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ABSTRACT

Tensor-based methods have shown promise in improving upon
traditional matrix factorization methods for recommender systems.
But tensors may achieve improved recommendation quality while
worsening the fairness of the recommendations. Hence, we pro-
pose a novel fairness-aware tensor recommendation framework
that is designed to maintain quality while dramatically improving
fairness. Four key aspects of the proposed framework are: (i) a new
sensitive latent factor matrix for isolating sensitive features; (ii) a
sensitive information regularizer that extracts sensitive informa-
tion which can taint other latent factors; (iii) an effective algorithm
to solve the proposed optimization model; and (iv) extension to
multi-feature and multi-category cases which previous efforts have
not addressed. Extensive experiments on real-world and synthetic
datasets show that the framework enhances recommendation fair-
ness while preserving recommendation quality in comparison with
state-of-the-art alternatives.
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1 INTRODUCTION

Recommenders are essential conduits: they shape the media we
consume, the jobs we seek, and the friendships and professional
contacts that form our social circles. And yet, recommenders may be
subject to algorithmic bias that can lead to negative consequences
in the kinds of recommendations that are made. For example, job
recommenders can target women with lower-paying jobs than
equally-qualified men [6]. News recommenders can favor particular
political ideologies over others [2]. And even ad recommenders can
exhibit racial discrimination [26].

Overcoming such algorithmic bias has been of keen interest in
classification tasks (e.g., recidivism prediction, loan approval) [5, 22,
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Figure 1: Overview of FATR: sensitive features are isolated
(top right), then sensitive information is extracted (bottom
right), resulting in fairness-aware recommendation.

25, 30, 31], but has only recently been on the rise for recommender
systems [12, 13, 28, 29]. Recommender-based approaches have typ-
ically focused on fairness, where the goal is to maintain some level
of neutrality in recommendation, e.g., balancing male vs. female or
old vs. young. While encouraging, most existing approaches make
a number of limiting assumptions: (i) focusing on two-dimensional
matrix factorization that has been the cornerstone of recommender
research in the past ten years [11, 19, 21]; (ii) assuming there is
only a single binary case (e.g., male vs. female); and (iii) trading-off
considerable recommendation quality for improving the fairness
characteristics of the recommender.

In contrast, we aim in this paper to create a new tensor-based
framework that can overcome these limitations for implicit recom-
mendation (i.e. where implicit feedback is available, but no explicit
ratings). Tensors, as n-dimensional generalizations of matrices, have
shown great promise across a variety of data mining and analytics
tasks — e.g., [8, 17, 23, 24] — where their multi-aspect models natu-
rally fit domains that go beyond two dimensions. Recommenders,
in particular, are well-suited for tensors that can capture multi-way
interactions among users, items, and contexts (e.g., time, location).
But there are key challenges: How can we model sensitive attributes
(e.g., age, gender) in a tensor-based recommender? How can we min-
imize the impact of these sensitive attributes on recommendations,
which can be correlated with non-sensitive attributes [16, 31])?
How can we build an optimization model for this problem and
efficiently solve it? And can such efforts maintain recommendation
quality while improving fairness?

Toward answering these challenges, this paper proposes a novel
Fairness-Aware Tensor-based Recommendation framework called
FATR. The overview is illustrated in Figure 1. The intuition of
the proposed framework is that the latent factor matrices of the
tensor completion model contain latent information related to the
sensitive attributes, which introduces the unfairness. Therefore, by
isolating and then extracting the sensitive information from the
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latent factor matrices, we may be able to improve the fairness of

the recommender itself. Concretely, we propose (i) a new sensitive

latent factor matrix for isolating sensitive features; (ii) a sensitive
information regularizer that extracts sensitive information which
can taint other latent factors; and (iii) an effective algorithm to
solve the proposed optimization model.

In sum, the contributions of this paper are as follows.

o First, FATR is built on a tensor foundation that can analyze mul-
tiple aspects simultaneously, promising potentially better rec-
ommendation quality than matrix-based approaches, while also
supporting traditional two-dimensional data (since tensors are
generalizations of matrices).

e Second, moving beyond binary sensitive features, FATR supports
multi-feature cases with multisided features (e.g., recommenda-
tion where both age of items and gender of users are considered
sensitive) and multi-category cases (e.g., where the sensitive
attribute can take on multiple values like Low, Medium, and
High) which are challenging for traditional regularization-based
approaches [14, 29].

e Finally, we empirically show that FATR can provide recommen-
dation quality on par with traditional (unfair) recommenders
while significantly improving the fairness of recommendations,
and does so better than state-of-the-art alternatives.

2 PRELIMINARIES

In this section, we first introduce the notations used in this paper
and the basics of tensor-based recommendation, then we discuss
fairness in recommendation.

2.1 Notations

Notations and definitions in this paper are presented as follows.
Tensors are denoted by Euler script letters like X, matrices are de-
noted by boldface uppercase letters like A, and vectors are denoted
by boldface lowercase letters like a. The [i1, ..., iN] entry of the
tensor X is denoted as X[iy, . . ., in]. We denote the pseudo inverse,
transpose, and Frobenius norm of a matrix A respectively by A,
AT, and ||Allr. Notation [-] represents the Kruskal operator. Nota-
tions ©, ®, and o denote the Khatri-Rao product, Hadamard product,
and vector outer product, respectively. Besides, we use the syntax
similar to Python to denote the matrix slicing operation (the index
starts from 1), for example A[:, 2 :] denotes the matrix A without
the first column. And we use [A B] to present the horizontal ma-
trices concatenating operation. The main symbols and operations
are listed in Table 1. More details about tensor calculations can be
found in [18].

