Symbolwise MAP for Multiple Deletion Channels

Sundara R. Srinivasavaradhan, Michelle Du, Suhas Diggavi and Christina Fragouli
University of California, Los Angeles
Email: {sundar, michelleruodu, suhas.diggavi, christina.fragouli}@ucla.edu

Abstract—We consider the problem of reconstructing a se-
quence from fixed number of deleted versions of itself (also called
traces). The problem is motivated from recent developments in de
novo DNA sequencing technologies. The main contribution of this
work is to provide a polynomial time algorithm for symbolwise
MAP decoding with multiple traces. The algorithm leverages a
dynamic program on the edit graph. We also develop a heuristic
with reduced time complexity using similar ideas and provide
preliminary numerical evaluations.

Index Terms—Deletion channels, Trace reconstruction, sym-
bolwise MAP, Edit graph, Dynamic programming

I. INTRODUCTION

Given an input sequence of length n (known apriori), the
independently and identically distributed (i.i.d.) deletion chan-
nel deletes each input symbol independently with probability
4, producing at its output a subsequence of the input sequence.

Consider a sequence X passed through ¢ (¢ is fixed) such
deletion channels as shown in Fig. 1. This is a simple model
that approximately captures the process of a DNA sequence
passed through a nanopore sequencer'. We call this the t-
deletion channel model®. The goal is to estimate X from the
traces {Y;}s. A similar problem has received considerable
attention in CS theory and discrete mathematics, under the
name ‘“‘trace-reconstruction” (see [4], [5], [6], [7], [8], [9]).
Trace reconstruction, however, addresses the complementary
question of how many traces are needed for perfect recon-
struction of the input sequence. A variety of upper and lower
bounds have been derived for worst case as well as average
case reconstruction. In contrast, in this work we fix the
number of traces (motivated by finite number of reads in DNA
sequencing), and aim for a symbolwise maximum aposteriori
(MAP) estimate of the sequence, which is not necessarily
a perfect reconstruction. Nonetheless, the symbolwise MAP
estimate is optimal for minimizing the bit error rate.

There are other works on sequence assembly (see for ex-
ample, [10], [11]), where multiple short reads (from different
segments of a sequence) are used to reconstruct the bigger
sequence. To the best of our knowledge, these works have
not looked at symbolwise MAP decoding.

Deletion channels are known to be notoriously difficult to
analyze. In fact, the capacity of a single deletion channel is
still unknown ([12], [13], [14], [15]); as are optimal coding
schemes. Recent works have looked at the design of codes for
deletion channels ([16], [17], [18]); these works consider use

This work was supported in part by NSF grants 1705077 and 1514531.

TAs seen in [1],[2] there are more complicated effects of the nanopore
reader not captured in this simple representation.

2 As seen in the appendix of the longer version of this paper [3], this parallel
channel model can be decomposed into a cascade of two other channels.

of a codebook (we do not), and a single channel. As a result,
statistical estimation over deletion channels is also a difficult
problem due its highly combinatorial nature. To the best of our
knowledge, as yet there are no efficient estimation algorithms
over deletion channels with statistical guarantees; not even
for maximum likelihood over a single deletion channel (see
[12]). Our prior work in [19] was a first attempt to address this
question. [19] solves the symbolwise MAP decoding with one
trace in polynomial time, but the case of multiple traces was
left open. Note that unlike in the case of memoryless channels,
for deletion channels the posterior probabilities obtained from
each of the traces Pr(X;|Y;) cannot be combined since the
Markov chain property Y; — X; — Yj does not hold for
individual symbols X; even though Y; — X —Y}, holds. Hence,
the symbolwise MAP with multiple traces is not trivial and
we completely solve it here in polynomial (in) time.

In terms of theoretical tools, [20] extensively uses algebraic
tools for problems in the combinatorics of sequences (or
words), and our work is partly inspired by such techniques.

