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Acoustic Non-Reciprocity in
Lattices With Nonlinearity,
Internal Hierarchy, and
Asymmetry: Computational Study
Reciprocity is a property of linear, time-invariant systems whereby the energy transmission
from a source to a receiver is unchanged after exchanging the source and receiver. Nonre-
ciprocity violates this property and can be introduced to systems if time-reversal symmetry
and/or parity symmetry is lost. While many studies have induced nonreciprocity by active
means, i.e., odd-symmetric external biases or time variation of system properties, consider-
ably less attention has been given to acoustical structures that passively break reciprocity.
This study presents a lattice structure with strong stiffness nonlinearities, internal scale
hierarchy, and asymmetry that breaks acoustic reciprocity. Macroscopically, the structure
exhibits periodicity yet asymmetry exists in its unit cell design. A theoretical study, sup-
ported by experimental validation, of a two-scale unit cell has revealed that reciprocity
is broken locally, i.e., within a single unit cell of the lattice. In this work, global breaking
of reciprocity in the entire lattice structure is theoretically analyzed by studying wave prop-
agation in the periodic arrangement of unit cells. Under both narrowband and broadband
excitation, the structure exhibits highly asymmetrical wave propagation, and hence a global
breaking of acoustic reciprocity. Interpreting the numerical results for varying impulse
amplitude, as well as varying harmonic forcing amplitude and frequency/wavenumber, pro-
vides strong evidence that transient resonant capture is the driving force behind the global
breaking of reciprocity in the periodic structure. In a companion work, some of the theoret-
ical results presented herein are experimentally validated with a lattice composed of two-
scale unit cells under impulsive excitation. [DOI: 10.1115/1.4043783]

Keywords: nonreciprocity, periodic structures, nonlinear wave propagation, hierarchical
materials

1 Introduction
Reciprocity exists in linear time-invariant (LTI) acoustic, elastic,

thermal, and electrostatic systems, wherein a source transfers
energy to a receiver, and the same energy would also transfer
back should the locations of the source and receiver be exchanged.
Mathematically, it corresponds to symmetric Green’s functions and
self-adjoint operators [1]. In a broader context, in LTI (possibly
inhomogeneous) waveguides, acoustic reciprocity is directly
related to time-reversal symmetry through the Onsager-Casimir
principle of microscopic reversibility [2–4]. Accordingly, breaking
of reciprocity in LTI acoustics is only possible by breaking time-
reversal symmetry on the microlevel [5], but not necessarily on
the macrolevel; e.g., in linear absorbing media, although time-
reversal symmetry is broken in the macrolevel, reciprocity still
holds since time reversibility at the microlevel is preserved. Note
that time-reversal symmetry here is different with just reversing
(i.e., going back in) time [6]; e.g., in a system with viscous

damping going back in time, the energy reverses back to the
system and entropy decreases; in that sense, any deterministic
system has this symmetry. True breaking of time-reversal symmetry
yields asymmetrical wave propagation and, hence, is directly linked
to acoustic nonreciprocity. For example, in a one-dimensional (1D)
acoustic medium excited at its center, a wave propagating asymmet-
rically suggests that the locations of a source and receiver cannot be
exchanged without expecting a difference in the measured response:
waves propagate rightward in a fundamentally different manner
than leftward.
Many studies have reported nonreciprocity in systems with odd-

symmetric external biases, or some active external force that biases
the direction of energy transmission. Such external biases range
from magnetic fields in electrical systems [7] to circulating fluid
flow in acoustic systems [8] to moving, zero-index acoustic meta-
materials [9]. Additional active methods of breaking reciprocity
include space/time modulation of material properties which has
received increasing intention in recent years. By periodically
varying density and Young’s modulus, Trainiti and Ruzzene [10]
reported large disparities in opposite directions of band diagrams,
from which the optimal modulation speed for maximizing nonreci-
procity was derived. In Ref. [11], harmonic spatiotemporal modula-
tion of density and modulus in periodic laminates produces
asymmetric propagation for supersonic and subsonic modulation
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speeds. In the scale-separated homogenization limit, the Willis
stress–velocity momentum–strain coupling tensor provides a
direct measurement of the nonreciprocity. A comprehensive disper-
sion analysis of modulating material properties in two-dimensional
phononic crystals is provided in Ref. [12]. Photon–phonon conver-
sion [13], activation/deactivation of periodically spaced electrodes
[14], and magnetically active elastic materials [15] are other
recent efforts of breaking reciprocity through modulation of a
medium’s properties.
Considerably less attention has been given to systems that pas-