2.2 Tensor-Based Recommendation

Matrix factorization is the foundation of many modern recom-
menders [20]. These matrix factorization methods estimate missing
ratings by uncovering latent features of users and items. Building
on these user-item interactions, tensor-based methods have been
growing in appeal recently since they can naturally model multi-
way (or multi-aspect) interactions [8, 17, 23, 24]. For example, a
3-order tensor could represent users, items, and time of day. Ad-
ditional contexts can lead to an N-way tensor. And, of course, the
classic user-item problem can be viewed as a 2-way tensor.

Notations Definitions

X e RI]Xsz.A.XIN

N™_order tensor

N 1.
X(n) € RInX Wiz 1) Mode-n unfolding matrix of tensor X

-1 Kruskal operator, e.g., X ~ [Ay, ..., AN]
©) Khatri-Rao product
® Hadamard product
o Vector outer product
(Aj)®k#n ANO...0A 11 OAL_1O...0A;
Al i:j] Matrix slicing operation (index starts from 1)
[A B] Matrices concatenating operation (horizontal)

Table 1: Main symbols and operations.

Formally, given an N-order tensor T representing the users, items,
and multiple aspects related to the items, the basic tensor-based
recommendation model can be defined as:

minimize L=|X - [A1,Az,... ,AN]]”]%
X,AL Ay, ..., AN
subject to QaeX =7,

where X denotes the complete preferences of users, J denotes the
observations, Q is a non-negative indicator tensor with the same
size as X with Q[iy,...,in] = 1 indicating that we observe the
preference, otherwise Q[iy,...,iN] = 0, A1, Az, ..., AN are the
latent factor matrices of all the modes of the tensor.
The objective function can be written in the unfolding form so
that it can be solved by optimization algorithms, as follows:
P _ _ Ok=n1T1 12
,minimize L =X — Anl(Ar)=**"] Iz .
subjectto Q) ® X(p) = Ty,

where Q) is the mode-n unfolding of the indicator tensor Q, Ty,
is the mode-n unfolding of the tensor T, and X, is the mode-n
unfolding of the tensor X. To solve this basic recommendation by
tensor completion, we can use Alternating Least Squares (ALS),
which optimizes every latent factor matrix by linear least squares
in each iteration. The update rule is:

An — X l[(Ap) O] T]T,

where A, is the updated latent factor matrix of A,.

2.3 TFairness in Recommendation

Such a tensor-based approach has no notion of fairness. Here, we
assume that there exists a sensitive attribute for one mode of the
tensor, and this mode is a sensitive mode. For example, the sensitive
attribute could correspond to gender, age, ethnicity, location, or
other domain-specific attributes of users or items in the recom-
menders. The feature vectors of the sensitive attributes are called
the sensitive features. Further, we call all the information related
to the sensitive attributes as sensitive information, and note that
attributes other than the sensitive attributes can also contain sensi-
tive information [16, 31]. While there are emerging debates about
what constitutes algorithmic fairness [5], we adopt the commonly
used notion of statistical parity. Statistical parity encourages a rec-
ommender to ensure similar probability distributions for both the
dominant group and the protected group as defined by the sen-
sitive attributes. Formally, we denote the sensitive attribute as a
random variable S, and the preference rating in the recommender
system as a random variable R. Then we can formulate fairness



as P[R] = P[R|S], i.e. the preference rating is independent of the
sensitive attribute. This statistical parity means that the recom-
mendation result should be unrelated to the sensitive attributes.
For example, a job recommender should recommend similar jobs
to men and women with similar profiles. Note that some recent
works [9, 28, 29] have argued that statistical parity may be overly
strict, resulting in poor utility to end users. Our work here aims to
achieve comparable utility to non-fair approaches, while providing
stronger fairness.

3 FAIRNESS-AWARE TENSOR-BASED
RECOMMENDATION

Given this notion of fairness, we turn in this section to the de-
sign of a novel Fairness-Aware Tensor-based Recommendation
framework (FATR) — as illustrated in Figure 2. The intuition of
the proposed framework is that the latent factor matrices of the
tensor completion model contain latent information related to the
sensitive attributes, which introduces the unfairness. Therefore, by
isolating and then extracting the sensitive information from the
latent factor matrices, we may be able to improve the fairness of
the recommender itself.

In the rest of this section, we aim to address four key questions:
(i) How can we represent (and ultimately isolate) the sensitive at-
tributes in the tensor completion model? (if) How do we extract all
the sensitive information into the isolated explicit representation?
(iil) How can we eliminate the extracted sensitive information from
the tensor completion model? and (iv) How do we solve the new
fairness-aware recommendation model? In the following, we ad-
dress these questions in turn. We focus in this section on a single
binary sensitive attribute for mode-n (e.g., gender). In Section 4, we
will generalize to consider multi-feature and multi-category cases.

