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ABSTRACT 
Recent focus has been given to nonlinear periodic structures for 

their ability to filter, guide, and block elastic and acoustic waves 

as a function of their amplitude. In particular, two-dimensional 

(2-D) nonlinear structures possess amplitude-dependent 

directional bandgaps. However, little attention has been given to 

the stability of plane waves along different directions in these 

structures. This study analyzes a 2-D monoatomic shear lattice 

composed of discrete masses, linear springs, quadratic and cubic 

nonlinear springs, and linear viscous dampers. A local stability 

analysis informed by perturbation results retained through the 

second order suggests that different directions become unstable 

at different amplitudes in an otherwise symmetrical lattice. 

Simulations of the lattice’s equation of motion subjected to both 

line and point forcing are consistent with the local stability 

results: waves with large amplitudes have spectral growth that 

differs appreciably at different angles. The results of this analysis 

could have implications for encryption strategies and damage 

detection.  

Keywords: 2-D periodic structures, nonlinear wave propagation, 

stability, Method of Multiple Scales  

 

1 INTRODUCTION 
Periodic structures have been an active area of research, in 

part due to their inherent filtering capabilities, which inspires 

applications such as acoustic filters [1, 2], waveguides [3-5], and 

diodes [6, 7]. Some of the earliest studies of linear periodic 

structures dates back to the work of Brillouin [8] and Kittel [9], 

that analyzed elastic and electric monoatomic and diatomic 
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lattices. Significant advancements in the analysis of waves in 

elastic periodic media stemmed from Mead et al. that 

characterizes plane wave propagation in periodic plates [10, 11].  

Prior studies have employed perturbation techniques to 

analyze wave propagation in nonlinear periodic systems. 

Vakakis and King [12] reported amplitude-dependent 

propagation and attenuation zones in nonlinear periodic 

structures by application of multiple scales in space and time. 

Narisetti et al. [13] as well as Manktelow et al. [14] studied 2-D 

monoatomic and diatomic lattices with an emphasis on obtaining 

and numerically verifying amplitude-dependent dispersion 

shifts.  However, these asymptotic techniques stop at the 1st 

order, thereby limiting the information about wave propagation 

in these systems since higher-order analysis has been shown to 

reveal the existence of unstable fixed points [15].   

Many prior analyses have identified angular-dependent 

phenomena in two-dimensional periodic structures. Majunath et 

al. [16] studied the propagation of impacts in 2-D granular 

media: angular dependence was reported for the transmitted 

force amplitude and induced propagation angle for layers below 

the impact. Directional bandgaps have been presented in 2-D 

periodic structures including auxetic and chiral lattices [17, 18] 

as well as plates with truss-like cores [19]. Thus, compared to 

their 1-D counterpart, 2-D structures filter directions in addition 

to frequencies of propagation. Cleavage fracture was found to 

occur in preferential directions in silicon whereas other 

directions exhibit relaxation of the surrounding atoms and large 

lattice trapping [20]. To the author’s knowledge, what remains to 

be reported in two-dimensional periodic structures is the 

directional stability of plane waves: a directional-dependence on 
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the amplitude at which the plane wave solution breaks down. 

While numerous studies have examined the stability of waves in 

nonlinear lattice structures, there is a lack of analysis on the 

stability of plane waves, i.e. waves of infinite temporal and 

spatial extent that possess a fundamental frequency and 

(potentially) higher harmonics of that frequency. By contrast, 

studies have examined waveforms such as solitary waves [21], 

gap solitons [22] and discrete breathers [23]. 

This study conducts higher-order multiple scales analysis on 

the equations of motion governing a 2-D monoatomic lattice 

with weak quadratic and cubic nonlinearities. Results retained 

through the second order inform a local stability analysis on the 

wave’s amplitude, yielding direction-dependent stability 

behavior. Direct numerical simulations qualitatively confirm the 

study’s findings. 

