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1. Introduction

In a recent paper, Weissman (2017) derives a precise formula for the probability density function of the sum of squares,
Sn. of n independent and identically distributed standard uniform random variables. Indeed, he proposes to study the
random variable S,(k) = Z’l’ Ul.", remarking that S,(1) has the well-known Irwin-Hall density. Weissman's paper thus
discusses S,(2). A special phenomenon noted in that paper is the fact that the density of S3(2) is flat in the interval
[0, 1]. This means that S;(2) is conditionally uniformly distributed, given the event {S,(2) < 1}. Indeed, the author states
that he did not find any reference to this phenomenon in the written literature, see Weissman (2017). As he computes
the distribution function of §,(2), he establishes that the mass of the interval [0, 1] decreases to zero as n grows. Using
concepts from geometric probability, Forrester (2018) provides more formulas concerning the distribution of 5,(2). Neither
of the two named authors discusses S,(k) for k > 2.

The primary motivation of this paper is the above mentioned flatness in the density of S;(2), which we refer to as the
flatness phenomenon. We will give two methods of constructing random variables that exhibit this behavior. An example
of the first method is the ratio of uniforms, say Ry = U/V where U and V are independent uniform random variables in
[0, 1]. The density of this simple ratio is given by

1

1
f(z) = EI(D.IJ(Z) + ﬁfu,oo)(z),

where [4(-) is the indicator function of a set A. Another, more general, example is R, = U/Z,, where Z, = V;---V, and
U, Vq---V, are ii.d. random variables distributed uniformly in the interval [0, 1]. Division by a product of uniforms turns
out to be only sufficient. In Section 2.1 we prove a result which gives a source of random variables exhibiting the flatness
phenomenon, thus showing the actual reason why the repeated division by uniform works.

Based on the simple observation that both S;(1) and S(2) are flat in [0, 1], one of the authors of the current paper
guessed that S,(n) is also flat in this interval for all n. This guess was verified by drawing histograms of 10% simulated
sums of the form S, (k) for various values of k and n. As shown in Fig. 1, it is only when k = n that the flatness is realized.
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Fig. 1. The graph of S,(k) for n = 20 and several values of k.

In Section 2.2 we provide a direct geometric proof for the flatness of 5,(n). We then derive a basic convolution lemma
that provides a more general condition for the sum of not necessarily equal powers of uniform to also exhibit this
behavior. Section 3 investigates the limiting distribution of 5;(n) which evidently is infinitely divisible and has the flatness
phenomenon. We obtain a representation of this distribution as the limit law of a sum of products of i.i.d. uniform random
variables. We then derive a differential equation satisfied by the limiting distribution which can be solved recursively in
intervals (n, n+1). Finally, we write a recursive relation for the moments of the limit law and obtain an explicit expression
for the moment generating function, which in turn allows us to calculate the cumulants.

2. Two sources of flatness
2.1. Flatness of the type U/V

It is easy to establish directly that the density of R,, defined above, is given by the constant 1/2" at any point in
the interval (0, 1). This constant density drops fast to zero as we divide by more uniform terms in the denominator. This
should be compared with S,(n) below whose constant density stabilizes at a constant value away from zero as n increases.
As with Sp(n), R, was actually guessed and verified by simulation. Proposition 2.1 gives a fairly general construction that
includes the case R, as a special case.

Proposition 2.1. Let U be a uniform random variable in the interval (0, a) and let Y be any random variable supported in
the interval [b, oo), for some positive constants a and b. Then the density of UY is flat in the interval (0, ab).