Y
X—.: T I

X= X1X2 Xn

Fig. 1: t-deletion channel model: sequence X passed through ¢
independent deletion channels. We aim to estimate X from the Y;s.

Our contributions are two-fold:

e In Section III, for the t¢-deletion channel model in
Fig. 1, we give an O(2'n'*2) algorithm that ex-
actly computes the symbolwise posterior probabilities
Pr(X,;=1|Y1,...,Y;) when X; ~ ii.d. Ber(0.5), i.e., each
n-length binary sequence is equally likely apriori.

o Though, the symbolwise MAP is polynomial in n, it
grows exponentially with ¢. In Section IV, we develop
a symbolwise estimation heuristic which is linear in ¢
as follows: consider sequence X where each symbol
X; ~ ind. Ber(p;). Given a trace (say Y) of X, we
provide a O(n?) algorithm to calculate Pr(X;=1|Y) V i,
taking into account the prior distribution parameters p;.
We can then use this algorithm with one trace at a time
to continually update p;; we use each trace exactly once,
thus making ¢ updates and estimating X with O(tn?)
time complexity. Note that the heuristic is not equivalent
to the symbolwise MAP as Y; — X; — Y}, does not hold.

II. PRELIMINARIES

Notation: Calligraphic letters refer to sets and capitalized
letters correspond to random variables. Let A be the set of
all symbols. We will focus on the case where A = {0, 1},
though our methods extend to larger sets. Define A™ to be
the set of all n-length sequences, .A* to be the set of all
finite length sequences with symbols in 4. For a sequence f,
| /] denotes the length of f. Given sequences f and g in A*,
the number of subsequence patterns of f that are equal to g
is called the binomial coefficient of g in f and is denoted by
(g) When the alphabet A is of cardinality 1, (g) = (“’gc‘l),
the classical binomial coefficient with their respective lengths
as the parameters. This definition hence could be thought
of as a generalization of the classical binomial coefficients.
We will denote by e the sequence of length 0, and define
(/) 21V f € A*. We also define the classical binomial

€
coefficient () £ 0, whenever b > a or b < 0 for ease of use.

Edit graph (as defined in [21]): We now define an edit graph
where given two sequences fand g, every path connecting the
origin to the destination on the edit graph yields a superse-
quence h of f, g, where h is "covered" by f, g — each symbol
of h comes from either f or g or both. For f and g in A*,
we form a graph G(f, g) with (|f|+1)(|g|+ 1) vertices each
labeled with a distinct pair (4,7),0 < <|f], 0 <j <]|g|. A
directed edge (i1,71) — (i2,j2) exists iff at least one of the
following holds:

1) ig—ilzl andj1 :jg, or

2) j2fj1:1andi1:z'2, or

3) ipg —i1 =1, jo —j1 = 1 and fi, = gj,,
where f; is the i*" symbol of the sequence f. The origin is
the vertex (0,0) and the destination (|f], |g]|).

1 0 1

(0,0) (0,1) (0,2) 0,3)
0 \ ,0 (11) (1,2)

(1,0 A3)
0 ! Q

ok (2,2)1 .
1

(3,0) GO GO (3)

Fig. 2: Edit graph for sequences f = 001 and g = 101. Write down
f vertically with each symbol aligned to a vertical set of edges and
g horizontally likewise. A diagonal edge in a small square exists if
the corresponding f and g symbols are equal. The thick red edges
form a path from the origin to the destination; this path corresponds
to the sequence ‘0101’ — append the corresponding symbol at the left
of an edge if it’s vertical or diagonal, otherwise append the symbol
at the top. It is also easy to verify that 0101 is a supersequence of
both f and g, and could be obtained as a covering of f and g; the
path itself gives one such covering.