 

2 SYSTEM DESCRIPTION 
The system considered in this analysis is a 2-D monoatomic 

shear lattice (see Fig. 1): a unit cell composed of a single mass is 

repeated in two orthogonal directions and only out-of-plane 

displacements are permitted. Each mass is coupled to its four 

nearest neighbors via a linear spring, linear damper, and 

quadratic and cubic nonlinear springs.  

 

Figure 1. Unit cell of the 2-D monoatomic lattice 

The equations of motion governing the lattice are 

 

𝑚𝑧̈𝑗,𝑘 + 𝑘1𝑥(𝑧𝑗,𝑘 − 𝑧𝑗−1,𝑘 − 𝑧𝑗+1,𝑘) + 𝑘1𝑦(𝑧𝑗,𝑘 − 𝑧𝑗,𝑘−1 − 𝑧𝑗,𝑘+1) 

+𝜀𝑘2𝑥(𝑧𝑗,𝑘 − 𝑧𝑗−1,𝑘)
2

+ 𝜀𝑘2𝑥(𝑧𝑗,𝑘 − 𝑧𝑗+1,𝑘)
2
 

+𝜀𝑘2𝑦(𝑧𝑗,𝑘 − 𝑧𝑗,𝑘−1)
2

+ 𝜀𝑘2𝑦(𝑧𝑗,𝑘 − 𝑧𝑗,𝑘+1)
2
 

+𝜀𝑘3𝑥(𝑧𝑗,𝑘 − 𝑧𝑗−1,𝑘)
3

+ 𝜀𝑘3𝑥(𝑧𝑗,𝑘 − 𝑧𝑗+1,𝑘)
3
 

+𝜀𝑘3𝑦(𝑧𝑗,𝑘 − 𝑧𝑗,𝑘−1)
3

+ 𝜀𝑘2𝑦(𝑧𝑗,𝑘 − 𝑧𝑗,𝑘+1)
3
 

+𝜀𝑐𝑥(𝑧̇𝑗,𝑘 − 𝑧̇𝑗−1,𝑘 − 𝑧̇𝑗+1,𝑘) 

  +𝜀𝑐𝑦(𝑧̇𝑗,𝑘 − 𝑧̇𝑗,𝑘−1 − 𝑧̇𝑗,𝑘+1) = 0 (1) 

 

where 𝑧𝑗,𝑘 denotes the out-of-plane displacement of the mass 

located at (𝑗, 𝑘), 𝑚 the mass, and 𝑘1𝑥 , 𝑘1𝑦 the linear stiffness in 

the 𝑥 and y directions, respectively. The same naming 

convention applies to the damping coefficients (𝑐𝑥 , 𝑐𝑦), quadratic 

stiffnesses (𝑘2𝑥, 𝑘2𝑦), and cubic stiffnesses (𝑘3𝑥, 𝑘3𝑦). The small 

parameter 𝜀 is employed as a bookkeeping device. Linear 

restoring forces could arise from a non-zero pretension (e.g., 

from a membrane-like material) and must be considered in order 

to apply perturbation techniques to this weakly nonlinear system. 

In contrast, other recent studies of analogous discrete systems 

neglect pretension, giving rise to strongly nonlinear equations of 

motion governing the transverse motion of particles [24].  

 

3 ANALYSIS APPROACH 
If the bookkeeping term is small (𝜀 ≪ 1), then the nonlinear 

interactions are weak and the Method of Multiple Scales (MMS) 

[25] can readily be applied to Eq. (1). This analysis technique 

introduces various time scales at which the system evolves 

 𝑇0 = 𝑡, 𝑇1 = 𝜀𝑡, … , 𝑇𝑛 = 𝜀𝑛𝑡 (2) 

It follows that time derivatives can be expressed as 

 ( ̇ ) = 𝐷0( ) + 𝜀𝐷1( ) + ⋯ + 𝜀𝑛𝐷𝑛( ) (3) 

and   

 ( ̈ ) = 𝐷0
2( ) + 2𝜀𝐷0𝐷1( ) + 𝜀2𝐷1

2( ) + 

 2𝜀2𝐷0𝐷2( ) + 𝑂(𝜀3) (4) 

where 𝐷𝑛( ) denotes differentiation with respect to 𝑇𝑛. 

