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ABSTRACT
In this paper, we propose a Joint Collaborative Autoencoder frame-
work that learns both user-user and item-item correlations simul-
taneously, leading to a more robust model and improved top-K
recommendation performance. More specifically, we show how
to model these user-item correlations and demonstrate the impor-
tance of careful normalization to alleviate the influence of feedback
heterogeneity. Further, we adopt a pairwise hinge-based objective
function to maximize the top-K precision and recall directly for
top-K recommenders. Finally, a mini-batch optimization algorithm
is proposed to train the proposed model. Extensive experiments on
three public datasets show the effectiveness of the proposed frame-
work over state-of-the-art non-neural and neural alternatives.
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1 INTRODUCTION
Since feedback like user clicks, purchases, and views is much more
widespread than explicit ratings, implicit top-K recommenders of-
fer great opportunities for far-reaching impact [6, 7, 17]. One of
the most influential approaches is collaborative filtering (CF) [19],
which learns the preference coherence among users (user-user CF)
or the rating correlations among items (item-item CF). Recently, we
have seen a series of works that aim to extend CF to new neural net-
work frameworks that offer the promise of flexibility, non-linearity,
and structural complexity, leading to more expressiveness and state-
of-the-art recommendation performance [4, 5, 18, 20].

While promising, one limitation of these newneural neighborhood-
based models is that they typically attempt to learn low-dimension
embeddings of only users or only items, without careful consider-
ation of the important interactions between users and items. As
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a result, the quality of recommendation may be restricted. In con-
trast, effective modeling of user-item interactions could lead to
improved recommendation, as has been demonstrated in earlier
non-neural approaches [16, 22, 25, 26]. We experimentally confirm
this intuition in Section 3.3, where we find that while user-based
and item-based Autoencoders do agree on many recommendations,
there is a significant amount of disagreement between the two.

Hence, we propose in this paper a new Joint Collaborative Au-
toencoder (JCA) model that jointly learns user-user and item-item
correlations simultaneously so that recommenders can take advan-
tage of asmuch hidden information as possible for better recommen-
dation quality. We show how to model these user-item interactions
in JCA and demonstrate the importance of careful normalization to
alleviate the influence of feedback heterogeneity (without which,
naive methods may recommend items a user dislikes). Further, JCA
adopts a pairwise hinge-based objective function for implicit top-K
recommenders, which is especially designed for maximizing pre-
cision and recall for top-K recommendation. Through extensive
experiments over three public datasets, we demonstrate how the
proposed JCA model improves upon both non-neural and neural
methods alike.

In sum, the contributions of this paper are as follows: (i) we
propose a neural neighborhood-based CF approach called Joint
Collaborative Autoencoder (JCA) that captures both user-user and
item-item correlations simultaneously. (ii) We adopt a pairwise
hinge-based objective function to optimize top-K precision and re-
call directly. (iii) We present a mini-batch optimization algorithm so
that JCA can be trained on large datasets, without the (impractical)
need to load the entire rating matrix as in a naive batch learning
approach. (iv) Finally, through extensive experiments, we show that
the proposed framework outperforms state-of-the-art neural and
non-neural baselines.

2 RELATEDWORK
Due to the flourishing development of neural networks, instead of
focusing on the traditional non-neural algorithms [6, 7, 7, 12, 15, 17],
more recent efforts have been dedicated to building neural based
methods for implicit top-K recommendation. For example, Wu et
al. [24] proposed a Collaborative Denoising Autoencoder (CDAE)
model, which implements a neural version of the influential non-
neural method SVD++ [9]. He el at. [5] presented a two-pathway
architecture named NCF, ensembling a neural-based implementa-
tion of matrix factorization named GeneralizedMatrix Factorization
(GMF) and a Multi-Layer Perceptron (MLP). Furthermore, there are
many neural models for contextual recommenders [2, 3, 11, 14, 21]
because neural models can be naturally extended to integrate aux-
iliary information. For example, Niu et al. [14] proposed a pairwise
neural model integrating two GMF structures to implement BPR for
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image recommendation, and considered visual, topic and geography
information as contextual features. Similar to these existing neural-
based recommenders, the model proposed in this paper is designed
to take advantage of the flexibility, non-linearity, and structural
complexity of neural architectures. Besides, we also demonstrate
how to jointly learn from both user-user and item-item correlations
for improved recommendation quality.