3.1 Isolating Sensitive Features

In conventional tensor completion, the sensitive features will min-
gle with other features and distribute over different dimensions in
the latent factor matrices, which makes it difficult to extract them.
For example, a 3-way tensor of user-expert-topic can be factorized
into three latent factor matrices [8], where the feature vector of a
sensitive attribute for the experts like gender is mixed with other
features and represented by the latent factors, which means that
the sensitive information hides in the expert latent factor matrix.
We propose to first isolate the impact of the sensitive attribute
by plugging the sensitive features into the latent factor matrix. For
instance, in our user-expert-topic example, we can create one vector
so with 1 representing male and 0 representing female, and another
vector s; with 1 indicating female and 0 indicating male. sp and s1
together form a matrix, denoted as Sensitive Features S. We put S to
the last two columns of the latent factor matrix of sensitive mode
mode-n. Then we construct a new sensitive latent factor matrix:

DEFINITION (Sensitive Latent Factor Matrix). Given the latent factor
matrix A, € RnXT of the sensitive mode mode-n, where r is the
dimension of the latent factors and d, is the number of entities
of the mode-n. We split A, horizontally into two parts: matrix
Al e R4nX(r=2) and Al e RYn*Z If A}/ is forced to take the same
values as the sensitive features S € Rd"xz, then the new matrix
A, = [A;, S]is called sensitive latent factor matrix.

The matrix Aj, represents the non-sensitive dimensions, while
A}/ represents the sensitive dimensions (where the corresponding
dimensions in other non-sensitive factor latent matrices are also
called sensitive dimensions). Thus, sensitive dimensions of the sen-
sitive latent factor matrix will take the same values of the sensitive
features. In this way, we can explicitly represent the sensitive at-
tributes and isolate them from non-sensitive attributes in the latent
factor matrix. Hence, we can update the tensor-based recommender
in Section 2.2 with the following objective function:

minimize L=X - [Ar....An.....ANTIE
x,Al,...,An,...,AN
subject to QaeX =17,
An = [A} A7),
Al =S,

3.2 Extracting Sensitive Information

By isolating the sensitive features, we provide a first step toward
improving the fairness of the recommender. But there may still
be sensitive information that resides in non-sensitive dimensions.
To extract this remaining sensitive information, we propose an
additional constraint that the non-sensitive dimensions should be
orthogonal to the sensitive dimensions in the sensitive latent factor
matrix based on the following theorem.

THEOREM. If one non-sensitive dimension is not perpendicular to
all the sensitive dimensions, then this dimension is related to the
sensitive attribute.

Proor. Regarding all dimensions in the sensitive latent factor ma-
trix as vectors in a high dimensional space. If the angle between one
non-sensitive dimension vector v and the plane ps, 5, decided by
sensitive features s; and s; is not 90°, then v can be resolved into
two vectors vi and v, on the same directions as s; and sy, and an-
other vector v3 perpendicular to ps, s,. Therefore, v = vy +v3 +v3,
and vj and vy can be merged into s; and s when reconstructing the
tensor as shown in Equation (2), which changes the values of sensi-
tive dimensions, i.e., this latent factor represented by dimension v
is related to the sensitive attribute.

X~ a(ll> o a(zl) o a(31) +...+ a(lr_z) o a(zr_z) ov

i a(1r—1) o a,(;_l) (lr) o a(Zr) osy

- .MM

= al oa2

os; +a
) a(;) +...+ a(lr_z) ) a(zr_z) ovs

. a(1r—2) o a(zr—Z) (1r—2) o a(zr—Z)

+1 os;+l;-a
(r)
1

OSZ

-1 -1
+a(1r )oagr )081+a oa(zr)OSZ

= a(ll) o a(zl) o a(31) +... 4+ a(lr_z) o agr_z) ovs

+ (a(lr—l) o a(zr—l) +1 - a(lr—2) o a(Zr—2)) o8y

+ (a(lr) o a(zr) +1y- a(lr_z) o a(zr_z)) o sy,
where a(ll"'r), a(zl"'r) , and a(31"'r) are the columns in the three

latent factor matrices, l;is the scale coefficient between s; and vy
sothatl; - sy = vy, and I is from Iy - s3 = va.

After extracting the sensitive information, all the sensitive in-
formation is gathered in the isolated sensitive dimensions. Then
we can have a new objective function for the tensor completion as
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Figure 2: FATR isolates sensitive features in the latent matrix with non-sensitive dimensions orthogonal to them and elimi-

nates the sensitive information by removing the sensitive dimensions. X is the tensor with bias, and X is the fairness-enhanced
recommendation tensor.

shown in Equation (3). Algorithm 1: FATR Solver

Input: T, Q, 7, S, n, a, A, y, tol;
Output: X, {Ai}fil
1 Randomly Initialize {A; € RI*"}N .

i=1’

L=X - [An....An ..., ANTIE

minimize
X,A;,... AL, ..., AN

N
A 17T Al 2 Y 2
+5lA An||F+5;||Ai||F

(3) 2 repeat
. 3 fori=1:Ndo
subject to i@ X=7, . if i = n then
An =[A; A)l, 5 L Update A}, using (7);
A} =S, 6 else
] 7 L Update A; using (6);
where = ||A”’T A/ ||2 is the orthogonal constraint term, A is the trade-
2 n nllp oF
Y N . ) 8 Update A}, — A}, —a—;
off parameter, 3 221 llA; |5 is the L2-norm constraint to the norms . 0A},
_ o 2 9 Form A, < [A}, S];
of the latent factor matrices so that the minimizing of 3 lAZTAL ”1% © Update X — T+Q @ [Aq, ... An .. AN

is because the cosine angles are close to zero rather than because
the norms of columns in A}, or Ay, are small (if it is this case, norms
of other latent factor matrices will get larger, which will increase

the value of the term g Zf\il [|A; ||1§), y is the trade-off parameter

o

1 until ||x~pre = X/ 1 X prellr < tol;
2 Update X « I[A’,...,A;l,...,A;V]];

-

the sensitive mode mode-n, the unfolding form is in Equation (4).
of this L2-norm term.

