Work-In-Progress: Enhanced Energy-Aware Standby-Sparing
Techniques for Fixed-Priority Hard Real-Time Systems

Linwei Niu and Jonathan Musselwhite
Department of Math and Computer Science
West Virginia State University
{Iniu, jmus} @wvstateu.edu

Abstract—For real-time computing systems, energy efficiency
and reliability are two primary design concerns. In this research
work, we study the problem of enhanced energy-aware standby-
sparing for fixed-priority (FP) hard real-time systems under
reliability requirement. The standby-sparing system adopts a
primary processor and a spare processor to provide fault tol-
erance for both permanent and transient faults. In order to
keep the energy consumption for such kind of systems under
control, we explore enhanced fixed-priority scheduling schemes to
minimize the overlapped concurrent executions of the workloads
on the primary processor and on the spare processor, enabling
energy savings. Moreover, efficient online scheduling techniques
are under development to boost the energy savings during run-
time while preserving the system reliability.

I. INTRODUCTION

Energy conservation has come to be recognized as a critical
design issue for pervasive real-time embedded systems. With
the aggressive scaling of transistor size in CMOS circuits,
more and more transistors are integrated into a single die
and the power consumption of IC chips has been increas-
ing dramatically. Power aware scheduling has proven to be
an effectively way to reduce the power consumption. For
the past two decades, extensive researches on power aware
scheduling techniques (e.g. [1], [2]) have been reported on
energy minimization for embedded real-time systems. In the
mean time, reliability has also been a major concern in the
design of fault tolerant computing systems as system fault(s)
could occur anytime during the execution cycle of real-time
jobs [2]. Generally, computing system faults can be classified
into permanent faults and transient faults [3]. Permanent faults
could be caused by hardware failure or permanent damage in
processing unit(s) whereas transient faults are mainly caused
by temporary factors such as electromagnetic interference and
cosmic ray radiations.

In recently years plenty of works (e.g. [4]) have been
reported in energy conservation for fault-tolerant real-time
systems. Many of them are focused on dealing with transient
faults. A widely adopted strategy is to reserve a recovery job,
whenever possible, for the job subject to transient fault(s). If
a job is found to have failed, its recovery job, if any, will be
invoked for execution to compensate the failed job.

In more recent years the standby-sparing technique has
gained much attention in research community for its capability
of tolerating both permanent and transient faults. The standby-
sparing makes use of the hardware redundancy in multi-

Wei Li
Department of Computer and Electrical
Engineering and Computer Science
California State University Bakersfield
wli@csub.edu

core/multiprocessor systems. Specifically, a standby-sparing
system consists of two processors, a primary one and a spare
one, executing in parallel. For each real-time job executed on
the primary processor, there is a corresponding backup job
reserved for it on the spare processor [5]. As such, whenever a
permanent fault occurs to the primary or the spare processor,
either of them, the other one can still continue to execute
without causing system failure. Moreover, it is not hard to
see that the backup jobs on the spare processor can also help
tolerate transient faults (which occurs more frequently than
permanent faults [6]) for their corresponding main jobs on the
primary processor.

Since in a standby-sparing system, both the primary proces-
sor and the spare processor need to be executed in parallel,
its total energy consumption could be quite considerable.
Regarding that, some research works have been reported in
literature to reduce energy consumption (e.g. [7], [8], [5]).
The main idea is to try to let the workloads of the main jobs
on the primary processor and their corresponding backup jobs
on the spare processor be shifted away as much as possible,
for example, having the main jobs on the primary processor
executed as soon as possible while having the backup jobs on
the spare processor executed as late as possible. Once the main
jobs are completed successfully, their corresponding backup
jobs could be canceled early, enabling energy saving on the
spare processor. Note that the delayed execution of the jobs
on the spare processor should not cause any deadline missing.
In [8], Haque et. al employed Earliest-Deadline-First (EDF)
and Earliest-Deadline-Late (EDL) schemes for jobs executed
on the primary and spare processors, respectively, allowing
delayed execution for the backup jobs on the spare processor,
therefore saving energy. Although EDF and EDL schemes can
support systems with higher utilization than fixed-priority (FP)
scheme, they are difficult to implement in commercial kernels
which do not provide explicit support for timing constraints,
such as periods and deadlines [9]. Moreover, when the system
is overloaded, EDF and EDL can produce unbounded and
unpredictable deadline missings whereas FP has better stability
in such cases because it is always known in advance which
task will miss its deadline. Due to its high predicability, low
overhead, and ease of implementation, FP scheme has been
widely adopted. Mohammad [5] et. al proposed a standby-
sparing technique for FP real-time systems based on dual
priority scheme. In this approach, the workloads for all jobs



on the spare processor are procrastinated with a fixed length of
time interval called “promotion time”. Although this approach
can help delay the backup jobs on the spare processor to
some extent, its energy efficiency could be limited by the
“promotion time” calculated based on the worst case response
time. In this work, we will explore the enhanced standby-
sparing techniques under fixed priority assignment to achieve
better energy efficiency.