Previous works [16, 22, 25, 26] have identified the potential of
combining user-based and item-based collaborative filtering models
to improve recommendation. Although their motivations are similar
to our proposed model, there are three main differences: (i) we focus
on implicit top-K recommenders; (ii) we adopt an Autoencoder-
based framework as the model foundation which is a neural-based
algorithm; and (iii) we fuse the user-based and item-basedmodels by
jointly training them in a unified learning process, while previous
work typically combines the two models via heuristics.

3 PRELIMINARIES
In this section, we define the implicit top-K recommendation prob-
lem, introduce the basics of an Autoencoder-based recommender,
and empirically show that traditional user-based and item-based
Autoencoder-based recommenders are complementary, which mo-
tivates the design of our proposed model.

3.1 Implicit top-K Recommendation
Formally, we denote the set of users as U = {1, 2, . . . ,N }, the set of
items as I = {1, 2, . . . ,M}, and the set of historical feedback from
the users to the items as O = {u, i, ru,i } where u indexes one user,
i indexes one item, and ru,i represents the rating from the user u
to the item i .1 For implicit top-K recommenders, there are usually
only positive feedback signals, which means we only know which
items user u likes but have no idea which items user u dislikes, i.e.
all ru,i are 1. Based on this historical feedback, our goal is to predict
the preference of each user u to the items they have not interacted
with and recommend the items with the highest predicted scores
to user u. Furthermore, we denote O+u as the set of items user u has
given positive feedback to, and O−u denotes the set of items user u
has not given feedback to. In practice, we will randomly sample a
subset of the unrated items to train the model, hence in this paper
we use O−u to denote the randomly selected negative samples.

3.2 Autoencoders for Recommendation
Toward tackling the implicit top-K recommendation problem, Au-
toencoder based models [20, 24] have shown promising perfor-
mance in comparison with non-neural and other neural models.
We input to an Autoencoder the rating vectors of users (or items)
with 1 denoting a positive interaction, and 0 denoting a missing
(or unknown) interaction. Then the Autoencoder outputs the cor-
responding completed rating vectors. Such an Autoencoder-based
recommender called AutoRec has been proposed in [20], whose

1In this paper, matrices are denoted by boldface uppercase letters like A, and vectors
are denoted by boldface lowercase letters like a. Ai represents the row vector of the
i-th row of matrixA, and (A⊤)j represents the row vector of the j-th column of matrix
A. We denote a user-item-rating matrix with N users and M items as R ∈ RN×M .
Ru ∈ R1×M is the rating vector of user u , (R⊤)i ∈ R1×N is the rating vector of item
i . Besides, we use the syntax similar to Python to denote the matrix slicing operation,
for example A[:, [1, 2]] denotes the first two columns of matrix A.

Figure 1: The CDF of the correspondingHits Difference Rate
between user-based AutoRec and item-based AutoRec.
model can be written as:

R̂ = f (д(RV + b1)W + b2),

where the binary implicit feedback matrix R is input into AutoRec,
and R̂ is the predicted preference matrix. If we set both f (·) and
д(·) as identity functions, and we also ignore the bias nodes, then
AutoRec becomes: R̂ = RVW, which is equivalent to the user-
based neighborhood model with two factorized matrices as the
similarity measurement (similar to the FISM model proposed in [7]).
As a result, when we feed user rating vectors RU ∈ RN×M as the
input (that is, user rating vectors are the rows), AutoRec learns
the similarity among items. We refer to this model as user-based
AutoRec (or U-AutoRec). In a similar fashion, we can input item
rating vectors RI ∈ RM×N and learn similarity among users. We
refer to this model as item-based AutoRec (or I-AutoRec).

3.3 User-based AutoRec and Item-based
AutoRec Are Complementary

Sarwar showed in [19] that traditional (non-neural) user and item-
based CF models are fundamentally different. Here, we investigate
the difference between a neural neighborhood-based CF methods
(U-AutoRec and I-AutoRec). More specifically, we explore whether
different information from the same dataset captured by different
models can produce complementary recommendations.