sively break reciprocity—particularly within the acoustics commu-
nity. Liang et al. [16,17] developed an acoustic rectifier by coupling
a linear superlattice to a nonlinear medium and exploiting the band-
gaps of the superlattice and the higher harmonic generation of the
nonlinear medium to induce nearly one-way wave propagation. A
similar study was carried out by Luo et al. [18] in which linear
and nonlinear lattices with identical masses were joined at an inter-
face. A shift in the acoustic branch but not in the optical branch
occurred, enabling a bias in propagation direction at sufficiently
high amplitudes. Boechler et al. [19] experimentally observed
acoustic rectification by similar means in a granular chain with a
point defect. In both studies, the location of the interface or the
defect relative to the source of excitation limits the application of
the designs for sound and vibration isolation and furthermore
requires the “upconverting” of the wave at its fundamental fre-
quency to higher harmonics, thus not retaining all signal informa-
tion. In another study [20], reciprocity was passively broken in a
metastable chain, and dispersion analysis of the nonreciprocal
wave propagation was reported.
Local nonreciprocity in a unit cell with a two-scale internal hier-

archy was presented in Ref. [21], in which energy preferably trans-
fers from a large scale to a small scale via a purely nonlinear
coupling. Transient resonance capture (TRC) was identified as the
primary dynamical mechanism governing this phenomenon,
linked to a critical level of energy in the system and the essentially
nonlinear spring coupling the two scales. Experimental validation
of local nonreciprocity in the two-scale unit cell under impulsive
excitation was also reported in Ref. [22].
This study builds upon the hierarchical structure reported in

Ref. [21] by extending it to a periodic configuration with inherent
asymmetry in its coupling of unit cells. First, a review is provided
detailing the manner in which internal hierarchy and nonlinearity
induce nonreciprocity in a single isolated unit cell. Transient reso-
nance capture is presented as the underlying mechanism governing
the local nonreciprocity. Informed by these results, particularly that
transient resonance capture is activated at certain energy levels,
analysis of global nonreciprocity in the periodic system is presented
herein. “Giant” breaking of reciprocity in the 1D chain of unit cells
subjected to narrowband and broadband excitation is reported. The
results of varying impulse amplitude, harmonic forcing amplitude,
and frequency/wavenumber provide strong evidence that transient
resonance capture drives the global breaking of reciprocity in the
lattice.

2 System Description
The proposed structure consists of a chain of unit cells containing

an arbitrary number of nested springs, masses, and dampers. An iso-
lated single unit cell of this periodic structure is presented in Fig. 1.
In this particular example, the unit cell contains three scales: an
outer mass (the large scale) is grounded via a linear spring and
couples, via a purely cubic spring, to a smaller mass (the intermedi-
ate small scale) nested within it, which in turn couples by another
purely cubic spring to a still smaller mass (the smallest scale).
Linear dampers are included in parallel with all springs. The exten-
sion to multiple nested layers (and hence internal hierarchies of
multiple, continuously decreasing small scales) is straightforward.
While the spring-mass-damper configuration is shown at the right,
a proposed concept for constructing the structure is shown at the left,
in which the pyramids represent elastomeric bumpers that are

known to provide near-cubic restoring forces in compression [23–
25]. Normalized parameter values are chosen such that they scale
down at each layer of the unit cell. A labeled schematic is presented
in Fig. 2 and a sample set of parameter values is given in Table 1.
The hierarchical structure is repeated periodically to form a lattice

as shown in Fig. 3. Note that the smallest mass in the unit cell is
coupled to the largest mass of its right-neighboring unit cell via a
linear spring. Thus, this periodic arrangement exhibits the requisite
asymmetry.

3 Local Nonreciprocity Study
Analysis of a single unit cell consisting of only two scales is first

reviewed in this section, detailing the findings in Ref. [21] as well as
presenting new results on the effect of varying the normalized
parameters on the local nonreciprocity. Two scales are considered
to reduce the complexity of this isolated unit cell analysis and
present the basic principles governing the global system.
However, this analysis extends to any number of nested scales.
Figure 4 presents a dynamical model of this isolated unit cell
with labeled coordinates and parameter names.

Fig. 2 Hierarchical unit cell with labeled parameter notation

Fig. 1 Isolated unit cell of the asymmetrical, hierarchical lattice
structure: (a) proposed fabrication method in which nonlinear
coupling is achieved by elastomeric bumpers and (b) the equiv-
alent spring-mass-damper model of the unit cell

Table 1 Sample normalized parameter values for the
hierarchical unit cell

Parameter Value

mouter 1
mmiddle 0.05
minner 0.005
k1 1
k3,middle 1
k3,inner 0.1
couter 2E-03
cmiddle 2E-03
cinner 2E-04
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The equations of motion governing this system are

m1ẍ1 = −k1x1 − k3(x1 − x2)
3 − c1ẋ1 − c2(ẋ1 − ẋ2) (1)

m2ẍ2 = k3(x1 − x2)
3 + c2(ẋ1 − ẋ2) (2)

