the extraneous features alone (right). Significance of the performance of the
hypergraph features (le�) versus the best-performing baseline, and of the hypergraph+extraneous versus the
best-performing extraneous feature (right), is listed using asterisks (*) in the respective columns (Bonferroni-
corrected Wilcoxon test, pairing on per-page accuracy; * = p 0 05, **** = p 0 0001). Accuracies for the
hypergraph features are italicized if they also outperform the extraneous features.

features in the comment-growth task, which our features do not match, echoes the strength of
rate-based predictors reported in prior work.
Finally, the best performing model in all tasks combines our hypergraph-derived features with

rate and view count. This suggests that the structural patterns we address are complementary to
these extrinsic signals.
Subcomponents of themodel. In order to understand the relative importance of different aspects
of a discussion’s structure in signaling its trajectory, we also compare the performance of our full
model on each task to subsets of the hypergraph features, such as those reflecting only degree
distributions or those that only account for edges denoting a specific response type. We find
that in almost all cases, our full model significantly outperforms each subcomponent considered,
suggesting that different parts of the hypergraph framework add complementary information
across these tasks. Further details about these analyses can be found in the appendices (Table 5).
Interpreting predictive features. To better understand how interactional dynamics can signal
thread trajectory, we inspect the most predictive hypergraph features as determined by the magni-
tude of the corresponding feature coefficients in the trained classifiers. For space we focus on the
blocks and blocked by tasks.

Figure 3A shows the features that are the most positively (red) or negatively (blue) predictive of
blocking actions across the two tasks; the darkness of each entry denotes the feature’s salience.17
For both block-related outcomes, the proportion of participants in threads who reply (as opposed to
just reacting) is positively predictive of future blocking (e.g., indicated by the %_NONZERO[OUTDEGREE

over C c REPLIES] feature), while the propensity to react is negatively predictive (indicated
by the %_HAS_REACTION[RECIPROCITY MOTIF over MID-THREAD] feature). This suggests a dynamic
of participants actively volleying replies at each other as opposed to issuing passive (positive)

17To select these features, we computed percentile ranks of the absolute value of the logistic regression coefficients in each
task, and then the highest percentile Pmax across both tasks. We examine the top five features in Pmax.
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Fig. 3. A: The most predictive hypergraph-derived features in the blocks and blocked by tasks according
to their coefficients in the trained classifiers. B: Highly-predictive features differing in the direction they
predict between the blocks and blocked by tasks. Both figures: red and blue denote whether features are
positively or negatively predictive of blocking actions respectively; darkness denotes coefficient magnitude.

feedback; the disproportionate prominence of replies versus reactions may signal the presence of
arguments that get out of hand.

Not all antisocial outcomes are alike: certain features differ in whether or how they are predictive
depending on the target of the block, as seen in Figure 3B, depicting features that are predictive
in opposite directions between the two tasks.18 For instance, threads where the initiator blocks
someone tend to contain a relatively late-arriving commenter who nonetheless prolifically replies
to previous comments (indicated by the ARGMAX[OUTDEGREE over C c REPLIES] feature), potentially
signaling a later entrant who is particularly disruptive to the discussion. In contrast, the most prolific
replier in threads where the initiator is blocked by someone tends to arrive to the discussion
earlier—in such cases, perhaps the initiator is the particularly provocative commenter.

6 ANALYZING THE LANDSCAPE OF PUBLIC DISCUSSIONS
Having shown that our approach can extract interaction patterns of practical importance from
individual threads, we now apply our framework to explore the space of public discussions occurring
on Facebook. In particular, we identify salient axes along which discussions vary by qualitatively
examining the latent space induced from the embedding procedure described in §3, with d = 7
dimensions. Using our methodology, we recover intuitive types of discussions, which additionally
reflect our priors about the venues which foster them. This analysis provides one possible view of
the rich landscape of public discussions and shows that our thread representation can structure
this diverse space of discussions in meaningful ways. This procedure could serve as a starting point
for developing taxonomies of discussions that address the wealth of structural interaction patterns
they contain, and could enrich characterizations of communities to systematically account for the
types of discussions they foster.

6.1 Community-level variation
To understand our derived space of discussions, we first examine the landscape spanned by dis-
cussion venues. Figure 4a depicts a visualization of this space obtained by applying the t-SNE

18Here we select features whose absolute-valued coefficients are in the top 20th percentile in both tasks and where the sign
of the coefficients differ. We again rank by Pmax.
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algorithm [71] to the community embeddings.19 Points in the figure denote different Pages; we
label a hand-picked subset of Pages to orient the reader along with a randomly-selected sample.

We find interpretable groupings of Pages throughout the space. For instance, mainstream print
news outlets (e.g., The New York Times, The Guardian) cluster near the top of the visualization,
with sports media (e.g., NFL, ESPN) towards the middle, and meme-sharing sites (e.g., No One
Cares, Funny Texts) towards the bottom. Focusing on news-based discussions, we see that the
interactional structure of threads separates discussion venues corresponding to print media from
cable news channels (e.g., CNN, Fox News; top left) and overtly partisan outlets (e.g., Breitbart,
Sean Hannity, Robert Reich; right).
The emergence of these groupings is especially striking since our framework considers just

discussion structure without explicitly encoding for linguistic, topical or demographic data. In
fact, the groupings produced often span multiple languages—the cluster of mainstream newssites
at the top includes French (Le Monde), Italian (La Repubblica) and German (SPIEGEL ONLINE)
outlets; the “sports” region includes French (L’EQUIPE) as well as English outlets. This suggests that
different types of content and different discussion venues exhibit distinctive interactional signatures,
beyond lexical traits. Indeed, an interesting avenue of future work could further study the relation
between these factors and the structural patterns addressed in our approach, or augment our thread
representation with additional contextual information.