In order to answer this question, we runU-AutoRec and I-AutoRec
on the same MovieLens 1M dataset (the details of this dataset and
the model parameter settings are introduced in Section 5.1 and 5.2).
For each user in this dataset, these two models will recommend two
lists of ranked movies; we focus here on the top-10 ranked movies
in the two lists. We consider the hits of a model as the set of movies
that are in the recommended 10 movies and also in the test set, i.e.
the ground truth of the user’s preference. We denote the hits of
U-AutoRec as HU and of I-AutoRec as HI . Then we define the hits
difference rate of these two model for one user as:

HitsDifferenceRate =
size(HU ∪ HI ) − size(HU ∩ HI )

size(HU ∪ HI )
.

where size(·) calculates the number of elements in a set, ∩ and ∪

are set intersection and union operators. The hits difference rate
demonstrates the difference in correct recommendations between
two models: a large difference rate indicates the two models provide
complementary recommendations. The CDF of the hits difference
rate for the users in MovieLens is presented in Figure 1. We can
observe that more than 60% of users have a hits difference rate larger
than 20%, with some users (around 30%) having a hits difference rate
larger than 50%. Therefore, based on the observations from Figure 1



ML1M Yelp Games
P@10 R@10 F@10 P@10 R@10 F@10 P@10 R@10 F@10

U-AutoRec .2343 .1698 .1969 .0230 .0608 .0333 .0152 .1022 .0265
I-AutoRec .1782 .1454 .1602 .0202 .0556 .0296 .0138 .0979 .0241
UI-AutoRec .2209 .1801 .1984 .0240 .0646 .0350 .0171 .1192 .0298

Table 1: Comparison betweenU-AutoRec, I-AutoRec and the
average model of them – UI-AutoRec, where the best results
are marked in bold. P represents precision, R represents re-
call, and F represent F1 score.

Figure 2: Overview of JCA: The Joint Collaborative Autoen-
coder takes both the Item Component with item rating vec-
tors (left) and the User Component with user rating vectors
(right) to recover the complete rating matrix (middle).

we can conclude that U-AutoRec and I-AutoRec generate different
recommendations which are complementary to each other.

We further verify the conclusion that U-AutoRec and I-AutoRec
are complementary by comparing the recommendation quality of U-
AutoRec, I-AutoRec, and a simple averaging model of them (named
UI-AutoRec, which averages the outputs of separately trained U-
AutoRec and I-AutoRec to be the final result). In experiments over
three datasets (details introduced in Section 5.1 and 5.2), we observe
in Table 1 that the simple average of U-AutoRec and I-AutoRec can
improve the top-10 recommendation quality, compared to either of
the solo models, further indicating that U-AutoRec and I-AutoRec
are complementary to each other. Therefore, combining the two
models together to simultaneously explore both sides of information
is promising for improved top-K recommendation.

4 PROPOSED MODEL
In this section, we present the design of a new Joint Collaborative
Autoencoder (JCA) model with a pairwise hinge-based objective
function. In addition, we present a mini-batch optimization algo-
rithm to optimize the JCA model.

4.1 Joint Collaborative Autoencoder
The intuition of JCA is to directly model both users and items simul-
taneously, rather than treating users and items in isolation. Further,
naive combination of users and items without consideration of the
heterogeneity of feedback can lead to overestimation of predicted
scores in the output layer even for items a user dislikes. Hence, we
describe in the following the design of the JCA structure with a spe-
cial item normalization factor (to handle feedback heterogeneity),
leading to the model shown in Figure 2.

