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modular designs, considering the aspects of both size and
process operability. For this study, the nonlinear system is
represented by multiple linearized models, resulting in low computational expense and efficient quantification of operability
regions. The developed framework is applied to a membrane reactor for direct methane aromatization conversion to hydrogen
and benzene. Subsystems of dimensionalities of 2 X 2 and 3 X 3 (design inputs X outputs) are considered in the first layer to
obtain a modular design region. The possible modular designs inside this region are then ranked according to an operability
index obtained from an additional 3 X 3 (operational inputs X outputs) mapping. This step analyzes the effect of operational
inputs, producing a mapping of total dimensionality of 6 X 3 (inputs X outputs). The application of the developed framework
generates two candidate designs for system modularity, the most operable design and the optimal design with respect to process
intensification in terms of footprint minimization. The developed framework thus provides guidelines for obtaining modular
designs that simultaneously consider process intensification and operability aspects.

1. INTRODUCTION dimension limitations consistent with commercial trucks,™

Modular systems have been defined as mounted structures depicted in Table 1.°

composed of steel frames, that is, modules, in which one or Although the physical description of modular systems
. . . 1 . . .

multiple unit operations take place.” Considering all possible provides directions for modular process design, other challenges

distributions of process operations among these modules, a high
degree of process integration can arise when reducing the size of
chemical processes for designing small and more efficient
integrated units. In particular, process intensification (PI) can

Table 1. Dimensional Limits for Transportation of Modular
Systems by Road

provide a set of strategies to design such small and efficient dimension limit
modules.” width 8.5 ft (2.5 m)

Once the modules are built, usually offsite, transportation is a height” 8.5 ft (2.5 m)
key challenge for the feasibility of modular plants. Because there length 53 ft (16.1 m)
are a few definitions of modular systems in the literature, " it is volume 3829 ft* (108 m%)
important to narrow down such definitions to a tangible weight” 56000 Ib (25 400 kg)
characterization that can be directly used for process design. “From the flatbed trailer to the top of the load (assuming § ft tall
This can be done by adopting a definition of system flatbed). “Excluding the average vehicle weight of ~32000 Ib (i.e,,
modularization (SM) associated with the size and weight 80 000 Ib total).
limitations that are compatible with either maritime, rail, or road
transportathn. . . . Special Issue: Frameworks for Process Intensification and Modula-
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come from the fact that modular systems still consist of emerging
technologies without well-established guidelines and heuristics.
Modular systems can be susceptible to unforeseen operational
difficulties, which may undermine initially projected optimality
and feasibility principles.”®

Recent publications introduced extensions to traditional
concepts of process operability to enable PI toward SM.>~"?
The employed approaches considered design inputs (physical
dimensions) instead of operational variables, which were
conventionally chosen as inputs for operability mapping.®
Nevertheless, once a unique design for SM is obtained, no
assessment of process operability quantified, for example, by an
operability index (OI) has been reported in the literature, which
corresponds to a gap related to the operability evaluation using
both design and operational inputs.

Additionally, the modularization of energy systems presents
challenges associated with dimensionality, nonlinearities, and a
highly constrained environment. To address these challenges,
operability calculations employing nonlinear-programming—
based (NLP-based) approaches were proposed.”” ™" However,
with the increase in system dimensionality, drastic growths in
computational cost were reported, restricting the operability
calculations to multicore systems that include computer tools
such as parallel computing.®

In addition to the NLP-based approaches, input—output
mappings have been used in other methods to quantify
operability/flexibility regions for systems of similar complexity.
These methods aimed to tackle intrinsic challenges such as space
nonconvexities, nonlinearities, and system dimensionality. Some
of them are (i) surface-response-based techniques (kriging and
surface-response methods'*'*), (ii) data-driven and design-of-
experiments,"*~'® (iii) simplicial approximation,'” (iv) high-
dimensional data-driven model representations,“”18 (v) multi-
parametric approaches,lg’20 and (vi) metamodeling.21

In the field of system identification for control applications,
plants that presented drastic changes in operating regimes were
represented by multiple models to describe the operatin
regions that represent such regimes. Multiple state-space”””
and multiple linear models®*** are some of the examples that
employed the multimodel concept along the lines of the work
presented in this Article.

In this Article, to fill the aforementioned gaps, a computa-
tionally efficient multilayer operability framework is developed
for the intensification and modularization of nonlinear energy
systems. For this study, the original nonlinear models are
substituted by multiple linearized models generated using
computational geometry techniques. This multimodel repre-
sentation allows the full employment of linear-programming-
based optimization tools and the efficient calculation of the
operability regions in high-dimensional spaces. Reductions in
computational expense and thus in the necessity of parallel
computing are attained as consequences of this model
representation.

