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ABSTRACT

Recent focus has been given to nonlinear periodic structures for
their ability to filter, guide, and block elastic and acoustic waves
as a function of their amplitude. In particular, two-dimensional
(2-D) nonlinear structures possess amplitude-dependent
directional bandgaps. However, little attention has been given to
the stability of plane waves along different directions in these
structures. This study analyzes a 2-D monoatomic shear lattice
composed of discrete masses, linear springs, quadratic and cubic
nonlinear springs, and linear viscous dampers. A local stability
analysis informed by perturbation results retained through the
second order suggests that different directions become unstable
at different amplitudes in an otherwise symmetrical lattice.
Simulations of the lattice’s equation of motion subjected to both
line and point forcing are consistent with the local stability
results: waves with large amplitudes have spectral growth that
differs appreciably at different angles. The results of this analysis
could have implications for encryption strategies and damage
detection.

Keywords: 2-D periodic structures, nonlinear wave propagation,
stability, Method of Multiple Scales

1 INTRODUCTION

Periodic structures have been an active area of research, in
part due to their inherent filtering capabilities, which inspires
applications such as acoustic filters [1, 2], waveguides [3-5], and
diodes [6, 7]. Some of the earliest studies of linear periodic
structures dates back to the work of Brillouin [8] and Kittel [9],
that analyzed elastic and electric monoatomic and diatomic
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lattices. Significant advancements in the analysis of waves in
elastic periodic media stemmed from Mead et al. that
characterizes plane wave propagation in periodic plates [10, 11].

Prior studies have employed perturbation techniques to
analyze wave propagation in nonlinear periodic systems.
Vakakis and King [12] reported amplitude-dependent
propagation and attenuation zones in nonlinear periodic
structures by application of multiple scales in space and time.
Narisetti ez al. [13] as well as Manktelow et al. [14] studied 2-D
monoatomic and diatomic lattices with an emphasis on obtaining
and numerically verifying amplitude-dependent dispersion
shifts. However, these asymptotic techniques stop at the 1%
order, thereby limiting the information about wave propagation
in these systems since higher-order analysis has been shown to
reveal the existence of unstable fixed points [15].

Many prior analyses have identified angular-dependent
phenomena in two-dimensional periodic structures. Majunath et
al. [16] studied the propagation of impacts in 2-D granular
media: angular dependence was reported for the transmitted
force amplitude and induced propagation angle for layers below
the impact. Directional bandgaps have been presented in 2-D
periodic structures including auxetic and chiral lattices [17, 18]
as well as plates with truss-like cores [19]. Thus, compared to
their 1-D counterpart, 2-D structures filter directions in addition
to frequencies of propagation. Cleavage fracture was found to
occur in preferential directions in silicon whereas other
directions exhibit relaxation of the surrounding atoms and large
lattice trapping [20]. To the author’s knowledge, what remains to
be reported in two-dimensional periodic structures is the
directional stability of plane waves: a directional-dependence on
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the amplitude at which the plane wave solution breaks down.
While numerous studies have examined the stability of waves in
nonlinear lattice structures, there is a lack of analysis on the
stability of plane waves, i.e. waves of infinite temporal and
spatial extent that possess a fundamental frequency and
(potentially) higher harmonics of that frequency. By contrast,
studies have examined waveforms such as solitary waves [21],
gap solitons [22] and discrete breathers [23].

This study conducts higher-order multiple scales analysis on
the equations of motion governing a 2-D monoatomic lattice
with weak quadratic and cubic nonlinearities. Results retained
through the second order inform a local stability analysis on the
wave’s amplitude, yielding direction-dependent stability
behavior. Direct numerical simulations qualitatively confirm the
study’s findings.

2 SYSTEM DESCRIPTION

The system considered in this analysis is a 2-D monoatomic
shear lattice (see Fig. 1): a unit cell composed of a single mass is
repeated in two orthogonal directions and only out-of-plane
displacements are permitted. Each mass is coupled to its four
nearest neighbors via a linear spring, linear damper, and
quadratic and cubic nonlinear springs.