To investigate nonreciprocity, the response of this system to
impulses at either the large scale (LS) or small scale (SS) is simu-
lated by direct numerical integration of the equations of motion,
with the aim of measuring the steady-state distribution of energy
when either scale is excited. To model the impulses, nonzero
initial velocities are assigned to the desired scale of the form

V0 =
I0
mn

(3)

where V0 denotes the initial velocity, mn the desired scale to excite
(n= 1 or 2 for LS or SS excitation, respectively) and I0 is the total
momentum, or impulse magnitude, imparted into the system. For a
fair comparison of the system’s response when either scale is
excited, I0 remains constant.
To track the energy distribution in the system, a dimensionless

parameter ED,SS is defined

ED,SS = lim
T�∞

�T
0 c2(ẋ2(t) − ẋ1(t))2dt

1
2
mnV

2
0

(4)

where again n= 1 or 2 for LS or SS excitation, respectively. This
dimensionless parameter is the steady-state fraction of system
energy that is dissipated by the damper coupling of the two
scales. The limit imposes that T should be large enough for the
system energy to dissipate and ED,SS to converge. By examining
ED,SS, the distribution of impulse energy over the course of the
simulation can be assessed for both LS and SS excitations.

Impulse magnitudes I0 are varied and ED,SS computed for both
LS and SS excitations, and the results are presented in Fig. 5.
When 0.1 < I0 < 0.7, the system energy transfers from the LS to
the SS when the LS is excited; however, energy remains confined
at the SS for all the impulse magnitudes shown. Thus, reciprocity
is broken locally.
The underlyingmechanism behind this local breaking of reciproc-

ity is elucidated by analyzing the dynamics of the two-scale system in
the frequency domain. For the LS excitation, the SS quickly “tunes”
its frequency via 1:1 TRC to oscillate near the LS natural frequency.
The innermost mass and essentially nonlinear spring have no prede-
fined natural frequency, but rather can match the instantaneous
natural frequency of the LS assuming it has enough energy. Thus,
the impedance mismatch of the two oscillators rapidly minimizes
and energy efficiently transmits, or “pumps” from the LS to the
SS where it is then dissipated by the damper coupling the two
scales. TRC is activated only at certain energy levels: when the
initial momentum delivered to the system is too low, TRC is not acti-
vated and the response is considerably more reciprocal.When the SS
is excited, it does not immediately oscillate at the LS natural fre-
quency. Rather, the essentially nonlinear spring produces various
frequencies at which the SS vibrates until the SS finally settles
upon the LS natural frequency. By the time the SS reaches this fre-
quency for efficient energy transfer, most of the system energy has
been dissipated by the damper coupling the two scales. Thus, the
energy remains localized at the SS instead of transferring to the LS
as would be expected in a linear, time-invariant system. Additional
analysis of the TRC phenomenon in this system can be found in
Ref. [21].
Insight into the TRC is aided by the variable transformation

y1 = x1 + εx2, y2 = x1 − x2 (5)

where y1 and y2 represent the motion of the center of mass (ɛ is the
ratio of the small mass to the large mass) and the relative stretch in
the system, respectively. Note that because of the scaling inherent to
the hierarchical structure, ɛ≪ 1 and thus y1≈ x1 and y2≈ x2. These
physical coordinates can readily be transformed into action-angle
variables (I1, θ1) and (I2, θ2) [21]

I1 =
1
2
(y21 + ẏ21), θ1 = cos−1

y1����
2I1

√
( )

, I2 =
ẏ22π

2

2K2(1/2)Λ2Ξ2 +
y42
Λ4

[ ]3
4

cn
2K(1/2)θ2

π
,
1
2

[ ]
=

y2

ΛI
1
3
2

(6)

Fig. 3 Lattice structure containing unit cells with internal hierarchy, nonlinearity, and asymme-
try: (a) the elastomeric bumper design is extended periodically and (b) spring-mass-damper
representation of the lattice

Fig. 4 Hierarchical unit cell consisting of two scales
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where

Λ =
1
4

( )1
6 3π
K(1/2)

( )1
3

, Ξ =
3π4

8K4(1/2)

( )1
3

(7)

and I1, I2 and θ1, θ2 denote the action and angle variables, respec-
tively, K(1/2) the complete elliptic integral of the first kind param-
eterized bym= 1/2, and cn[u,m] denotes the Jacobi elliptic function
evaluated at u and parameterized by m. The action variables I1 and
I2 relate to the instantaneous energies of y1 and y2, respectively,
whereas the angle variables θ1 and θ2 relate to the phase of oscilla-
tion of y1 and y2, respectively.
When designing unit cells to break reciprocity, it is important to

predict the system’s response under different parameter sets (i.e.,
mass, stiffness, damping values). To explore this effect, the

equations of motion in Eqs. (1) and (2) can be nondimensiona-
lized [21]

q′′1 + q1 + Πc1q
′
1 + Πk3 (q1 − q2)