In the first layer of the developed framework, a mixed-integer
linear programming-based (MILP-based) iterative algorithm is
introduced with the objective of finding an optimal design point
with respect to PI and SM targets (modular design problem). In
the second layer, a modular design region is constructed around
the obtained optimal point, and the modular designs inside this
region are systematically ranked using steady-state operability
and the OI (operations problem). An application to a membrane
reactor for direct methane aromatization (DMA-MR) con-
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version to hydrogen and benzene is provided, along with
intensified modular designs of best operability.

The following structure is presented as outlined in this Article:
In Section 2, the employed operability concepts are explained; in
Section 3, details of the multimodel representation are shown; in
Section 4, the description of the multilayer operability
framework can be found in two subsections, one for each layer
of the framework; in Section 5, the DMA-MR application is
reported along with results; finally, in Section 6, conclusions
about the developed framework are drawn, and directions for
future work are presented.

2. PROCESS OPERABILITY CONCEPTS

Set-point operability was generically defined in the literature for
the operability analysis of square systems.”® Considering a
system with m inputs, n, states, and p outputs, the following
process model, denoted by M, can describe the system behavior

& = f(x, u)
y =g, u)
M =
hy(%, x, y, 4, u) =0
hy(%, x, y, 4, u) >0 (1)
in which x € R™ are the state variables, y € R’ are the outputs,
and u € R" are the inputs. The functions f and g are the
nonlinear maps, and h; and h, are the equality and inequality
process constraints, respectively. Finally, & and i represent time
derivatives associated with x and u, respectively.

Given the generic process model, M, presented above, one can
define two sets that describe the readily accessible information of
interest for the operability analysis, as follows:

Available Input Set (AIS): Set of available inputs that may be
changed within a certain range according to physical or
operating constraints. This set may represent design or
operational inputs. Design inputs are associated with available
designs (material, dimensions, etc.), whereas operational inputs
are the manipulated variables (MVs) subject to control studies.
Here this set is mathematically described as follows

AIS = {ulu™ < u, < u™ 51 <i<m) )
in which u; can be either a design variable (for AISg) or an
operational variable (for AIS,,).

Desired Output Set (DOS): Set that comprises the desired
region of output targets. It may be defined, for example, by
process constraints and desired production or efficiency. PI
targets can be incorporated here as regions of intensified
operation. Mathematically, the DOS is defined as

DOS = {yly™ <y <y™; 1 <i<p} (3)

Having defined the process model, M, and the two sets above,
other regions of interest can be calculated using the direct (M)
orinverse model (M '), and the OI can be evaluated, as outlined
below.

Achievable Output Set (AOS): Set of output variables that the
system is able to achieve for the considered AIS. Under the
nominal conditions, this set is defined as

AOS = {yIM(u); ¥ u € AIS} (4)
in which the AIS can be either AIS;, or AIS,.
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Desired Input Set (DIS): Set of required inputs that are needed
to achieve, if possible, the entire DOS. This set can be computed
by applying the inverse model to the points in the DOS. In the
absence of regulatory control, this set is given by

DIS = {ulM~'(y); V y € DOS} (s)

Because nonlinear systems require a nonlinear model, M, the
derivation of M™' may be complex and sometimes not
straightforward. One contribution of this work is the numerical
computation of M~' employing computational geometry
triangulation tools, overcoming the challenges associated with
the analytical calculation of M. (See Section 3 for details of this
calculation.)

With the aforementioned sets, the OI is defined to quantify
the achievability of the DOS, as follows

_ u(AOS n DOS)

oI
u(DOS)

(6)

in which the p corresponds to a measure of the depicted region.
For one dimension, y is simply a measure of length, for two
dimensions, it is a measure of area, for three dimensions, it is
measure of volume, and for higher-dimensional cases, it is a
measure of hypervolume. For nonsquare systems with more
outputs than inputs, the definition of OI would require
adaptation to consider the concept of interval operability.””**

3. MULTIMODEL REPRESENTATION

To represent the original nonlinear model, M, using a set of
linearized models, a geometric representation using families of
paired polytopes is employed. For n-dimensional square systems
(m = p =n), each kth pair of polytopes, P,, links input and output
points, as follows

B = {P, P!} )
P,l‘Z{uiljkEAISllSiSn;1§j§n+1} (8)
y _ i < n -

Pk—{);‘jkEAOSllﬁlﬁn,IS]Sn+1} )

in which P{ is a polytope in the input space, P} is the
corresponding polytope in the output space, i is the coordinate
representing the dimension of each variable, and j is an assigned
number for each vertex. Here the number of vertices, n + 1, is
used because only simplices are considered for the representa-
tion of the polytopes. For example, a 2-D system with three
input—output points can be represented by one pair of triangles

Upin| | %21 | %1,31 and
U1 ) [HU2,21) [HY2,31

P = {[%ﬁ]] [;};’2], B;’;j} This representation using sim-

(n + 1 = 3 vertices) with P}’

plices has the advantage that a simplex is always a convex shape,
providing a division of the geometrical nonconvexities into
convex sets and facilitating operations such as spatial search and
interpolation. Thus for nonconvex input or output spaces, a set
of convex simplices would be adopted for their representation.

