
Symbolwise MAP for Multiple Deletion Channels

Sundara R. Srinivasavaradhan, Michelle Du, Suhas Diggavi and Christina Fragouli

University of California, Los Angeles

Email: {sundar, michelleruodu, suhas.diggavi, christina.fragouli}@ucla.edu

Abstract—We consider the problem of reconstructing a se-
quence from fixed number of deleted versions of itself (also called
traces). The problem is motivated from recent developments in de
novo DNA sequencing technologies. The main contribution of this
work is to provide a polynomial time algorithm for symbolwise
MAP decoding with multiple traces. The algorithm leverages a
dynamic program on the edit graph. We also develop a heuristic
with reduced time complexity using similar ideas and provide
preliminary numerical evaluations.

Index Terms—Deletion channels, Trace reconstruction, sym-
bolwise MAP, Edit graph, Dynamic programming

I. INTRODUCTION

Given an input sequence of length n (known apriori), the

independently and identically distributed (i.i.d.) deletion chan-

nel deletes each input symbol independently with probability

δ, producing at its output a subsequence of the input sequence.

Consider a sequence X passed through t (t is fixed) such

deletion channels as shown in Fig. 1. This is a simple model

that approximately captures the process of a DNA sequence

passed through a nanopore sequencer1. We call this the t-
deletion channel model2. The goal is to estimate X from the

traces {Yi}s. A similar problem has received considerable

attention in CS theory and discrete mathematics, under the

name “trace-reconstruction” (see [4], [5], [6], [7], [8], [9]).

Trace reconstruction, however, addresses the complementary

question of how many traces are needed for perfect recon-

struction of the input sequence. A variety of upper and lower

bounds have been derived for worst case as well as average

case reconstruction. In contrast, in this work we fix the

number of traces (motivated by finite number of reads in DNA

sequencing), and aim for a symbolwise maximum aposteriori

(MAP) estimate of the sequence, which is not necessarily

a perfect reconstruction. Nonetheless, the symbolwise MAP

estimate is optimal for minimizing the bit error rate.

There are other works on sequence assembly (see for ex-

ample, [10], [11]), where multiple short reads (from different

segments of a sequence) are used to reconstruct the bigger

sequence. To the best of our knowledge, these works have

not looked at symbolwise MAP decoding.

Deletion channels are known to be notoriously difficult to

analyze. In fact, the capacity of a single deletion channel is

still unknown ([12], [13], [14], [15]); as are optimal coding

schemes. Recent works have looked at the design of codes for

deletion channels ([16], [17], [18]); these works consider use

This work was supported in part by NSF grants 1705077 and 1514531.
1As seen in [1],[2] there are more complicated effects of the nanopore

reader not captured in this simple representation.
2As seen in the appendix of the longer version of this paper [3], this parallel

channel model can be decomposed into a cascade of two other channels.

of a codebook (we do not), and a single channel. As a result,

statistical estimation over deletion channels is also a difficult

problem due its highly combinatorial nature. To the best of our

knowledge, as yet there are no efficient estimation algorithms

over deletion channels with statistical guarantees; not even

for maximum likelihood over a single deletion channel (see

[12]). Our prior work in [19] was a first attempt to address this

question. [19] solves the symbolwise MAP decoding with one

trace in polynomial time, but the case of multiple traces was

left open. Note that unlike in the case of memoryless channels,

for deletion channels the posterior probabilities obtained from

each of the traces Pr(Xi|Yj) cannot be combined since the

Markov chain property Yj − Xi − Yk does not hold for

individual symbols Xi even though Yj−X−Yk holds. Hence,

the symbolwise MAP with multiple traces is not trivial and

we completely solve it here in polynomial (in n) time.

In terms of theoretical tools, [20] extensively uses algebraic

tools for problems in the combinatorics of sequences (or

words), and our work is partly inspired by such techniques.

✞

�

✞

✁☛

✁✂

✄☎

✆

✌ ✝☛✝✟ ✠✝✡✝

Fig. 1: t-deletion channel model: sequence X passed through t
independent deletion channels. We aim to estimate X from the Yis.

Our contributions are two-fold:

• In Section III, for the t-deletion channel model in

Fig. 1, we give an O(2tnt+2) algorithm that ex-

actly computes the symbolwise posterior probabilities

Pr(Xi=1|Y1, ..., Yt) when Xi ∼ i.i.d. Ber(0.5), i.e., each

n-length binary sequence is equally likely apriori.

