Error Resilient Neuromorphic Networks Using
Checker Neurons

(Invited Paper)

Sujay Pandey, Suvadeep Banerjee and Abhijit Chatterjee,
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

Abstract—The last decade has seen tremendous advances in
the application of artificial neural networks to solving problems
that mimic human intelligence. Many of these systems are
implemented using traditional digital compute engines where
errors can occur during memory accesses or during numer-
ical computation. While such networks are inherently error
resilient, specific errors can result in incorrect decisions. This
work develops a low overhead error detection and correction
approach for multilayer artificial neural networks, here the
hidden layer functions are approximated using checker neurons.
Experimental results show that a high coverage of injected errors
can be achieved with extremely low computational overhead
using consistency properties of the encoded checks. A key side
benefit is that the checks can flag errors when the network is
presented outlier data that do not correspond to data with which
the network is trained to operate.

I. INTRODUCTION

There has been significant interest in non-Von Neumann
architectures for computing in the recent past due to the
projected end of Moore’s law of scaling [1]. Machine learning
algorithms based on neural network architectures [2], [3] have
emerged as an exciting new paradigm for information technol-
ogy with applications in artificial intelligence, image/signal
processing and control. This has spurred interest in imple-
mentations of such architectures in VLSI using conventional
multi-processors [4] and semi-synchronous machines such as
IBM’s True North chip [5] based on spiking neural networks.
A key problem that emerges in the silicon implementation
of neuromorphic systems is the tolerance of such systems
to soft errors induced by ultra low voltage operation and
environmental noise. While neuromorphic systems have some
degree of resilience to data input and computational errors [6],
there is always fear that when these errors become large (such
as when errors occur in the most significant bits of arithmetic
computation), the numerical results or classification decisions
made by such systems will be incorrect. There has been work
in the past on designing failure-tolerant neuromorphic systems
[7]1, [81, [9]. However, these target either permanent failure
modes or incur significant overhead for implementing failure
tolerance. In contrast, this paper develops a low cost soft-error
error resilience approach for multilayer perceptron networks.
In this approach, one or more checker neurons are used to
approximate the functions of a set of neurons in the input,
output or hidden layers of a multilayer perceptron network.
Typically, one checker neuron is used to check the functions of
five or more neurons of the neural network using a consistency

978-1-5386-5992-2/18/$31.00 (©2018 IEEE

checking algorithm.. A Checker Neuron is placed between two
hidden layers such that it takes input from the previous layer
and is trained to match the summation of outputs of the next
layer. The goal is to design the checking circuitry in such a
way that the overhead of error resilience is less than 20%. It is
seen that high (detection) coverage of soft errors that actually
affect the results produced by the neural network is achieved
across diverse test cases.
The fundamental contributions of this work are:

o Real time error detection is demonstrated using encoded
consistency checks for artificial neural networks using
low computational overhead.

o An approximate error correction approach is proposed
which produces close to the target output results from the
neural network. This method is mainly targeted towards
deep neural network applications.

o It is shown that through the use of the proposed consis-
tency checks, the presence of outlier input data(as defined
earlier) is detected in real time without the need to do
extensive statistical analysis of network input data.

The rest of the paper is organized as follows. Section II
provides background related to the proposed work. Section III
describes the proposed approach. Section IV presents experi-
mental results. Conclusions and future work are discussed in
Section V.

II. BACKGROUND

A multilayer perceptron also called as an Artificial Neural
Network consists of an input layer, output layer and one or
more hidden layers in between them. The hidden layers consist
of neurons which are the weighted summations of outputs of
the previous layer with non-linear activation functions. Figure
1 shows a general neural network with inputs [y to I,,, outputs
O; to O,, and N hidden layers with p neurons each. The bias
vector B, is defined as B; = [b; 1b; 2...b; ,] The output of the
Jjin, neuron in the iy, layer HL; ; = f(WS; ; + b; ;) where

P - o
WSi;= > Wiz’_]lj « HL;_1 1. Here W7, , is the weight
_1 ’

by which ’;He output of the k;; neuron is multiplied before
being input to the activation function f() of the j;;, neuron in
layer i. This is easily generalized to networks with different
number of neurons in all hidden layers. The non linear function
f,considered in this work, also called as activation function is a
sigmoid function defined as f(x) = (1+17¢) Other activation
functions can be hyperbolic tangent, hard limiters etc. Figure 2

135

Fig. 2. Hardware Implementation of a Artificial Neural Network

shows the most common implementation of general neural net-
work computations. A neuron is represented by a processing
element (PE) which consists of a multiply and accumulate unit.
The weight matrices are stored in off-chip memory as shown.
These weights are fetched into the local memory (MEM). The
PE performs the weighted summation and finally the activation
function is applied and the data output (OP) is fed to buffer.
In this kind of implementation errors can generally occur
during the calculation of the weighted sum or the activation
function. Some errors in the neural network might not affect
the output significantly whereas can cause a significant error.
These critical errors can make the overall system unreliable.
The proposed work deals with soft errors induced by radiation
which result in the form of bit or word errors.