6.2 Examining example dimensions
We now more closely examine the apparent similarities and contrasts between discussion venues
suggested in the visualization. To understand the thread properties distinguishing these Page
groupings and gain further insight into different discussion attributes, we will use our latent thread
representations to guide a qualitative exploration of different axes of variation among discussions
by examining each latent dimension in greater depth. In particular, we manually examined and
interpreted the features with the highest and lowest scores per dimension, as well as individual
discussion threads and Pages with extremal scores.20 Taken together, we can use the features,
threads and Pages which are relatively salient in a dimension to characterize a type of discussion.
A subset of these dimensions is depicted in Figures 4b-e with points colored according to their
score along the respective dimension; the remaining dimensions are discussed in the appendices
for space (Table 6 and Figure 5).
Our discussion thus far has centered on communities for interpretability, but we note that

variations in discussion structure exist between threads within a single sub-community (and even a
single post, as our prediction tasks in §5 illustrated). To underline this finer granularity, for each
examined dimension we refer to example discussion threads drawn from a single Page, The New
York Times (https://www.facebook.com/nytimes), which are listed in the footnotes.
Focused versus expansionary. Echoing prior work [9], this dimension (Fig. 4b) divides threads
into those characterized by many focused contributions from a few participants (blue),21 versus one-
off comments from many authors in expansionary, “guestbook”-like threads (red).22 Focused threads
19We use the implementation of t-SNE in the scikit-learn library [52] with a cosine distance metric, restricting to the 599
Pages with at least 300 threads in our dataset.
20In particular, we examined titles, descriptions and posts from the ten Pages with the most positive and most negative
values in each dimension. We also inspected ten features with the most extremal scores, and the five English-language
threads with the most positive and most negative values, along with random samples of five English threads in the bottom
and top 10% for each dimension. We note that this process of selection and manual inspection necessarily constrains
the scope of our interpretation, especially in such a cross-cultural setting; extending beyond our present interpretative
limitations is an important direction for future work.
21https://fb.com/10151366055154999
22https://fb.com/10151367606734999
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Correctional vs. cooperative. This dimension separates threads by the relationships between
participants (Fig. 4d). Threads at one end (blue)25 have highly reciprocal dyadic relationships in
which both reactions and replies are exchanged (e.g., high %_HAS_SUBSEQUENT_REACTION[RECIPROCITY

MOTIF]). Since reactions on Facebook are largely positive, this suggests an actively supportive dy-
namic between actors sharing a viewpoint, and tend to occur in lifestyle-themed content aggregation
sub-communities as well as in highly partisan sites which may embody a cohesive ideology. In
threads at the other end (red),26 later commenters tend to receive more reactions than the initiator
(e.g., high ARGMAX[INDEGREE over C C REACTIONS]) and also contribute more responses (e.g.,
high ARGMAX[OUTDEGREE over C c RESPONSES]). Inspecting representative threads suggests
this bottom-heavy structure may signal a correctional dynamic where late arrivals who refute an
unpopular initiator are comparatively well-received.
Balance in receiving responses. This dimension reflects the degree of balance in the responses
received among different participants (Fig. 4e). Threads on one side (blue)27 contain one participant
who receives the bulk of responses in the discussion (e.g., high NORM._MAX[INDEGREE over C c

MID-THREAD RESPONSES]). Threads on the opposite end (red)28 have multiple actors receiving compa-
rable volumes of responses (e.g., high 2ND-LARGEST_ _LARGEST[INDEGREE over C C MID-THREAD

RESPONSES]). This contrast reflects an intuitive dichotomy of one- versus multi-sided discussions;
interestingly, the imbalanced one-sided discussions tend to occur in relatively partisan venues,
while multi-sided discussions often occur in sports sites (perhaps reflecting the diversity of teams
endorsed in these sub-communities).

6.3 Loci of Variation
Thus far, we have uncovered many salient axes along which discussions can vary. We now use
our framework to begin to examine what underlies this variation, focusing on two particularly
important factors. First, the nature of a discussion may be driven by the content that spurred
it—for instance, the posts in which threads are rooted may differ according to their divisiveness.
Indeed, the preceding analysis shows that thread dynamics can vary radically between different
sub-communities which focus on different types of content. A discussion may also be shaped by the
characteristics of its initiating commenter—for instance, contrast a particularly combative initiator
with someone who prefers to make innocuous jokes. This factor may drive differences in discussions
about the same content, which were perhaps informative in our content-controled prediction tasks
(§5). We now seek to contrast the relative salience of these factors after controling for community:
given a particular discussion venue, is the content or the commenter more responsible for the nature
of the ensuing discussions?
To study this comparison, we examine the collection of all thread triples (T0 T1 T2) in our data

where T0 and T1 are initiated in response to the same post, while T0 and T2 are initiated by the
same commenter. For each triple we compute the cosine distances D0 1 between the embeddings
of T0 and T1—reflecting the variation among threads responding to the same content—and D0 2
between T0 and T2—reflecting the variation among threads from the same initiator.29 Observing
that D0 1 D0 2 would suggest that, on aggregate, the post is the more salient driving factor in the
sense that the post constrains thread variation more strongly than the user; we would infer the
opposite effect if D0 2 D0 1.