Additionally, a series solution is imposed of the form 

 𝑧𝑗,𝑘 = 𝑧𝑗,𝑘
(0)

+ 𝜀𝑧𝑗,𝑘
(1)

+ ⋯ + 𝜀𝑛𝑧𝑗,𝑘
(𝑛)

 (5) 

The equation governing the 0th order is, 

𝑚𝐷0
2𝑧𝑗,𝑘

(0)
+ 𝑘1𝑥(𝑧𝑗,𝑘

(0)
− 𝑧𝑗−1,𝑘

(0)
− 𝑧𝑗+1,𝑘

(0)
) 

 +𝑘1𝑦(𝑧𝑗,𝑘
(0)

− 𝑧𝑗,𝑘−1
(0)

− 𝑧𝑗,𝑘+1
(0)

) = 0 (6) 

which is known to admit a Bloch wave 

 𝑧𝑗,𝑘
(0)

=
1

2
𝐴𝑒𝑖𝜔0𝑇0𝑒−𝑖𝜇𝑥𝑗𝑒−𝑖𝜇𝑦𝑘 + 𝑐. 𝑐. (7) 

where 𝐴 denotes the complex wave amplitude, 𝜔0 and 𝜇 denote 

the fundamental temporal and spatial frequencies, respectively, 

and 𝑐. 𝑐. denotes the complex conjugate of all preceding terms. 

𝐴(𝑇1, 𝑇2, … , 𝑇𝑛) can be expressed in polar form 

 𝐴 = 𝛼𝑒𝑖𝛽 (8) 

where 𝛼 = 𝛼(𝑇1, 𝑇2, … 𝑇𝑛) and 𝛽 = 𝛽(𝑇1, 𝑇2, … , 𝑇𝑛). 

Substitution of the Bloch waveform into the 0th-order governing 

equation yields the linear dispersion relationship,  

 𝜔0 = √
2𝑘1𝑥

𝑚
(1 − cos 𝜇𝑥) +

2𝑘1𝑦

𝑚
(1 − cos 𝜇𝑦) (9) 

Next, updating the 1st-order equation with the 0th-order 

results yields 

𝑚𝐷0
2𝑧𝑗,𝑘

(1)
+ 𝑘1𝑥(𝑧𝑗,𝑘

(1)
− 𝑧𝑗−1,𝑘

(1)
− 𝑧𝑗+1,𝑘

(1)
) 

 +𝑘1𝑦(𝑧𝑗,𝑘
(1)

− 𝑧𝑗,𝑘−1
(1)

− 𝑧𝑗,𝑘+1
(1)

) = 𝑓𝑠𝑒𝑐𝑢𝑙𝑎𝑟 + 𝑓𝑛𝑜𝑛𝑠𝑒𝑐𝑢𝑙𝑎𝑟  (10) 

It is apparent that the left-hand side of Eq. (10) resembles that of 

the 0th-order equation. Furthermore, the right-hand side contains 

both secular forcing terms (i.e., those containing 

𝑒𝑖𝜔0𝑇0𝑒−𝑖𝜇𝑥𝑗𝑒−𝑖𝜇𝑦𝑘 ) and nonsecular forcing terms (i.e., those 

containing 𝑒𝑛𝑖𝜔0𝑇0𝑒−𝑛𝑖 𝜇𝑥𝑗𝑒−𝑛𝑖𝜇𝑦𝑘 , 𝑛 = 2,3). To preserve the 
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convergence of the series expansion in Eq. (5), all secular terms 

must be removed, which can be accomplished by a unique choice 

of 𝐷1𝛼 and 𝐷1𝛽  

  𝐷1𝛼 = −𝛾𝑥𝑦𝛼 (11) 

  𝐷1𝛽 = 𝛿𝑥𝑦𝛼2 (12) 

where 𝛾𝑥𝑦 and 𝛿𝑥𝑦 can be expressed in terms of the lattice 

parameters in Eq. (1) as well as 𝜔0 and 𝜇. 

