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Endogenous Viral Elements (EVEs) are remnants of viral
genomes that are permanently integrated into the genome of
another organism. Parasitoid wasps have independently
acquired nudivirus-derived EVEs in three lineages. Each
parasitoid produces virions or virus-like particles (VLPs) that
are injected into hosts during parasitism to function in
subversion of host defenses. Comparing the inventory of
nudivirus-like genes in different lineages of parasitoids can
provide insights into the importance of each encoded function
in virus or VLP production and parasitism success.
Comparisons revealed the following conserved features: first,
retention of genes encoding a viral RNA polymerase and
infectivity factors; second, loss of the ancestral DNA
polymerase gene; and third, signatures of viral ancestry in
patterns of gene retention.
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Nudivirus-derived EVEs have been acquired
independently by at least three lineages of
parasitoid wasps

Endogenous Viral Elements (EVEs) are remnants of viral
genomes that are permanently integrated into the
genome of another organism [1,2]. While many EVEs
degrade over time, others are retained and are co-opted
for new functions. Perhaps the most remarkable examples
occur in parasitoid wasps, which have acquired functional
EVEs several times in independent lineages [3-5]. Para-
sitoid wasps lay their eggs in or on a host insect where
their progeny feed for the immature stages of their
development, eventually resulting in the host’s death.
This lethal interaction between species has led to several
innovative strategies that wasps use to promote
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parasitism, including the use of venom, teratocytes (cells
derived from the egg serosal membrane that dissociate
and secrete products while circulating in hosts), and the
production of virions or virus-like particles in wasps’
reproductive tracts in a developmentally controlled fash-
ion [4-7]. To date, EVEs have been genetically charac-
terized in five lineages of parasitoid wasps from two
families of large DNA viruses [8°%,9°°,10°°,11°,12,13].
Other examples of non-integrated persistent viral asso-
ciations are also known [14].

T'hree lineages of parasitoid EVEs derive from ancestors
in the family Nudiviridae (Figure 1). Nudiviruses are
non-occluded viruses with circular dsDNA genomes
related to baculoviruses and hytrosaviruses of insects
[15,16]. Pathogenic nudiviruses can infect many orders of
insects as well as crustaceans [17]. These viruses can
infect all developmental stages and have varied tissue
tropism. Nudiviruses can cause disease (lethality in lar-
vae), can remain asymptomatic in both immature and
mature insect life stages, or can become chronic in adults
and cause body malformations or sterility [18]. Notably,
some pathogenic nudiviruses can integrate into the gen-
omes of host cells, forming a latent infection or becoming
endogenized, as in parasitoid wasps and also in the brown
planthopper Nilaparvata lugens [19,20]. Nudiviruses can
be divided into Alphanudivirus and Betanudivirus genera
[21]. 33 genes are shared between all currently sequenced
nudivirus genomes (Figure 2, [9°°,10°%,16,20]). T'wenty-
one of these genes are also present in all baculovirus
genomes ([22], Figure 2). The functional roles of many of
these genes have been characterized in baculoviruses,
and can be categorized as contributing to: transcription;
infectivity; DNA replication; packaging, assembly and
morphogenesis; and nucleotide metabolism [23].

The first and best-studied lineage of nudivirus-derived
EVEs in parasitoid wasps are polydnaviruses in the genus
Bracovirus [24]. 'This lineage arose an estimated 100 mya
by integration of a nudivirus into a wasp ancestor in the
family Braconidae [25]. This ancestor has since diversi-
fied into an estimated 50000 species named the
‘microgastroid complex’ [8°%,26,27]. All bracoviruses are
transmitted vertically and replicate in specialized cells
within the calyx region of wasp ovaries to produce a paste-
like ‘calyx fluid> which comprises virions that contain
circular double-stranded DNAs. Wasps inject virions into
hosts (along with eggs and venom), and virions infect
different host tissues and express gene products that are
required for successful development of wasp offspring [4].
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Types of nudivirus-derived EVEs in parasitoid wasps and their features. Bracoviruses originate from nudiviruses belonging to the genus

Betanudivirus, while V. canescens VLPs and F. arisanus ENV are derived from nudiviruses in the Alphanudivirus. Bracovirus virions have enveloped
cylindrical nucleocapsids that contain circular double-stranded DNAs. V. canescens VLPs have a less defined shape, with envelopes that package
wasp-derived virulence proteins (VLP1-3), but lack DNAs or capsids. F. arisanus ENV particles are enveloped and have elongated capsids lacking
DNA and closed ends. All nudivirus-derived EVEs produce virions or VLPs with envelopes that contain per os infectivity factors (PIFs, encoded by

pif0-8 genes).