25https://fb.com/10151367865459999; depicted in Fig. 1
26https://fb.com/10151364982289999
27https://fb.com/10151372475599999
28https://fb.com/10151367003324999
29We enforce that no post or initiator occurs multiple times over allT0s in the data, and report numbers for the 7-dimensional
embeddings examined in the previous section; for other choices of d the results are qualitatively similar.
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We find that in 54% of the 51,289 triples in our data, D0 2 D0 1 (p 10 4 for a Wilcoxon
signed-rank test on paired D0 1 and D0 2, and also for a binomial test where success cases are
triples where D0 2 D0 1). This suggests that, perhaps somewhat surprisingly, the commenter is a
stronger driver of discussion type. There are several potential mechanisms by which a discussion
is shaped by its participants beyond the content, which future work could clarify. For instance,
some commenters may be more inclined than others to preferentially join more popular threads;
the commonalities shared by the discussions they contribute to could then reflect the dynamics of
highly-visible discussions and the commenters’ taste in these discussions. The effect of differing
commenter characteristics could also be amplified by platform features and a commenter’s social
ties (as further discussed in §7.3): consider algorithms which may promote a discussion to its
initiator’s like-minded friends, inducing them to join.
We also consider a related setting where T0 and T2 occur in different communities, finding a

similar albeit weaker effect: D0 2 D0 1 in 52% of the 35,227 resultant triples (p 10 4 with
Wilcoxon and binomial tests). This suggests that a thread initiator’s interactional tendencies
exhibit consistencies even across different discussion settings. We note that beyond the initiator,
the other discussion participants could also inform the dynamics of the interaction, a point we
leave for future investigation.

7 DISCUSSION
Our results underline the diversity of discussions that can arise in an online public discussion
space. Through proposing and applying a computational framework that systematically studies
this variation (§3), we show that different discussions contain various structural patterns which
signal diverging future trajectories (§5) and delineate a rich array of discussion types (§6). Such
diversity yields many opportunities for platform maintainers to examine and ultimately improve
public discussion venues. However, the inherent variability present in these platforms also raises
several considerations that qualify interpretations and further applications of these analyses.

7.1 Analyzing and curating public discussions
Developing a richer understanding of discussions can augment strategies for curating discussion
venues such as Facebook Pages. For instance, consider the concrete task of ranking discussion
threads, such that high-quality threads (which likely prompt high-quality responses) are displayed
more prominently to platform users [13, 18, 21, 65]. Extending existing ranking approaches—which
may consider just the initial comment—adding information about the ensuing discussion could
enrich algorithmic models to better disambiguate between discussions of varying quality. We
provide a preliminary example of how signals derived from discussion structure could be applied to
forecast blocking actions, which are potential symptoms of low-quality interactions (§5). Notably,
we show that these features add predictive power to models based on shallower representations of
a thread, such as those quantifying the exposure a discussion receives. This suggests opportunities
to extend presently-deployed thread-ranking algorithms with additional information derived from
a thread’s interactional dynamics.
More broadly, a more nuanced view of discussions highlights the inherent challenges of mea-

suring and quantifying discussion quality. In particular, different types of discussion may call
for different notions of quality. For instance, while it may seem broadly beneficial to encourage
engaging discussions that maintain their participants’ attention, sustained engagement might reflect
differing social dynamics in discussions that are cooperative—suggesting supportive interactions
or ideological conformity, versus those that are correctional—suggesting contentious disputes or
lively debate. Our work offers a starting point for drawing such distinctions, which may help in
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understanding and ultimately mitigating phenomena such as filter bubbles [10, 22, 26, 54] or in
guiding interface designs to facilitate dynamics such as constructive deliberation [49, 75].

7.2 Accounting for affordances of public discussion platforms
The affordances offered by public discussion venues such as Facebook Pages yield a wealth of
interactional patterns that may inform and shape the nature of a discussion. One notable affordance
we explore is the mechanism whereby participants can passively respond to existing content in a
thread, beyond authoring new comments. In explicitly modeling reactions along with replies, we
extend previous models of discussions—which largely focused on the reply structure—by closely
tying these social feedback signals [48] to the discussion. Our results suggest the potential value
of considering these audience contributions as a crucial part of the interaction through models
that address these silent actions as integrated components of the discussion. Indeed, we see that
these passive responses can serve as informative signals complementary to actively-contributed
comments—for instance, replies that are coupled with reactions suggest threads that are unlikely
to lead to antisocial actions (Figure 3).

We note that a thread’s non-commenting audience can also reveal interesting dynamics in how
they selectively respond—contrasting, for instance, balanced threads where multiple parties receive
comparable support and asymmetrical discussions where feedback centers on one participant
(Figure 4e). In highlighting the importance of actions beyond explicit replies, these observations
potentially motivate extensions of existing theoretical frameworks [11, 57, 64] to address the
additional signals surfaced in our present analyses, such as those derived from passive audience
reactions. Such observations could also help to guide explorations of design choices to better engage
a discussion’s audience and expand channels of communication beyond the text [37, 38].

7.3 Disentangling potential drivers of interactional dynamics
As our analyses suggest, discussion structure can vary with many factors, including the venues in
which they arise and the content spurring the interaction (§6). The nature of the discussion may
also be shaped by the structure of the underlying social network, such that interactions between
friends proceed in contrasting ways from interactions between complete strangers.
The design choices implemented by the platform in which discussions occur are particularly

important potential driving forces behind the variation between discussions [5, 6, 31, 37, 53, 75]. The
role of the platform is especially salient on sites like Facebook, where an extensive and constantly-
evolving ecosystem of algorithms and interface features interact to shape users’ experiences
of discussions. For instance, Facebook implements various features that impact when users are
notified that they have received a response in a discussion, or whether they are preferentially
shown discussion comments authored by their friends. In turn, these features can shape aspects of
the discussion such as the potential for reciprocity or the propensity of like-minded interlocutors
within the same social circles to gravitate towards similar discussions.