_ _AMMRNT _ A (R’ N\T 12
3.3 Fairness-Aware Recommendation A A AN £ = X = An(By) " = An(Bn) Iy
After the above two steps, we can get the new latent factor matrices
A1,...,Ap, ..., AN, whose sensitive dimensions hold features ex-
clusively related to the sensitive attributes. And their non-sensitive
dimensions are decoupled from the sensitive attributes. Thus, we
can derive the fairness-enhanced recommendation by combining

these matrices after removing their sensitive dimensions as:

N
A 7T A7 2 Y 2
+5lA A,1||F+5;||A,-||F

subject to Q(n) ® X(n) = T(n), 4
By = [(Ap)®+*"],

B, =Bu[:,: r—2],

By =Byl r—1:],

Ay =S,

X [[A',...,A;l,...,AEV]],
where i is the fairness-enhanced tensor completion result, and

Al .. AL, ... ,A;V are the non-sensitive dimensions of the latent
factor matrices (i.e. the first  — 2 columns in Ay, ..., Apn, ..., AN). where B, is the result of the Khatri-Rao product of all the latent

factor matrices without mode-n, B}, is the first r — 2 dimensions of

3.4 Optimization Algorithms

To solve the optimization problem in Equation (3), we need to first
rewrite the objective function to be the unfolding matrix form. For

B, and B}/ is the last 2 dimensions of B,.
For non-sensitive modes (denoted as m), the unfolding objective
function is shown in Equation (5).



minimize £ = || Xy — Am[(Ag)OF#m]T||2
ginimize £ = [X )~ Aml(A0) 7l
N
cDiarT AR+ L Az ©
g in TnllE T g £ ilp
subject to Q(m) ® X(m) = T(m), A,’l’ =8S.

A
Equation (4) cannot be solved by ALS because of 3 lAZTAL ||1§,

A
but Equation (5) can be solved by ALS because §||A;{TA;I||§ is

a constant term for non-sensitive modes. We can use Gradient
Descent to solve them together, but its performance is not as good
as ALS for tensor completion task. However, if we can separate

A

3 lAZTAL ||1§ from the objective function and optimize it alone, we
can efficiently and effectively solve the problem. Thus, we propose
a hybrid optimization algorithm which treats the sensitive and
non-sensitive modes differently. It follows the ALS rule to update
the non-sensitive modes in each iteration. For the sensitive mode

A
mode-n, we first use ALS to update A}, with > ||A;1’TA;1||I§ being

considered as a constant term, and then use Gradient Descent to

update A}, again only to minimize 3 lAZTAL ||1§ The update rule

for the non-sensitive modes is defined in rule (6), and the first ALS
step for the sensitive mode mode-n uses update rule (7).

Am — X(m)(Ar) O [yL+ [(Af) %k T (Af)ksm]T, - (6)

A X~ AT+ BB ()

where K; is the updated non-sensitive latent factor matrix, X;, is
the updated non-sensitive dimensions of the sensitive latent factor
matrix, I is an identity matrix.

In the second optimization step for the sensitive mode, we need

A oF
the gradient of F = > Ay TA;H%, which is calculated by GAT =
n
ANL(ALT A,
The entire optimization process is described in Algorithm 1.
We can also use Newton’s method to replace gradient descent,

which has the advantages of fast convergence speed and less effort
of tedious learning rate tuning. Newton’s method requires the

0*F
second-order derivative of ¥, which is calculated by: ——— =
OA}0A]T
AAYANT.

Finally, line 8 of Algorithm 1 should be modified to be “Update
*F )i oF
OALOALT T 0A}

4 GENERALIZING FATR

So far, we have focused on a single binary sensitive attribute. We
show here how to handle multi-feature cases (i.e., there are more
than one sensitive attributes) and multi-category cases (i.e., the at-
tribute can take more than two values). We also consider multisided
attributes (i.e., more than one mode is considered sensitive), which
is important in real-world applications [3]. Such multi-feature and
multi-category cases are challenging for traditional regularization-
based approaches [14, 29] since a regularization term can only
account for fairness between two groups defined by one binary
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Figure 3: In the case of multi-category sensitive dimensions
(e.g., by ethnicity), this example shows how to generate the
sensitive latent factor matrix.

attribute. By missing the multi-way interactions among multiple cat-
egorical sensitive attributes, such a regularization-based approach
may lead to less effective (and less fair) recommendation. However,
the multi-feature and multi-category problems fit naturally into
the proposed FATR framework.

For the multi-feature case, we need to put all the sensitive fea-
tures into the corresponding sensitive latent factor matrices, and
add the orthogonal constraints to all the sensitive modes to isolate
and extract all the sensitive information. For the multi-category
case, we need to have ¢ columns in the sensitive dimensions if the
attribute can take c distinct values. Hence, the binary-feature case
is just a special multi-category case where ¢ = 2. Every dimension
only indicates one specific category, for example, dimension i has
value 1 for the entities who belong to category c; and has value 0
for other instances. One example is shown in Figure 3.