For a representation with a total number of K polytopes, the
AIS and AOS described in Section 2 can be mathematically
represented as follows

S=1{L,23,.,K} (10)

AIS = {P/Ik € S} (11)
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AOS = {Pllk € S} (12)
in which § € N contains the indices for the mappings between
input and output simplices, from P to Py. Figure 1 shows an
example of this representation for a generic 2 X 2 system
containing six input—output data points.

Us Y2

DA | 41

Figure 1. Illustration of the multimodel polytope representation for a 2
X 2 system.

For the case in Figure 1, S = {1, 2, 3, 4} with K = 4 polytopes
that are simplices in two dimensions, that is, triangles. Each pair
of triangles links three input—output points, in which the edges
correspond to three linear models.

Some advantages when employing the multimodel represen-
tation for M are the easy quantification of the OI and the
straightforward model inversion M™' using computational
geometry tools. In particular, the calculations of M™' are
performed for a region of the AOS by selecting the output
polytopes inside such region and then verifying which are the
corresponding paired polytopes in the AIS. Still using the
example above, suppose one verifies that DOS N AOS = {P}, P} };
therefore, M~'[DOS N AOS] = {P4, P4}, associated with two
triangles in the input space. If needed, interpolations can be
applied to obtain M~ in terms of the points inside the triangles.
Such multimodel representation can be produced from space
discretization techniques such as Delaunay triangulation,
described in Section 4.

4. MULTILAYER OPERABILITY FRAMEWORK

The developed multilayer operability framework tackles both
the modular design and the operational problems. The
framework is developed with the assumption that the nonlinear
system in focus is operating away from singularities in the output
space. In each layer, the original nonlinear model is substituted
by a multimodel representation according to the adopted
subsystem and definition of operability spaces, as described
above.

On the basis of this new system representation, the proposed
multilayer framework is composed of two layers. In the first
layer, an iterative MILP formulation is introduced for the
calculation of the optimal design with respect to PI and SM
targets. Then, an operability analysis using the OI is performed
considering a modular design region around where the optimal
design was obtained. Each of these layers is described below in
the following subsections.

4.1. MILP-Based Iterative Algorithm. For the first layer,
the considered AIS is exclusively associated with design
variables, producing an AISy,—AOS mapping. To eliminate
the need for extensive simulations, instead of generating a
detailed multimodel representation for the entire AISy and
AOS,"? an iterative algorithm is developed so that the number of
models locally increases as the program approaches the optimal
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Figure 2. Steps of the MILP-based iterative approach (Layer 1).

| Final Solution |

= MILP optimization

design region. Starting with the entire AISy set, in each
iteration, a solution is generated, so that the input space is
gradually narrowed around the optimal solution. When there is
no change in the solution from one iteration to the next, the
algorithm achieves convergence, and the optimal design region
is obtained. Computational geometry triangulation tools are
employed for the calculation of intersections involving the set of
obtained geometrical entities that represent the linearized
models.””*" The algorithm is developed to accommodate a
generic number of dimensions. Figure 2 shows a schematic
representation of the developed algorithm with all of the
employed steps.

Each of the enumerated steps in Figure 2 is briefly discussed
below.

(1) Simulation: According to the energy system application of
interest, 3" data points are generated using either first-principle
models or a process simulator, in which n (n = m = p) is the
dimensionality of the analyzed square system (2-D, 3-D, etc.).
This number of data points is chosen to obtain a relatively low
number of function evaluations of the process model M in each
iteration and thus maintain a low computational expense.
Alternatively, a less coarse initial grid could be adopted in the
initial iterations for a more detailed representation of the
nonlinear system with the expense of a higher computational
time. Because the available inputs are known, the input set is
evenly divided into a grid, and the corresponding output points
can be obtained through simulation. This uniform grid division
is adopted here because it provides a lower computational time
for the task of finding approximated optimal points in step 4. A
nonuniform division of the grid would be recommended for the
task of further characterizing the representation of AOS N DOS.
The outcome of this step is a set of input—output data points.

(2) Linearized Subsystems: Using the obtained input—output
data points, the spatial discretization technique of Delaunay
triangulation is applied to build the multimodel representation.
This triangulation is performed using input points. The
connections among these input points is then obtained and
applied to calculate the corresponding polytopes in the output
space. This technique generates a set of K paired polytopes that
is indexed by S = {1, 2, .., K}. Each pair of polytopes, P,
represents a set of linear models from the input to the output
space. The set S is used to indicate all of the K paired polytopes,
that is, {P,l k € S}.