Let p= ((ilajl)a (i27j2)7 cey (Z’m7.7m)) be a path in g(fu g)
We define s(p) to be the sequence corresponding to the
path. Intuitively, s(p) is formed by appending symbols in
the following way: append the corresponding f symbol for

a vertical edge, g symbol for horizontal edge, and f or g
symbol for diagonal edge (see example Fig. 2). Any path
from (0,0) to (|f|,|g]) corresponds to a supersequence of
f and g and which is covered by f and g. More formally,
define s(p) = x125...2,,_1 Where

fik+1 ifjk :jk—&-l,
Tk = § G if i = ik+1,
finy, else.

The construct of edit graph can be extended to more than
2 sequences with the same idea. For sequences f1, fa, ..., ft,
construct a t-dimensional grid with a number of vertices
(If1] + D(Jf2] + 1)...(|f¢] + 1) labeled from (0,0, ...,0) to
(If1ls 1 f2ls s | fe]). A vertex w = (iy,12,...,4¢) is connected
to v = (j1,J2, ..., Jt) (We say u — v) iff both of the following
conditions are met:
ejip=qorj=4u+1VI e [t], ie., (il,...,it) and
(j1,-..,7¢) are vertices of a particular unit cube. Only
these type of vertices can share an edge in the grid graph.
o Let T C [t] be the collection of indices where j; = i;+1.
Then f;, is same ¥V [€ T. For instance, if 7 = {1, 3,5},
then fi, = fi, = fis-
Define the vertex (0,...,0) to be the origin of this graph
and the vertex (|fi],...,|f:]) to be the destination. If
|f;l = O(n) V j, this graph has a number of vertices O(n")
and a maximum number of edges O((2n)*) since each vertex
has at most 2! outgoing edges.

Infiltration product (introduced in [20]): The infiltration
product has been extensively used in [20], as a tool in non-
commutative algebra. Here we give an edit-graph interpre-
tation of this tool. We also formally define it in the longer
version of the paper [3] . Using the edit graph we can
construct the set of possible supersequences S(f,g) of f,g
which are covered by it. Clearly multiple paths could yield the
same supersequence and we can count the number of distinct
ways N (h; f, g) one can construct the same supersequence h
from f,g. We can informally define the infiltration product
f 1T gof fand g, as a polynomial with monomials as the
supersequences h in S(f, g) and coefficients (f 1 g, h) equal
to N(h; f,g). In Fig. 2, it is easy to verify that there is
exactly one path corresponding to ‘101001’ and hence (001 1
101,101001) = 1 and similarly (001 1 101,01001) = 2.
One could find these coefficients for all relevant sequences
and form the polynomial as described. More examples: Let
A = {a,b}, then

e ab 1 ab = ab + 2aab + 2abb + 4aabb + 2abab,

e ab 1T ba = aba + bab + abab + 2abba + 2baab + baba.
The infiltration operation is commutative and associative, and
infiltration of two sequences f 1 g is a polynomial with
variables of length (or degree) at most |f| + |g|; see [20].
The definition of infiltration extends to two polynomials via
distributivity (precisely defined in [3]), and consequently to
multiple sequences as well. For multiple sequences, infiltration
has the same edit graph interpretation: (f1 1 fo 1T ... T fi,w)
is the number of distinct ways of constructing w as a su-
persequence of fi, fo, ..., ft so that the construction covers

w, i.e., construct the ¢-dimensional edit graph of fi, fo, ...
and count the number of paths corresponding to w.

a.ft

III. SYMBOLWISE MAP ESTIMATE FOR THE ¢-DELETION
CHANNEL MODEL

Let A = {0,1}, and for this section, assume X ~
Uniform A™. The goal is to compute the symbolwise posterior
probabilities Pr(X;=1|Y1,...,Y;)? where Y; is the i*" trace.
Alg. 1 details the computation of the posterior probabilities.
Using Alg. 1, the symbolwise MAP estimate is as follows:
for each index 4, compute Pr(X;=1|Y;...Y;) and decide

% - 1, if Pr(X;=1|Y1...Y;) > 0.5
L 0, else.