Figure 1. Unit cell of the 2-D monoatomic lattice

The equations of motion governing the lattice are

mEj e+ ki (2 = Zj—1p = Ziaw) + kay (Ze = Zixe1 = Zjjer1)
+ekoy (2 — Zj—l,k)z + ko (Zjx — Zj+1,k)2
+£k2y(zj’k — zj’k_l)z + Ekzy(zj'k - zj'kﬂ)z
+eksy (2 — Zj—l,k)3 + ks (zjx — Zj+1,k)3
+£k3y(zj’k - zj’k_1)3 + Ekzy(zj'k - zj'k+1)3
+ec,(Zjk — Zj—1k — Zjs1k)
+ecy(Zjg — Zjg-1— Zjgs1) =0 (1)

where z; denotes the out-of-plane displacement of the mass
located at (j, k), m the mass, and kyy, kq,, the linear stiffness in
the x and y directions, respectively. The same naming
convention applies to the damping coefficients (c,, ¢, ), quadratic
stiffnesses (ky, k), and cubic stiffnesses (k3y, k3, ). The small
parameter ¢is employed as a bookkeeping device. Linear
restoring forces could arise from a non-zero pretension (e.g.,
from a membrane-like material) and must be considered in order
to apply perturbation techniques to this weakly nonlinear system.
In contrast, other recent studies of analogous discrete systems
neglect pretension, giving rise to strongly nonlinear equations of
motion governing the transverse motion of particles [24].

3 ANALYSIS APPROACH

If the bookkeeping term is small (¢ < 1), then the nonlinear
interactions are weak and the Method of Multiple Scales (MMS)
[25] can readily be applied to Eq. (1). This analysis technique
introduces various time scales at which the system evolves

To=tT =¢t, .., T, ="t 2)
It follows that time derivatives can be expressed as
( )=Do( )+eDi( )4+ D( ) ()

and
(") =D3(C )+2eDyD;( ) +e2DZ( )+
2e2DyD,( ) + 0(£3) 4
where D,( ) denotes differentiation with respect to T,.
Additionally, a series solution is imposed of the form
Zjj = z](‘,)() + ezﬁ) + -+ s"zj(z) (5)
The equation governing the 0™ order is,

0) 0 _ (0) (0)
mDSzjk + klx( k7

j+1,k
(0) (0) (0) _
+k1y(zjk ]k 1 Z] k+1) — 0 (6)
which is known to admit a Bloch wave
zj(_(,? = %Aei“"’T"e"'“xje_i“yk +c.c. (7)

where A denotes the complex wave amplitude, w, and u denote
the fundamental temporal and spatial frequencies, respectively,
and c. c. denotes the complex conjugate of all preceding terms.
A(Ty, T,, ..., T,) can be expressed in polar form

A=ae® (8)
where a=a(T,T,, ..Ty) and B =BT, T, ... Ty).
Substitution of the Bloch waveform into the 0"-order governing
equation yields the linear dispersion relationship,

(1 — COoS ,uy) )

Next, updatmg the 1%-order equatlon with the O0%-order
results yields

1 1 1 1
mDSZ](k) + klx( -7 )1k Zj(+)1,k

+k1y( (1) ](i) 1 j(,}c)+1) - fsecular + fnonsecular (]O)
It is apparent that the left-hand side of Eq. (10) resembles that of
the 0"-order equation. Furthermore, the right-hand side contains
both secular forcing terms (i.e., those containing
el@oTog~ikxig=ikyk ) and nonsecular forcing terms (i.e., those
containing e™®oTog M kxig=Mikyk 1 = 2 3) To preserve the