3 + Πc2 (q
′
1 − q′2) = 0 (8)

Πmq
′′
2 + Πk3 (q2 − q1)

3 + Πc2 (q
′
2 − q′1) = 0 (9)

where

xn(t) = αqn(τ), τ = ω0t, ω2
0 =

k1
m
, Πc1 =

c1ω0

k1
,

Πc2 =
c2ω0

k1
, Πm =

m2

m1
, Πk3 =

k3α2

k1

(10)

and ( )′ denotes differentiation with respect to the dimensionless
time τ. The parameter α is the scale of the unit cell’s deformation

Fig. 5 Response of the two-scale system to different impulse magnitudes: (a) LS excita-
tion and (b) SS excitation

Fig. 6 Effect of varying dimensionless parameters on local nonreciprocity: varyingΠm (a),Πk3 (b),Πc1 (c),
and Πc2 (d ). When not varied, Πm=0.05 (b,c,d), Πk3=1 (a,c,d), Πc1=0.001 (a,b,d), and Πc2=0.001 (a,b,c).
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at the large scale (such that |q1| ∼ 1 and |q2|≪ 1 for Πm≪ 1). Initial
velocities correspond to a constant dimensionless energy, Ein,
applied to either scale

Q′
0 =

�����
2Ein

√
(LS excitation)�����

2Ein

Πm

√
(SS excitation)

⎧⎨
⎩ (11)

These nondimensionalized equations can be numerically inte-
grated to determine the relationship between the relative sizes of
the unit cell parameters and the local nonreciprocity. The degree
of nonreciprocity (NR), is a dimensionless measure of local nonre-
ciprocity in the two-scale system is

NR =
ED,1 − ED,2

Ein
(12)

where

ED,1 = lim
T�∞

�T
0 Πc2 (q

′
1 − q′2)

2dτ

Ein
(13)

ED,2 = lim
T�∞

�T
0 Πc1 (q

′
1)

2dτ

Ein
(14)

and ED,1 and ED,2 are computed for LS and SS excitations,
respectively.
Results of measuring NR in Eq. (12) while varying the four

dimensionless parameters are presented in Fig. 6. It is apparent
that large mass ratios and low-stiffness nonlinearities are significant
for inducing nonreciprocity. While the study on varying Πc2 sug-
gests that large values of damping between the two scales (i.e.,
large c2 values) is desirable to design for nonreciprocity, such
systems rapidly reduce the system’s available kinetic energy and
therefore are likely not useful in the lattice configuration where
energy propagation over long distances may be desired. Similarly,
negative values of NR for Πc1= 0.1 demonstrate that, for suffi-
ciently large values of the grounding damper, energy prefers to dis-
sipate at the LS regardless of the scale that is excited.

4 Global Nonreciprocity Study
The global periodic configuration of the hierarchical structure is

now considered for both narrowband and broadband excitation.
Considering now the three-scale system depicted in Fig. 2, the jth
unit cell is governed by

mouter ẍouter(j)+ couter ẋouter(j)+ cmiddle(ẋouter(j)− ẋmiddle(j))

+ k1(2xouter(j)− xinner( j− 1)) + k3,middle(xouter(j)− xmiddle(j))
3 = 0

(15)

mmiddleẍmiddle(j) + cmiddle(ẋmiddle(j) − ẋouter(j)) + cinner(ẋmiddle(j)

−ẋinner(j)) + k3,middle(xmiddle(j) − xouter(j))
3 + k3,inner(xmiddle(j)

−xinner(j))3 = 0 (16)

minnerẍinner(j)+ cinner(ẋinner(j)− ẋmiddle(j))+ k1(xinner(j)− xouter( j+ 1))

+ k3,inner(xinner(j)− xmiddle(j))
3 = 0 (17)

Informed by the 1:1 TRC that governs the nonreciprocity in an
isolated unit cell [21], results from direct numerical simulation of
the lattice equations of motion strongly suggest that TRC governs
the global breaking of reciprocity for wave propagation in the
lattice structure. The study considers both broadband (impulsive)
and narrowband (harmonic) external excitations. Systems with
both two and three scales will be discussed to demonstrate the
generality of the hierarchical structure design and the effect of

nesting varying number of scales will be presented for impulsive
excitation.