The interplay between discussions and their context, as well as demographic and cultural factors,
can further qualify evaluative judgements of a discussion’s quality beyond its intrinsic structure. For
instance, different people may prefer to engage in different types of interactions [36, 59, 73, 76] and
certain interactional dynamics may cohere better with particular discussion topics or community
norms [53]. The complex array of environmental effects present in a discussion platform necessarily
qualifies our interpretations of our automatically-inferred axes of variation in discussions; this
complexity additionally places upper bounds on the extent to which we can ascribe the nature
of a discussion to particular factors such as the content or interlocutors involved. While we have
sought to partially control for some of these factors in defining our prediction tasks (§5) and
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disentangle a small subset of them through our analyses (§6.3), future work (§8) could more
concretely characterize their role in shaping discussions.

7.4 Interplay with sociological theories
By virtue of its computational nature, the approach we propose enables us to automatically analyze
large collections of discussions. However, to operate at this scale, we sacrifice some of the interpre-
tative clarity offered by other studies of interactional dynamics rooted in different methodological
frameworks. For instance, as with the bulk of other computational studies, our work relies heavily
on indicators of interactional dynamics which are easily extracted from the data, such as replies or
blocks. Such readily available indicators can at best only approximate the rich space of participant
experiences, and serve as very coarse proxies for interactional processes such as breakdown or
repair [27, 62]. As such, our implicit preference for computational expedience limits the granularity
and nuance of our analyses.

8 FUTURE WORK
8.1 Integrating other methodological approaches
The limitations of our approach naturally raise several opportunities for future work to extend or
complement our computational framework. In particular, running experiments where discussion
participants are randomly assigned to experience different interface features and discussion dynam-
ics [7, 48] could help to translate our observations into causal mechanisms and more concretely
gauge the impact of such factors on the ensuing discussion. In particular, such investigations could
further probe the relationship between thread dynamics and platform affordances—clarifying, for
instance, whether audience feedback affects, or simply reflects, the interaction.

In an alternate vein, future work could seek to more richly capture aspects of the interaction that
are only roughly approximated by our computational approach. For instance, surveys could more
closely relate our automatically-inferred discussion types to the experiences of their participants.
More broadly, such qualitative investigations could shed light on factors and outcomes that, while
of theoretical importance, may be infeasible to automatically extract from the data.

8.2 Extending the scope of the present model
Given the range of public discussion affordances, many possible interactional patterns can arise
that are not currently captured by our model. By virtue of its modular nature, our model is readily
extensible to a variety of other interactional patterns beyond the ones currently represented in
our feature set. Additional summary statistics can be computed on the degree and edge-type
distributions alongside the ones presently considered (Table 4); for instance, taking a sum of node
indegrees weighted by the position of the corresponding comments in a thread could reflect a
smoother measure of commenter involvement in the middle of the discussion, refining the coarse
distinction between initial and mid-thread comments presently considered. Similarly, depending on
the goal of the analysis, different attributes from the ones listed in Table 2 could be used to define
the subgraphs over which the hypergraph features are computed. For instance, one could apply
our methodology to derive features from a subgraph that omits nodes corresponding to comments
that are algorithmically promoted or demoted by a platform.

There are also some properties of discussions that are outside the scope of our present approach;
extending our model to reflect these additional structures is a promising avenue for future work. In
particular, the hypergraph representation underlying our method is aimed at reflecting discussions
consisting of a coarsely-specified collection of response types—represented as a discrete set of possi-
ble edge types—directed at a collection of clearly-delineated comments and actors—represented as a
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discrete set of (hyper)nodes. As such, the model’s scope is challenged by applications necessitating
a richer representation of responses and interaction patterns for which the atomicity of comments
and actors is more ambiguous. For instance, in interfaces like Google Docs, discussion participants
can respond to arbitrarily-large and potentially-overlapping spans of text, which may be harder to
represent as clearly-separable nodes. One possible means of enriching our model to address this
limitation could be to treat nodes as high-dimensional vectors, such that subsequent responses
only act on a subset of these dimensions.

8.3 Modeling linguistic aspects
The rich language used in discussion comments exemplifies the additional complexities of dis-
cussions not addressed in our present framework. While we intentionally focused on structural
properties, we expect the wealth of linguistic signals in public discussions to be informative as well
[19, 74, 78, inter alia]; coupling linguistic and structural representations of interactional patterns
remains a challenging and fruitful avenue for future work. Accounting for linguistic features of the
replies within a discussion necessitates vastly enriching the response types presently considered,
perhaps through a model that represents the corresponding edges as higher-dimensional vectors
rather than as discrete types. Additionally, linguistic features might identify replies that address
multiple preceding comments or a small subset of ideas within the target(s) of the reply, offering
another route to move beyond the atomicity of comments assumed by our present framework.

8.4 Examining other discussion platforms
While we have examined interactional dynamics across almost 9,000 varied sub-communities on
Facebook, showing that our framework generalizes well, future work should explore the method’s
applicability to other platforms like Reddit or Wikipedia where public discussions are central. These
sites contain platform-specific features which can shape the formulation of our model and the
empirical findings that surface, and perhaps test the dependency of our observations on a particular
interface. For instance, these platforms may support different actions (e.g., editing someone else’s
comment on Wikipedia [33, 63]) and social structures (e.g., voluntary identity sharing [70]), as well
as alternate incentives for interaction (e.g., explicitly collaborative discussions). These points of
divergence with our current setting might yield informative and fascinating interaction patterns
that aggregate into other types of public discussions.