II. PRELIMINARIES
A. System models

The hard real-time system considered in this paper contains
n independent periodic tasks, T = {t,7,-,T,}, scheduled
according to the fixed-priority (FP) scheduling algorithm. Each
task contains an infinite sequence of periodically arriving
instances called jobs. Task 7; is characterized with a three-
tuple (P;, D;, C;), denoting its period, relative deadline, and
the worst case execution time (WCET), respectively.

Each task 1; has a corresponding backup task T;- with the
same timing parameters as T;.

The system architecture consists of a dual processor
standby-sparing system, with one be the primary and the other
one be the spare [7]. Different from most of the existing works
in which all tasks in 7 are executed on the primary processor
and all backup tasks are executed on the spare processor, in
this work, any task T; in 7 and its backup task ‘c;, either one
of them, can be executed on the primary processor or the
spare one so long as they are not on the same processor. For
convenience, we call the original copy of the task(s)/job(s)
main task(s)/job(s).

Both the primary processor and the spare processor can
be put into low power state when there is no pending job
execution and be waken up later when idle time expired.
We denote the primary/spare processor power with P, when
running a task, and Py, when it is idle (yet still on). When
the processor is sleeping, its power consumption is denoted as
P, sleep-

B. Fault Model

Similar to the standby-sparing systems in [8], [5], the system
we considered can tolerate both permanent and transient faults.
Note that we only take the permanent fault of the processor
into consideration and don’t consider the permanent fault of
other components in the system. With the redundancy of
the processing units, our system can tolerate at most one
permanent fault on the primary or on the spare processor. For
transient faults, since they are more frequent than permanent
faults [6] and can occur anytime during the task execution,
each job is subject to transient fault(s). We assume that
transient fault(s) can be detected at the end of a job’s execution
using sanity (or consistency) checks [10] and the overhead
for detection can be integrated into the job’s execution time.
Transient faults are addressed through backup jobs on the other
processor. Specifically, Transient faults are compensated by
executing the backup jobs in the same time frame as their
corresponding main jobs. Whenever the main job is completed

4 5 10
TZ
] 7 10
(a)
i |
T
1 5 10
T, Y, — r—
0 3 8 10
(b)
T'l —'21= |
1 5 10
~ —
7',
0 7 10
(c)

Fig. 1. (a) The schedule for the main tasks {t; = (10,5,4); 12 = (10,10,3)}
on the primary processor under the deadline monotonic scheduling (DMS)
scheme; (b) The schedule for the backup tasks on the spare processor with
promotion time Y; and Y, calculated based on equation (1); (c) The schedule
for the backup tasks on the spare processor with optimal procrastination time
Zl =1 and Zz =17.

successfully, the remaining part of its backup job will be
canceled immediately. Otherwise if a fault is detected at the
end of a main job’s execution, its backup job will have to be
executed until it is finished.

Similar to [2], in this work, we assumed that transient faults
follow Poisson distribution and adopted the same exponential
fault rate model proposed in [2]. However, the application of
our work is not limited to the exponential fault rate model.
One should be able to adopt any valid reliability model
with appropriate reliability requirements in the approaches
proposed in this paper.

III. MOTIVATIONS

Our goal is to reduce energy consumption for standby-
sparing systems. From the above system models, it is not hard
to see that, due to the overlapped concurrent executions of the
main job(s) and their corresponding backup job(s) (to provide
system reliability), the most efficient way to save energy is
to let the workloads of the main job(s) on one processor and
the backup jobs on the other processor be shifted away as
much as possible. To achieve this goal, in [5] Mohammad et.
al proposed to run the main tasks on the primary processor
according to regular FP scheme and the backup tasks on the
spare processor according to dual priority scheme. Their
approach is based on the concept of “promotion time” (denoted
as Y;), calculated as followed:

Y,=Di—Ri (1)



T,
T,
T
T,
0 2 8 10
(b)
Fig. 2. () The schedule for the main tasks {t; = (5,5,2); T2 = (10,10,4)}

on the primary processor under the deadline monotonic scheduling (DMS)
scheme; (b) The backup tasks 7'; and T, on the spare processor with
procrastination times (Y} = 3 and Y, = 2) calculated based on equation (1)
cannot be delayed further.

where R; is the worst case response time of task T;.