Joint User-Item Correlations Modeling. Given N users andM
items, the proposed JCA takes the whole rating matrix R ∈ RN×M

as a dual input. As illustrated in Figure 2, the rating matrix is input
to the model on both the lefthand and righthand sides. The key
difference is in how the matrix is sliced: the lefthand side takes
as input one item rating vector (R⊤)i ∈ R1×N as one sample (i.e.
one column of R), while the righthand side takes as input one user
rating vector Ru ∈ R1×M as one sample (i.e. one row of R). In
essence, there are two components to the model, the first taking Ru
as one input sample, which we name the User Component, and the
other one with (R⊤)i as one input sample, which we name the Item
Component. The two components are two Autoencoder structures,
which predict and recover the ratingmatrix independently. The first-
layer weights of the user and item components are denoted as VU ∈

RM×HU
andVI ∈ RN×H I

respectively, whereHU andH I represent
the dimensions of the hidden layers of the two components. In the
same way, we denote the second-layer weights as WU ∈ RH

U ×M

and WI ∈ RH
I×N . The biases for the hidden layers and output

layers are denoted as bU1 and bU2 for the user component, bI1 and
bI2 for the item component. We set the sigmoid function as the
activation function for hidden layers and output layers in both
components.

Unlike the traditional user-based or item-based AutoRec, which
inputs one or several incomplete rating vectors of a user or item
and outputs the completed rating vectors, this Joint Collaborative
Autoencoder takes the whole rating matrix as input, and outputs
the whole completed rating matrix. The user component and item
component output two completed rating matrices independently,
and we combine the two outputs to be the final output as:

R̂ =
1
2
[hitem (R) + huser (R)], (1)

where R̂ is the predicted rating matrix, hitem (·) is the item compo-
nent output, and huser (·) is the user component output.

Learnable Item Normalization Factor. One challenge with tra-
ditional Autoencoder-based recommenders is that there is no nor-
malization for the hidden layer. As a result, the heterogeneity of
feedback can create problems. Take the user-based AutoRec as an
example, inputting a user rating vector with more positive feed-
back into the AutoRec model results in a hidden layer with a larger
norm, which leads to higher predicted scores in the output layer
even for the items the user dislikes. A similar situation arises for the
item-based AutoRec, where an item with more positive feedback
has overall higher predicted scores even for the users who dislike
it. Inspired by FISM [7] which adopts a user specific normalization
constant, we add a learnable item normalization factor to alleviate
the influence of this item feedback heterogeneity.

Specifically, we add a learnable Item Normalization Factor f ∈

RM×1 multiplied to the hidden layer of the item component. This
parameter is to normalize the norm of the latent factor for each
item to solve the problem that items with more feedback will have
higher predicted ratings. The user component does not need a
normalization factor because the recommender ranks the predicted
preference scores and recommends the top-K items for each user
independently. Hence the norm of the rating vector of each user
has no influence to the recommendation result.

The JCAModel.Combining the joint user-item correlations model
with this learnable item normalization factor leads to the full Joint



Collaborative Autoencoder model:

R̂ =
1
2
[σ (σ (RVU + bU1 )WU + bU2 )

+ σ (σ ((R⊤VI + bI1) ◦ f)W
I + bI2)

⊤],
(2)

where σ (x) = 1/(1 + e−x ) is the sigmoid function, ◦ is the element-
wise product (because f is a column vector, ◦ multiplies each entry
of f to each corresponding row of (R⊤VI + bI1)).

4.2 Pairwise Hinge-based Objective Function
for Implicit Top-K Recommenders

We could learn the described model parameters by optimizing a tra-
ditional objective function for recommenders. Nevertheless, many
of these conventional objective functions attempt to optimize MSE
or AUC [17, 20, 24], which are not aligned with top-K recommen-
dation metrics. As a result, we introduce a pairwise hinge-based
objective function to directly optimize implicit top-K recommenda-
tion performance. In addition, we will show how the hinge-based
objective function links to top-K precision and recall.

Inspired by [23] and [13], which proposed new objective func-
tions to optimize position sensitive ranking loss functions such
as ADG and NDCG, we adopt a pairwise hinge-based objective
function to optimize top-K ranking result, shown in Equation (3):

minimize
Θ

LLL =
∑
u ∈U

∑
i ∈O+u
j ∈O−

u

max(0, r̂u, j − r̂u,i + d) +
λ

2
∥Θ∥2F , (3)

where r̂u,i and r̂u, j are the predicted ratings for user u to item i
with positive feedback and j from negative sampling; λ is the trade-
off parameter of the L2-norm regularization term; Θ represents all
the parameters; d is a hyper-parameter determining how large the
margin between positive feedback and random negative samples
can be; and ∥·∥F is the Frobenius norm.