ACKNOWLEDGMENTS
The authors thank Lada Adamic, George Berry, Gabriel Culbertson, Annie Franco, Liye Fu, Jack
Hessel, Steve Jackson, Alex Leavitt, Hajin Lim, Diana MacLean, Minsu Park and the anonymous
reviewers for their extremely helpful comments. This work is supported in part by NSF CAREER
award IIS-1750615 and NSF Grant SES-1741441.

REFERENCES
[1] Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and Yirong Xu. 2003. Mining newsgroups using networks

arising from social behavior. In WWW.
[2] Donald Allen and Rebecca F. Guy. 2011. Conversation Analysis: The Sociology of Talk. Walter de Gruyter.
[3] Monica Anderson and Andrea Caumont. 2014. How social media is reshaping news. http://pewrsr.ch/1tZ2Rsu. (2014).
[4] Pablo Aragón, Vicenç Gómez, David García, and Andreas Kaltenbrunner. 2017. Generative models of online discussion

threads: State of the art and research challenges. J. Internet Services & Applications (2017).
[5] Pablo Aragón, Vicenç Gómez, and Andreas Kaltenbrunner. 2017. Detecting Platform Effects in Online Discussions.

Policy & Internet (2017).
[6] Pablo Aragón, Vicenç Gómez, and Andreas Kaltenbrunner. 2017. To Thread or Not to Thread: The Impact of Conversa-

tion Threading on Online Discussion. In ICWSM.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 198. Publication date: November 2018.

http://pewrsr.ch/1tZ2Rsu


198:22 J. Zhang et al.

[7] Sinan Aral and Dylan Walker. 2011. Creating social contagion through viral product design: A randomized trial of
peer influence in networks. Management science (2011).

[8] Yoav Artzi, Patrick Pantel, and Michael Gamon. 2012. Predicting responses to microblog posts. In NAACL.
[9] Lars Backstrom, Jon Kleinberg, Lillian Lee, and Cristian Danescu-Niculescu-Mizil. 2013. Characterizing and curating

conversation threads: Expansion, focus, volume, re-entry. In WSDM.
[10] Eytan Bakshy, Solomon Messing, and Lada Adamic. 2015. Exposure to ideologically diverse news and opinion on

Facebook. Science (2015).
[11] Robert F. Bales. 1950. A Set of Categories for the Analysis of Small Group Interaction. American Sociological Review

(1950).
[12] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organization of complex networks. Science

(2016).
[13] George Berry and Sean Taylor. 2017. Discussion quality diffuses in the digital public square. In WWW.
[14] Eshwar Chandrasekharan, Umashanthi Pavalanathan, Anirudh Srinivasan, Adam Glynn, Jacob Eisenstein, and Eric

Gilbert. 2017. You Can’t Stay Here: The Efficacy of Reddit’s 2015 Ban Examined Through Hate Speech. In CSCW.
[15] Hao Cheng, Hao Fang, and Mari Ostendorf. 2017. A Factored Neural Network Model for Characterizing Online

Discussions in Vector Space. In EMNLP.
[16] Justin Cheng, Michael Bernstein, Cristian Danescu-Niculescu-Mizil, and Jure Leskovec. 2017. Anyone can become a

troll: Causes of trolling behavior in online discussions. In CSCW.
[17] Justin Cranshaw and Aniket Kittur. 2011. The Polymath Project: Lessons from a successful online collaboration in

mathematics. In CHI.
[18] Onkar Dalal, Srinivasan H Sengemedu, and Subhajit Sanyal. 2012. Multi-objective ranking of comments on web. In

WWW.
[19] Cristian Danescu-Niculescu-Mizil, Michael Gamon, and Susan Dumais. 2011. Mark my words! Linguistic style

accommodation in social media.. In WWW.
[20] Munmun De Choudhury and Emre Kıcıman. 2017. The language of social support in social media and its effect on

suicidal ideation risk. In ICWSM.
[21] Nicholas Diakopoulos and Mor Naaman. 2011. Towards quality discourse in online news comments. In CSCW.
[22] Dominic DiFranzo and Kristine Gloria-Garcia. 2017. Filter bubbles and fake news. ACM Crossroads (2017).
[23] Facebook. 2016. Facebook Data Use Policy. https://www.facebook.com/full_data_use_policy. (2016).
[24] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael Mathioudakis. 2016. Quantifying

controversy in social media. In WSDM.
[25] Eric Gilbert and Karrie Karahalios. 2009. Predicting tie strength with social media. In CHI.
[26] Nabeel Gillani, Ann Yuan, Martin Saveski, Soroush Vosoughi, and Deb Roy. 2018. Me, My Echo Chamber, and I:

Introspection on Social Media Polarization. WWW.
[27] Erving Goffman. 1981. Forms of talk. University of Pennsylvania Press.
[28] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. 2008. Statistical analysis of the social network and

discussion threads in Slashdot. In WWW.
[29] Sandra Gonzalez-Bailon, Andreas Kaltenbrunner, and Rafael E Banchs. 2010. The structure of political discussion

networks: A model for the analysis of online deliberation. J. Info. Tech. (2010).
[30] Marco Guerini, Carlo Strapparava, and Gözde Özbal. 2011. Exploring Text Virality in Social Networks.. In ICWSM.
[31] Aaron Halfaker, Bryan Song, D. Alex Stuart, Aniket Kittur, and John Riedl. 2011. NICE: Social Translucence Through

UI Intervention. In GroupLens.
[32] Kyle Heatherly, Yanqin Lu, and Jae Lee. 2017. Filtering out the other side? Cross-cutting and like-minded discussions

on social networking sites. New Media & Society (2017).
[33] Yiqing Hua, Cristian Danescu-Niculescu-Mizil, Dario Taraborelli, Nithum Thain, Jeffery Sorensen, and Lucas Dixon.