4.1 Broadband Excitation. The first part of the study con-
cerns broadband (impulsive) excitations applied either at the free
boundaries or at the middle of the nonlinear lattice. When assigning
impulses to the 1D chain, it is convenient to express their magnitude
relative to Inorm, the maximum momentum associated with a plane
wave in a linear monoatomic chain

Inorm = moutervg,max (18)

where vg,max is the maximum group velocity of the monoatomic
chain [26] formed by mouter and coupling and grounding springs
of stiffness k1:

vg,max =max
k1 sin μ

mouterω0

( )
(19)

where ω0 =
���������������������
(k1/m)(3 − 2 cos μ)

√
and μ is the dimensionless wave-

number/propagation constant. Figure 7 presents results for impul-
sively exciting the largest mass of the three scale unit cell with I0=
7.36 Inorm at the center of a chain composed of 50 unit cells. Lattices
are terminated with the convention depicted in Fig. 3, in which the

Fig. 7 Impulsive excitation of the large scale of the unit cell at the
chain’scenter in anonlinear (a) and linear (b) lattice.Note thepref-
erential propagation of energy from left-to-right for the case with
nonlinear interactions: mouter=1, mmiddle=0.05, minner=0.005,
k1=1, k1,middle=0, k1,inner=0, k3,middle=1, k3,inner=0.1, couter=
0.002, cmiddle=0.002, cinner=0.0002, I0/Inorm=7.36. For (b),
k3,middle and k3,inner govern linear restoring forces.

Fig. 8 Response of a 1D lattice to various impulse amplitudes
applied to the large scale of the unit cell at its center. Nonrecip-
rocal behavior occurs at specific impulse magnitudes: mouter=
1, mmiddle=0.05, minner=0.005, k1=1, k1,middle=0.05, k1,inner=
0.05, k3,middle=1, k3,inner=0.1, couter= 0.002, cmiddle=0.002,
cinner=0.0002.
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first and last unit cells are linearly grounded. As with the local study
of the previous section, nonzero initial velocity V0 applied to a single
unit cell of the system model impulses. In all cases considered, the
impulses are applied to the corresponding large scales of the unit
cells. The quantity Efrac is the fraction of energy at the unit cell rela-
tive to the energy delivered to the system by the impulse,
(1/2)mouterV2

0 . As a reference, essentially nonlinear springs are
replaced by linear springs with the same spring constants in
Fig. 7(b). For the nonlinear case, note the considerably different
behavior of energy propagation to the left of the center as compared
with the right: energy preferentially travels from left-to-right, thus
indicating a global breaking of acoustic reciprocity. Energy radiates
symmetrically outward in Fig. 7(b) highlighting the crucial role that
nonlinearity plays for breaking reciprocity in this lattice structure.
To quantify the amount of transmission in the lattice, a transmis-

sion ratio TR is defined to be

TR =
max (PE + KE)

1
2
mouterV

2
0

(20)

where max(PE+KE) is the maximum sum of potential and
kinetic energy that occurs for each unit cell across all time in a
simulation.
Figure 8 depicts the results of applying various impulse values to

the large scale of the unit cell at the center of a chain with 50 unit
cells, with TR computed at each impulse value. Note that nonreci-
procity activates when 6 < I0/Inorm< 8, as indicated by the prefer-
ence for left-to-right over right-to-left propagation. The highest
degree of nonreciprocity occurs near I0/Inorm= 7.5; however, this
effect weakens for larger impulse amplitudes as the response
becomes more symmetrical. Such a result is reminiscent of the
response of the two-scale isolated unit cell in Fig. 5 in which
TRC takes effect when the impulse magnitude falls within a well-
defined range of values for breaking reciprocity.
Figure 9 presents the results of applying an impulse of I0= 0.1

Inorm to the large scale at the left and right boundaries of the
chain (in separate simulations). These results again demonstrate
that energy propagates from left-to-right but not right-to-left. Note
that weak linear springs of stiffness k1,middle, k1,inner are added in
parallel to the nonlinear stiffnesses k3,middle, k3,inner, respectively,
to increase the wave’s range, though they are not necessary for
inducing nonreciprocity. The minimal effect of weak linear terms
in parallel with strongly nonlinear forces on the global nonrecipro-
city in this lattice was experimentally confirmed in Ref. [22].
Figure 10 displays results from exciting the large scales of the unit

cells at the chain’s left and right boundaries with various impulse
values. As with the center excitation, nonreciprocity occurs at a
finite range of impulse amplitudes. It is important to note that the
preferential transmission of energy from left-to-right and not
right-to-left is unaffected by the direction of the impulse delivered

to the outer mass, i.e., leftward directed initial momentum (I0 < 0)
produces nearly identical results. It is also interesting to note
that exciting the chain’s boundaries requires smaller impulse magni-
tudes to break reciprocity as compared with exciting the chain’s
center.
Unlike systems with an interface [16–18], defects [19], or an iso-

lated unit cell [21], the lattice studied herein will induce asymmetric
wave propagation at any location—even at its boundaries. Further
analytical investigation of the lattice equations of motion will also
be considered in future work.
As further numerical evidence of acoustic nonreciprocity in the