Bracovirus virions share several morphological features
with nudiviruses, including the presence of enveloped
cylindrical nucleocapsids [28]. Bracovirus genes with
functions in virion formation share clear homology with
nudiviruses (see below), but the DNAs packaged into
virions bear very little sequence similarity to the genomes
of nudiviruses or relatives [29°,30-33]. The second line-
age is found in the ichneumonid wasp Venturia canescens,
which produces virus-like particles (VLLPs) which com-
prises gene products that derive from a nudivirus ances-
tor, but do not contain nucleic acids [10°°]. V. canescens
VLPs (VcVLPs) consist of an envelope with an amor-
phous round to oblong shape lacking a capsid. VcVLPs
deliver wasp-derived proteins into hosts and prevent
encapsulation of the parasitoid egg [10°°,34-37]. The
third lineage is found in braconid wasps from the genus
Fopius, which are distantly related to species in the
microgastroid complex. Fopius arisanus produces virus-
like particles known as Fopius arisanus Endogenous
Nudivirus (FaENV) that consist of enveloped, empty
capsids that also lack DNA [9°°]. FaENYV particles further
morphologically differ from bracoviruses and V. canescens
VLPs by exhibiting long capsids that lack closed ends and
are associated with large amounts of extra membranous
material. The V. canescens, Fopius, and N. lugens EVEs are
derived from alphanudiviruses, while the bracoviruses are
derived from betanudiviruses [9°°,10°°,20].

Current data suggests that whole nudivirus genomes
integrated one or more times into wasp genomes, and
subsequently gene loss occurred so that only genes
important for the production of virions or VLLPs, and by
extension, parasitism, are retained [8°°,9°°,10°°,38,39°°].
Comparing the inventory of nudivirus genes in different

lineages of parasitoids can provide insights into the
importance of each encoded function in the production
of virus (or virus-like particles) on parasitism success via
interactions with hosts.

All nudivirus-derived EVEs of parasitoids have
retained genes involved in transcription

The first category of genes comprises the transcription
machinery: genes that encode the RNA polymerase sub-
units p47, lef-4, lef-8, lef-9, and the initiation factor /ef-5
[40]. In baculoviruses, the RNA polymerase genes are
some of the earliest transcribed in the replication cycle.
The RNA polymerase holoenzyme recognizes specific
promoters and functions to transcribe genes that encode
the structural components of virions later in the replica-
tion cycle [41,42]. These genes are thus far universally
conserved in parasitoid EVEs. In bracovirus-producing
Microplitis demolitor wasps, late gene transcription is
dependent upon the viral RNA polymerase; a phenome-
non that is likely conserved in other nudivirus-derived
EVEs in parasitoids [43°°]. Most nudivirus-derived genes
in parasitoid genomes do not contain introns, a feature
shared with baculovirus genes, which are transcribed by
the baculovirus-encoded RNA polymerase. However,
introns have been detected in several of the RNA poly-
merase subunit genes present in parasitoid genomes,
making it likely that RNA polymerase holoenzymes of
viral origin are not involved in their own production and
are instead controlled by wasp transcriptional machinery
[43°°,44]. This is perhaps a point where the viral genes
interface with wasp processes to constrain the production
of virions or VLLPs to specific developmental stages and
tissues.
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Conservation of genes among baculoviruses, nudiviruses, and
endogenous nudivirus-like viruses of parasitoid wasps, for 33 core
nudivirus genes. Complete parasitoid wasp genomes are available for
Microplitis demolitor (MdBV), Venturia canescens (VcVLP), and Fopius
arisanus (FaENV), while only partial genomic data are available for
Cotesia congregata (CcBV) and Chelonus inanitus (CiBV). Filled circles
indicate the universal presence of a gene in baculoviruses or
nudiviruses, or the identification of a gene in an endogenous virus of
parasitoid wasps. Open circles indicate the absence of a gene in the
baculovirus or nudivirus core gene set, or the lack of detection of a
gene in a parasitoid wasp genome, while the absence of a circle
indicates incomplete data. An expanded outer circle indicates
expansion into a gene family in a wasp genome. A circle filled with a
cross indicates the presence of a pseudogene in a wasp genome; no
information is available on the presence of pseudogenes for
bracoviruses or FaENV.