2018. WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community. In
EMNLP.

[34] Aniket Kittur, Bongwon Suh, Bryan A Pendleton, and Ed H Chi. 2007. He says, she says: Conflict and coordination in
Wikipedia. In CHI.

[35] Funda Kivran-Swaine, Priya Govindan, and Mor Naaman. 2011. The impact of network structure on breaking ties in
online social networks: Unfollowing on Twitter. In CHI.

[36] Kevin Koban, Jan-Philipp Stein, Valentin Eckhardt, and Peter Ohler. 2018. Quid pro quo in Web 2.0. Computers in
Human Behavior (2018).

[37] Robert Kraut and Paul Resnick. 2012. Building successful online communities: Evidence-based social design. MIT Press.
[38] Travis Kriplean, Michael Toomim, Jonathan Morgan, Alan Borning, and Andrew Ko. 2012. Is this what you meant?:

Promoting listening on the web with reflect. In CHI.
[39] Ravi Kumar, Mohammad Mahdian, and Mary McGlohon. 2010. Dynamics of conversations. In KDD.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 198. Publication date: November 2018.

https://www.facebook.com/full_data_use_policy


Characterizing Online Public Discussions through Pa�erns of Participant Interactions 198:23

[40] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Community Interaction and Conflict on the
Web. InWWW.

[41] David Laniado, Riccardo Tasso, Yana Volkovich, and Andreas Kaltenbrunner. 2011. When the Wikipedians talk:
Network and tree structure of Wikipedia discussion pages.. In ICWSM.

[42] Kristina Lerman and Tad Hogg. 2014. Leveraging position bias to improve peer recommendation. PloS one (2014).
[43] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks in social media. In CHI.
[44] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time: Densification laws, shrinking diameters

and possible explanations. In KDD.
[45] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of massive datasets. Cambridge University

Press.
[46] Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and Aisling Kelliher. 2009. Metafac: Community

discovery via relational hypergraph factorization. In KDD.
[47] Michel Marcoccia. 2004. On-line polylogues: Conversation structure and participation framework in internet news-

groups. Journal of pragmatics (2004).
[48] Lev Muchnik, Sinan Aral, and Sean J Taylor. 2013. Social influence bias: A randomized experiment. Science (2013).
[49] Vlad Niculae and Cristian Danescu-Niculescu-Mizil. 2016. Conversational Markers of Constructive Discussions. In

NAACL.
[50] Ryosuke Nishi, Taro Takaguchi, Keigo Oka, Takanori Maehara, Masashi Toyoda, Kenichi Kawarabayashi, and Naoki

Masuda. 2016. Reply trees in Twitter: Data analysis and branching process models. Soc. Net. An. & Mining (2016).
[51] Aditya Pal and Scott Counts. 2011. Identifying topical authorities in microblogs. In WSDM.
[52] F. Pedregosa et al. 2011. scikit-learn: ML in Python. JMLR (2011).
[53] Yuqing Ren, Robert Kraut, and Sara Kiesler. 2007. Applying common identity and bond theory to design of online

communities. Org. Studies (2007).
[54] Paul Resnick, R Kelly Garrett, Travis Kriplean, Sean A Munson, and Natalie Jomini Stroud. 2013. Bursting your (filter)

bubble: Strategies for promoting diverse exposure. In CSCW.
[55] Lauren Rhue and Arun Sundararajan. 2014. Digital access, political networks and the diffusion of democracy. Soc.

Networks (2014).
[56] Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Unsupervised modeling of Twitter conversations. In NAACL.
[57] Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson. 1974. A Simplest Systematics for the Organization of

Turn-Taking for Conversation. Language (1974).
[58] Mattia Samory, Vincenzo-Maria Cappelleri, and Enoch Peserico. 2017. Quotes Reveal Community Structure and

Interaction Dynamics. In CSCW.
[59] Mattia Samory and Enoch Peserico. 2016. Content attribution ignoring content. In WebSci.
[60] Reijo Savolainen. 2011. Asking and sharing information in the blogosphere: The case of slimming blogs. Library &

Information Science Research (2011).
[61] Emanuel Schegloff and Harvey Sacks. 1973. Opening up Closings. Semiotica (1973).
[62] Emanuel A. Schegloff, Gail Jefferson, and Harvey Sacks. 1977. The Preference for Self-Correction in the Organization

of Repair in Conversation. Language (1977).
[63] Jodi Schneider, John G Breslin, and Alexandre Passant. 2010. A content analysis: How Wikipedia talk pages are used.