Wy =
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convergence of the series expansion in Eq. (5), all secular terms
must be removed, which can be accomplished by a unique choice
of Dy and D, f8
Dija =~y a (11)
D,B = &y, a? (12)
where ¥, and &y, can be expressed in terms of the lattice
parameters in Eq. (1) as well as w, and p.
With only nonsecular terms remaining in Eq. (10), the 1%-
order solution requires only a particular solution,
z.(l) — lB @ 2iwoTo g —2ikxj o =2ilyk
jk T 271
%C1e3i“’0TOe_3i”xfe‘3i“yk +c.c. (13)
where the coefficients can be solved for algebraically via the
method of undetermined coefficients.
Analysis at the second order follows a similar approach.
Removal of secular terms determines D, and D, 8
Dya = ¢y’ + &y a3 (14)
DB = Xyyat + Yy a? + Zy, (15)
where ¢y, €xy) Xyy) Yay, and Zyy can be expressed in terms of
the lattice parameters in Fig. 1 as well as w, and u. The
nonsecular forcing terms generates a second order particular
solution of the form
Zj(jc) — leeZionoe—Ziyxje—Ziuyk
+ % CzeSinTOe—Siuxje—Siyyk
+ %EzellionOe—ll-i,uxje—zl—iuyk

+ %erSi“’OToe‘S”‘xfe‘Si“y" +c.c. (16)
The MMS results from both the first and second order reveal a
unique multi-harmonic profile that this structure supports. Prior
studies of 1-D systems confirm that the addition of terms from
the series solution converges to an invariant waveform: a
distribution of harmonic energy that propagates without
dispersing for all space and time [15]. Numerical validation of
waveform invariance in this 2-D lattice will be investigated in
future work.

4 LOCAL STABILITY ANALYSIS

It is of practical interest to know the stability of wave
propagation in these nonlinear systems: under what conditions
will a plane wave cease to propagate at its prescribed solution
form? Amplitude can be expected to play a critical role in
determining the stability of the wave propagation solutions
found. For sufficiently large amplitudes, nonlinear interactions
dominate and plane wave propagation may break-down as the
medium can no longer support the waveform injected into it (that
assumes weak nonlinearities). Such knowledge could limit the
operational amplitude range of devices that exploit nonlinear
effects (e.g., bandgap shifting). Less intuitive is the influence of
propagation direction on stability, especially for a symmetrical
lattice. However, a local stability analysis indeed reveals fixed-
points that vary with propagation angle, a finding, to the authors’
knowledge, that has yet to be reported in discrete nonlinear
periodic structures.

Reconstituting the 0% order amplitude to the original time
scale yields an evolution equation

& = eD; (a) + £2D,(a) (17)

Denoting the fixed point solutions as a”, the stability of each

fixed point is assessed through a local analysis by computing its

associated A value
d

where A > 0 implies instability, 4 < 0 stability, and A =0
neutral stability.

Whether truncated at the 1% or 2™ order, the stable fixed
point a* = 0 arises from the analysis. Such solution indicates
that small amplitude waves decay due to damping in the
structure. Higher-order (i.e., 0(g?)) terms in the reconstituted
evolution equation reveal unstable non-zero fixed points (a* =
ayz)- Thus, amplitudes greater than these critical values grow
unboundedly whereas amplitudes less than these critical values
decay to the attractor at a* = 0.

While not immediately apparent when examining the MMS
results, the unstable fixed points in the symmetric system exhibit
strong angular dependence. Figure 2 plots the unstable fixed
points as a function of 8, the angle of the plane wave in the
lattice. Note that, while symmetric parameters are used, there is
still the indication of directional stability in the system: stability
increases as the angle increases since higher a* values imply
greater stability.
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Figure 2. Unstable fixed points evaluated as a function of
propagation angle at various frequencies, exhibiting more stability
as the angle departs from=0:m =1, ky, =1,k = 1,k =
1,kyy=1ks,=1k3,=1,¢c,=0.1,¢,=0.1