Because in practice we can not use all unobserved entries as
the negative samples, we set a constant margin d for the random
negative samples and positive feedback to counteract the influence
from random negative sampling strategy.

Analogies to Precision@k and Recall@k. Precision@k (P@k)
and Recall@k (R@k) are two most commonly used metrics to eval-
uate implicit top-K recommenders. They are defined as:

P@k = |Oku ∩ O+u |/k, |Oku ∩ O+u |/|O
+
u |, (4)

where Oku is the set of items with the top k predicted preference
scores for user u, and | · | calculates the number of elements in a set.

If we set k = |O+u |, then Precision@k and Recall@k will be the
same, and we can rewrite the formula as:

P@k = R@k = 1 − (
∑
i ∈O+u

δ ((
∑
j ∈O−

u

(̂ru, j − r̂u,i )) > 0))/|O+u |, (5)

where δ (x) is the Heaviside function, which returns 1 if x is true,
otherwise 0.

The analogy between (5) and (3) is clear. To maximize the top-K
precision and recall shown in Equation (5) is equivalent to min-
imizing

∑
i ∈O+u δ ((

∑
j ∈O−

u
(̂ru, j − r̂u,i )) > 0), which is equivalent

to minimizing
∑
i ∈O+u , j ∈O−

u
max(0, r̂u, j − r̂u,i + d) in Equation (3).

Here, we use the differentiable Hinge loss function to replace the
non-differentiable Heaviside function.

4.3 Mini-batch Optimization Algorithm
We can use any popular optimization algorithm to train the pro-
posed JCA. However, one challenge is that in each training iteration,
the whole user-item-rating matrix is used for training, which is
not practical especially for large datasets. As a result, we propose a
mini-batch optimization algorithm for handling large datasets.

For the mini-batch optimization algorithm, in each training it-
eration, we need to feed a mini-batch consisting of n user rating
vectors denoted as BU = R[p, :] ∈ Rn×M into the user compo-
nent, where p is a list of n randomly sampled row indexes; and
another mini-batch consisting of m item rating vectors denoted
as BI = R[:, q]⊤ ∈ Rm×N into the item component, where q is a
list ofm randomly sampled column indexes. The user component
recovers and outputs B̂U , and item component outputs B̂I . Due
to the distinct shapes of B̂U and B̂I , we can not simply average
the them as Equation (2). Nevertheless, there are n ×m common
entries covered by both of B̂U and B̂I , and we denote this com-
monly covered part as a matrix C ∈ Rn×m . In this way, the whole
rating matrix will be decomposed into several small matrices. We
can consider one small matrix as one mini-batch. Then during each
training iteration, one mini-batch C will be used for one time of
updating, where only the weights connecting the training samples
in C will be updated. Hence, the model formulation in (2) can be
rewritten in the mini-batch format:

Ĉ =
1
2
(B̂U [:, q] + B̂I [p, :]),

B̂U = σ (σ (BU VU + bU1 )WU + bU2 ),

B̂I = σ (σ (((BI )⊤VI + bI1) ◦ f)W
I + bI2)

⊤,

where B̂U , B̂I , and Ĉ are the predicted user mini-batch matrix, item
mini-batch matrix, and the combined predicted mini-batch matrix,
respectively; B̂U [:, q] means the columns indexed by q in B̂U , and
B̂I [p, :] represents the rows indexed by p in B̂I .

The objective function (3) can be rewritten as:

minimize
Θ

LLL =
∑
u ∈CU

∑
i ∈CO+u
j ∈CO−

u

max(0, r̂u, j − r̂u,i + d) +
λ

2
∥Θ∥2F ,

where CU is the users set in mini-batch matrix C, CO+u is the items
set that user u gives positive feedback to in C, and CO−u is the
negative samples of user u in C. This approach has the benefit of
only needing to load the sampled user and item rating vectors into
memory rather than storing the whole rating matrix as the batch
learning algorithm does.