For ease of presentation, we assume there are three sensitive
attributes, one is denoted as S; belonging to the mode-n1, another
two are denoted as S and S3 belonging to the mode-nz. And all of
them have three available categories to take. For example, in the
Twitter experts recommender, we want to enhance the fairness for
experts with different genders (Female, Male, and Unspecified) and
with different ethnicities (African-American, Asian, and White),
and at the same time we also want to augment the fairness for the
topics with different numbers of experts (small, medium, and large).
The sensitive features of S1 is S; which has 3 columns. The sensitive
features of Sy and S3 are Sy and Ss3, and concatenate them together
to be Sz,3 which has 6 columns. Then the objective function is:

minimize L£=[X-[A1...An ... An, ... ANTI

X,Ar..Ap . Ap, . AN

A T 2 T 2
+ 5 (AR, Al + AR, A, i)

)4 < 2
+s ;nAinF
QeX =T,
An = (A}, AL
An, = [A7, A7l
A =S1, A}l =Sy3,

subject to

where A,,, and A, are the sensitive latent factor matrices, A/, , and
Aj,, are non-sensitive dimensions of Ay, and A,,, Ay and A7)
are the sensitive dimensions of K:l and K:Z which have the same
values as S; and Sy 3.



We can still use Algorithm 1 to solve the new objective function
with only line 8 and line 9 modified to update both K,; and A‘n; .
In the same way, the proposed method can be applied to model the
cases with more sensitive features and more categories.

5 EXPERIMENTS

In this section, we empirically evaluate the proposed approach
w.r.t three aspects — recommendation quality, recommendation
fairness, and effectiveness of eliminating sensitive information —
over four scenarios: (i) under the traditional matrix scenario; (ii)
then by comparing matrix to tensor approaches; (iii) by varying
the degrees of bias and sparsity to better explore their impact; and
(iv) evaluating FATR’s generalizability to the multi-feature and
multi-category scenario.

5.1 Datasets

We consider a real-world movie dataset, a real-world social media
dataset, and a collection of synthetic datasets for which we can
vary degrees of bias and sparsity. We report the average results
over three runs for all datasets.

MovieLens. We use the MovieLens 10k dataset [10], keeping all
movies with at least 35 ratings. Following previous works [12, 15],
we use the year of the movie as a sensitive attribute and consider
movies before 1996 as old movies. Those more recent are considered
new movies. In total, we have 671 users, 373 old movies, and 323
new movies. The sparsity of the dataset is 11.4%. Since we focus
on implicit recommendation, we consider ratings to be 1 if the
original ratings are higher than 3.5, otherwise 0. Then we have
15,579 positive ratings for new movies and 20,387 positive ratings
for old movies, which reflects the bias in the dataset. We randomly
split the dataset into 90% for training and 10% for testing.

User-Expert-Topic Twitter Data. We use a Twitter dataset intro-
duced in [8] that has 589 users, 252 experts, and 10 topics (e.g., news,
sports). There are 16, 867 links from users to experts across these
topics capturing that a user is interested in a particular expert. The
sparsity of this dataset is 1.136%. We consider race as a sensitive
attribute and aim to divide experts into two groups: whites and
non-whites. We apply the Face++ (https://www.faceplusplus.com/)
API to the images of each expert in the dataset to derive ethnicity.
In total, we find 126 whites and 126 non-whites, with 11,612 posi-
tive ratings for white experts but only 5,255 for non-whites. Since
this implicit feedback scenario has no negative observations, we
randomly pick unobserved data samples to be negative feedback
with probability of 0.113% (one tenth of the sparsity). We randomly
split the dataset into 70% training and 30% testing.

Synthetic Expert Datasets. To gauge the impact of degrees of
bias and sparsity, we further generate a suite of synthetic expert
datasets. We first generate three latent factor matrices by uniform
distribution for user, expert, and topic, which are U € R200x30
E € R100%30 4nd T € R3*30, Second, we set the last dimension of E
to be the binary sensitive features to indicate two groups and make
the numbers of the two groups equal. Third, we add constant values
vy, and vy to the sensitive dimensions of U and T to increase the
bias. Then, we get the preference ratings tensor of size 200 x 100 X 5
by calculating the Khatri-Rao product of U, E, and T. Last, we set

1 to ratings lager than 0.5, meaning the user selects the expert
with respect to the topic and set 0 to ratings less than 0.5, meaning
the user does not select the expert with respect to the topic. We
randomly sample the 1’s based on a probability p to produce the
final observed dataset. By adjusting the values of v, and v;, we
generate datasets with varying imbalance of the proportion of the
number of the positive ratings for the protected group over the
total number of the positive ratings. With a proportion of 0.1, only
10% of positive ratings are for the protected group. We call this
an extreme bias case. Similarly, we generate datasets with high
bias (0.2), middle bias (0.3), and low bias (0.4). We further generate
three levels of sparsity, which are 0.01 (high sparsity), 0.02 (middle
sparsity), and 0.03 (low sparsity) by adjusting p. As a result, we
have 12 different datasets: High Bias / High Sparsity, High Bias /
Middle Sparsity, etc. All datasets are randomly split into 70% for
training and 30% for testing.

5.2 Metrics

We consider metrics to capture recommendation quality, recommen-
dation fairness, and the impact of eliminating sensitive information.

Recommendation Quality. To measure recommendation quality,
we adopt Precision@k (P@K) and Recall@k (R@K), defined as:

|©’< @+ |@km©+
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where O, is the set of items user u gives positive feedback to in
test set and @5 is the predicted top-k recommended items. We
also consider F1@k score, which can be calculated by F1@k =
2 - (P@k X R@k)/(P@k + R@k). We set k = 15 in our experiments.