Proof. Let F(y) be the distribution of Y. For t € (0, ab), t/b < a, i.e. within the support of U, we have P[UY < t] =
Jo PIUY < tlU =u]- ldu= Orbe[Y <t/u]-ldu +f;}b P[Y < t/u]- 1du. In the second integral, t/u < b so the integrand
collapses to zero because Y is not supported below b, unless Y has an atom at b in which case the second integral takes
the constant value P[Y = b]/a. In the first integral t/u > b so it is % t/b b”" dF(y)du. Applying Fubini's Theorem we get

0
1L Ot’ly dudF(y) = L [ 1/ydF(y) which is linear in t. O
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As pointed out by a referee, this result is closely related to Khintchine’'s Theorem on unimodal densities, see Khintchine
(1937) or Feller (1971). One version of this theorem, the monotone version, states that a non-negative random variable
X has a monotone non-increasing density f(x) if and only if it has the form UY where U is uniform in [0, 1] and Y > 0.
We can use this fact to conclude Proposition 2.1 when Y is absolutely continuous, say with density g. One can check that

= [y
x y

so that f'(x) = —g(x)/x or g(x) = —xf'(x). Therefore, X is flat in [0, 1] if and only if g(x) = 0 in [0, 1], i.e., when Y is
supported in [1, c0). For a, b > 0, Proposition 2.1 now follows by noting that abUY rescales the flat portion to (0, ab),
that (aU) is uniform in (0, a), and that bY is supported in [b, co) when Y is supported in [1, co).

2.2. Flatness of Sy(n)

In this section we prove the flatness phenomenon of the density of S,(n). Indeed, we will first give a direct geometric
proof of this fact, then we give a second, analytical, proof that allows for some generalization,

In effect, for any p > 1, the norm of a vector (xq, ..., X;) in [P(R™) is given by (2?21 |xi|")”p. A ball B, of radius r > 0
and centered at the origin is thus defined by (ZL \x,»|p)1/p < r. A classic result attributed to Dirichlet, see Edwards
(1922), Xianfu (2005), states that the volume of this ball is given by the formula
@r@+ry

1"(% + 1)

Now for t € [0, 1] the cumulative distribution of S,(n) is Fy(t) = P[U] + -+ - + U} < t].

This probability is precisely the volume of the intersection of B, with the first octant, when p = nand r = t'/™,

Using (2.1) we get F,(t) = (1“(% + 1))"t. Differentiation gives the result.
A generalization as well as more insight is obtained in the following analytical proof. The next lemma will be pivotal.

V(Br) = (2.1)

Lemma 2.2. Let X; and X3 be two independent, nonnegative and absolutely continuous random variables, whose densities in
the interval [0, 1] are given by fi(x) = (1 — «;)/x*, i = 1,2 and «; < 1. Then in the interval [0, 1] X; 4+ X has the density
Sri1(t) = C/tortre2=1 where C = (1 — o )(1 — az)B(1 — oy, 1 — arp) and B(a, b) is the beta function,

Proof. The convolution formula for t € [0, 1] gives

fX1+X2(t)=fl*f2(f)=f (]7(!])@

o xM (t—x)m

Using the change of variable y = tx this becomes

1
(et ) [Fyony gy o
0

tertaz—1

Proposition 2.3. Let Uy,...,U, be iid. standard uniform variables. For any n positive numbers ki, ..., k, such that
% 4t é = 1, the sum Uf’ + -+ UM has a p.df that is flat in [0, 1].

Proof. Let kq, ..., k, be any n positive real numbers and ¢ € (0, 1). Using the Convolution Lemma above we have

_ B(1/kq, 1/k2)
frxfo(t) = [y

Iterating Lemma 2.2 n — 1 times we see that fi - - - * f,(t) is

"1 1
HEB(1/.’{1,]/kz)B(l/k‘]"‘l/kz,]/kg)B(1/k|+'+1/kn_1,1/kn) m
i=1 !

As the numbers k; satisfy the condition stated above, the exponent of t is zero and, with some calculation, the density in
(0, 1) has the constant value

11 u 1
—I(=))= rai+-—)). o
H(ki (ki)) ]_[( ( +ki))
i=1 i=1

Our initial observation now follows immediately.

Corollary 2.4. The density of U]+ - -+U] is flat in (0, 1) and it approaches the constant e as n increases, where y = 0.57721
is the Euler constant.
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Proof. When k; = n for all i in Proposition 2.3, the left hand side in the above display becomes (%F(%))". By the well-
known Laurent series expansion of the gamma function about zero, I'(x) = x~' —y 4-cx+0(x?), (Where ¢ = y2/2+72/12),
n

we see that we need the limit of (1 [n —y+o+ O(]/nz)])" = (1 —Lt+ ot 0(1/n3)) ,whichise . O

3. Limiting Distribution of S,(n)

The terms in S,(n) for n =1, 2, 3, ... form a triangular array, thus the general theory implies that S,(n) has a limiting
distribution that is in fact infinitely divisible.
This limiting distribution is characterized in Theorem 3.2. The following lemma will be needed in the proof.