In WebSci.
[64] Jack Sidnell. 2011. Conversation Analysis: An Introduction. John Wiley & Sons.
[65] Stefan Siersdorfer, Sergiu Chelaru, Wolfgang Nejdl, and Jose San Pedro. 2010. How useful are your comments?:

Analyzing and predicting YouTube comments and comment ratings. In WWW.
[66] Kaveri Subrahmanyam, Patricia M Greenfield, and Brendesha Tynes. 2004. Constructing sexuality and identity in an

online teen chat room. Journal of applied developmental psychology (2004).
[67] Chenhao Tan, Lillian Lee, and Bo Pang. 2014. The effect of wording on message propagation. In ACL.
[68] Seng-Chee Tan and Aik-Ling Tan. 2006. Conversational analysis as an analytical tool for face-to-face and online

conversations. Educational Media International (2006).
[69] Manos Tsagkias, Wouter Weerkamp, and Maarten De Rijke. 2009. Predicting the volume of comments on online news

stories. In CIKM.
[70] Michail Tsikerdekis. 2013. The effects of perceived anonymity and anonymity states on conformity and groupthink in

online communities: A Wikipedia study. J. Assoc. Info. Sci. & Tech. (2013).
[71] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. JMLR (2008).
[72] Chunyan Wang, Mao Ye, and Bernardo Huberman. 2012. From user comments to on-line conversations. In KDD.
[73] Howard T Welser, Dan Cosley, Gueorgi Kossinets, Austin Lin, Fedor Dokshin, Geri Gay, and Marc Smith. 2011. Finding

social roles in Wikipedia. In iConf.

Proceedings of the ACM on Human-Computer Interaction, Vol. 2, No. CSCW, Article 198. Publication date: November 2018.



198:24 J. Zhang et al.

[74] Robert West, Hristo Paskov, Jure Leskovec, and Christopher Potts. 2014. Exploiting social network structure for
person-to-person sentiment analysis. TACL (2014).

[75] Scott Wright and John Street. 2007. Democracy, deliberation and design: The case of online discussion forums. New
Media & Society (2007).

[76] Tai-Yee Wu and David Atkin. 2017. Online news discussions: Exploring the role of user personality and motivations
for posting comments on news. Journalism & Mass Communication Quarterly (2017).

[77] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex Machina: Personal attacks seen at scale. In WWW.
[78] Amy Zhang, Bryan Culbertson, and Praveen Paritosh. 2017. Characterizing online discussion using coarse discourse

sequences. In ICWSM.
[79] Justine Zhang, Jonathan P Chang, Cristian Danescu-Niculescu-Mizil, Lucas Dixon, Yiqing Hua, Nithum Thain, and

Dario Taraborelli. 2018. Conversations Gone Awry: Detecting Early Signs of Conversational Failure. In ACL.

APPENDIX
A SUMMARY STATISTICS OF THE HYPERGRAPH REPRESENTATION
Table 4 lists the set of statistics we compute on the degree distributions and edge type distributions
of our hypergraph representation of discussion threads, corresponding to characterizations of
interactional patterns which can occur within the thread.

Degree distribution statistics
max
argmax (index of the max value; for hypernodes we take the index of the corresponding actor’s arrival in the
thread)
normalized max value (max divided by the sum of all values)
second largest value
second argmax
normalized second largest value
mean
mean over nonzero values
proportion of nonzero values
proportion multiple (proportion of values 1, over nonzero values)
entropy
2nd-largest largest value
Edge distribution statistics
proportion of hyperedges with a reply-edge
proportion with a reaction-edge
reactions replies (ratio of reaction- to reply-edges)
proportion with a reply- and a reaction-edge
proportion with a reaction-edge, given a reply-edge (proportion of hyperedges with reply-edges which also
have a reaction-edge)
proportion with a reply-edge, given a reaction edge

Table 4. Summary statistics of degree/edge distributions in discussion hypergraphs, used to derive features.

B PERFORMANCE OF MODEL SUBPARTS
In order to examine the role of different aspects of discussion structure in characterizing discussions,
we compare the performance of the full set of hypergraph-derived features to the performance of
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Feature set Blocks Blocked Comment-
growth

Commenter-
growth

All features (454) 63.2 64.6 59.3 70.0
Degree distributions (384) 63.1 64.3 58.5 69.9
Indegree distributions (192) 62.0 63.6 58.1 68.6
Outdegree distributions (192) 62.7 64.6 57.0 69.6
Edge-type distributions (20) 59.7 62.8 55.3 66.4
Motif distributions (50) 61.6 63.5 56.9 67.7
node node edges (48) 59.4 59.5 54.9 65.2
hypernode hypernode hyperedges (164) 63.0 64.1 57.9 69.3
Reaction-edges only (96) 60.6 63.8 56.6 67.2
Reply-edges only (96) 62.0 62.1 55.8 65.6
Mid-thread edges only (227) 62.2 63.6 58.2 69.0

Table 5. 50-fold cross-validation accuracies for each prediction task and hypergraph feature subset considered.
The numbers of features in each subset are listed in parentheses. For each task, the full feature set achieves
a higher accuracy than the subsets; in most cases this difference is significant (Wilcoxon test, pairing on
per-fold accuracy, at the p 0 05 level). Accuracies for feature subsets which the full feature set does not
significantly outperform are bolded.

subsets of these features on each of the prediction tasks considered in §5. We manually selected
these subsets to reflect interpretable subcomponents of the hypergraph framework. In particular,
we divided the feature set into features derived from each of the high-level classes of distributions
described in §3.2: degree distributions, edge type distributions and motif distributions. Additionally,
for each attribute listed in Table 2, we considered features derived from examining distributions over
subgraphs parameterized by different values the attribute could take (e.g., all features pertaining to
just replies or just reactions).
For each feature set and each prediction task, we use the classifiers, hyperparameter choices,

and training data described in §5 (Classification protocol). We report 50-fold cross-validation
accuracies; as before, we ensure that no Page spans multiple folds.