With only nonsecular terms remaining in Eq. (10), the 1st-

order solution requires only a particular solution, 

  𝑧𝑗,𝑘
(1)

=
1

2
𝐵1𝑒2𝑖𝜔0𝑇0𝑒−2𝑖𝜇𝑥𝑗𝑒−2𝑖𝜇𝑦𝑘 +  

  
1

2
𝐶1𝑒3𝑖𝜔0𝑇0𝑒−3𝑖𝜇𝑥𝑗𝑒−3𝑖𝜇𝑦𝑘 + 𝑐. 𝑐. (13) 

where the coefficients can be solved for algebraically via the 

method of undetermined coefficients.  

Analysis at the second order follows a similar approach. 

Removal of secular terms determines 𝐷2𝛼 and 𝐷2𝛽  

  𝐷2𝛼 = 𝜙𝑥𝑦𝛼5 + 𝜉𝑥𝑦𝛼3 (14) 

  𝐷2𝛽 = Χ𝑥𝑦𝛼4 + Υ𝑥𝑦𝛼2 + Ζxy (15) 

where 𝜙𝑥𝑦 , 𝜉𝑥𝑦 , Χ𝑥𝑦 , Υ𝑥𝑦 , and Ζxy can be expressed in terms of 

the lattice parameters in Fig. 1 as well as 𝜔0 and 𝜇. The 

nonsecular forcing terms generates a second order particular 

solution of the form 

𝑧𝑗,𝑘
(2)

=
1

2
𝐵2𝑒2𝑖𝜔0𝑇0𝑒−2𝑖𝜇𝑥𝑗𝑒−2𝑖𝜇𝑦𝑘 

  +
1

2
𝐶2𝑒3𝑖𝜔0𝑇0𝑒−3𝑖𝜇𝑥𝑗𝑒−3𝑖𝜇𝑦𝑘 

  +
1

2
𝐸2𝑒4𝑖𝜔0𝑇0𝑒−4𝑖𝜇𝑥𝑗𝑒−4𝑖𝜇𝑦𝑘  

  +
1

2
𝐹2𝑒5𝑖𝜔0𝑇0𝑒−5𝑖𝜇𝑥𝑗𝑒−5𝑖𝜇𝑦𝑘 + 𝑐. 𝑐. (16) 

The MMS results from both the first and second order reveal a 

unique multi-harmonic profile that this structure supports. Prior 

studies of 1-D systems confirm that the addition of terms from 

the series solution converges to an invariant waveform: a 

distribution of harmonic energy that propagates without 

dispersing for all space and time [15]. Numerical validation of 

waveform invariance in this 2-D lattice will be investigated in 

future work.  

4 LOCAL STABILITY ANALYSIS 
It is of practical interest to know the stability of wave 

propagation in these nonlinear systems: under what conditions 

will a plane wave cease to propagate at its prescribed solution 

form? Amplitude can be expected to play a critical role in 

determining the stability of the wave propagation solutions 

found. For sufficiently large amplitudes, nonlinear interactions 

dominate and plane wave propagation may break-down as the 

medium can no longer support the waveform injected into it (that 

assumes weak nonlinearities). Such knowledge could limit the 

operational amplitude range of devices that exploit nonlinear 

effects (e.g., bandgap shifting). Less intuitive is the influence of 

propagation direction on stability, especially for a symmetrical 

lattice. However, a local stability analysis indeed reveals fixed-

points that vary with propagation angle, a finding, to the authors’ 

knowledge, that has yet to be reported in discrete nonlinear 

periodic structures.  

Reconstituting the 0th order amplitude to the original time 

scale yields an evolution equation 

 𝛼̇ = 𝜀𝐷1(𝛼) + 𝜀2𝐷2(𝛼) (17) 

Denoting the fixed point solutions as 𝛼∗, the stability of each 

fixed point is assessed through a local analysis by computing its 

associated 𝜆 value 

 𝜆 ≡
𝑑

𝑑𝛼
𝛼̇|𝛼∗  (18) 

where 𝜆 > 0 implies instability, 𝜆 < 0 stability, and 𝜆 = 0 

neutral stability.  