5 EXPERIMENTS
In this section, we empirically evaluate the proposed model in
comparison with state-of-the-art non-neural and neural approaches
over three datasets. We aim to answer two key questions: (i) How
does the proposed JCA framework perform compared with other
approaches for implicit top-K recommendation? and (ii) Are the
proposed Joint Collaborative Autoencoder structure JCA and the
pairwise hinge-based objective function effective?



Users Items Ratings Sparsity(%)
MovieLens 1M (ML1M) 6,027 3,062 574,026 3.11

Yelp 12,705 9,245 318,314 0.271
Video Games (Games) 19,056 9,073 184,609 0.107

Table 2: Characteristics of the three datasets.

5.1 Datasets
We use three public datasets from different domains for our experi-
ments: MovieLens 1M2 (ML1M), Yelp3, and Video Games4 (customer
reviews from the Video Games category on Amazon). For ML1M
and Yelp, we treat ratings higher or equal to 4 as positive feedback,
and consider all other ratings as missing entries. For Game, we con-
sider all purchase behaviors as positive feedback. These strategies
are widely used for evaluating implicit recommenders [7, 17, 27].
Then we iteratively remove users and items with fewer than 5 pos-
itive feedback. Finally, we split the datasets into 20% for testing
and 80% for training. In the training set, we further hold 10% as a
validation set. The datasets are summarized in Table 2.

5.2 Experimental Setup
Metrics.We adopt Precision@k and Recall@k averaged across all
users as the evaluation metrics for personalized ranking (recall
Equation (4)). We also report the F1@k, which is defined as:

F1@k = (2 · P@k · R@k)/(P@k + R@k).

Baselines. To evaluate the proposed model, we consider eight
state-of-the-art methods including neural and traditional models:

MF [10]. The conventional matrix factorization model with MSE
objective function and Alternating Least Squares (ALS) optimizer.

BPR [17]. BPR learns an MF model by the pairwise ranking ob-
jective function. We use Gradient Descent to optimize the objective
function.

CDAE [24]. This is an Autoencoder-based model, which imple-
ments the neural version of SVD++. We adopt the sigmoid function
as the activation functions in both the hidden layer and output
layer, and use MSE as the objective function.

U-AutoRec [20]. This is a user-based AutoRec model, which
takes user rating vectors as inputs and learns item-item correlations.
It uses the MSE loss function.

I-AutoRec [20]. Similar to U-AutoRec, but takes item rating
vectors as inputs and learns user-user correlations.

UI-AutoRec. This model averages the outputs of U-AutoRec
and I-AutoRec.

NCF [5]. This model combines a neural version of MF model
(named GMF) and amulti-layer perceptron (MLP) model. Themodel
structure configuration is similar according to the original paper
where MLP has four hidden layers with 8, 16, 32, and 64 hidden
neurons, respectively.

NPR [14]. This is a neural version of BPR with two GMFs to
implement the pairwise structure and the BPR objective function.

Reproducibility. All code, data, and experimental settings can be
found at https://github.com/Zziwei/Joint-Collaborative-Autoencoder.
We implement the proposed model based on Tensorflow [1] and use
Adam [8] optimizer. We set the learning rate 0.003 for all methods.
2http://files.grouplens.org/datasets/movielens/ml-1m.zip
3https://www.yelp.com/dataset/challenge
4http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_
Games.csv

ML1M Yelp Games
@1 @5 @10 @1 @5 @10 @1 @5 @10

BPR .0427 .1306 .1704 .0068 .0185 .0221 .0138 .0189 .0175
MF .0477 .1427 .1837 .0148 .0307 .0333 .0255 .0294 .0265
NCF .0515 .1454 .1870 .0147 .0316 .0343 .0246 .0319 .0281
NPR .0486 .1427 .1806 .0110 .0267 .0295 .0158 .0221 .0198
I-AutoRec .0472 .1249 .1602 .0139 .0278 .0296 .0198 .0266 .0241
U-AutoRec .0526 .1541 .1968 .0148 .0311 .0333 .0217 .0290 .0265
UI-AutoRec .0540 .1562 .1984 .0149 .0319 .0350 .0270 .0340 .0298
CDAE .0552 .1578 .1999 .0154 .0321 .0353 .0252 .0331 .0301
JCA .0602 .1634 .2080 .0164 .0346 .0376 .0297 .0364 .0322
%improve 8.9% 3.5% 4.1% 6.5% 7.8% 6.5% 10.0% 7.1% 7.0%

Table 3: F1@k comparison between the proposed JCA and
eight state-of-the-art baselines, where the results of pro-
posed method and the best baselines are marked in bold.