• Though, the symbolwise MAP is polynomial in n, it

grows exponentially with t. In Section IV, we develop

a symbolwise estimation heuristic which is linear in t
as follows: consider sequence X where each symbol

Xi ∼ ind. Ber(pi). Given a trace (say Y) of X , we

provide a O(n2) algorithm to calculate Pr(Xi=1|Y) ∀ i,
taking into account the prior distribution parameters pi.
We can then use this algorithm with one trace at a time

to continually update pi; we use each trace exactly once,

thus making t updates and estimating X with O(tn2)
time complexity. Note that the heuristic is not equivalent

to the symbolwise MAP as Yj −Xi− Yk does not hold.

II. PRELIMINARIES

Notation: Calligraphic letters refer to sets and capitalized

letters correspond to random variables. Let A be the set of

all symbols. We will focus on the case where A = {0, 1},
though our methods extend to larger sets. Define An to be

the set of all n-length sequences, A∗ to be the set of all

finite length sequences with symbols in A. For a sequence f ,

|f | denotes the length of f . Given sequences f and g in A∗,

the number of subsequence patterns of f that are equal to g
is called the binomial coefficient of g in f and is denoted by
(

f
g

)

. When the alphabet A is of cardinality 1,
(

f
g

)

=
(

|f |
|g|

)

,

the classical binomial coefficient with their respective lengths

as the parameters. This definition hence could be thought

of as a generalization of the classical binomial coefficients.

We will denote by e the sequence of length 0, and define
(

f
e

)

, 1 ∀ f ∈ A∗. We also define the classical binomial

coefficient
(

a
b

)

, 0, whenever b > a or b < 0 for ease of use.

Edit graph (as defined in [21]): We now define an edit graph

where given two sequences fand g, every path connecting the

origin to the destination on the edit graph yields a superse-

quence h of f, g, where h is "covered" by f, g – each symbol

of h comes from either f or g or both. For f and g in A∗,

we form a graph G(f, g) with (|f |+1)(|g|+1) vertices each

labeled with a distinct pair (i, j), 0 ≤ i ≤ |f |, 0 ≤ j ≤ |g|. A

directed edge (i1, j1) → (i2, j2) exists iff at least one of the

following holds:

1) i2 − i1 = 1 and j1 = j2, or

2) j2 − j1 = 1 and i1 = i2, or

3) i2 − i1 = 1, j2 − j1 = 1 and fi2 = gj2 ,

where fi is the ith symbol of the sequence f . The origin is

the vertex (0, 0) and the destination (|f |, |g|).

✒✄✁✄�

✂☎✆✝✞

✂✟✆✝✞

✒✠✁✄�

✒✄✁✡�

✒✡✁✡�

✂✟✆☎✞

✂☛✆☎✞

✂✝✆✟✞

✂☛✆✟✞

✂☎✆✟✞

✂✟✆✟✞

✒✄✁✠�

✂☎✆☛✞

✒☞✁✠�

✒✠✁✠�

✌

✌

✍

✍ ✎✌

✌

✎ ✌

✎

Fig. 2: Edit graph for sequences f = 001 and g = 101. Write down
f vertically with each symbol aligned to a vertical set of edges and
g horizontally likewise. A diagonal edge in a small square exists if
the corresponding f and g symbols are equal. The thick red edges
form a path from the origin to the destination; this path corresponds
to the sequence ‘0101’ – append the corresponding symbol at the left
of an edge if it’s vertical or diagonal, otherwise append the symbol
at the top. It is also easy to verify that 0101 is a supersequence of
both f and g, and could be obtained as a covering of f and g; the
path itself gives one such covering.

Let p = ((i1, j1), (i2, j2), ..., (im, jm)) be a path in G(f, g).
We define s(p) to be the sequence corresponding to the

path. Intuitively, s(p) is formed by appending symbols in

the following way: append the corresponding f symbol for

a vertical edge, g symbol for horizontal edge, and f or g
symbol for diagonal edge (see example Fig. 2). Any path

from (0, 0) to (|f |, |g|) corresponds to a supersequence of

f and g and which is covered by f and g. More formally,

define s(p) , x1x2...xm−1 where

xk =











fik+1
if jk = jk+1,

gjk+1
if ik = ik+1,

fik+1
else.