Recommendation Fairness. To measure recommendation fair-
ness, we use two complementary metrics. The first one is the abso-
lute difference between mean ratings of different groups (MAD):

SRO  »RM
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where R and R() are the predicted ratings for the two groups
and |R®| is the total number of ratings for group i. Larger values
indicate greater differences between the groups, which we interpret
as unfairness.

The second measure is the Kolmogorov-Smirnov statistic (KS),
which is a nonparametric test for the equality of two distributions.
The KS statistic is defined as the area difference between two em-
pirical cumulative distributions of the predicted ratings for groups:
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where T is the number of intervals for the empirical cumulative
distribution, [ is the size of each interval, S(R(O), i) counts how many
ratings are inside the i’ h interval for group 0. In our experiments,
we set T = 50. Lower values of KS indicate the distributions are
more alike, which we interpret as being more fair.

MAD and KS can be directly applied to binary sensitive attributes.
For multi-category cases, we need to calculate MAD and KS statis-
tics for every dominant group vs. protected group pair among the



categories. For example, for the attribute of ethnicity with three cat-
egories — White (W), African-American (AA) and Asian (A), where
AA and A are the two groups to be protected — we need to calculate
the MAD and KS metrics for two pairs - W vs. AA, and W vs. A.

Note that we measure the fairness in terms of MAD and KS
metrics across groups rather than within individuals, since absolute
fairness for every individual may be overly strict and in opposition
to personalization needs of real-world recommenders.

Eliminating Sensitive Information. To evaluate the impact of
eliminating sensitive information, we use the sum of absolute cosine
angles between non-sensitive and sensitive dimensions (SCos):

r=2 r
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where A; and A; are one non-sensitive dimension and one sensitive
dimension indexed by i and j, and cos calculates the cosine angle
between two vectors.

We also use the sum of absolute Pearson correlation coefficient be-
tween non-sensitive and sensitive dimensions (SCorr) to quantify
the sensitive information:

r-2 r
SCorr = Z Z [corr(Ai, Aj)l,

i=1 j=r-1

where corr calculates the Pearson correlation coefficient between two
vectors. The lower the SCos and SCorr are, the better the sensitive
information elimination result is.

For multi-category cases, Scos and Scorr should be calculated
for every category separately to evaluate whether the impact of the
multi-category attribute is eliminated with respect to all categories.
Following our ethnicity example from earlier, we need to calculate
SCos and SCorr for W, AA, and A separately.

5.3 Baselines

To evaluate the proposed FATR, we consider two variations — one
using Gradient Descent (FT(G)) and one using Newton’s Method
(FT(N)) - in comparison with two tensor-based alternatives:

e Ordinary Tensor Completion (OTC): The first is the conventional
CP-based tensor completion method using ALS optimization
algorithm as introduced in Section 2.2. This baseline incorporates
no notion of fairness, so it will provide a good sense of the state-
of-the-art recommendation quality we can achieve.

o Regularization-based Tensor Completion (RTC): The second one is
an extension from the fairness-enhanced matrix completion with
regularization method introduced in [12, 14, 28], which adds a
bias penalization term to the objective function. For tensor-based
recommenders, we can use the regularized objective function (8)
to enforce the statistical parity.
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Figure 4: Recommendation quality (MovieLens).
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Figure 6: Eliminating Sensitive Information (MovieLens).

where A > 0 is the regularization coefficient, Qo and Q; are the
indicator tensors to indicate the ratings of the two groups deter-
mined by the binary sensitive attribute, ng and ny are the numbers
of ratings to the two groups. We use Gradient Descent to solve this
optimization problem.

Since the MovieLens data has only two modes (users and movies),
we consider matrix versions of our tensor based methods (named
FM(G) and FM(N)) versus matrix baselines of Ordinary Matrix
Completion (OMC) and Regularization-based Matrix Completion
(RMC) corresponding to RTC.

5.4 Matrix-Based Methods (MovieLens)

For the first experiment, we evaluate the four matrix-based ap-
proaches (OMC, RMC, FM(G) and FM(N)) over the MovieLens
dataset. We set 50 as the latent dimension for all the methods
and fine tune all other parameters; for our proposed methods we
set A = 1, y = 0.05 and learning rate as 0.001 for FM(G), and
A =10.00001 and y = 0.01 for FM(N).

We begin by considering the quality of recommendation of the
four approaches in Figure 4. As expected, the baseline with no
notion of fairness - OMC - results in the best overall precision and
recall. Of the three fairness-aware approaches, the regularization-
based approach - RMC - performs considerably below the others,
with our two approaches (FM) providing performance fairly close to
OMC. This suggests that recommendation quality can be preserved,
but leaves open the question of whether we can add fairness.

Hence, we turn to the impact on fairness of the four approaches.
Figure 5 presents the KS statistic and MAD (recall, lower is bet-
ter). We can see that all three fairness-aware approaches - RMC,
FM(G) and FM(N) - have a strong impact on the KS statistic in
comparison with OMC. And for MAD, we see that both FM(G) and
FM(N) achieve much better ratings difference in comparison with
RMC, indicating that we can induce aggregate statistics that are
fair between the two sides of the sensitive attribute (old vs. new).