Through the rest of this section, we compute
Pr(X,;=1|Y1,...,Y;) as follows: we first give an expression
which sums over infiltration product terms and leverage a
dynamic program on the edit graph to compute these.

A. Step 1: An expression for Pr(X; = 1Y7..Y})

Theorem 1. Assume X ~ Uniform A™. The posterior prob-
ability of the i bit given the traces can be expressed as

PI‘(XZ‘ = 1|Y1Y't)
S Mt w)

()
=0 wliwl=k
+Z§k:2k<]_i)<2_j) S Wit tYiw)

k=04=1 wllw]=k,
w;=1
/[ZT‘"“(Z) S it Yiu)l. ()
k=0 w||w|=k

Note that the summation index, w||w|=k denotes all se-
quences w of length k; this is an alternate for w|we.A*. We
follow this convention throughout the paper. We refer to [3]
for the proof of Theorem 1. In short, the denominator of (1)
counts the number of ways of obtaining n-length sequences
as a supersequence of Y7, ..., Y;, and the numerator counts the
number of such ways where the i‘" bit of the sequence is 1.

B. Step 2: Dynamic program to compute terms in (1)
We compute > (Vi1t..1Y,w)yand > (YiT..1Y:,w),

w||w|=k wl|w|=k,
wi=1

using a dynamic programming approachjon the edit graph.
Note that the number of sequences w||w| = k is O(2¥) so a
naive evaluation is exponential in n. We can, however, exploit
the edit graph to come up with a dynamic program resulting
in an algorithm which is polynomial in n.

Recall that in the edit graph, (Y171..1Y;, w) is equal to
the number of distinct paths from the origin (0, ...,0) to the
destination (|Y1], ..., |Y:|) and which correspond to w. Thus,

@ > (V1..1Y:,w) is the number of distinct paths of
w||w|=k
lell‘lglth k from origin to destination.

3 Symbolwise MAP with non-uniform priors is a part of on-going work.

b >

wl|w|=k,
wji=1

length k from origin to destination such that the j** edge
of the path corresponds to 1.

(Y11...1Y;, w) is the number of distinct paths of

With this interpretation, the dynamic program for (a) follows
naturally — the number of k-length paths from the origin to any
vertex is the sum of the number of (k—1)-length paths from
the origin to all incoming neighbors of the vertex. To make
this formal, associate a polynomial (in \) for each vertex,
such that the coefficient of A\ is equal to the number of paths
of length k from the origin to v: we call it the "forward-
potential” polynomial p/°"()\) for vertex v, the coefficient
of \¥ as earlier is denoted by (p/°"(X), A\F). The dynamic
program to compute p/°"(\) for all v:

i) = X0 Al @
ulu—v
Thus, p/°7,. .. () has all the information needed for (a). In

the example in Fig. 2, one could do the following: order the
vertices (0,0) to (3,3) lexicographically and then compute
pf°"(\) in the same order. Because of the directed grid
nature of the edit graph, every vertex has incoming neighbors
which are lexicographically ahead of itself. Also we initialize
p{(; 0y(A) = 1. For the example in Fig. 2, the forward-
potentials are shown in Fig. 3; see [3] for the description of
algorithm to compute the forward potentials. The complexity
of this dynamic program is O(2!n*1) as it goes over O(n?)
vertices and for each vertex it sums O(2') polynomials, each
of degree O(n).

0 ,
272 3 .
y) = A3 +42
+323

0 3% 343 . 5

22 T 42* +102°
1 .

31% + 1425 + 202°
A3 A3 +42% 42*+102°

Fig. 3: The forward-potential p/°"(\) at each vertex.