III. PROPOSED APPROACH

In this work the engine data-set [10] which has Fuel rate and
Speed as the two inputs to the system and Torque and Nitrous
oxide emissions as the two outputs of the system is considered.
It consists of 1199 samples. The network considered here
consists of two hidden layers with three neurons per hidden
layer.

A. Error detection using consistency checks

Consistency checks performed by introducing extra neurons
between the layers of neural network. These extra neurons
called the checker neurons approximate the functions of hidden
and input/output layer neurons with lower order non linear
approximation. As shown in Figure 3, the checker network
with an additional bias is deployed between two hidden layers.
There may be one or more checker neurons in the checker
network (only one checker neuron is shown in Figure 3 for
ease of explanation). The checker neurons are trained after

136

-oP

Fig. 3. Aurtificial Neural Network with Checker Module

the original network has been trained to correlate with the
summation of the next layer of the trained network(DUT).
The output of the checker neuron is calculated as follows.

P

W Schk; ; = Z Vi px HLi1 (1)
k=1

Chk_op; = f(WSChk@j + b@j) 2

Vi—1,; are the weights of the checker network, W Schk; ; is
the weighted sum at the checker neuron, HL; ; ; are the
outputs of previous layer, C'B; is the bias of the checker
neuron Chk; and Chk_op; is the checker output. The output

DR & &

B
d
1 z
[1]

10 1
5 p 0

S0 10
{b) CheckerQut

5 5 5
S0 .10

{a) HiddenLayerSum

2

5
0]
Han -0
(c) HiddenLayerSum-CheckOut

10

Fig. 4. Correlation between checker Neuron Vs Hidden layer summation

i HL;; The overall
j=1

error of the system as shown in Figilre 3 is computed as:
ERROR; = Add_op; — Chk_op; The error value, ERR;,
is expected to stay within a certain threshold and go out of
this threshold if an error occurs in the system. To explain
this a simple neural network with two inputs, two outputs
and two hidden layers with five neurons is presented. Here
the weights and biases of the system were randomly chosen

of the adder block is Add_op; =

24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018)

and a uniformly sampled input stimulus between -10 to +10
was applied to the system. The checker neuron was added
as explained earlier and was trained to correlate with the
sum of the next layer. Figure 4(a) output of the summation
of next hidden layer neurons(HiddenLayerSum),Figure 4(b)
shows the output from checker neuron (CheckerOut) and
Figure 4(c) shows the difference between them. From this
figure it is apparent that the correlation between the checker
neuron output and the hidden layer summation is significant.

B. Error correction approach

|a) Faultin
1 Hidden
Layer

fessnsnai

Fig. 5. Error correction scheme

When an error in the i layer is flagged (ERROR in Figure
5 is non zero), the computation of the respective hidden layer
is bypassed. However, since there is one less functional layer
of neurons in the network than before, the weights and biases
of neurons associated with all layers that are fed by the error
affected layer, need to be recalculated. The objective is to
make sure the overall neural network produces close to target
results using computations from one less layer than the original
network. In each error case corresponding errors in the i
layer of the neural network, the weights and biases of all
successive layers that result in acceptable network computation
are precomputed using the same training data set used to train
the original network. These precomputed weights and biases
are stored in look up table that can be dynamically updated in
the neural network architecture as shown in Figure 2 without
any loss of computation throughput by merely indexing a
different array in memory.
The system shown in the Figure 5 consists of checkers between
network layers (for brevity checker is only shown for the
hidden layers) called ERROR and a controller. The third
hidden layer shown in the figure called HL3 has an error and
as a result ERROR3 sends an error flag to the controller.
Since the system was already trained for a three hidden layer
Network and the output till Hidden Layer 2 is not erroneous,
the controller bypasses the 3rd Hidden layer and updates the
weights for the 4th Hidden layer for a three Hidden layer
Network. Once the error is corrected the system comes back
to the four layer system until the next error occurs. The same
concept will apply to the other layers of the system.