The construct of edit graph can be extended to more than

2 sequences with the same idea. For sequences f1, f2, ..., ft,
construct a t-dimensional grid with a number of vertices

(|f1| + 1)(|f2| + 1)...(|ft| + 1) labeled from (0, 0, ..., 0) to

(|f1|, |f2|, ..., |ft|). A vertex u = (i1, i2, ..., it) is connected

to v = (j1, j2, ..., jt) (we say u→ v) iff both of the following

conditions are met:

• jl = il or jl = il + 1 ∀ l ∈ [t], i.e., (i1, ..., it) and

(j1, ..., jt) are vertices of a particular unit cube. Only

these type of vertices can share an edge in the grid graph.

• Let T ⊆ [t] be the collection of indices where jl = il+1.

Then fil is same ∀ l ∈ T . For instance, if T = {1, 3, 5},
then fi1 = fi3 = fi5 .

Define the vertex (0, ..., 0) to be the origin of this graph

and the vertex (|f1|, ..., |ft|) to be the destination. If

|fj | = O(n) ∀ j, this graph has a number of vertices O(nt)
and a maximum number of edges O((2n)t) since each vertex

has at most 2t outgoing edges.

Infiltration product (introduced in [20]): The infiltration

product has been extensively used in [20], as a tool in non-

commutative algebra. Here we give an edit-graph interpre-

tation of this tool. We also formally define it in the longer

version of the paper [3] . Using the edit graph we can

construct the set of possible supersequences S(f, g) of f, g
which are covered by it. Clearly multiple paths could yield the

same supersequence and we can count the number of distinct

ways N(h; f, g) one can construct the same supersequence h
from f, g. We can informally define the infiltration product

f ↑ g of f and g, as a polynomial with monomials as the

supersequences h in S(f, g) and coefficients 〈f ↑ g, h〉 equal

to N(h; f, g). In Fig. 2, it is easy to verify that there is

exactly one path corresponding to ‘101001’ and hence 〈001 ↑
101, 101001〉 = 1 and similarly 〈001 ↑ 101, 01001〉 = 2.

One could find these coefficients for all relevant sequences

and form the polynomial as described. More examples: Let

A = {a, b}, then

• ab ↑ ab = ab+ 2aab+ 2abb+ 4aabb+ 2abab,
• ab ↑ ba = aba+ bab+ abab+ 2abba+ 2baab+ baba.

The infiltration operation is commutative and associative, and

infiltration of two sequences f ↑ g is a polynomial with

variables of length (or degree) at most |f | + |g|; see [20].

The definition of infiltration extends to two polynomials via

distributivity (precisely defined in [3]), and consequently to

multiple sequences as well. For multiple sequences, infiltration

has the same edit graph interpretation: 〈f1 ↑ f2 ↑ ... ↑ ft, w〉
is the number of distinct ways of constructing w as a su-

persequence of f1, f2, ..., ft so that the construction covers

w, i.e., construct the t-dimensional edit graph of f1, f2, ..., ft
and count the number of paths corresponding to w.

III. SYMBOLWISE MAP ESTIMATE FOR THE t-DELETION

CHANNEL MODEL

Let A = {0, 1}, and for this section, assume X ∼
Uniform An. The goal is to compute the symbolwise posterior

probabilities Pr(Xi=1|Y1, ..., Yt)
3 where Yi is the ith trace.

Alg. 1 details the computation of the posterior probabilities.

Using Alg. 1, the symbolwise MAP estimate is as follows:

for each index i, compute Pr(Xi=1|Y1...Yt) and decide

X̂i =

{

1, if Pr(Xi=1|Y1...Yt) ≥ 0.5

0, else.

Through the rest of this section, we compute

Pr(Xi=1|Y1, ..., Yt) as follows: we first give an expression

which sums over infiltration product terms and leverage a

dynamic program on the edit graph to compute these.