(3) Quantification of Linear Spaces: The obtained polytopes
are analyzed according to achievability of the DOS and also input
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constraints. For achievability, the intersection DOS N AOS
provides the pairs of polytopes that guarantee the achievability
of the DOS. At the same time, the intersection between AIS4,,
and input constraints is considered for the selection of pairs of
polytopes that satisfy such input constraints. The outcome of
this step is a set " € S of K’ paired polytopes that satisfy the
criteria for the inputs and outputs.

(4) Optimal Design: To obtain an optimal design point, an
MILP minimization problem is formulated for the selection of
the pair of polytopes from S’ that gives the optimal input—
output coordinates considering PI, SM, and process constraints.
Weights associated with vertices of the polytopes and
barycentric interpolations allow this optimal solution to be
inside one of the considered polytopes. In addition to the
weights, a binary variable is assigned to each pair of polytopes so
that the MILP solver selects only one pair as a solution. The
MILP-minimization problem can be mathematically repre-
sented as follows

¢ = minimize (linearized footprint)
u,by

Subject to:
u € AlS,.,, y € DOS

b, € {0, 1}¥

PI and SM targets

Process constraints

in which by is the binary variable assigned to each pair of
polytopes, P, from {P;l k € S'}. The MILP-minimization
problem results in a selected pair of polytopes, P, in which the
obtained optimal solution is inside. The optimal solution
corresponds to one input—output point calculated from
barycentric interpolations using the vertices of P. This point
is, therefore, associated with an input u € AIS,,, mapped to
some y € AOS. The MATLAB subroutine intlinprog is used here
to solve the formulated problem with tolerances for both
integers and constraints of 0.001. Additional details of this
formulation can be found along with its application in Section
5.2.

(S) Stopping Criteria: Using the solution for the optimal
design of the current iteration and the solution of the previous
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iteration, the relative difference between solutions is calculated,
E.. If this difference is smaller than a predefined threshold or
tolerance, E, then the algorithm converges, and the final
solution is obtained (Final Solution). Otherwise, new variable
bounds are redefined based on the polytope of the current
solution (step 6).

(6) New Bounds: If the algorithm has not converged, then new
input bounds are chosen based on the selected pair of polytopes
from step 4, P,,;. These bounds are described by the set {u]}", <

sol*
u; < ulp*l 1 < i < n}, in which 43" and 4" are the minimum
and maximum values that characterize the polytope of the
solution in the inputs. For each dimension i (up to n), the new
minimum and maximum bounds are calculated as follows

min

ujp = min({”i,szolll <j<n+ 1}) (13)
ujp, = max({up I1 <j<n+1}) (14)

in which j refers to each vertex of the polytope of the solution
P, As explained in Section 3, P, has n + 1 vertices because it is
a simplex shape. For example, in 2-D, P, would be a triangle and
the bounds would be given by a parallelogram around P,; in 3-
D, it would be a tetrahedral and the bounds, a parallelepiped;
and so on. Once the new bounds are defined, the algorithm goes
back to step 1 for the next iteration.

4.2. Operability Analysis around Optimal Design. In
the second layer, using the obtained optimal design point (final
solution above) that accounts for PI and SM targets, a box of
modular designs is built around this point, considering feasible
construction values. For different designs inside the box, the
output achievability is analyzed by employing an AIS,,—AOS
operational mapping. The developed approach is restricted to
set point operability, and it is applied here to square systems. For
this analysis, the AIS,, is strictly composed of MV that would be
used for the control.

Each operational mapping relies on a multimodel representa-
tion that comes from the application of computational
geometry/triangulation tools described in Section 4.1. The
operability analysis employs the operational mappings to
determine values of the OI so that the designs of the modular
region are ranked. Figure 3 contains an illustration of this layer.

The values of OI above quantify the achievability of system
objectives and are computed by measuring the number of
subregions of the DOS that can be achieved given the considered

u AI_Sdes . fperalil'nyanaiysis onapoint ofAfS,m_
: 'y AISDP
modular |
design @@ Qi ¢
region (] Q'
ooy
—_—
— uy >
[ 1 Operability V2 Us
. analysis +
AOS
o MSia o >
100 % bos
L mrooe >
| region . .I \r;
1 -0-9! 0% O!(u]_, uz)
-
Uy

Figure 3. Ranking modular designs using the OI (Layer 2).
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AIS,,.. A subregion of the DOS is assumed to be achievable when
it contains at least one point of the AOS in its interior. The bigger
the value of the OI, the higher the achievability of the DOS.

The design of the highest OI is selected, and a final study
contrasting the selected point and the previously obtained
optimal design can then be performed. This comparison
includes the OI and the region of the AIS,, that is needed for
achievability of the DOS.

5. DMA-MR APPLICATION

The DMA-MR for conversion to hydrogen and benzene is
selected for the application of the multilayer operability
framework. Figure 4 shows a schematic representation of the
DMA-MR with its respective reactions involved."'