For the mini-batch size, we set 256 for single side based methods
(AutoRec and CDAE), and 1,500 for other methods (both bsU and
bs I are set to be 1500 for JCA). For the regularization trade-off pa-
rameter, we grid search the best ones over [0.5, 0.1, 0.05, 0.01, 0.005,
0.001] for each model by the validation set. For ML1M dataset: we
set λ = 0.001 for JCA, 0.05 for JCA-MSE, and 0.01 for JCA-BPR; for
Yelp dataset: λ = 0.005 for JCA, 0.05 for JCA-MSE, and 0.001 for
JCA-BPR; for Games dataset λ = 0.001 for JCA, 0.001 for JCA-MSE,
and 0.001 for JCA-BPR. Moreover, we set the margin parameter
d = 0.15 for JCA. We grid search hidden layer dimension over [40,
80, 120, 160, 200, 240] and set 160 hidden neurons for JCA (we set
the hidden dimensions the same for both user and item compo-
nent, fine tuning the dimensions separately may provide better
performance). We re-sample negative samples in each epoch and
set the negative sampling rate 1 for all models. Other model-specific
hyper-parameters of baselines are fine-tuned over validation sets.

5.3 Proposed Model vs. State-of-the-art Models
We begin by investigating the recommendation quality of JCA com-
pared with eight baselines over three datasets. The precision and
recall results are presented in Figure 3 and Figure 4. For both met-
rics, we see that JCA produces the best performance. Besides, we
also calculate the F1-score to further evaluate the recommendation
quality as shown in Table 3, where the F1 scores for the proposed
method and the best baselines are marked in bold, and the improve-
ment rates are calculated for all settings. In terms of average F1@k
result (across three different values of k), JCA can outperform the
best baseline by around 5.5% on the MovieLens dataset, around 6.9%
on the Yelp dataset, and around 8% on the Games dataset.We further
do a t-test on the small improvement cases (ML1M @5 and @10),
where we find the p-value is smaller than 1.5% for both, showing
the statistical significance of the performance improvement.

In addition, we observe that: (i) the performance improvement is
larger for sparser datasets, which may be because in high sparsity
scenarios, user-user correlations or item-item correlations alone
are not enough, while joint learning of user-item correlations can
extract more useful information; (ii) the performance improvement
is larger for smaller k (k defines how many items to be recom-
mended to users), which indicates that JCA is more competitive
when limited number of items should be recommended to users.

5.4 Proposed Model and Objective Function
To demonstrate the effectiveness of the proposed JCA structure and
the pairwise hinge-based objective function, we implement two
variations of JCA using alternative objective functions (MSE and

http://files.grouplens.org/datasets/movielens/ml-1m.zip
https://www.yelp.com/dataset/challenge
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_Games.csv
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Video_Games.csv


Figure 3: Precision@k results of the proposed method vs. baselines for the three datasets.

Figure 4: Recall@k results of the proposed method vs. baselines for the three datasets.

ML1M Yelp Games
P@10 R@10 F@10 P@10 R@10 F@10 P@10 R@10 F@10

JCA-MSE .2346 .1768 .2017 .0256 .0665 .0370 .0178 .1205 .0311
NCF .2182 .1637 .1870 .0235 .0636 .0343 .0161 .1089 .0281
UI-AutoRec .2209 .1801 .1984 .0240 .0646 .0350 .0171 .1192 .0298
CDAE .2344 .1743 .1999 .0242 .0654 .0353 .0173 .1154 .0301
JCA-BPR .2106 .1597 .1817 .0234 .0639 .0343 .0173 .1160 .0301
NPR .2078 .1594 .1806 .0203 .0543 .0295 .0114 .0762 .0198
BPR .1975 .1498 .1704 .0154 .0391 .0221 .0101 .0655 .0175

Table 4: Comparison between JCA models and baselines
with same objective functions, where the results of the vari-
ations of JCA and the best baselines are marked in bold.