A. Step 1: An expression for Pr(Xi = 1|Y1...Yt)

Theorem 1. Assume X ∼ Uniform An. The posterior prob-

ability of the ith bit given the traces can be expressed as

Pr(Xi = 1|Y1...Yt)

=

[

n
∑

k=0

2n−k−1

(

n− 1

k

)

∑

w||w|=k

〈Y1 ↑ ... ↑ Yt, w〉

+
n
∑

k=0

k
∑

j=1

2n−k

(

i− 1

j − 1

)(

n− i

k − j

)

∑

w||w|=k,
wj=1

〈Y1 ↑ ... ↑ Yt, w〉

]

/

[

n
∑

k=0

2n−k

(

n

k

)

∑

w||w|=k

〈Y1 ↑ ... ↑ Yt, w〉

]

. (1)

Note that the summation index, w||w|=k denotes all se-

quences w of length k; this is an alternate for w|w∈Ak. We

follow this convention throughout the paper. We refer to [3]

for the proof of Theorem 1. In short, the denominator of (1)

counts the number of ways of obtaining n-length sequences

as a supersequence of Y1, ..., Yt, and the numerator counts the

number of such ways where the ith bit of the sequence is 1.

B. Step 2: Dynamic program to compute terms in (1)

We compute
∑

w||w|=k

〈Y1↑...↑Yt, w〉 and
∑

w||w|=k,
wj=1

〈Y1↑...↑Yt, w〉,

using a dynamic programming approach on the edit graph.

Note that the number of sequences w||w| = k is O(2k) so a

naive evaluation is exponential in n. We can, however, exploit

the edit graph to come up with a dynamic program resulting

in an algorithm which is polynomial in n.

Recall that in the edit graph, 〈Y1↑...↑Yt, w〉 is equal to

the number of distinct paths from the origin (0, ..., 0) to the

destination (|Y1|, ..., |Yt|) and which correspond to w. Thus,

(a)
∑

w||w|=k

〈Y1↑...↑Yt, w〉 is the number of distinct paths of

length k from origin to destination.

3 Symbolwise MAP with non-uniform priors is a part of on-going work.

(b)
∑

w||w|=k,
wj=1

〈Y1↑...↑Yt, w〉 is the number of distinct paths of

length k from origin to destination such that the jth edge

of the path corresponds to 1.

With this interpretation, the dynamic program for (a) follows

naturally – the number of k-length paths from the origin to any

vertex is the sum of the number of (k−1)-length paths from

the origin to all incoming neighbors of the vertex. To make

this formal, associate a polynomial (in λ) for each vertex,

such that the coefficient of λk is equal to the number of paths

of length k from the origin to v: we call it the "forward-

potential" polynomial pforv (λ) for vertex v, the coefficient

of λk as earlier is denoted by 〈pforv (λ), λk〉. The dynamic

program to compute pforv (λ) for all v:

pforv (λ) =
∑

u|u→v

λpforu (λ). (2)

Thus, pfordestination(λ) has all the information needed for (a). In

the example in Fig. 2, one could do the following: order the

vertices (0, 0) to (3, 3) lexicographically and then compute

pforv (λ) in the same order. Because of the directed grid

nature of the edit graph, every vertex has incoming neighbors

which are lexicographically ahead of itself. Also we initialize

pfor(0,0)(λ) = 1. For the example in Fig. 2, the forward-

potentials are shown in Fig. 3; see [3] for the description of

algorithm to compute the forward potentials. The complexity

of this dynamic program is O(2tnt+1) as it goes over O(nt)
vertices and for each vertex it sums O(2t) polynomials, each

of degree O(n).

✄

�

✁

✂ ✁✄✡ ✟ ☎✆ ☎✝

☎

☎✆

☎✞

✠☎✆

☎✆

✌☛☎✞

☎✞ ✌ ☞☎✍

☛☎✞ ☛☎✞

✌ ✎☎✏
☞☎✍ ✌ ✑✒☎✓

☎✞ ✌ ☞☎✍ ☞☎✏ ✌ ✑✒☎✔
☛☎✍ ✌ ✑☞☎✓ ✌ ✠✒☎✕

Fig. 3: The forward-potential pforv (λ) at each vertex.