We compute (b) as follows: pick an edge (u—w) which
corresponds to ‘1°, count the number of (j—1)-length paths
from origin to u and multiply it with the number of (k—j)-
length paths from v to the destination — this is exactly the
number of paths of length k such that its 5" edge is (u—wv).
Summing this term for all such edges which correspond to 1
gives us the term in (b). Note that we have already computed
the number of k-length paths (Vk) from origin to every vertex
in p/°7(\) . We can similarly compute the number of k-length
paths (Vk) from every vertex to the destination as pJ°’(\) —
the "reverse potential" polynomial. The dynamic program for
pLe () ds:

Pt = Y A, 3)

ulv—u

Algorithm 1 Computing the posterior probabilities

1: Input: Traces Y7, ..., Y;, index ¢

2: Output: Pr(X; = 1|¥3,...Y%)

3: Construct edit graph with the traces G(Y7, ..., Y})

4: Compute the forward and reverse potentials p/°"(\) and
pret(N) Voeg

siassign Y- (YT, w) < (P5% o \FY Yk
wl||w|=k

6: for each k,j do

7: Initialize temp + 0

8: for each edge u > v € G do

9: if s(u—v) =1 then

10 temp + = (pLoT(\), ML) (e (A), AF7)
11: assign > (Y11..1Y;, w) < temp

w||w|=k,w;=1

12: Use (1) to compute Pr(X; = 1]Y7,...Y})

with p7¢%. . (\) = 1. With this,

Do MtAYew) = 0 (I (), N T EET (V) M),
wl|w|=k, (u—v)

wi=1 s(u,v)=1

Alg. 1 details the computation of the posterior probabilities.
This algorithm iterates over all the edges (O((2n)!) edges
exist), and also k, 7 which are O(n) each. The time complexity
of Alg. 1 hence is O(2!n!*2), resulting in O(2¢n**3) for the
symbolwise MAP described at the beginning of the section.

IV. A HEURISTIC BASED ON SYMBOLWISE MAP

Given that the exact symbolwise MAP proposed earlier is
exponential in the number of traces ¢, we here develop a
symbolwise estimation heuristic which is, in fact, linear in
t. Let p = (p1,p2,..,pn) and X = X;..X,,. We assume
the X;’s are distributed as X; ~ ind. Ber (p;), and give a
O(n?) algorithm to calculate Pr(X; = 1Y) given one trace
Y. We can then use this algorithm and use one trace at a
time to continually update the posterior probabilities; we use
each trace exactly once, thus making ¢ updates, and finally
use a thresholding criteria to decide if X; is 0 or 1. The time
complexity of the algorithm is O(tn?).

A. Step 1: Expression for Pr(X; = 1Y)

To simplify notation, we here assume Pr(X; = 1) = p;
and let m = |Y|. As in the previous section, by Bayes’ rule,

|Zf1 Pr(X =2)(y)
Pr(X, = 1Y) = Sy @)

and as in the previous section, we are interested to simplify the
summation in the numerator and the denominator. Theorem 2
gives a simplified expression for (4) in terms of a function

that we define first. See longer version [3] for the proof of
Theorem 2. The function denoted by F() is defined as follows.

Definition 1.
F:RF x{0,1}! - R,

S|SClk],IS|=t =1
Fla.v) =47 0=1<k
0 else.

An alternate definition is as follows: consider a random vector
Z € {0,1}* such that Z; ~ ind. Ber(g;), let g be the vector
of probabilities of length k, S C [k] a subset of the indices
of size [, and v a binary vector of length [. Then,

F(q,v) = Z Pr(Zs =v).
s||S|=1

Note that if g is a vector of 0’s and 1’s, then F'(¢q,v) = (g), the
binomial coefficient of v in ¢. Thus, F'() could be interpreted
as a weighted version of the binomial coefficient.

Theorem 2.
PiF (P fiy, Y)
Pr(X;=1Y) = —————=
() F(pp,Y)
Pi Y F(p[lzi—mY[l:k—l])F(p[iH:n]yY[k+1,m])
k|Yip=1

where F(-,-) is as in Definition 1.