Whether truncated at the 1st or 2nd order, the stable fixed 

point 𝛼∗ = 0 arises from the analysis. Such solution indicates 

that small amplitude waves decay due to damping in the 

structure. Higher-order (i.e., 𝑂(𝜀2)) terms in the reconstituted 

evolution equation reveal unstable non-zero fixed points (𝛼∗ =
𝛼𝑁𝑍

∗ ). Thus, amplitudes greater than these critical values grow 

unboundedly whereas amplitudes less than these critical values 

decay to the attractor at 𝛼∗ = 0.  

While not immediately apparent when examining the MMS 

results, the unstable fixed points in the symmetric system exhibit 

strong angular dependence. Figure 2 plots the unstable fixed 

points as a function of 𝜃, the angle of the plane wave in the 

lattice. Note that, while symmetric parameters are used, there is 

still the indication of directional stability in the system: stability 

increases as the angle increases since higher 𝛼∗ values imply 

greater stability.  

 

Figure 2. Unstable fixed points evaluated as a function of 

propagation angle at various frequencies, exhibiting more stability 

as the angle departs from = 𝟎 : 𝒎 = 𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 =

𝟏, 𝒌𝟐,𝒚 = 𝟏, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 = 𝟏, 𝒄𝒙 = 𝟎. 𝟏, 𝒄𝒚 = 𝟎. 𝟏 

Figure 3 displays the basins of attraction for a symmetrical 

lattice with plane waves along different angles, 𝜃, and initial 

amplitudes, 𝛼0.  Note that 𝛼0 values above the threshold marked 

by the black line propagate in an unstable manner whereas 𝛼0 

values below this threshold propagate in a stable manner. The 

black line is computed from the local stability analysis while the 

colored points are found from numerically integrating Eq. (17) 

and identifying, based on the rate of change of the amplitude, if 



 4 Copyright © 2018 by ASME 

 

the plane wave propagated stably.  Unstable waves possess 

amplitudes that grow unboundedly whereas stable waves decay 

to zero due to the presence of damping. Again, note the 

directional dependence of stability. It is clear that for some 

amplitudes, e.g. 𝛼0 = 1.5, the wave propagates in a stable 

manner along the 45 degree direction, but in an unstable manner 

along the 0 degree direction.  

 

Figure 3. Basins of attraction for the 2-D lattice. Amplitudes grow 

unboundedly when greater than directionally-dependent critical 

values. Otherwise, amplitudes decay to the attractor at 𝜶∗ = 𝟎: 
𝒎 = 𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 = 𝟏, 𝒌𝟐,𝒚 = 𝟏, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 =

𝟏, 𝒄𝒙 = 𝟎. 𝟏, 𝒄𝒚 = 𝟎. 𝟏, 𝝎𝟎 = 𝟏. 𝟑 

Similar to the findings in [15], the fixed points from the local 

stability analysis cannot be expected to accurately predict the 

true threshold for instability in this system. This conclusion 

stems from the weak nonlinearity assumption intrinsic to the 

perturbation analysis: the fixed points indicating a loss of 

stability are large enough to violate this assumption. Defining the 

dimensionless strength of the cubic nonlinearity as Π3 =

𝜀𝑘3𝑥𝛼𝑁𝑍
∗ 2 𝑘1𝑥⁄ , the fixed point that gives the weakest 

nonlinearity is Π3,min = 0.667, well above the conservative limit 

of 0.1. However, the MMS results do accurately convey that, as 

supported by the results of numerical simulations presented in 

the following section, there is directional stability of plane waves 

in these lattices.  