By applying dual priority, each backup job from backup
task ’C;- on the spare processor could be procrastinated by
Y; time units. Although this approach can help reduce the
overlapped execution between the main job and its backup job
to some extent, the procrastination time Y; calculated above is
not necessarily optimal. Actually it is only a lower bound of
the allowable procrastination time for all jobs of backup task
’c;. This could be illustrated in the following example.

Consider a task set of two tasks, ie., T = (10,5,4), T, =
(10,10,3), to be executed in a standby-sparing system under
deadline monotonic scheduling (DMS) scheme, which is the
optimal scheme for FP scheduling policy. The schedule for the
main tasks on the primary processor is shown in Figure 1(a).
Meanwhile, from equation (1), the promotion times Y; and Y»
for tasks T; and 7T, are calculated as 1 and 3, respectively.
Based on them the delayed executions of the backup tasks on
the spare processor are shown in Figure 1(b). It is not hard to
see that, in this case, the executions of task T, in Figure 1(a)
and backup task 1/2 in Figure 1(b) have 2 time units overlapped.

However, a different schedule in Figure 1(c) with the
procrastination times for backup tasks 1'; and 1, be re-
calculated as Z; = 1 and Z, = 7, respectively, could reach
an overlapped execution of 0 time units between T, on the
primary processor (Figure 1(a)) and its backup le on the
spare processor (Figure 1(c)), therefore achieving better energy
efficiency.

From the above example we can see that the procrastination
of backup jobs based on the promotion time computed with
equation (1) is not necessarily most efficient in terms of
delaying the job execution(s) and it is possible to procrastinate
the backup job(s) further to enable better energy savings.

Moreover, even when the backup job(s) cannot be delayed
further, there could still be opportunity to re-organize the
allocations of the main tasks and the backup tasks on the
primary/spare processors to enhance energy savings. We will
illustrate that with another example.

Consider a different task set of two tasks, ie, T4 =

! 2 5 10
P R —"
0 4 7 10

(a)

T

T, |
0 3 6 10

(b)

Fig. 3. (a) The schedule for the main tasks t; and backup task 1/2 on the
primary processor, with procrastination time for 1/2 extended to Z = 4; (b)
The schedule for the backup tasks on the spare processor with procrastination
time for ‘c/l calculated as Z; = 3.

(5,5,2), 12 =(10,10,4), to be executed in a standby-sparing
system. The schedule for the main tasks on the primary proces-
sor is shown in Figure 2(a). From equation (1), the promotion
times for tasks T; and T, are calculated as Y1 =3 and Y» =2,
respectively. Based on them, as shown in Figure 2(b), ¥; and
Y, are already the maximal times that backup tasks 17/1 and
1/2 can be delayed to and it is not possible to delay them
further. As a result, the executions of task T, on the primary
processor and le on the spare processor will have 4 time units
overlapped. Since in this case the overlapped execution time
of T and 17/1 is 0, the total overlapped executions of the tasks
on the primary/spare processors are 4 time units.

However, if we re-allocate the main tasks and the backup
tasks on the primary and spare processors in a different way,
as in Figure 3, it is possible to reduce the overlapped execution
time between the main task(s) and the backup task(s) further.
As shown in Figure 3(a) and (b), this time we let T; and 1/2
be allocated on the primary processor while letting ’cl1 and T,
be allocated on the spare processor. With such new allocation,
T, can be delayed by 3 time units (Z; in Figure 3(b)) while
T, can be delayed by 4 time units (Z, in Figure 3(a)). It is
not hard to see that, under such new configuration, all tasks
are feasible and the overlapped execution time of task T, and
’c’z is reduced to 1 time unit (while the overlapped execution
time of T; and 1:/1 is still 0). As a result the total overlapped
execution time of the tasks on the primary/spare processors
are reduced to 1 time unit, much less than that in Figure 2.

IV. WORK IN PROGRESS

As shown in the above example in Figure 1, the procrasti-
nation time for the backup jobs computed based on equation
(1) is not necessarily optimal. Actually the promotion time Y;
based on equation (1) is a lower bound for the allowable pro-
crastination time for all jobs of backup task 7:;-. In this research
we explored new ways to find the maximal procrastination
time for each backup job to enable better energy savings.

As also shown in the example in Figure 2 and Figure 3,
when the main tasks and backup tasks are allocated on both



processors in a hybrid way, there are opportunities to delay
the backup jobs further to boost energy savings. In this regard
we are also exploring ways to enhance the calculation of
the procrastination time of the backup jobs under hybrid
allocation of the main/backup tasks on both processors, thus
to achieve better energy efficiency. Moreover, efficient online
scheduling techniques are under development to improve the
energy performance of standby-sparing systems further during
run-time.