Figure 3 displays the basins of attraction for a symmetrical
lattice with plane waves along different angles, 8, and initial
amplitudes, a,. Note that @, values above the threshold marked
by the black line propagate in an unstable manner whereas «,
values below this threshold propagate in a stable manner. The
black line is computed from the local stability analysis while the
colored points are found from numerically integrating Eq. (17)
and identifying, based on the rate of change of the amplitude, if
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the plane wave propagated stably. Unstable waves possess
amplitudes that grow unboundedly whereas stable waves decay
to zero due to the presence of damping. Again, note the
directional dependence of stability. It is clear that for some
amplitudes, e.g. @y = 1.5, the wave propagates in a stable
manner along the 45 degree direction, but in an unstable manner
along the 0 degree direction.

Unstable

-l 4 -m/8 0 /8 wl4
0

Figure 3. Basins of attraction for the 2-D lattice. Amplitudes grow
unboundedly when greater than directionally-dependent critical
values. Otherwise, amplitudes decay to the attractor at a* = 0:
m= 1,k1’x = 1,k1’y =1, kZ,x =1, kZ,y =1, k3,x =1, k3’y =
1,c, = 0.1,cy =0.1,wy=1.3

Similar to the findings in [15], the fixed points from the local
stability analysis cannot be expected to accurately predict the
true threshold for instability in this system. This conclusion
stems from the weak nonlinearity assumption intrinsic to the
perturbation analysis: the fixed points indicating a loss of
stability are large enough to violate this assumption. Defining the
dimensionless strength of the cubic nonlinearity as [I; =
ks iy’ /kix, the fixed point that gives the weakest
nonlinearity is I3 ,;, = 0.667, well above the conservative limit
of 0.1. However, the MMS results do accurately convey that, as
supported by the results of numerical simulations presented in
the following section, there is directional stability of plane waves
in these lattices.

5 NUMERICAL STABILITY RESULTS

To investigate the findings of the local stability analysis,
direct numerical integration of Eq. (1) is performed at varying
wave amplitudes and angles. Large structures (~150 x 150 unit
cells) are simulated and viscous dampers with coefficients that
increase at a cubic rate outward are added near the boundary to
suppress reflections. Harmonic displacements of the form
x(j, k,t) = a cos wt are applied to the lattice at either a point or
along a line. Clearly, point forcing generates waves along all
directions simultaneously whereas line forcing generates waves
along prescribed directions. Recall that waves generated by point

forcing undergo geometric spreading of their amplitude because
of energy conservation. Instability is defined herein as a
significant deviation from the expected multiharmonic solution.

Fast Fourier Transforms (FFT’s) are computed over time for
various unit cells near the forcing location. With this
information, the energy E within a frequency band (), to (), can
be calculated as

Q

E = fnlle(Q)lde (19)
where Z(Q) is the complex coefficient of the FFT at a given
frequency. Using Eq. (19), instabilities can be detected when an
appreciable amount of energy falls outside of a narrowband
region centered about the forcing frequency. Accordingly, Es can
be introduced
1 w+A
Es=1- For fm_A |Z(Q)|2dQ (20)
where E,;q; denotes the total spectral energy of the unit cell and
2A denotes a small bandwidth centered about the forcing
frequency w.

Figure 4 presents the results of applying a high-amplitude
harmonic displacement to the center of a symmetric lattice. The
energy outside of the fundamental (forcing) frequency, Eg, is
computed and displayed at each point in the 20 x 20 square
region around the center. Black lines represent displacement
contours. For a wave that propagates nearly uniformly outward
(i.e. no beaming, as is known to occur at high frequencies)
spectral content differs drastically along different angles far
away from the source. The FFT’s at two separate locations reveal
that propagation along the x-direction breaks down from its
original fundamental frequency into incommensurate
frequencies not predicted by the perturbation analysis, whereas
the 45-degree direction retains nearly all the signal information
from the point forcing.
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Figure 4. Point forcing of a lattice at its center. Spectral energy
outside of the narrow forcing frequency band varies with direction
and is highest at & = 45°, consistent with perturbation theory.
Stable spectral content at 8 = 0° (a.) is compared to unstable
spectral content at @ = 45° (b.), : m =1, k1 = L, kyy = 1L, kp, =
0,k;y=0k3y=1k;,=1¢,=0,¢c,=0,w=13,a=2.7