Last, we exam how well do these approaches perform from the
perspective of sensitive information elimination. The left figure in
Figure 6 shows the SCos statistic, while the right figure shows the



Methods [ R@15  P@15 KS MAD SCos SCorr

OMC 0.3467 0.0842 0.1660 0.0122  7.8035  1.9131
OTC 0.4384 0.0958 0.3662 0.0333  21.9193  8.7732
RMC 0.1609  0.0702  0.1521  0.0086 15.3268 0.8534
RTC 0.3003  0.0515 0.2003 0.0171 23.6818 1.4036
FM(G) 0.4045 0.0891 0.0523 0.0037  0.3081  0.1407
FT(G) 0.4180 0.0870 0.0195 0.0024  0.0936  0.0396
FM(N) 0.3298 0.0687 0.0245 0.0044  0.0022  0.0115
FT(N) 0.3975 0.0786 0.0173 0.0029  0.0001  0.0001

Table 2: Comparison for recommending Twitter experts.

SCorr statistic. Both of them demonstrate that the proposed FATR
framework can eliminate sensitive information to a great extent,
but RMC can only reduce the SCos to around half of that of OMC
and SCorr to around one third of that of OMC.

5.5 Matrix vs. Tensor-Based Methods (Twitter)

We next turn to evaluating the expert recommendation task over
the real-world Twitter dataset. Here we consider the tensor-based
approaches - OTC, RTC, plus FT(G) and FT(N). To further evaluate
the impact of moving from a matrix view to a tensor view, we also
consider the purely matrix-based approaches, which compute users
preferences on experts for each topic independently. We set 20 as
the latent dimension for all the methods and fine tune all other
parameters; for our proposed methods we set A = 1, y = 0.05 and
learning rate as 0.001 for FM(G), and A = 0.00001 and y = 0.01 for
FM(N). We show the results for all of our metrics in Table 2.

First, let’s focus on the differences between matrix and tensor ap-
proaches. We observe that the tensor-based approaches mostly pro-
vide better recommendation quality (Precision@k and Recall@k)
in comparison with the matrix-based approaches. Since the ex-
pert dataset is naturally multi-aspect, the tensor approaches better
model the multi-way relationships among users, experts, and top-
ics. We see that the fairness quality (KS and MAD) of matrix-based
methods are better than tensor-based ones for the baselines meth-
ods (OMC vs OTC, and RMC vs RTC), but the fairness improves for
our proposed methods when we move from matrix to tensor. We see
a similar result for the impact on eliminating sensitive information
(SCos and SCorr).

Second, let’s consider the empirical results across approaches.
We see that: (i) the proposed methods are slightly worse than OTC
from the perspective of recommendation quality, but keep the differ-
ence small, and FM methods also have comparable recommendation
performance with OMC; (ii) FT(G) and FT(N) provide the best fair-
ness enhancement results, and FM(G) and FM(N) also alleviate the
unfairness a lot compared with other matrix-based methods. RTC
and RMC improve the fairness as well, but their effects are not as
good as the proposed methods; (iii) the proposed approaches can ef-
fectively eliminate the sensitive information; and (iv) comparing the
two variations of FATR, FT(G) always provides better recommen-
dation quality but performs worse than FT(N) in terms of fairness
enhancement and sensitive information elimination, which may
be because Newton’s method has stronger effects on optimization
leading to more effective minimization of the orthogonal constraint

A . .
term F = 3 lAZTAL ||1% in Equation (3).
In addition, the 4 Zfil ||A,||I% term in our proposed objective

function (3) may influence the recommendation performance, but
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Figure 7: F1@15 and KS statistics of the proposed methods
and the baselines with L2-norm terms.

the baselines do not have it, which may be an unfair comparison.
Therefore, we do another experiment using OTC, RTC, OMC, and
RMC with the L2-norm term. The recommendation performance
results and fairness enhancement results are shown in Figure 7. We
can conclude similarly that the proposed methods still perform well
in terms of both recommendation quality and fairness enhancement.
Besides, we find that compared with the baselines without L2-norm
terms, the baselines with L2-norm have better recommendation
quality but higher bias.

5.6 Varying Bias and Sparsity (Synthetic)

Next, we consider the impact of bias and sparsity through a series
of experiments over the synthetic expert datasets. For parameters
setting, the latent factor dimension is set as 20, we set A = 0.25,
y = 0.05, learning rate as 0.002 for FT(G), and A = 0.0001 and
y = 0.1 for FT(N). We set the latent dimension smaller than 30 on
purpose, which is the number of factors we use when generating
the synthetic dataset, because in practice, researchers tend to use
low dimensional latent factor to model user-item interactions.

We begin by investigating the impact of bias — do our methods
perform well even in cases of extreme bias? Or do they require only
moderate amounts? We fix the sparsity level at 0.02 and vary the bias
levels from Low, Middle, High, and Extreme. We show in Figure 8a
the F1@15 of all eight methods on these four datasets. The results
show that OTC always performs best, but FT(G) does not reduce the
F1 score much compared with other methods. Overall, tensor-based
methods outperform matrix-based methods. And within matrix-
based methods, FM(G) is just a little worse than OMC, and much
better than RMC. Further, we can observe that as the bias level goes
down, the recommendation quality is improved for all six fairness-
aware methods in comparison with OTC and OMC. For example
the F1@15 score difference between OTC and FT(G) are 0.0041,
0.0034, 0.0031, and 0.0015 for the extreme, high, medium, and low
bias situations respectively. Figure 8b shows that for all the bias
levels, the proposed FT(G) and FT(N) can enhance the fairness to a
great extent. We can also observe that RTC and RMC can reduce the
unfairness compared with conventional completion methods, but
their performances are not comparable with the proposed methods.
One outlier is the result produced by RMC in the low bias dataset.
Although it reduces the KS as low as proposed methods do, its
recommendation quality is not ideal. We also study how well do
these methods eliminate sensitive information as demonstrated in
Figure 8c. The figure shows that the proposed methods (both tensor-
based and matrix-based) have the lowest SCos values, meaning that
our methods can effectively eliminate the sensitive information.
From these results, we can conclude that the proposed approaches
provide good and consistent performance over all the bias levels.
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Figure 9: Evaluating the impact of sparsity under extreme bias (Synthetic Experts dataset).