We compute (b) as follows: pick an edge (u→v) which

corresponds to ‘1’, count the number of (j−1)-length paths

from origin to u and multiply it with the number of (k−j)-
length paths from v to the destination – this is exactly the

number of paths of length k such that its jth edge is (u→v).
Summing this term for all such edges which correspond to 1

gives us the term in (b). Note that we have already computed

the number of k-length paths (∀k) from origin to every vertex

in pforv (λ) . We can similarly compute the number of k-length

paths (∀k) from every vertex to the destination as prevv (λ) –

the "reverse potential" polynomial. The dynamic program for

prevv (λ) is:

prevv (λ) =
∑

u|v→u

λprevu (λ), (3)

Algorithm 1 Computing the posterior probabilities

1: Input: Traces Y1, ..., Yt, index i
2: Output: Pr(Xi = 1|Y1, ...Yt)
3: Construct edit graph with the traces G(Y1, ..., Yt)
4: Compute the forward and reverse potentials pforv (λ) and

prevv (λ) ∀ v ∈ G
5: assign

∑

w||w|=k

〈Y1↑...↑Yt, w〉 ← 〈p
rev
(0,0,..,0), λ

k〉 ∀k

6: for each k, j do

7: Initialize temp← 0

8: for each edge u→ v ∈ G do

9: if s(u→v) = 1 then

10: temp + = 〈pforu (λ), λj−1〉〈prevv (λ), λk−j〉

11: assign
∑

w||w|=k,wj=1

〈Y1↑...↑Yt, w〉 ← temp

12: Use (1) to compute Pr(Xi = 1|Y1, ...Yt)

with prevdestination(λ) = 1. With this,

∑

w||w|=k,
wj=1

〈Y1↑...↑Yt, w〉 =
∑

(u→v)
s(u,v)=1

〈pforu (λ), λj−1〉〈prevv (λ), λk−j〉.

Alg. 1 details the computation of the posterior probabilities.

This algorithm iterates over all the edges (O((2n)t) edges

exist), and also k, j which are O(n) each. The time complexity

of Alg. 1 hence is O(2tnt+2), resulting in O(2tnt+3) for the

symbolwise MAP described at the beginning of the section.

IV. A HEURISTIC BASED ON SYMBOLWISE MAP

Given that the exact symbolwise MAP proposed earlier is

exponential in the number of traces t, we here develop a

symbolwise estimation heuristic which is, in fact, linear in

t. Let p , (p1, p2, ..., pn) and X = X1...Xn. We assume

the Xi’s are distributed as Xi ∼ ind. Ber (pi), and give a

O(n2) algorithm to calculate Pr(Xi = 1|Y) given one trace

Y . We can then use this algorithm and use one trace at a

time to continually update the posterior probabilities; we use

each trace exactly once, thus making t updates, and finally

use a thresholding criteria to decide if Xi is 0 or 1. The time

complexity of the algorithm is O(tn2).

A. Step 1: Expression for Pr(Xi = 1|Y)

To simplify notation, we here assume Pr(Xi = 1) = pi
and let m , |Y |. As in the previous section, by Bayes’ rule,

Pr(Xi = 1|Y) =

∑

x|xi=1

Pr(X = x)
(

x
Y

)

∑

x Pr(X = x)
(

x
Y

) , (4)

and as in the previous section, we are interested to simplify the

summation in the numerator and the denominator. Theorem 2

gives a simplified expression for (4) in terms of a function

that we define first. See longer version [3] for the proof of

Theorem 2. The function denoted by F () is defined as follows.

Definition 1.

F : Rk × {0, 1}l → R,

F (q, v) ,



















∑

S|S⊆[k],|S|=l

l
∏

i=1

qviSi
(1− qSi

)1−vi 1 ≤ l ≤ k

1 0 = l ≤ k

0 else.

An alternate definition is as follows: consider a random vector

Z ∈ {0, 1}k such that Zi ∼ ind. Ber(qi), let q be the vector

of probabilities of length k, S ⊆ [k] a subset of the indices

of size l, and v a binary vector of length l. Then,

F (q, v) =
∑

S||S|=l

Pr(ZS = v).

Note that if q is a vector of 0’s and 1’s, then F (q, v) =
(

q
v

)

, the

binomial coefficient of v in q. Thus, F () could be interpreted

as a weighted version of the binomial coefficient.

Theorem 2.

Pr(Xi = 1|Y) =
piF (p[n]\{i}, Y)

F (p[n], Y)

+

pi
∑

k|Yk=1

F (p[1:i−1], Y[1:k−1])F (p[i+1:n], Y[k+1,m])

F (p[n], Y)

where F (·, ·) is as in Definition 1.