nonlinear lattice considered, Figs. 11 and 12 depict the results of
numerical simulations of a lattice composed of 21 unit cells, pos-
sessing the internal hierarchy, asymmetry, and nonlinear features
discussed previously. Contrary to the results in Figs. 7 through
10, which correspond to a hierarchy of three internal scales in
each cell, in the following results each unit cell contains just
two scales (that is, a large-scale nonlinearly coupled to a small
scale) with system parameters as follows: mouter= 1.0, minner=
0.05, k1= 1.0, k3,inner= 1.0, couter= cinner= 0.002.
Figure 11 presents the instantaneous energies of the unit cells of

the nonlinear lattice for a relatively low-intensity impulse I0/Inorm=
0.57 applied to the large scale of the left (a,d ), middle (b,e), and
right (c,f ) unit cell of the lattice. Each case depicts the spatiotem-
poral evolution of the instantaneous energies of the cells, together
with the transient variations of selected unit cells. The instantaneous
energies are normalized with respect to the kinetic energy delivered
to the lattice by the impulse. Note the presence of rightward wave
propagation for left boundary impulsive excitation (Fig. 11(d ))
and absence of leftward wave propagation for right boundary
impulsive excitation (Fig. 11( f )); in the latter case, also note the
response localization at the right boundary of the lattice. Although
some degree of nonreciprocity is noted for impulsive excitation of
the middle cell of the lattice (Fig. 11(e)), it is weak, with preferential
leftward wave propagation.
Figure 12 depicts the corresponding unit cell energy variations

for the case of higher impulse intensity I0/Inorm= 0.79. Although
acoustic nonreciprocity still exists in the lattice, in this case, there
is both rightward and leftward wave transmission indicating that a
bifurcation has occurred and the mode of acoustic nonreciprocity
has now changed. It is important to note that this bifurcation was
qualitatively observed in experiments in Ref. [22]. The theoretical
analysis of such bifurcations in the nonlinear acoustics of the con-
sidered lattice will be examined in future work.
The following explanation proposes the sequence of events that

determine the global breaking of acoustic reciprocity in the lattice
with nonlinearity, asymmetry, and internal scale hierarchy excited
at its boundaries:

Left-to-right: The directly excited large scale of the leftmost unit
cell oscillates at a predefined natural frequency due to the

Fig. 9 Impulsive excitation of the large scale of the unit cells at
the chain’s boundaries. Energy propagates rightward when initi-
ated at the left boundary (a) but localizes when initiated at the
right boundary (b): mouter=1, mmiddle=0.05, minner=0.005, k1=
1, k1,middle=0.05, k1,inner=0.05, k3,middle=1, k3,inner=0.1, couter=
0.002, cmiddle=0.002, cinner=0.0002, I0/Inorm=0.1.

Fig. 10 Response of a 1D lattice to various impulse amplitudes
applied to the large scale of the unit cells at the left (a) and right
(b) boundaries. The preferential energy propagation occurs at
various impulse amplitudes: mouter=1, mmiddle=0.05, minner=
0.005, k1=1, k1,middle=0.05, k1,inner=0.05, k3,middle=1, k3,inner=
0.1, couter=0.002, cmiddle=0.002, cinner=0.0002.
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linear grounding spring. Assuming enough energy is in the
system from the impulse, energy transfers from the large
scale to the next smallest scale via 1:1 transient resonance
capture [21] associated with the cubically nonlinear spring,
and it continues to transmit down to each successively

smaller scale. When the energy arrives at the smallest
scale, it can then readily flow to the largest scale of its neigh-
boring unit cell on the right because of the linear coupling
spring. The process then repeats and a wave propagates
from left-to-right.

Fig. 11 Acoustics of the 21-unit cell nonlinear lattice for relatively low-intensity excitation of the large scale
of the left cell (a,d), middle cell (b,e), and right cell (c,f). Upper plots (a,b,c) depict the variations of the instan-
taneous energies of selected unit cells and lower plots (d,e,f) the spatiotemporal variations of the instanta-
neous cell energies of the lattice:mouter=1.0,minner=0.05, k1=1.0, k3,inner=1.0, couter=0.002, cinner=0.002.

Fig. 12 Acoustics of the 21-unit cell nonlinear lattice for higher-intensity excitation of the large scale of the
left cell (a,d), middle cell (b,e), and right cell (c,f). Upper plots (a,b,c) depict the variations of the instanta-
neous energies of selected unit cells and lower plots (d,e,f) the spatiotemporal variations of the instanta-
neous cell energies of the lattice: mouter=1.0, minner= 0.05, k1=1.0, k3,inner=1.0, couter=cinner=0.002.
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Right-to-left: Energy transfers from the directly excited large
scale of the rightmost unit cell to the smallest scale of its
neighboring unit cell on the left because of the linear cou-
pling spring. However, energy cannot transmit from the
small scale to the large scale and is ultimately dissipated at
the smallest scale due to the failure to initiate TRC, as evi-
denced by the results in the local study. Thus, energy is
arrested and waves cannot propagate from right-to-left.