Permeate
(H, rich)

Sweep
(He)

Feed
(CH,rich)

Retentate
(CgHgrich)|

2CHy = CGHy + 2H;

3C,H, = C,H;, + 3H,

Figure 4. DMA-MR schematic with reactions involved.

Reaction and separation through the membrane are combined
in a way such that the selective H, removal shifts the reaction
toward the products. This feature increases the overall system
efficiency, reducing the size of the chemical process and
characterizing the DMA-MR as a candidate for PI with SM
strategies. Moreover, this system consists of a promising
application for modular natural gas utilization, allowing the
modular production of a fuel (H,) and a value-added chemical
(C¢Hs). The ultimate goal of producing an intensified modular
system that maximizes methane conversion to H, and C4Hj is
considered in all of the cases addressed below.

In this section, first, some aspects of the employed DMA-MR
model are described. Then, the multilayer operability framework
is applied considering the MILP-based iterative algorithm
application to 2 X 2 and 3 X 3 (AISz;, X AOS) DMA-MR
subsystems, followed by the operability analysis for the 3 X 3
subsystem (AIS,, X AOS).

5.1. DMA-MR Model and Simulation. The DMA-MR is
modeled using a set of ordinary differential equations (ODEs)
built employing steady-state molar balances on the tube and
shell sides with respect to the reactor axial coordinate (see the
model details including the system of equations in ref 11). For
this application, the nominal values for the parameters depicted
in Table 2 are used, unless otherwise indicated.

The parameter 7 in Table 2 is the effectiveness factor for the
catalyst that is explicitly included in the model found in the
literature'" to account for the effect of catalyst effectiveness and
bed void. This factor consists of a multiplier for all reaction rates
present in the ODE set, resulting in 71" = 5, and 5™ = r,.
Also, for this study, the volumetric flow rates are converted to
molar flow rates assuming ideal gas behavior.

For the generation of the input—output operability mappings
present in both tasks of the multilayer operability framework,
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Table 2. Overall Parameter Values Considered for the DMA-
MR Simulations

parameter nominal value [unit]
rate constant of direct reaction 1, k; 0.04 [s7']
rate constant of inverse reaction 1, k;’  6.40 X 10° [em® s~ mol™']
rate constant of direct reaction 2, k, 4.20 [s7']

56.38 [cm® s™! mol™!]
3.6 % 107 [mol h™! em™2 atm™"#]

rate constant of inverse reaction 2, k,’

membrane permeance, Q

membrane selectivity, @y = @ 1000 [—]
shell diameter, d; 3 [cm]

tube diameter, d, 0.5 [em]
reactor length, L 10 [cm]
tube and shell pressure, P, and P, 101 325 [Pa]
temperature, T 1173.15 [K]

8 [cms/min]
10 [cm®/min]
045 [—]

volumetric flow of methane inlet, vcy,

volumetric flow of sweep gas inlet, vy,

effectiveness factor for catalyst, 7

data points are obtained from simulations performed in
MATLAB using the ODE solver “odelSs”, recommended for
stifft ODEs. The step size for the independent variable reactor
length is either 0.01 cm or is automatically adjusted if it is within
the investigated range in the optimization.

5.2. MILP-Based Iterative Algorithm Application. The
MILP-based iterative algorithm is applied for DMA-MR
subsystems of different dimensionalities. The goal of this layer
is to find the minimum reactor size and thus achieve SM for
given PI targets. The outcome is a modular system calculated for
the nominal operation described in Table 2, that is, nominal
pressure, temperature, and inlet flows.

5.2.1. Optimal Design for the 2 x 2 DMA-MR Subsystem.
For the 2 X 2 case, the AIS, is built considering input ranges
from 10 to 100 cm for reactor length and 0.5 to 2.0 cm for tube
diameter, associated with variables u; and u,, respectively. The
AOS is characterized by the outputs of benzene production in
mg/h and methane conversion, associated with the variables y,
and y,, respectively. For the DMA-MR system, previous work''
indicates an expected DOS given by ranges of 20 to 25 mg/h for
benzene production and 0.35 to 0.45 for methane conversion.

To achieve SM, the main objective of this operability layer is
to find the optimal design with respect to footprint (size)
reduction while respecting PI targets and process constraints. As
an intensification target, a minimal benzene production of 20
mg/h is considered, whereas the ratio using the length of reactor
(L) and tube diameter (D) of L/D > 30 is specified as a
constraint for plug-flow reactor operation.”"

The application of each of the steps of the iterative algorithm
introduced in Section 4.1 is explained below.

(1) Simulation: Here in the first iteration, the input bounds u,
=[10100] and u, = [0.5 2.0] are evenly divided into 3* =9 input
points. The output points are obtained through the simulation of
the nonlinear system using the process model M. In Figure Sa, it
is possible to see the formed grid for selected iterations. In
Figure 6a, the obtained output for each iteration is depicted.