The intuition here is similar to that of Theorem 1 - the

denominator term corresponds to the total "weight" of the

ways of obtaining a n-length supersequence of Y , and the

numerator corresponds to the total weight of obtaining such

supersequences where the ith bit is 1.

B. Step 2: Computing F (·, ·)

At first sight, although F () sums over all subsets of size

m, it is still possible to efficiently compute it via a dynamic

programming approach as in the previous section. We will

now describe how to compute F (p, Y) where p = (p1, ..., pn)
and Y = Y1...Ym, and doing so aids in computing the other

terms in Theorem 2 too. We first define

Gfor(k, j) , F (p[1:k], Y[1:j]),

Grev(k, j) , F (p[k:n], Y[j:m]).

The following dynamic program follows from the definitions:

Gfor(k, j) = p
Yj

Sj
(1− pSj

)1−YjGfor(k − 1, j − 1)

+Gfor(k − 1, j), (5)

with the boundary conditions Gfor(k, 0) = 1 ∀ k and

Gfor(k, j) = 0 ∀ k < j. This is easily seen by splitting

the summation into two cases: 1. When k ∈ S and k /∈ S, the

first case gives the first term and the second case the second

term. An equivalent argument also gives,

Grev(k, j) = p
Yj

Sj
(1−pSj

)1−YjGrev(k+1, j+1)+Grev(k+1, j)

(6)

with boundary conditions Grev(k,m) = 1 ∀ k and

Grev(k, j) = 0 ∀ k, j|n − k > m − j. The description of

Algorithm 2 Approximate Symbolwise MAP with t traces

1: Input: Traces Y1, ..., Yt

2: Outputs: Input estimate X̃
3: Initialize priors pold = pnew ← (0.5, 0.5, ..., 0.5)
4: for l = 1 : t do

5: Use pold and Yl to compute Gfor and Grev

6: for i = 1 : n do

7: Use (7) to update pnewi with pold as input priors

8: pold ← pnew

9: for i = 1 : n do

10: if pnewi ≥ 0.5 then X̃i ← 1
11: else X̃i ← 0

12: return X̃1X̃2...X̃n

the algorithm to compute Gfor(k, j), Grev(k, j) ∀ k, j can

be found in the [3]. The complexity of such an algorithm

is O(n2) as one needs to compute O(n2) values; note that

m = O(n) since Y is a deleted version of the input.

C. Step 3: The overall algorithm

First note that, the following relation can be derived from

the definitions of F (), Gfor() and Grev():

F (p[n]\{i}, Y) =
∑

k∈[1:i−1]

Gfor(i− 1, k)Grev(i+ 1, k + 1).

Thus, we can transform Theorem 2 in terms of G() as

Pr(Xi = 1|Y) =

pi
∑

k≤i−1

Gfor(i− 1, k)Grev(i+ 1, k + 1)

Gfor(n,m)

+

pi
∑

k|Yk=1

Gfor(i− 1, k − 1)Grev(i+ 1, k + 1)

Gfor(n,m)
, (7)

enabling us to compute the posterior probabilities given a

trace and arbitrary priors in O(n2). The overall heuristic with

t traces is now detailed in Alg. 2. The complexity of the

algorithm is O(tn2); t loops for the traces, and each loop

computes O(n2) Gfor and Grev terms.

V. NUMERICAL RESULTS

We show some preliminary numerical results for a block-

length of 20 and for 2, 3, 4 traces. We use hamming distance

to measure the performance since we would like to reconstruct

the (known length) entire input sequence. As seen, both the

algorithms perform better as the number of traces increases,

and the exact MAP outperforms the heuristic as expected.

These results are for the case when each Xi∼i.i.d Ber(0.5).
For Xi∼i.i.d Ber(p) (p 6= 0.5), Alg.1 (which is the MAP

for uniform priors) and Alg.2 give lower error rates (plots not

shown here), but the estimate from Alg.1 may no longer be the

symbolwise MAP estimate. The improvement in performance

is expected since it is easier to "guess" each bit when the priors

are not uniform. For Xi∼Ber(pi), where pi∼Uniform[0, 1],
the error rates for both algorithms approximately the same as

in Fig.4.