High amplitude line forcing is applied to the system in Fig.
5, producing propagation along the x-direction (a.) and 45 degree
direction (b.). Visual comparison of the displacements for both
cases clearly indicates that the 45 degree direction propagates in
a stable manner whereas the x-direction does not, consistent with
both the numerical results of point forcing and the MMS results.
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Figure 5. Line forcing of lattice at high amplitudes for 8 = 0° (a.)
as compared to 8 = 45° (b.):m = Lk, = 1, k1, = 1k, =
0,k;y=0k3x=1k;,=1¢,=0,¢,=0,w=13,a=0.9a)
6 =0° and b.) 6 = 45°

Figure 6 depicts the evolution of temporal FFT’s over space
for the simulations presented in Fig. 5. The range is the number
of unit cells (perpendicular to the wavefront) from the location
of the center of the line of forcing. Note the consistency with the
point forcing results in Fig. 2: spectral content distorts
significantly for 8 = 0° as compared to 8 = 45°. Unlike the
point forcing simulation, there is no geometric spreading of
amplitude, making line forcing studies useful for identifying the
exact amplitude threshold for instability as 6 is varied, which
will be done in future work.
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Figure 6. Spatial evolution of temporal FFT’s for a lattice
subjected to line forcing. Significant growth of incommensurate
frequencies occurs for propagation along & = 45° whereas a
stable generation of harmonics occurs for 6 = 0° . (b.) m =
1, kl,x = 1, kl,y = 1, kz'x = 0, kZ,y = 0, kg'x = 1, kg'y = 1, Cy =
0,cy,=0w=13,a=0.9

Figure 7 compares Eg as a function of the wave’s range for
unit cells along 8 = 0° and 45°. Note that energy rapidly
distributes outside of the forcing frequency band for & = 0° and
remains relatively centered around the forcing frequency band
for 8 = 45°.
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Figure 7. Spatial evolution of spectral energy for a lattice
subjected to line forcing. Energy outside the narrow forcing
frequency band is measurably higher along 6 = 45° than 6 = 0°:
m=1ky,=1ky,=1k;,=0k;, =0,k;,=1k3, =
1,¢,=0,¢,=0,w=13,=0.9

Continuous structures do not lose stability at different rates
along different directions. Thus, this finding illustrates that
discrete media leads to novel dynamical behavior in symmetric
materials that could inspire new technology. For example, Fig. 8

proposes a new method for spatially encrypting data, in which
the phasing between transducers produces a stable plane wave
only when the correct passcode is entered. Otherwise, an
unstable wave generates incommensurate frequencies and
information stored at the fundamental frequency is unreadable.

Figure 8. Encryption of information by setting the phasing
between transducers to generate stable plane waves only when the
correct passcode is entered.

Orientation of cracks in structures such as bridges,
buildings, and aircraft could be identified in a novel, low power
manner. Figure 9 depicts a transducer array mounted on a
structure with a crack. Signals from the transducers reveal if the
crack is oriented closer to 45° or 0° by simply examining the
presence or absence of incommensurate frequencies.
Information about crack orientation may be critical for assessing
the threat the crack poses to the structure.

Figure 9. Orientation of cracks can be detected by examining the
presence (or absence) of incommensurate frequencies in a
transducer array.
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6 CONCLUDING REMARKS

A 2-D nonlinear monoatomic shear lattice was analyzed
using higher-order multiple scales analysis. A local stability
analysis of the wave’s amplitude indicates that propagation along
a lattice direction propagates less stably than inclined directions.
Numerical simulations of the symmetric lattice’s equation of
motion, under both point and line forcing, confirm this trend.
Such findings could inspire new data encryption and damage
detection technologies.
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