(2) Linearized Subsystems: The obtained input—output points
are used as inputs for this step, generating the multimodel
representation. Figures Sa and 6a depict the sets of connected
triangles for each iteration, indicated by S = {1, 2, .., 8}.

(3) Quantification of Linear Spaces: Using the obtained
multimodel representation from step 2, the paired triangles that
satisfy both input (L/D > 30) and output (DOS) constraints are
selected, generating a subset " C S. Figures Sb and 6b show the
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regions associated with the input and output constraints,
respectively.

(4) Optimal Design: Using the paired triangles given by §’, the
MILP formulation is described as

¢ = minimize (h(y,, u,))
Wiks %k

Subject to:
u/uy > 30
> 20

N
0<w,<LkeS,je (1,23}

’

K 3
w= 20| 20 e | i € 41, 2)

k=1\j=1

K’ 3

¥=2

k=1\j=1

yi,jk'wjk , i € (1,2}

3
ZWJk = bk’ kes
j=1

b,e {0, 1}, ke

in which by is the binary variable assigned to each pair of
triangles, P, k € §'; wy is the weight of a vertex, j, in a pair of
triangles, k; and u; and y; ; are the input—output data points of a
pair of triangles, P;. The footprint, initially given by the sum of
total membrane area and reactor volume is approximated here
by a linearization around the nominal reactor length and tube
diameter as follows

h(uy, uy) = (Dy + 0.25D3)u, + (Lo + 0.5L,Dy)u,

= 0.5625u; + 12.5u, (15)

in which Ly = 10 cm and D, = 0.5 cm are the nominal values of
reactor length and tube diameter, respectively.

Figures 5b and 6b show the selection of a triangle in each
iteration, for inputs and outputs, respectively, as well as the
calculation of the optimal points (plotted inside the figures).

(S) Stopping Criteria: A tolerance error of 1% with respect to
each variable for both input and output coordinates is
considered for convergence to the optimal solution.

(6) New Bounds: Smaller regions of the AIS are considered as
the algorithm approaches convergence. Figure 5a shows these
regions being reduced until convergence is achieved.

For the 2 X 2 subsystem, the algorithm converges to an
optimal solution in five iterations, and the result is a DMA-MR
with reactor length of 17.05 c¢m and tube diameter of 0.57 cm
that corresponds to a benzene production of 20 mg/h and
methane conversion of 0.35. The total computational time of the
algorithm is of 6 s.

5.2.2. Optimal Design for the 3 x 3 DMA-MR Subsystem.
For this case, the dimensionality of the 2 X 2 subsystem is
augmented by adding the input variable of membrane selectivity
to the AISy, and the output variable of hydrogen production to
the AOS. It is assumed here that the membrane selectivity could
be improved in the lab if needed to achieve the desired process
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specifications.”> The initial range for membrane selectivity
considering lab expectation values is 1 X 10* to 1 x 10"
Prescreening of the solution space is performed to eliminate
potential singularities in the output space, and this range is
modified here to 3 X 10> to 1 X 10°. Membrane selectivity values
below 3 X 10* provide a result with very low to no methane
conversion.

The benzene production and methane conversion ranges in
DOS are kept the same, whereas the hydrogen production has its
range set from 3 to 6 mg/h.

The same SM and PI targets from the 2-D case are maintained
as well as the plug-flow constraint. The application of each of the
steps of the iterative algorithm is performed considering small
changes from the previous case, as described below. For
illustration purposes, the presentation of the algorithm is
simplified, containing only three iterations, the first, one
intermediate (fourth), and the last iteration (eighth).

(1) Simulation: Now, in the first iteration, with the addition of
the membrane selectivity variable bounded as u; = [3 X 10* 1 X
10°], 3 = 27 input—output points are obtained through
simulation. In Figures 7 and 9, it is possible to see the formed
grid for each iteration.

AlS des .
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10 1
z
=
©
£ 5
['}]
(7]
5 |
0
2
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uy: Tube diameter (cm) ug Reactor length (cm)

Figure 7. 3-D case: Input variable bounds and 3-D triangulations.
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Figure 8. 3-D case: Selection of tetrahedra and optimal solution points.

(2) Linearized Subsystems: Using the obtained grid, the
Delaunay triangulation is performed, and the set S={1, 2, ..., 48}
indicates the obtained pairs of tetrahedra, depicted in Figures 7
and 9.