✵�✁ ✵�✁✂ ✵�✄ ✵�✄✂ ✵�☎ ✵�☎✂ ✵�✆ ✵�✆✂ ✵�✂
✵

✵�✵✂

✵�✁

✵�✁✂

✵�✄

✵�✄✂

✵�☎

✵�☎✂

✵�✆

✵�✆✂

✵�✂

❉✝✞✝✟✠✡☛ ☞✌✡✍✎✍✠✞✠✟✏ δ

❍
✑
✒
✒
✓✔
✕
✖
✗✗
✘
✗
✙
✑
✚✛

❙✜✢✣� ✤✥✦ ✧✄ ★✩✪✫✬✭✮

❙✜✢✣� ✤✥✦ ✧☎ ★✩✪✫✬✭✮

❙✜✢✣� ✤✥✦ ✧✆ ★✩✪✫✬✭✮

✯✬✰✩✱✭✲✱✫ ❙✜✢� ✤✥✦ ✧✄ ★✩✪✫✬✭✮

✯✬✰✩✱✭✲✱✫ ❙✜✢� ✤✥✦ ✧☎ ★✩✪✫✬✭✮

✯✬✰✩✱✭✲✱✫ ❙✜✢� ✤✥✦ ✧✆ ★✩✪✫✬✭✮

Fig. 4: Hamming error rate between the actual and estimated
sequence. The exact symbolwise MAP (Alg. 1) is plotted in solid
lines while the heuristic (Alg. 2) is plotted in dotted lines.

REFERENCES

[1] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” 2017 ISIT, 2017.

[2] ——, “Models and information-theoretic bounds for nanopore sequenc-
ing,” IEEE Transactions on Information Theory, 2018.

[3] S. Srinivasavaradhan et al., “Symbolwise map for multiple deletion
channels,” Longer version. [Online]. Available: http://eeucla.com/arni/
bibliography/index.php/attachments/single/147

[4] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans-

actions on Information Theory, Jan 2001.
[5] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing

strings from random traces,” in SODA ’04, 2004, pp. 910–918.
[6] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace

reconstruction with constant deletion probability and related results,” in
ACM-SIAM SODA ’08, 2008, pp. 389–398.

[7] A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based
algorithms for trace reconstruction,” in STOC 2017.

[8] Y. Peres and A. Zhai, “Average-case reconstruction for the dele-
tion channel: subpolynomially many traces suffice,” CoRR, vol.
abs/1708.00854, 2017.

[9] N. Holden, R. Pemantle, and Y. Peres, “Subpolynomial trace recon-
struction for random strings and arbitrary deletion probability,” in
Proceedings of the 31st Conference On Learning Theory, 2018.

[10] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows-wheeler transform,” 2009.

[11] I. Shomorony, S. H. Kim, T. A. Courtade, and D. N. C. Tse,
“Information-optimal genome assembly via sparse read-overlap graphs,”
Bioinformatics, vol. 32, no. 17, pp. i494–i502, 2016.

[12] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

[13] S. Diggavi, M. Mitzenmacher, and H. Pfister, “Capacity upper bounds
for deletion channels,” in 2007 ISIT.

[14] S. Diggavi and M. Grossglauser, “On information transmission over a
finite buffer channel,” IEEE Transactions on Information Theory, 2006.

[15] S. N. Diggavi and M. Grossglauser, “On transmission over deletion
channels,” in Proceedings of the Annual Allerton Conference on Com-

munication Control and Computing, 2001.
[16] E. A. Ratzer, “Marker codes for channels with insertions and deletions,”

in Annales des télécommunications. Springer, 2005.
[17] E. A. Ratzer and D. J. MacKay, “Codes for channels with insertions,

deletions and substitutions,” in In 2nd International Symposium on

Turbo Codes and Related Topics. Citeseer, 2000.
[18] E. K. Thomas, V. Y. Tan, A. Vardy, and M. Motani, “Polar coding

for the binary erasure channel with deletions,” IEEE Communications

Letters, vol. 21, no. 4, pp. 710–713, 2017.
[19] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On

maximum likelihood reconstruction over multiple deletion channels,”
in 2018 IEEE International Symposium on Information Theory (ISIT).

[20] M. Lothaire, Combinatorics on Words, ser. Cambridge Mathematical
Library. Cambridge University Press, 1997.

[21] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. New York, NY, USA: Cambridge
University Press, 1997.