Per os infectivity factors are almost
universally present in nudivirus-derived EVEs
of parasitoids

Genes that encode per os (oral) infectivity factors (PIFs,
pif-0 through pif-8) make up the second functional cate-
gory of viral genes [45,46]. The presence of pif genes in
diverse invertebrate DNA viruses suggest they encode
components of an ancient virus entry pathway [46]. All of
the proteins involved in infectivity listed in Figure 2 form
a complex located on virion envelopes in occlusion-
derived baculoviruses except Pif-5, which functions inde-
pendently [47]. PIFs are essential for infection of midgut
cells after oral infection of lepidopteran larvae, but are not
required for cell to cell spread of the virus thereafter [48—
50]. In endogenous parasitoid viruses, these genes are also
almost universally conserved (only pif-5 is missing from
FaENV). The retention of pif genes in parasitoid EVEs is
suggestive of their importance for infection of host cells,
despite the delivery of virions or VLLPs via injection
during oviposition into hosts (rather than oral infection).
RNAi knockdown of the pif-0 and pif-1 genes in M.
demolitor wasps resulted in similar amounts of viral
DNA delivered into or onto host cells, but the presence
of the virulence gene product Glc1.8 on cell surfaces was
significantly reduced [43°°]. These data demonstrate that
bracovirus PIFs do play an important role in infecting host
cells (albeit through unknown mechanisms), a process
that may be important for EVEs generally due to their
known or hypothesized interactions with host immune
cells.

None of the nudivirus-derived EVEs of
parasitoid wasps possess a DNA polymerase
of viral origin

In nudiviruses and baculoviruses, the DNA polymerase
functions to replicate the viral double-stranded DNA
genome [51,52]. This gene of key importance, dnapol,
is consistently missing from nudivirus-derived endoge-
nous viruses of parasitoids [8°°,9°°,10°°,53°°]. The loss of
dnapol in parasitoid viruses might purely be related to the
fact that these viruses are endogenous and no longer have
a need for a polymerase separate from host machinery.
The proviral segments of bracoviruses are amplified
before excision from the wasp genome in a process
presumed to be orchestrated by host DNA polymerases
due to the absence of a viral DNA polymerase [54°].
Alternatively, the loss of @napo/ genes may be an essential
early step in the establishment of EVEs that produce
virions or VL.Ps, preventing the replication of any non-
integrated viral genomes present in wasp cells and tying
the fitness of viral genes to the survival of wasps via their
germline. Other genes encoding DNA replication func-
tions including fen-1, helicase 2, integrase, and /Jef-3 are
variably absent from parasitoid genomes, indicating that
retention could be advantageous for the effective produc-
tion of virions or VLLPs in some but not all parasitoid
genomes.
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Genes that are not universally present in
nudivirus-derived EVEs of parasitoids

In contrast to the previous two gene categories, genes
involved in producing and assembling viral nucleocapsids
are not well conserved among endogenous parasitoid
viruses. These encode P33 (Ac92, encoding a sulfhydryl
oxidase), 38K (a phosphatase involved in dephosphory-
lating P6.9), P6.9 (a DNA binding and packaging protein),
Vp39 (the major capsid protein) and VIf-1 (a multi-func-
tional protein that functions as a transcription factor, a
capsid protein that packages DNA, and a recombinase
that resolves replicated DNA) [43°°,55-60]. Perhaps only
p33 is conserved (Figure 2). Bracoviruses have retained
38K, p33, vlf-1 and vp39, but p6.9 could not be identified
in the M. demolitor genome to date [53°°]. All but one of
these genes (p33) were found as pseudogenes in the V.
canescens genome [39°°]. These gene remnants contained
multiple inactivating mutations and were expressed at
negligible levels in ovaries. This is consistent with the
lack of viral capsids and packaged DNAs in V. canescens
VLPs. The F. arisanus genome contains 38K, p33, and
up39, all of which are expressed in ovaries [9°°]. However,
p6.9 and v/f-1 could not be detected in the F. arisanus
genome. The extremely long, DNA-negative capsids of
F. arisanus are reminiscent of v/f~/ knockout mutants in
AcMNPYV [58,61]. These patterns of gene loss demon-
strate that the production of intact capsids is not a feature
required of all parasitoid-produced virions or VLLPs for
successful interactions with hosts. Instead, the lack of an
intact capsid (and underlying genes) could explain differ-
ences in strategies used by virions or VLPs to allow
parasitoid eggs or larvae to avoid host defenses. Core
nudivirus gene homologs of unknown function exhibit a
similar pattern of variable retention in parasitoid genomes
(Figure 2).