Furthermore, we also analyze the results for datasets with various
sparsities with bias level fixed at the extreme level. The results are
shown in Figure 9. We can draw the similar conclusion from it
that the proposed methods reduce the unfairness without much
loss of the prediction accuracy for different sparsities. However, in
addition to this conclusion, these results also imply that with the
dataset being denser, the unfairness is more severe. Combining the
observations from Figure 8 and Figure 9, we can learn that: (i) tensor
completion possesses more algorithmic bias than matrix completion
does; and (ii) the proposed FATR methods have consistent fairness-
enhancement and sensitive information eliminating performance
on datasets with various bias levels and sparsities. We also compute
MAD and SCorr statistics, showing similar patterns as KS and SCos.

5.7 Multiple Features and Multiple Categories

Finally, by the same dataset as used in Section 5.5, we investigate
how the proposed model performs with multiple features and multi-
ple categories (as introduced in Section 4). We consider both gender
and ethnicity as sensitive attributes. For ease of experimentation,
we consider gender (G) as a binary feature (M=Male, F=Female).
For ethnicity, we consider three categories: White (W), African-
American (AA), and Asian (A). Our dataset contains 126 whites
with 11,612 positive feedbacks, 80 Asian people with 2,238 feed-
backs, and 46 African-Americans with 3,017 positive feedbacks.
The distribution of the gender is: 163 males and 83 females. Males
have 10,160 positive ratings and females have 6,707 positive ratings.
Other settings of the experiment are the same as single-feature
experiment as described in Section 5.5.

For the parameters settings, we set the latent factor dimension
as 20 for OTC, but 25 for FT(G) and FT(N) because there are 5
dimensions occupied by the sensitive dimensions, and we want
similar degree of freedom for all the methods. We set 1 = 0.05,
y = 0.05, and the learning rate 0.002 for FT(G), and A = y = 1
for FT(N). Because regularization-based models cannot be easily
applied to this scenario, we compare FT(G) and FT(N) with OTC.

Figure 10a illustrates that the proposed methods can keep a
relatively high recommendation quality compared with the OTC.

Figure 10b shows that FT(N) model have a good fairness enhance-
ment performance for both attributes. FT(G) works well on the
ethnicity feature but a little unsatisfactory for the gender feature.
One possible reason is that FT(G) requires more effort for parameter
tuning. Moreover, the bias related to the ethnicity feature is more
severe than the unfairness related to the gender feature, which
makes it harder for the model to decrease the unfairness for the
gender feature. Figure 10c shows the relationships between the
latent factor matrices from the three methods and all the sensitive
features. It implies that the FATR models can alleviate the impact of
the sensitive information from all the sensitive attributes. Further,
we see that FT(N) works well for all attributes including gender
(which is challenging for the other approaches).

6 RELATED WORK

Friedman [7] defined that a computer system is biased “if it sys-
tematically and unfairly discriminates against certain individuals
or groups of individuals in favor of others” As we have mentioned,
considerable efforts have focused on classification tasks (e.g., re-
cidivism prediction, loan approval) [5, 22, 25, 30, 31]. In the con-
text of recommenders, Kamishima et al. first claimed the impor-
tance of neutrality in recommendation [13], and proposed two
methods to enhance the fairness in explicit recommender systems.
One is a regularization-based matrix completion method [14], an-
other is a graph model-based method [15]. The performances of
these two methods are similar. Later, Kamishima et al. extended
the work in [14] to tackle the challenge of implicit recommen-
dation problem [12]. Yao et al. [28, 29] proposed four novel met-
rics for fairness in collaborative filtering recommender systems
and used similar regularization-based optimization approach as
Kamishima did in [12, 14] to address the problems caused by differ-
ent forms of bias. Moreover, there are some literatures working on
fairness-enhancement for more specific scenarios. Abdollahpouri
et al. [1] used a regularization-based matrix completion method to
control popularity bias in learning-to-rank recommendation. Xiao
et al. [27] proposed a multi-objective optimization model to imple-
ment fairness-aware group recommendation. Burke et al. [4] also
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Figure 10: Evaluating the generalizing ability to multi features and multi categories.

used a regularization-based matrix completion method to balance
neighborhood fairness in collaborative recommendation.

7 CONCLUSION AND FUTURE WORK

This paper proposes a novel framework — FATR - to enhance the
fairness for implicit recommender systems while maintaining rec-
ommendation quality. FATR effectively eliminates sensitive infor-
mation and provides fair recommendation with respect to the sensi-
tive attribute. Further, unlike previous efforts, the proposed model
can also handle multi-feature and multi-category cases. Extensive
experiments show the effectiveness of FATR compared with state-
of-the-art alternatives. In our continuing work, we are interested
in generalizing our framework to consider alternative notions of
fairness beyond statistical parity. By extending our framework in
this direction, we can provide a more customizable approach for
defining and deploying fairness-aware methods. We are also inter-
ested in exploring how to incorporate real-valued features into the
framework for recommenders with explicit ratings, and in running
user studies on the perceived change of fairness for our methods.
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