Lemma 3.1. Let &, ..., & be independent and identically distributed exponential random variables with a common mean of
1, and let Sy = Y";_, &. Then P-a.s. |Sy — k| < k*/3.

Proof. For an exponential random variable & ~ Exp(1) it is easy to check the following inequality concerning the moment
generating function.

eF* 2
E[et D)= & < ¥, (32)
1FA ~
A
e
for all |A| < 1/3. Indeed, the inequality —— < ¢3*/4 is equivalent to the inequality g(1) := % —A+In(14+21) = 0. Via

direct calculation, one can check that the derivative g}i(k) is negative in (—1/3, 0) and positive above zero. Since g(0) = 0

we see that g(A) > 0 when A > —1/3. The case of ® s similar, but in the interval (—o00, 1/3). Then P[|Sx — k| = k*/*]is

1-2
= P[Sx —k > K*P1 4 PISy — k < —Kk*3] (3.3)
= P[Sk — k > K]+ P[—(Sk — k) > k*/°]

_ P[ek(sk—k) < eu@ﬁ] +p[e*1(5k*’<) - eka]

E[ex(sk—k)] E[e—k(sk—k]]
e)»kzﬂ EMCZ/B

E]

where we used Markov's Inequality. On the other hand, E[eXSK)] = E[eXit Ma—1] = 11} E[e*¢~1]. In view of Eq. (3.2)
the last expression is dominated by Hik=163"2/4 — &3 /4 for [A] < 1/3.

Likewise, for these values of A we see that E[e"*5<)] < ¢3%°/4 It follows from the above and from the inequality in
Display (3.3) that

P[ISk — k| > k**] < mkmzemz/ukm = 2exp (—Kk"3/3).

As Y12 exp (—k'/3/3) converges, the Borel-Cantelli Lemma implies that P-ass. |S, — k| < k*2, which establishes the
lemma. O

Theorem 3.2. S,(n) converges in law to an infinitely divisible distribution F... Furthermore,
ook

(a) The random variable W = Z l_[X,- has the distribution F.,, where {X;} is a sequence of independent standard uniform

. k=1 i=1
random variables.

(b) W obeys the stochastic equation W L U(1+4 W) where U is standard uniform and such that U and W on the right are
independent.

Proof. Consider the triangular array with the nth row formed by U7, ..., U}. By the general theory, to show that F is
infinitely divisible it is enough to show that in each row of the triangular array the variables are uniformly asymptotically
negligible (u.a.n.), that is, for an arbitrary € > 0

lim max P[|U]| > €] = 0.

n—ool<k<n

This equation is straightforward to check for Uy To prove (a) consider the order statistics Upy, . .., Uy of U, ..., Us. These

order statistics subdivide the interval [0, 1] into n + 1 subintervals of respective lengths Ay, ..., Appy Where Ay = Ugy,

App1 = 1 —Upyand fori # 1,1 # n+ 1 A; = Uy — Ui—1y. It is well-known that the vector (A4, ..., Aptq) has
1

the same distribution as the vector

(&1, ..., &ny1), where &1, ..., &4 are independent exponential random variables
n+1
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n+1
with common mean 1, and S,,, 1 = Z&. Now

Sa(n) = Uy +--- +Uhy
i((1,é_')n+(17€1+$2)n+___+(]7@)")

Snt1 Sn41 Snt1
n
S
“Ya- gy
k=1 Sn+1
By Lemma 3.1 we have, P-as, that S, > k —k*3 and S, < n+n?3. Thus 1 — §/S, < 1 — 2/3 Using the obvious

inequality 1 — € < e~ - in a neighborhood of zero - we have
n
k — k%3 n(k — k?/3)
0§Sn(n)§kZ:(] n+n2/3) Zexp( EaeTD )
=1
Since exp (—"(:;Tff/:) < exp (—k + ](2/3) and Z',::] exp (—k + k2/3) converges as 1 — oo, the dominated convergence
theorem for series, see Billingsley (1995), implies that the limit of S,(n) equals