The intuition here is similar to that of Theorem 1 - the
denominator term corresponds to the total "weight" of the
ways of obtaining a n-length supersequence of Y, and the
numerator corresponds to the total weight of obtaining such
supersequences where the i*" bit is 1.

B. Step 2: Computing F(-,-)

At first sight, although F() sums over all subsets of size
m, it is still possible to efficiently compute it via a dynamic
programming approach as in the previous section. We will
now describe how to compute F'(p,Y’) where p = (p1,...,pn)
and Y = Y7...Y,,, and doing so aids in computing the other
terms in Theorem 2 too. We first define

GfOT(kaj) = F(p[lzk]a Yr[l:j])a

Grev(kaj) £ F(p[kn]ay[]m])
The following dynamic program follows from the definitions:

Gfor(k?j) :pls/‘j(l _psj)l—YijOT(k, - 17.7 - 1)

+GTT(k—1,7), (5
with the boundary conditions G¥°"(k,0) = 1 V k and
Gfor(k,j) = 0¥ k < j. This is easily seen by splitting
the summation into two cases: 1. When k € S and k ¢ S, the

first case gives the first term and the second case the second
term. An equivalent argument also gives,

G (k,j) = pg (1-ps,) TG (k+1, j+1)+G"* (k+1,)
(©)

with boundary conditions G™'(k,m) = 1 V k and
G (k,j) = 0V k,jln — k > m — j. The description of

Algorithm 2 Approximate Symbolwise MAP with ¢ traces

Input: Traces Y7, ..., Y;
Outputs: Input estimate X
Initialize priors p°'¢ = pne¥ < (0.5,0.5,...,0.5)
for!=1:tdo
Use p°? and Y] to compute G/°" and G™*?
fori=1:ndo
Use (7) to update p'®* with p°'? as input priors
pold — pnew
for i =1:n do
if pre® > 0.5 then X; « 1
else X,» +~0
return Xng...Xn

e A A

_ = e
»

the algorithm to compute G7°7(k,j), G™"(k,5) V k,j can
be found in the [3]. The complexity of such an algorithm
is O(n?) as one needs to compute O(n?) values; note that
m = O(n) since Y is a deleted version of the input.
C. Step 3: The overall algorithm

First note that, the following relation can be derived from
the definitions of F(), G/°"() and G"*():
Fpppgy,Y) = Y GI(i—1,k)G™(i+ 1,k +1).

ke[1:—1]

Thus, we can transform Theorem 2 in terms of G() as

i S GI(i— 1L, k)G (i + 1,k + 1)

k<i—1
Pr(X; =1Y) = G)
pi Y. GIr(i—1,k—1)G™ (i + 1,k + 1)
E|Yi=1 7
GTor(n,m) ’

enabling us to compute the posterior probabilities given a
trace and arbitrary priors in O(n?). The overall heuristic with
t traces is now detailed in Alg. 2. The complexity of the
algorithm is O(tn?); t loops for the traces, and each loop
computes O(n?) Gf°" and G’ terms.

V. NUMERICAL RESULTS

We show some preliminary numerical results for a block-
length of 20 and for 2, 3,4 traces. We use hamming distance
to measure the performance since we would like to reconstruct
the (known length) entire input sequence. As seen, both the
algorithms perform better as the number of traces increases,
and the exact MAP outperforms the heuristic as expected.
These results are for the case when each X;~i.i.d Ber(0.5).
For X;~i.i.d Ber(p) (p # 0.5), Alg.1 (which is the MAP
for uniform priors) and Alg.2 give lower error rates (plots not
shown here), but the estimate from Alg.1 may no longer be the
symbolwise MAP estimate. The improvement in performance
is expected since it is easier to "guess" each bit when the priors
are not uniform. For X;~Ber(p;), where p;~Uniform[0, 1],
the error rates for both algorithms approximately the same as
in Fig.4.