ML1M Yelp Games
P@10 R@10 F@10 P@10 R@10 F@10 P@10 R@10 F@10

JCA .2384 .1845 .2080 .0261 .0674 .0376 .0185 .1247 .0322
JCA-MSE .2346 .1768 .2017 .0256 .0665 .0370 .0178 .1205 .0311
JCA-BPR .2106 .1597 .1817 .0234 .0639 .0343 .0173 .1160 .0301

Table 5: Comparison between JCAmodels with different ob-
jective functions, where the best results are marked in bold.

BPR), and compare the performance with other models using the
same objective functions. We’ve argued in Section 4.2 that these
objective functions are not aligned with top-K recommendation, so
we seek to untangle their impact. We denote the model combine
JCA structure with MSE objective function as JCA-MSE, and the
one with BPR loss function as JCA-BPR.

Here we report the comparison between the JCA variations
(JCA-MSE and JCA-BPR) and the best three models using the MSE
objective function – CDAE, UI-AutoRec and NCF – and the models
using the BPR objective function – NPR and BPR. We follow the
same parameter tuning process as introduced in 5.2 for the two
JCA variations. We report the Precision, Recall and F1 at top 10, but
note that the results for top 1 and 5 have similar patterns.

First, let’s focus on the comparison between JCA variations and
other models with the same objective functions to evaluate the
effectiveness of the JCA structure. Table 4 shows that JCA-MSE
produces better performance than CDAE, UI-AutoRec and NCF for
all three datasets in terms of F1@10 and Precision@10. From the
perspective of recall, there are only one exceptional case: on ML1M
dataset UI-AutoRec is 1.8% better than JCA-MSE for Recall@10. For
the BPR objective function, JCA-BPR outperforms NPR and BPR
significantly. Based on these comparisons, we can conclude that the
proposed JCA model is effective for implicit top-K recommenders,
regardless of the choice of objective function.

ML1M Yelp Games
P@10 R@10 F@10 P@10 R@10 F@10 P@10 R@10 F@10

JCA .2384 .1845 .2080 .0261 .0674 .0376 .0185 .1247 .0322
JCA-NF .2303 .1777 .2006 .0257 .0669 .0371 .0179 .1214 .0313

Table 6: Comparison between JCA models with/without the
learnable item normalization factor, where the best results
are marked in bold.

Next, we turn to investigate whether the pairwise hinge-based
objective function is effective or not. Comparing the results of the
three variations of JCA in Table 5, we can observe the recommen-
dation performance trend: JCA > JCA-MSE > JCA-BPR for all three
metrics and all three datasets. This provides empirical evidence
that the proposed hinge objective function is more effective and
suitable for implicit top-K recommenders.

Further, to validate the effectiveness of the learnable item nor-
malization factor in the proposed JCA structure, we also implement
a variation of JCA without the item normalization factor named
JCA-NF in comparison with JCA. The result is presented in Table 6,
which shows that JCA model with the item normalization factor
produces better recommendation performance for all three datasets,
and the performance improvement rate is around 5%.

6 CONCLUSION AND FUTUREWORK
In this paper, we show that user-based AutoRec and item-based
AutoRec models explore different information from the data and
produce complementary recommendations. Based on this observa-
tion, we propose the Joint Collaborative Autoencoder framework
that learns both user-user and item-item correlations simultane-
ously, leading to improved implicit top-K recommendation quality.
Besides, the proposed JCA adopts a pairwise hinge-based objec-
tive function to optimize the top-K precision and recall. We also
present a mini-batch optimization algorithm so that JCA can be
trained on large datasets without the (impractical) need to load
the entire rating matrix as in naive batch learning approach. By
extensive experiments on three public datasets, we show that the
proposed framework outperforms state-of-the-art baselines. In our
continuing work, we are exploring how to incorporate auxiliary
information, such as textual and visual information, into the frame-
work to further improve the recommendation quality.
Acknowledgments. This work is supported in part by NSF IIS-
1841138.
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