This design scheme could be added to systems to redirect mechan-
ical shock and vibration. For example, adding this lattice to build-
ings, bridges, or aircraft could achieve a variety of purposes: to
protect diagnostic sensors from being contaminated by unwanted
mechanical disturbances, to focus energy toward structural health
monitoring equipment, or to direct energy away from sensitive struc-
tural components.
In the local study in Sec. 3, damping plays an important role in

trapping energy at the small scale (see Fig. 5). Consequently, it
was considered in the lattice and, while it limited the wave’s
range, demonstrated that highly asymmetric wave propagation
can be achieved in dissipative media. Since the proposed lattice
would be fabricated and added to systems, the degree of damping
is largely in control of the design engineer. Careful unit cell
design can increase or decrease damping as desired.
The effect of nesting different numbers of small scales within

each unit cell for impulses applied to the center of the lattice is dis-
played in Fig. 13. The amount of global nonreciprocity in each
simulation, NRG, is computed as

NRG =
max (ER) −max (EL)

1
2
mouterV

2
0

(21)

where ER and EL denote the maximum amounts of energy transmit-
ted to the left and right sides of the impulse, respectively, and V0

denotes the outer mass’ initial velocity due to the impulse. Note
that the threshold impulse value for nonreciprocity increases as
the number of nested masses, M, increases.
While Fig. 13 indicates that nestingM= 5masses ismost desirable

to break reciprocity across a large range of impulse amplitudes, prac-
tical implementation of such a design likely is technically challeng-
ing. Particularly, fabrication of a structure with mass and linear/
nonlinear stiffness values that span five orders of magnitude would
likely pose challenges for assembly, weight, structural integrity,

and cost. Current work focuses on this particular fabrication aspect
as well.

4.1.1 Internal Resonator Design. A variant of the hierarchical
structure design of the lattice with three-scale internal hierarchy is to
couple the intermediate small scale (i.e., the middle mass) instead of
the smallest scale (i.e., the innermost mass) to the neighboring unit
cell’s large scale, thus creating an internal resonator with the small
scale, as pictured in Fig. 14. Such configuration is reminiscent of
other systems using internal resonators to attenuate energy flow
of waves in periodic structures [27,28].
Its corresponding equations of motion for the jth unit cell is

mouter ẍouter(j)+ couter ẋouter(j)+ cmiddle(ẋouter(j)− ẋmiddle(j))

+ k1(2xouter(j)− xmiddle( j− 1))+ k3,middle(xouter(j)− xmiddle(j))
3 = 0

(22)

mmiddleẍmiddle(j)+ cmiddle(ẋmiddle(j)− ẋouter(j))+ cinner(ẋmiddle(j)

−ẋinner(j))+ k1(xmiddle(j)− xouter( j+ 1))+ k3,middle(xmiddle(j)

−xouter(j))3 + k3,inner(xmiddle(j)− xinner(j))
3 = 0 (23)

minnerẍinner(j) + cinner(ẋinner(j) − ẋmiddle(j))

+ k3,inner(xinner(j) − xmiddle(j))
3 = 0 (24)

Figure 15 presents the results from applying various impulse
amplitudes to this alternative lattice design. Note that nonrecipro-
city occurs in this system as well, but it takes larger impulse
values to initiate as compared to the system design considered pre-
viously. Also note that the nonreciprocity begins to weaken as
impulse amplitude approaches values near I0= Inorm, which
further supports that TRC occurs in the lattice structure.

4.2 Narrowband Excitation. The second aspect of this com-
putational study is concerned with narrowband excitations, in the
form of harmonic applied loads. Again, excitation of the large
scale of a specific unit cell is considered. As with broadband
excitation, energy transmission is measured. The forcing is

Fig. 13 Effect of nesting different numbers of small scales in
each unit cell on global nonreciprocity. An increased number
of nested masses enhances the nonreciprocal behavior over a
range of impulse amplitudes

Fig. 14 Internal resonator design: (a) elastomeric bumper fabri-
cation strategy and (b) equivalent spring-mass-damper
representation
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parameterized by both an amplitude F0 and frequency ω, i.e., F(t)=
F0 sin ωt applied to the large scale at either the boundaries of the
lattice or at its center.
A case study with a 60-cell lattice exhibiting this nonreciprocal

behavior is pictured in Fig. 16 with a forcing of amplitude F0=
4.37 and frequency ω= 1.6 applied to the outer mass. The first
and last unit cells are grounded as presented in Fig. 3. As with
impulses applied to the lattice’s center, asymmetrical wave propa-
gation develops indicating a global breaking of reciprocity.
Figure 17 displays the results from exciting the large scale at

the left or right boundaries of the lattice with F0= 6.67 and fre-
quency ω= 1.6. Note that again, left-to-right transmission occurs
but not right-to-left.
To characterize the relationship between frequency and propaga-