00 ' Sy 0o i
lim ( V' = ek,
=00 Snt1 ;

The result now follows by noting that e~ = ]_[:‘:] e~%, and that e % follows a standard uniform distribution.
To get (b) we observe that W = X (1 + Xo + X2X3 + X2X3X4 + - - -) and employ self similarity. O

k=1

Remark 3.3. Theorem 3.2(b) establishes a relationship between the two flatness types discussed earlier. On the one
hand, the density of W is flat in [0, 1] because S,(n) has a flat density for each n. On the other hand, 1+ W is completely
supported in [1, o) and so W has the form UY as required in Proposition 2.1 witha=b = 1.

Remark 3.4. The distributional equation between W and U(1 + W) is a special case of a more general, well-studied,
distributional equation between two random variables X and AX + B where (A, B) is a random vector independent of X in
the second expression. The recent book by Buraczewski et al. (2016) surveys many known results about this equivalence.

3.1. The density of W

By Theorem 3.2(b), W is a product of two random variables one of which is absolutely continuous. Hence W is
absolutely continuous. Let f.(y) be the density of W, which is evidently supported in [0, o). Thus, the density of
Y = 1+ W is fo(y — 1) and the joint density of X and Y is g(x V) = Lio.(x) X foo(y — 1). In view of Theorem 3.2(b)
again, for t > 1, Foo(t) = P[XY < t] = f0' t/xfoo(y— 1)dydx = [0 (t/x — 1)dx. Using the change of variable u = t/x — 1
we get the integral equation

Foo(E) [ Fuo(u) d
t _f;—l (14u)? !

Differentiating the above equation with respect to t and regrouping terms we obtain
Foo(t) — Foolt — 1
£ty = Pl too< ).

This equation already shows that the density f,, is differentiable at every positive, non-integer, real value. Differentiating
the equivalent form tf,.(t) = Fuo(t) — Fso(t — 1) again we then obtain the differential equation

fulty = =D

(3.4)

We write fo(t) ka ), where fi(t) = foo(t)ui+1)(t). Recalling that fo(t) = e, we see that f,(t) can be found

essentially by recurswely solving the initial value problems f/ ,(t) = —@ with fir1(k+1) = fi(k+1). The following are
the first two parts f; and f,, while f3 already cannot be written in closed form as it involves the integral of the logarithmic
integral function Li(x):

f(t) =e77(1 —logt),
() = log(t — 1)logt + Lin(1 —t) 4+ C,

where Liz(z) is the dilogarithm function and C = e™7(1 — log2) + %
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3.2. The moments of W

For positive integer values of n let m, be the nth moment of W. Then by Theorem 3.2(b) we have

m, E[U"]-E[(1+W)”]=nl?-5 Z(':)w'

i=0

n

nj—l Z(T)m,

i=0

Re-arranging terms we get the recursive equation

n—1
nm, = Z (T:)m, (3.5)

i=0
In particular, the first four moments are 1, 3/2, 17/6 and 19/3 respectively. We note here that the median is already less

than 1 and it is e” /2 = 0.891.
Summing up the two sides in Eq. (3.5) we get

00 1 -
ann _ZHZ( )m, —which 1mphestz m"tn : Z Z (n) ::’

n=1 n=1 i=0 n=1 0 n=i+1

by interchanging the double sum on the right. Observing that the sum on the left is the derivative of the moment
generating function of W, say M (t), we thus obtain

mith o m;t!
TRRD 3L o Sy o
o0

m-t"
= E — (' —
i!

i=0

t

e —1
We arrive at the differential equation tM_ (tf) = (et — 1) Myo(t), which readily gives log M(t) = ; dt + C.

Integrating component-wise the Taylor expansion of the integrand on the right and using the fact that M.(0) = 1 we
see that C = 0 and that the cumulant generating function is

tex 1 o i
lOng(f) :f dx = -
0

X — i .l
i=1

Hence the cumulants are given, for all i > 1, by «; = 1/i.
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