Collections of nudivirus-derived genes in
parasitoid wasp genomes have clear
signatures of viral ancestry

While the pathogenic nudiviruses share a number of key
biological features, the alphanudiviruses and betanudi-
viruses diverged an estimated >200 million years ago and
may each have features that are characteristic of each
genus [62]. Here, I examine whether the identity of the
viral ancestors of EVEs have any impact upon the genes
that are now present in parasitoid wasp genomes.
Although the nudiviruses share 33 genes, the alphanudi-
viruses (OrNV, GbNV, DiNV, Kallithea virus) share an
additional 33 genes [63], while the betanudiviruses
(HzNV-1, HzNV-2, PmNV, ToNV) share an additional
eight genes not universally present in alphanudiviruses
[64°] (Figure 3). I refer to these genes as ‘alphanudivirus
or betanudivirus-specific genes’ henceforth. The non-
core genes retained by each parasitoid EVE is reflective
of the nudivirus genus from which they are derived. 22/25
FaENV non-core genes or gene families and 14/19
VcVLLP  non-core  genes are  homologous to
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alphanudivirus-specific genes, while no genes homolo-
gous to betanudivirus-specific genes were found. Simi-
larly, 6/9 non-core nudivirus-like genes in M. demolitor
were related to betanudivirus-specific genes while none
were homologous to alphanudivirus-specific genes. The
lack of functional information about the majority of these
gene products in nudiviruses prevents any strong conclu-
sions about their roles in parasitoid wasp biology. How-
ever, the retention of specific genes in all members of a
nudivirus genus is suggestive of their functional impor-
tance, and could help to prioritize functional characteri-
zation of homologous genes retained in parasitoid wasp
genomes.

Conclusions

Comparison of inventories of genes retained by EVEs
derived from nudiviruses in diverse parasitoid wasp
lineages has revealed the following common themes: first,
genes encoding a viral RNA polymerase and infectivity
factors are important conserved components in the pro-
duction of functional virions or VLLPs; second, all have lost
their ancestral DNA polymerase gene; and third, patterns
of gene retention have clear signatures of viral ancestry.
Although not described in this review, the dispersal of
virus-derived genes within wasp genomes is also a shared
characteristic of all parasitoid EVEs. The events leading
to the evolution of bracoviruses have been difficult to
reconstruct because the ancestral integration event
occurred so long ago. In contrast, the apparent restriction
of V. canescens and Fopius EVEs to only one or a few
species suggests that these integration events occurred
more recently in evolutionary time. This indicates that
the themes described above can be considered early
events in EVE evolution [9°°,10°°].

The existing body of literature focusing upon parasitoid
viruses suggests that symbiosis has evolved in the Hyme-
noptera only a handful of times in evolutionary history.
However, the discovery of parasitoid associated viruses
has lagged behind other types of insect microbial sym-
bionts due to a lack of universally conserved genes or
high-throughput, inexpensive molecular techniques for
their discovery until very recently. As parasitoid wasps
represent one of the most astonishing radiations of species
on Earth [65], the existing examples of EVEs in para-
sitoids and their accelerating discovery hint toward the
existence of massive untapped diversity of independently
derived associations between viruses and parasitoid wasps
[9°°]. The synthesis presented here not only reveals
differences and similarities between independently
derived EVEs in parasitoid wasps, but it provides a list
of genes that are perhaps likely to be retained in parasit-
oid EVEs that are yet undiscovered. Using this logic, it
should be possible to target these genes in a screen of
diverse parasitoid lineages to identify more examples of
nudivirus-derived EVEs. The currently described EVEs
of parasitoid wasps represent remarkable, integrated
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Presence or absence of non-core nudivirus-like genes in endogenous viruses of parasitoids. All gene products have unknown function except for
odv-e66 (involved in infectivity [66]) and ac146-like (essential for the production of budded virus [67]). Filled circles indicate the universal presence
of a gene in alphanudiviruses or betanudiviruses, or the identification of a gene in an endogenous virus of parasitoid wasps. Open circles indicate
the absence of a gene in the alphanudivirus or betanudivirus core gene set, or the lack of detection of a gene in a parasitoid wasp genome, while
the absence of a circle indicates incomplete data. An expanded outer circle indicates expansion into a gene family in a wasp genome.
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examples of extended phenotypes that warrant further
exploration to uncover their diversity and processes that
allow their inception.
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