tion, a dispersion analysis of wave propagation in the three-scale
lattice is conducted. It is desired to compute a wavenumber μ (or,
more accurately, a propagation constant with units [radians/unit
cell index]) for a given forcing frequency ω. A linear spring of var-
iable stiffness k1,d is added in parallel with both k3,middle and k3,inner.
Various lattices are tested in which values of k1,d are decreased from
a large value to a small value, thus starting at a nearly linear lattice
(with therefore a well-defined dispersion curve) and arriving at one
that is strongly nonlinear.
The real part of μ at each forcing frequency is computed by taking

the phase differences between the complex amplitude of two adja-
cent outer masses’ displacement fast Fourier transform (FFTs) taken
over time and evaluated at the forcing frequency [29]. If the tempo-
ral FFT of the outer mass at the nth unit cell transforms

displacements into the frequency domain (x(n, t)→Z(n, Ω)), then
the real component of the propagation constant is

Re(μ(ω)) =
arg (Z(n2, ω)) − arg (Z(n1, ω))

n2 − n1
(25)

where n1 and n2 are arbitrary unit cells numbered in increasing order
from left to right and Ω is set to the forcing frequency ω.
The imaginary part of μ is found by examining spatial amplitude

decay of the near-field (local wave) when it exists. For a given
forcing frequency ω, if the peak displacement of the outer mass at
the nth unit cell is X(n, ω), then the imaginary component of the
propagation constant is

Im(μ(ω)) =
1

n2 − n1
ln

X(n1, ω)
X(n2, ω)

( )
(26)

By the sign convention in Eqs. (25) and (26), μ> 0 denotes right-
ward propagation (from forcing at the left boundary) and μ< 0
denotes leftward propagation (from forcing at the right boundary).
Figure 18 presents the results of this dispersion analysis. Note
that nonreciprocity begins to take effect at the band edge (cutoff fre-
quency or final coordinate of the irreducible Brillouin zone [26])
when k1,d is sufficiently small, suggesting that energy must be
built-up to activate transient resonance capture. High-energy activa-
tion of nonreciprocal behavior parallels the amplitude-dependent
TRC that is known to occur in the isolated unit cell. The near
zero group velocity, dω/dμ, intrinsic to the band edge makes this
energy build-up feasible. Note the disparity in the computed wave-
number for leftward (μ< 0) and rightward (μ> 0) waves for the lat-
tices with smaller values of k1,d. For k1,d= 0.1 and 1, Re(μ(ω)) goes
to π for leftward propagation (indicating an evanescent wave) but
not for rightward propagation (indicating a propagating wave).
By observation of Figs. 16 and 17, it is apparent that the real com-

ponent of μ is rather complicated for nonreciprocal parameter sets:
group velocity varies over space andwaves reflect backward creating
exotic interference patterns. Consequently, the real component of μ
at the band edge in Fig. 18 is not intended to be a single representative
value for the propagation constant at the given forcing frequency, but
rather an average value taken over a series of unit cells.

5 Concluding Remarks
Nonlinear acoustic nonreciprocity is reported for a lattice struc-

ture exhibiting asymmetry and purely cubic stiffness nonlinearity
in its unit cell design. Studying the dynamics of an isolated unit
cell reveals that transient resonance capture governs the breaking
of reciprocity when the system energy lies within a critical range of
values. Direct numerical simulation of the lattice’s equations
of motion when subjected to both broadband and narrowband
excitation yields asymmetrical wave propagation. The global

Fig. 15 Response to various impulse amplitudes on the left (a)
and right (b) boundaries of the internal resonator design. Nonre-
ciprocity occurs over a finite range of amplitudes. mouter=1,
mmiddle=0.05, minner=0.005, k1=1, k3,middle=1, k3,inner=0.1,
couter=0.002, cmiddle=0.002, cinner=0.0002.

Fig. 16 Harmonic excitation of the lattice at the large scale of the
unit cell in its center. Energy primarily distributes at the right side
of the forcing: mouter=1, mmiddle=0.05, minner=0.005, k1=1,
k1,middle=0.05, k1,inner=0.05, k3,middle=1, k3,inner=0.1, couter=
0.002, cmiddle=0.002, cinner=0.0002, F0=4.37, ω=1.6.

Fig. 17 Harmonic excitation of the lattice at the large scale of the
unit cell on the left (a) and right (b) boundaries of the lattice. Prop-
agating waves are generated from forcing at the left boundary
while evanescent waves are generated from forcing at the right
boundary: mouter=1, mmiddle=0.05, minner=0.005, k1=1,
k1,middle=0.05, k1,inner=0.05, k3,middle=1, k3,inner=0.1, couter=
0.002, cmiddle=0.002, cinner=0.0002, F0=6.67, ω=1.6.
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nonreciprocity activates at higher energy levels, providing strong
evidence that transient resonance capture induces this behavior.
Because this is a passive structure, these findings could be useful
for shock and noise mitigation applications.
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