5 NUMERICAL STABILITY RESULTS 
To investigate the findings of the local stability analysis, 

direct numerical integration of Eq. (1) is performed at varying 

wave amplitudes and angles. Large structures (~150 x 150 unit 

cells) are simulated and viscous dampers with coefficients that 

increase at a cubic rate outward are added near the boundary to 

suppress reflections. Harmonic displacements of the form 

𝑥(𝑗, 𝑘, 𝑡) = 𝛼 cos 𝜔𝑡 are applied to the lattice at either a point or 

along a line. Clearly, point forcing generates waves along all 

directions simultaneously whereas line forcing generates waves 

along prescribed directions. Recall that waves generated by point 

forcing undergo geometric spreading of their amplitude because 

of energy conservation. Instability is defined herein as a 

significant deviation from the expected multiharmonic solution.  

Fast Fourier Transforms (FFT’s) are computed over time for 

various unit cells near the forcing location. With this 

information, the energy 𝐸 within a frequency band Ω1 to Ω2 can 

be calculated as 

 𝐸 = ∫ |𝑍(Ω)|2𝑑Ω
Ω2

Ω1
 (19) 

where 𝑍(Ω) is the complex coefficient of the FFT at a given 

frequency. Using Eq. (19), instabilities can be detected when an 

appreciable amount of energy falls outside of a narrowband 

region centered about the forcing frequency. Accordingly, 𝐸𝛿  can 

be introduced 

 𝐸𝛿 = 1 −
1

𝐸𝑡𝑜𝑡𝑎𝑙
∫ |𝑍(Ω)|2𝑑Ω

𝜔+Δ

𝜔−Δ
 (20) 

where 𝐸𝑡𝑜𝑡𝑎𝑙  denotes the total spectral energy of the unit cell and 

2Δ denotes a small bandwidth centered about the forcing 

frequency 𝜔. 

 Figure 4 presents the results of applying a high-amplitude 

harmonic displacement to the center of a symmetric lattice. The 

energy outside of the fundamental (forcing) frequency, 𝐸𝛿 , is 

computed and displayed at each point in the 20 x 20 square 

region around the center. Black lines represent displacement 

contours. For a wave that propagates nearly uniformly outward 

(i.e. no beaming, as is known to occur at high frequencies) 

spectral content differs drastically along different angles far 

away from the source. The FFT’s at two separate locations reveal 

that propagation along the 𝑥-direction breaks down from its 

original fundamental frequency into incommensurate 

frequencies not predicted by the perturbation analysis, whereas 

the 45-degree direction retains nearly all the signal information 

from the point forcing.  
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Figure 4. Point forcing of a lattice at its center. Spectral energy 

outside of the narrow forcing frequency band varies with direction 

and is highest at 𝜽 = 𝟒𝟓𝒐, consistent with perturbation theory. 

Stable spectral content at 𝜽 = 𝟎𝒐 (a.) is compared to unstable 

spectral content at 𝜽 = 𝟒𝟓𝒐 (b.), : 𝒎 = 𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 =

𝟎, 𝒌𝟐,𝒚 = 𝟎, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 = 𝟏, 𝒄𝒙 = 𝟎, 𝒄𝒚 = 𝟎, 𝝎 = 𝟏. 𝟑, 𝜶 = 𝟐. 𝟕 

High amplitude line forcing is applied to the system in Fig. 

5, producing propagation along the 𝑥-direction (a.) and 45 degree 

direction (b.). Visual comparison of the displacements for both 

cases clearly indicates that the 45 degree direction propagates in 

a stable manner whereas the 𝑥-direction does not, consistent with 

both the numerical results of point forcing and the MMS results.  

 

 

Figure 5. Line forcing of lattice at high amplitudes for 𝜽 = 𝟎𝒐 (a.) 

as compared to 𝜽 = 𝟒𝟓𝒐 (b.): 𝒎 = 𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 =

𝟎, 𝒌𝟐,𝒚 = 𝟎, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 = 𝟏, 𝒄𝒙 = 𝟎, 𝒄𝒚 = 𝟎, 𝝎 = 𝟏. 𝟑, 𝜶 = 𝟎. 𝟗 a.) 