(3) Quantification of Linear Spaces: The obtained multimodel
representation in step 2 is used here. Similarly to the 2-D case, a
subset S" C S indicates the paired tetrahedra that satisfy both
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(4) Optimal Design: Because the PI and SM targets as well as
constraints are the same as in the previous case, the MILP
formulation is changed by only increasing its dimensionality

from 2-D to 3-D as follows

¢ = minimize (h(u,, u,))
Wiks %k

Subject to:

u/uy > 30
5, 220

0<w <LkeS,je (1,234}

.
0=
k=1

K’

=2

k=11

D uew | i € {1,2,3)

4
j=1

M-;:-

e i€ {12 3)
1

4
Zuz}k:Sk,kES,

j=1

boe {0, 1}, ke
X
k=1

in which y; is the hydrogen production in mg/h and the other
variables follow the same notation adopted in the previous case.

Figures 8 and 10 show the selection of a tetrahedron in the
first, fourth, and eighth iterations as well as the calculation of the
optimal points (plotted inside the figure).

(S) Stopping Criteria: As in the previous case, a tolerance error
of 1% with respect to each variable is considered for
convergence.

(6) New Bounds: Similarly to the 2-D case, Figure 7 shows
how the input bounds are reduced until convergence is obtained.

The algorithm converges to a solution in eight iterations, and
the result is a DMA-MR with a reactor length of 16.99 cm, tube
diameter of 0.57 cm, and membrane selectivity of 1037 that
corresponds to a benzene production of 20 mg/h, methane

Table 3. MILP-Based Iterative Approach Results for the DMA-MR

dim. reactor length (cm)  tube diameter (cm)  membrane selectivity
2X2 17.05 0.57 1000
3X3 16.99 0.57 1037
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C¢Hg prod. (mg/h)  CH, conv. (=)  H, prod. (mg/h)  CPU time (s)
20 0.35 3.31 6
20 0.35 3.29 34
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conversion of 0.35, and hydrogen production of 3.29 mg/h. The
total computational time for the algorithm convergence is of 34
s.

5.2.3. Computational Results. The results for the application
of the MILP-based iterative approach for DMA-MR subsystems
of dimensionalities 2 X 2 and 3 X 3 are compiled in Table 3,
which contains the obtained design points and the CPU times.

When contrasting the 2 X 2 and 3 X 3 obtained designs, it is
clear that the two designs are practically the same. In this case,
the addition of two new input—output variables does not
significantly change the results because the 2 X 2 DMA-MR
subsystem employs a fixed value of membrane selectivity (1000)
that is already close to the obtained optimal design for the 3 X 3
subsystem (1037).

By analyzing the CPU times for both cases, although some
increase in computational time is presented when going from 2-
D to 3-D, the total computational time is still on the order of
seconds. For the NLP-based approaches in the literature,” to
obtain the optimal solution using a single processor, typical CPU
times on the order of minutes for the 2-D case and hours for the
3-D case are reported, showing that the higher the
dimensionality of the system, the bigger the advantage of the
developed iterative algorithm over NLP-based approaches. The
relatively low increase in CPU time thus indicates the promising
capabilities of the developed algorithm for expansion to high-
dimensional cases.

5.3. Operability Analysis around Optimal Design (for 3
X 3 Subsystem). Considering the 3 X 3 DMA-MR subsystem
above and the obtained optimal design, a modular box with
values that would be more reasonable for construction is built
using reactor lengths from 16 to 18 cm, tube diameters from 0.5
to 0.6 cm, and membrane selectivities from 500 to 1500. The
steps of 0.2 cm, 0.01 cm, and 100 are applied to each variable,
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respectively, to obtain rounded values that would be suitable for
manufacturing the possible modular designs. The result is a total
of 11% = 1331 possible designs that cover approximately +5%
around the obtained optimal design, representing a modular
design region constructed based on the outcome of the first layer
of the framework.

Then, the AIS that was originally composed of {u;, u,, u; €
AlS,.} is augmented with the inclusion of operational inputs,
namely, {u,, us, us € AIS,,}. To build the AIS,,,, variations within
ranges of about +10% from the nominal values (in Table 2) are
applied to each of the variables of reactor temperature (u,),
sweep gas inlet flow (u;), and methane inlet flow (u4). The final
calculated ranges are given by 1073.15 < u, < 1275.15 [K], 7 <
ug <9 [em?/h], and 9 < ug < 11 [em®/h]. The design and
operational subsystems characterize two square systems
associated with the same AOS, and thus the AIS is described

by AIS = AIS4., X AIS,,, AIS C R®, associated with an overall
AIS X AOS mapping of dimensionality 6 X 3.

As shown in the framework schematic in Figure 3, for each of
the 1331 possible design points in the AIS.,, the design is fixed,
and an AIS,,—AOS operability analysis is performed, keeping
the same DOS listed in the 3 X 3 case above. For each AIS, —
AOS mapping, a multimodel representation is obtained by
applying the same methodology as in Section 5.2.2 (steps 1 and
2). Similarly, the obtained mapping is given by a set of 48 paired
tetrahedra, that is, {P| k € S} and S = {1, 2, .., 48}. This
multimodel representation can be seen in Figures 11 and 12.