05
0.45 =-8-Symb. MAP (2 Traces)
0.4- =& Symb. MAP (3 Traces)

== Symb. MAP (4 Traces)

=®-Heuristic Sym. MAP (2 Traces)
-m-Heuristic Sym. MAP (3 Traces)
-A-Heuristic Sym. MAP (4 Traces)

0.351

o
w
T

o
[®)
T

Hamming Error Rate
o o
— N
= <

0.1+
0.08—".. -+

A 0.15 0.2 025 03 .0.35 0.4 0.45 0.5
Deletion Probability

Fig. 4: Hamming error rate between the actual and estimated
sequence. The exact symbolwise MAP (Alg. 1) is plotted in solid
lines while the heuristic (Alg. 2) is plotted in dotted lines.

REFERENCES

[1] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” 2017 ISIT, 2017.

, “Models and information-theoretic bounds for nanopore sequenc-
ing,” IEEE Transactions on Information Theory, 2018.

[3] S. Srinivasavaradhan et al., “Symbolwise map for multiple deletion
channels,” Longer version. [Online]. Available: http://eeucla.com/arni/
bibliography/index.php/attachments/single/147

[4] V. I Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans-
actions on Information Theory, Jan 2001.

[5] T. Batu, S. Kannan, S. Khanna, and A. McGregor, ‘“Reconstructing
strings from random traces,” in SODA 04, 2004, pp. 910-918.

[6] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,” in
ACM-SIAM SODA 08, 2008, pp. 389-398.

[71 A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based
algorithms for trace reconstruction,” in STOC 2017.

[8] Y. Peres and A. Zhai, “Average-case reconstruction for the dele-
tion channel: subpolynomially many traces suffice,” CoRR, vol.
abs/1708.00854, 2017.

[9] N. Holden, R. Pemantle, and Y. Peres, “Subpolynomial trace recon-

struction for random strings and arbitrary deletion probability,” in

Proceedings of the 31st Conference On Learning Theory, 2018.

H. Li and R. Durbin, “Fast and accurate short read alignment with

burrows-wheeler transform,” 2009.

I. Shomorony, S. H. Kim, T. A. Courtade, and D. N. C. Tse,

“Information-optimal genome assembly via sparse read-overlap graphs,”

Bioinformatics, vol. 32, no. 17, pp. 1494-i502, 2016.

M. Mitzenmacher, “A survey of results for deletion channels and related

synchronization channels,” Probability Surveys, vol. 6, pp. 1-33, 2009.

S. Diggavi, M. Mitzenmacher, and H. Pfister, “Capacity upper bounds

for deletion channels,” in 2007 ISIT.

S. Diggavi and M. Grossglauser, “On information transmission over a

finite buffer channel,” IEEE Transactions on Information Theory, 2006.

S. N. Diggavi and M. Grossglauser, “On transmission over deletion

channels,” in Proceedings of the Annual Allerton Conference on Com-

munication Control and Computing, 2001.

E. A. Ratzer, “Marker codes for channels with insertions and deletions,”

in Annales des télécommunications. Springer, 2005.

E. A. Ratzer and D. J. MacKay, “Codes for channels with insertions,

deletions and substitutions,” in In 2nd International Symposium on

Turbo Codes and Related Topics. Citeseer, 2000.

[18] E. K. Thomas, V. Y. Tan, A. Vardy, and M. Motani, “Polar coding

for the binary erasure channel with deletions,” IEEE Communications

Letters, vol. 21, no. 4, pp. 710-713, 2017.

S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On

maximum likelihood reconstruction over multiple deletion channels,”

in 2018 IEEE International Symposium on Information Theory (ISIT).

M. Lothaire, Combinatorics on Words, ser. Cambridge Mathematical

Library. Cambridge University Press, 1997.

D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. New York, NY, USA: Cambridge

University Press, 1997.

[2]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[19]

[20]

[21]