𝜽 = 𝟎𝒐 and b.) 𝜽 = 𝟒𝟓𝒐  

Figure 6 depicts the evolution of temporal FFT’s over space 

for the simulations presented in Fig. 5. The range is the number 

of unit cells (perpendicular to the wavefront) from the location 

of the center of the line of forcing. Note the consistency with the 

point forcing results in Fig. 2: spectral content distorts 

significantly for 𝜃 = 0𝑜 as compared to 𝜃 = 45𝑜. Unlike the 

point forcing simulation, there is no geometric spreading of 

amplitude, making line forcing studies useful for identifying the 

exact amplitude threshold for instability as 𝜃 is varied, which 

will be done in future work.  
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Figure 6. Spatial evolution of temporal FFT’s for a lattice 

subjected to line forcing. Significant growth of incommensurate 

frequencies occurs for propagation along 𝜽 = 𝟒𝟓𝒐 whereas a 

stable generation of harmonics occurs for 𝜽 = 𝟎𝒐 . (b.) 𝒎 =
𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 = 𝟎, 𝒌𝟐,𝒚 = 𝟎, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 = 𝟏, 𝒄𝒙 =

𝟎, 𝒄𝒚 = 𝟎, 𝝎 = 𝟏. 𝟑, 𝜶 = 𝟎. 𝟗 

 Figure 7 compares 𝐸𝛿  as a function of the wave’s range for 

unit cells along 𝜃 = 0𝑜 and 45𝑜. Note that energy rapidly 

distributes outside of the forcing frequency band for 𝜃 = 0𝑜 and 

remains relatively centered around the forcing frequency band 

for 𝜃 = 45𝑜. 

 

Figure 7. Spatial evolution of spectral energy for a lattice 

subjected to line forcing. Energy outside the narrow forcing 

frequency band is measurably higher along 𝜽 = 𝟒𝟓𝒐 than 𝜽 = 𝟎𝒐: 

𝒎 = 𝟏, 𝒌𝟏,𝒙 = 𝟏, 𝒌𝟏,𝒚 = 𝟏, 𝒌𝟐,𝒙 = 𝟎, 𝒌𝟐,𝒚 = 𝟎, 𝒌𝟑,𝒙 = 𝟏, 𝒌𝟑,𝒚 =

𝟏, 𝒄𝒙 = 𝟎, 𝒄𝒚 = 𝟎, 𝝎 = 𝟏. 𝟑, 𝜶 = 𝟎. 𝟗 

Continuous structures do not lose stability at different rates 

along different directions. Thus, this finding illustrates that 

discrete media leads to novel dynamical behavior in symmetric 

materials that could inspire new technology. For example, Fig. 8 

proposes a new method for spatially encrypting data, in which 

the phasing between transducers produces a stable plane wave 

only when the correct passcode is entered. Otherwise, an 

unstable wave generates incommensurate frequencies and 

information stored at the fundamental frequency is unreadable.  

 

 

Figure 8. Encryption of information by setting the phasing 

between transducers to generate stable plane waves only when the 

correct passcode is entered.  

Orientation of cracks in structures such as bridges, 

buildings, and aircraft could be identified in a novel, low power 

manner. Figure 9 depicts a transducer array mounted on a 

structure with a crack. Signals from the transducers reveal if the 

crack is oriented closer to 45𝑜 or 0𝑜 by simply examining the 

presence or absence of incommensurate frequencies. 

Information about crack orientation may be critical for assessing 

the threat the crack poses to the structure.   

 

 

Figure 9. Orientation of cracks can be detected by examining the 

presence (or absence) of incommensurate frequencies in a 

transducer array. 
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6 CONCLUDING REMARKS 
A 2-D nonlinear monoatomic shear lattice was analyzed 

using higher-order multiple scales analysis. A local stability 

analysis of the wave’s amplitude indicates that propagation along 

a lattice direction propagates less stably than inclined directions. 

Numerical simulations of the symmetric lattice’s equation of 

motion, under both point and line forcing, confirm this trend. 

Such findings could inspire new data encryption and damage 

detection technologies. 
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