V. PRELIMINARY RESULTS

In this part, we provide some preliminary results to demon-
strate the energy saving potential of our newly proposed ap-
proach for standby-sparing systems. Specifically, we compared
the performance of the newly proposed approach with two
other existing approaches in literature using simulation. The
approaches compared are as followed:

o SSNEM The task sets are executed in an standby-sparing
system without energy management. We use its results as
the reference results;

e SSFP The approach in [5], which adopts dual priority
scheme to delay the backup jobs in the spare processor;

o« EFPSS our proposed enhanced fixed priority scheduling
scheme for standby-sparing systems (section IV).

The periodic task set in our experiments consisted of no
more than five tasks. Each task set was randomly generated
with the periods randomly chosen in the range of [10, 50]ms.
We assumed that the deadlines for the tasks were less than or
equal to their periods. The worst case execution time (WCET)
was set to be uniformly distributed from 1 to the deadline.
To investigate energy performance of the different approaches
under different workload, we divided the total utilization, i.e.,
Xi%, into intervals of length 0.1. To reduce the statistical
errors, we required that each interval contain at least 20 task
sets schedulable under deadline monotonic scheme (DMS), or
until at least 5000 task sets had been generated within each
interval.

For the processor model we adopted a high-end dual-core
processor model, i.e., the Intel Core2 Duo E6850 Proces-
sor [11]. According to [11], the Intel Core2 Duo E6850
Processor can operate at a maximal speed of 3.006 GHz with
power consumption 54.236 Watts .

For the fault model we adopted the same transient fault
model as in [2], i.e., the transient faults are assumed to follow
the Poisson distribution with an average fault rate of 107° at
the maximum speed. Meanwhile, we assume that at most one
permanent fault could ever occur during the system running.

The energy performance of the different approaches (nor-
malized to that by SSNEM) are shown in Figure 4. From
Figure 4, we can see that the newly proposed approach, i.e.,
EFPSS can have better energy performance than the previous
approaches. This is because, by delaying each backup job
based on our newly calculated procrastination time, EF PSS
can reduce the overlapped executions between the main job(s)
and their corresponding backup job(s) more effectively. Once
the main job(s) are completed successfully, their backup

O SSNEM B SSFP W EFPSS

100

80 1

60 T

40 H

20

Normalized Energy Consumption

0.0- 0.1- 0.2- 0.3- 0.4- 0.5- 0.6-
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Untilization

Fig. 4. Comparison of energy consumptions of the different approaches.

job(s) can be canceled earlier in time, thus reducing the
redundant energy cost for executing the remaining part of
the backup jobs. Moreover, with the proposed hybrid main-
task(s)/backup-task(s) re-allocation strategy, the energy perfor-
mance of EF PSS could be boosted more efficiently because, in
this context, the backup task(s) could be delayed more effec-
tively, reducing more time of overlapped executions between
the main tasks and the backup tasks. From Figure 4, compared
with SSFP, the maximal energy reduction by EFPSS can be

around 18%.
ACKNOWLEDGE*

This work is supported in part by NSF under project HRD-
1800403.

REFERENCES

[1] L. Niu and D. Zhu, “Reliability-aware scheduling for reducing system-
wide energy consumption for weakly hard real-time systems,” Journal
of Systems Architecture, vol. 78, pp. 30 — 54, 2017.

[2] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in Proceedings of the
2004 IEEE/ACM International conference on Computer-aided design,
ser. ICCAD ’04, 2004, pp. 35-40.

[31 B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu, “Ramp: A model
for reliability aware microprocessor design,” IBM Research Report,
RC23048, 2003.

[4] D. Zhu, “Reliability-aware dynamic energy management in depend-
able embedded real-time systems,” ACM Trans. Embed. Comput. Syst.,
vol. 10, pp. 26:1-26:27, January 2011.

[5] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing for
fixed-priority real-time task sets,” Sustainable Computing: Informatics
and Systems, vol. 6, pp. 81 — 93, 2015.

[6] X. Castillo, S. R. McConnel, and D. P. Siewiorek, “Derivation and
calibration of a transient error reliability model,” IEEE Trans. Comput.,
vol. 31, pp. 658-671, July 1982.

[7]1 A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-sparing
for hard real-time systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, no. 3, pp. 329-342,
March 2012.

[8] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
technique for periodic real-time applications,” in 2011 [EEE 29th
International Conference on Computer Design (ICCD), Oct 2011, pp.
190-197.

[9]1 G. Buttazzo, “Rate monotonic vs. edf: Judgement day,” Real-Time

Systems, vol. 29, no. 1, pp. 5-26, 2005.

D. K. Pradhan, Ed., Fault-tolerant Computing: Theory and Techniques;

Vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang,

“Accurate modeling of the delay and energy overhead of dynamic

voltage and frequency scaling in modern microprocessors,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 32, no. 5, pp. 695-708, May 2013.

[10]

[11]