To quantify the achievability of each design by the OI, the
DOS is evenly divided into 125 subregions, represented by 125
parallelepipeds. The number $* = 125 is chosen to define
parallelepipeds in which the sides have lengths of 1 mg/h for

benzene production, 0.02 for methane conversion, and 0.6 mg/h
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for hydrogen production. The OI corresponds to the percentage
of these 125 subregions that a considered design can achieve,
given the described AIS, .. Figures 11 and 12 contain examples of
the divided DOS and calculations of the OI. In Figure 11, 22 of
125 subregions of the DOS are achieved, corresponding to an OI
value of 17.6%, whereas in Figure 12, only two of these
subregions are achieved, corresponding to an OI value of 1.6%.

After the described operability analysis is completed for all
points of the modular design region, the values of OI are used to
rank the considered designs. From this ranking, the design of
maximum Ol is then selected, consisting of a design with reactor
length of 18 cm, tube diameter of 0.6 c¢m, and membrane
selectivity of 1500. Figure 13 shows the rankings using values of
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Figure 13. Achievability analysis using OI of designs around the
optimal design.

O], the selected design of maximum OI, and the previously
obtained optimal design, rounded to a reactor length of 17 cm,
tube diameter of 0.57 cm, and membrane selectivity of 1000.

Figures 11 and 12 represent the individual AIS,,—AOS
operability analysis of the design of maximum OI (17.6%) and
the previously obtained optimal design (with OI of 1.6%),
respectively. For both cases, the model inversion M~'[DOS N
AOS] is performed to produce additional comparative
information. The resulting paired polytopes from this operation
are identified in red.

‘When contrasted with the design of maximum O], the optimal
design presents lower values for reactor length, tube diameter,
and membrane selectivity. However, the number of DOS
achieved subregions is 2, which is a relatively low achievability
when compared with the best OI case, with 22 achieved
subregions. Also, from the 48 tetrahedra that represent the
available operational inputs of the AIS,, the highest OI design
covers 46 tetrahedra, whereas the optimal design covers only 9,
indicating a better exploitation of the AIS,, for the achievement
of the DOS in the highest OI case.

The presented result can be attributed to the fact that the
iterative algorithm computes an optimal point of AISy for a
fixed operating condition (a point of the AIS,,). The goal of the
algorithm is to solely minimize the objective function, given by
the linearized footprint, without considering process operation.
The operability analysis presented above indicates that slightly
bigger reactors are more operable with respect to the considered
AIS,, and DOS. Moreover, the trends in Figure 13 indicate that
because higher values of OI are obtained for larger reactors, the
objectives of minimizing size and maximizing OI are conflicting
in this case.
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Taking the design of highest OI as the most operable design,
an estimation of a multitubular reactor is made. Assuming a shell
of diameter of 50 cm, length of 18 cm, and approximate distance
of 0.7 cm among adjacent tubes, a total amount of 1111 tubes
can be placed inside the shell. The obtained multitubular
modular design can convert 113 ft* of methane to 574 g of
benzene and 94 g of hydrogen per day.

A commercial truck, as specified in Table 1, could transport a
maximum number of modules of ~2225. In a hypothetical
scenario in which all of these modules are installed, a total
consumption of ~252 Mcf/day of methane would take place. A
well in the Marcellus Shale Formation can produce from 500
Mcf/day to 12 MMcf/day of natural gas depending on the well
maturity.”** Thus, 2 to 24 trucks, if used to transport the
modular units, could allow the onsite utilization of the natural
gas installed by a typical well from this region.

6. CONCLUSIONS

A multimodel operability framework was presented for the
design of emerging technologies characterized by SM and PL
This framework is flexible and could also be extended to attain
other goals such as cost, environmental targets, capacity, purity,
and so on. The representation of the nonlinear system by
linearized models, geometrically represented by polytopes, was
systematically applied for the calculation of an optimal design
and operability assessment to ensure future feasibility and
optimality.

The developed framework shows unique features for tackling
energy system applications whose design is challenged by
dimensionality, nonlinearities, and highly constrained environ-
ments. The linear approximation minimizes expensive comput-
ing, which would be of special importance in high-dimensional
cases. The utilization of the OI as a measure for ranking
competing designs has not been explored in SM and P1 literature
before this study. The obtained results showed that the
calculation of an optimal modular design considering a fixed
nominal operation does not necessarily ensure the best system
operability.

A comparison between the distinct tasks of minimizing the
footprint to achieve SM while respecting PI targets and
maximizing the process operability represented by the OI
showed that these two objectives might be conflicting. Future
work considering the development of a multiobjective
optimization-based operability framework will be pursued to
produce modular systems with maximum operating capabilities.
The augmentation of system dimensionality is an object of
current research work, and it will also be incorporated into newly
developed studies.
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