Table 5 shows the performance of each feature subset. The full model significantly outperforms
each subpart considered for almost all tasks and feature sets (p 0 05, Wilcoxon test pairing on
per-fold accuracies), with the exception of the degree distribution subset in the blocks task and
the outdegree distribution subset in the blocked task. This suggests that in general, different
subcomponents add complementary information in signaling a discussion’s trajectory. For instance,
the full feature set significantly outperforms features which account for only reaction-edges or
only reply-edges, highlighting the necessity of accounting for both types of actions represented
by these edges. Interestingly, the reaction-edge feature set outperforms the reply-edge feature set
in the blocked task and underperforms reply-edges in the other tasks (p 0 001 in each case),
suggesting that different aspects of discussion trajectory are informed by different interactional
patterns. We additionally note that features capturing degree distributions exhibit the strongest
performance over all feature sets considered, perhaps by virtue of the larger number of features.

C INTERPRETATION OF LATENT DIMENSIONS
Table 6 provides interpretations of each of the seven latent dimensions derived from embedding

discussion threads, as described in §6, along with representative hypergraph features which were
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Focused versus expansionary (Fig. 5a)
Red: many less-active participants (e.g., low MEAN[INDEGREE over MID-THREAD RESPONSES]), concentrating responses on a
single comment (e.g., high NORM._MAX[INDEGREE over c c REPLIES]), likely the initial one (e.g., low %_NONZERO[INDEGREE

over c c REPLIES])
Blue: focused contributions from a small number of active participants (e.g., high MEAN[INDEGREE over MID-THREAD

RESPONSES]) replying to a large proportion of preceding comments (e.g., high %_NONZERO[INDEGREE over c c MID-THREAD

REPLIES])
Interconnectivity (Fig. 5b)
Red: many actors engaging with multiple other participants (e.g., high %_HAS_SUBSEQUENT_RESPONSE[EXTERNAL RECIPROCITY

MOTIF] and %_MULTIPLE[INDEGREE over C C MID-THREAD RESPONSES]), suggesting highly interactive discussions
Blue: most actors engage with very few other participants (e.g., low %_MULTIPLE[INDEGREE over C C MID-THREAD

RESPONSES] and high NORM._MAX[OUTDEGREE over MID-THREAD RESPONSES]))
Correctional vs. cooperative (Fig. 5c)
Red: later-arriving participants tend to receive more reactions than the initiator (e.g., high ARGMAX[INDEGREE over C

C REACTIONS]), and also contribute more responses (e.g., high ARGMAX[OUTDEGREE over C c RESPONSES]), suggesting an
active later entrant who receives more attention than the initiator
Blue: actors have highly reciprocal dyadic relationships where both reactions and replies are exchanged (e.g., high
%_HAS_SUBSEQUENT_REACTION[RECIPROCITY MOTIF]) suggesting an actively supportive dynamic between agreeing actors
Balance in receiving responses (Fig. 5d)
Red: multiple actors receive comparable volumes of responses (e.g., high 2ND-LARGEST_ _LARGEST[INDEGREE over C C

MID-THREAD RESPONSES]), suggesting balanced, multi-sided discussions
Blue: one participant is the target of the bulk of the discussion actions (e.g., high NORM._MAX[INDEGREE over C c

MID-THREAD RESPONSES]), and in particular tends to receive active replies from multiple other participants (e.g., high
%_BOTH_EDGES_REPLIES[INCOMING TRIAD MOTIF over MID-THREAD]), suggesting imbalanced one-sided discussions
Passive vs. active responses (Fig. 5e)
Red: actors receive few replies (e.g., low MEAN[INDEGREE over C C REPLIES]); replies are often received with reactions
only (e.g., high )[EXTERNAL RECIPROCITY MOTIF over SUBSEQUENT_REACTION_ _REPLY], suggesting a preference for passive
responses
Blue: actors receive many replies (e.g., high MEAN[INDEGREE over C C REPLIES]), and frequently reply to multiple other
participants (e.g., high %_BOTH_EDGES_REPLIES[OUTGOING TRIAD MOTIF]), suggesting a more active response dynamic
Reactor involvement (Fig. 5f)
Red: actors react to few other participants (e.g., low %_MULTIPLE[OUTDEGREE over C C REACTIONS]), with most reactions
concentrated at a single actor (e.g., high NORM._MAX[INDEGREE over C C REACTIONS])
Blue: actors react to many other participants (e.g., high %_MULTIPLE[OUTDEGREE over C C REACTIONS]); the share of
reactions received by actors is balanced across discussion participants (e.g., high ENTROPY[INDEGREE over C C REACTIONS])
Balance in contributing replies (Fig. 5g)
Red: a few actors contribute the bulk of the replies in the discussion (e.g., high NORM._MAX[OUTDEGREE over C c

MID-THREAD REPLIES] and low ENTROPY[OUTDEGREE over C c MID-THREAD REPLIES])
Blue: multiple actors contribute comparable volumes of replies (e.g., high 2ND-LARGEST_ _LARGEST[OUTDEGREE over C c

MID-THREAD REPLIES] and ENTROPY[OUTDEGREE over C c MID-THREAD REPLIES]), suggesting a more balanced level of activity
Table 6. Interpretations of each of the seven latent dimensions induced from embedding hypergraph-derived
features of discussion threads using the procedure described in §3.3, along with author-selected examples of
salient features for each dimension.

manually selected by the authors. For each dimension, we also provide t-SNE visualizations of the
latent Page embeddings with the highest- and lowest-scoring Pages highlighted and points colored
according to their score in that dimension, in Figure 5.
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