24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018)

IV. EXPERIMENTAL RESULTS

For the experiments in this work, the soft error model cho-
sen is a single bit-flip model where the error injected module
is chosen randomly (from the activation function computations
and the weighted-sum calculations) and a randomly selected
bit of the word representation of corresponding data is flipped
for a random input data to the neural network.

A. Experiment 1: Nonlinear Function Approximation

As the first test case, we choose the appropriate neural
networks for nonlinear function approximations in a few data-
sets and demonstrate error detection and correction results.

1) Error detection using Consistency Checks: In this exper-
iment, the same neural network with two hidden layers trained
with the engine data-set is selected. Errors are injected both
in the weighted sum and the activation function computations
randomly. The system consists of two inputs and two outputs.
In an error-free operation of the network, the predicted outputs
of the trained network is slightly different from the target
outputs due to training error. The range of differences of both
outputs O1 and O2 from the target outputs are computed for
the training set and the maximum absolute difference in either
outputs is defined as AO1 and AO2. Now, each injected error
in the system operation is classified as a ‘blue’ or ‘red’ error
according to this notion - if the injected error corrupts either
one of the outputs from their corresponding target outputs
more than AO1 or AO2 respectively, it is a red error, whereas
if the prediction error of both outputs are less than AO1 or
AQ2, it is a blue error. 1000 different errors are randomly
injected while the neural network is provided with the entire
1199 data samples. 1 checker neuron is implemented for the
purpose of consistency checking, The distribution of red and
blue errors on the checker module output value is shown in
Figure 6.

-1 0.5 0 0.5 1
Checker Module output for Red Errors

-1 -0.5 0 0.5 1
Checker Module output for Blue Errors

Fig. 6. Error detection for Engine data-set

As shown in Figure 6, the red and blue errors are plotted
on the checker module output value. The blue errors are
limited to a small value while the red errors are larger in
value. This shows that the checker module output indicates
the criticality of injected errors to the network’s operation.
If the detection threshold of the checker module is decided
based on Figure 6, a few red errors will be undetected
and be classified as false negatives. However, it is observed
that these red errors (false negatives) are less critical than

137

the red errors lying outside the threshold chosen from the
boundary of blue errors. Fault coverage is calculated as the
percentage of red errors found outside the threshold from the
total red errors. The experiment was conducted for different

TABLE I
TEST COVERAGE FOR DIFFERENT TEST CASES

Test Case Coverage | Checker neurons | Hidden Layer Neurons
Engine Data set 81.90% 2 5
Chemical Data set 85.32% 1 3
Cholesterol Data set 92.67% 1 3
Body-fat Data set 83.86% 1 3

data-sets(Chemical dataset, Cholesterol dataset and Bodyfat
dataset) from MATLAB[10]. Table 1 shows the Fault coverage
for different data-sets with different hidden layer neurons and
the checker neurons.

B. Experiment 2: Character recognition problem

Here a Neural Network with two hidden layers is trained for
character recognition. The training set consists of ten alphabets

L

Fig. 7. Training set for character recognition test case

represented in a 9X7 image with the pixel values between 0
and 1.

The single numeric output of the system is interpreted as the
corresponding alphabet, for example output is ‘1’ for ‘A’ etc.
. The test set is created with the random noise injection into
the training set. The four training and test set characters are
shown in Figure 7. Outlier detection experiment is performed
for this test case with the help of checker module:

1) Input data set outlier detection: An important problem
in neural network research is that of determining in real
time whether the network is able to process the input data
provided to it in a reliable manner. The neural network output
cannot be trusted when it is presented input data that it
is not trained to respond to. This is called input data set
outlier detection. It is seen that the checking mechanism
of Figure 4 is extremely effective in such outlier detection.
This is because the data values produced by Chk_op; and
Add_op; of Figure 4 are designed to be identical across the
data set that the neural network is trained for. However, the
probability that the same holds when the neural network is
presented outlier data is very low. Currently, outlier input
data detection is possible only through extensive statistical
analysis and is hard to perform in real time. In the test
case described earlier for character recognition, characters
from the outlier set 7,N,U,X,0 and W were misclassified as
G,J,EB.I and D respectively by the neural network.

138

-1 0.5 o 0.5 1
Checker Module output for outliers
: h H . |
-1 0.5 0 0.5 1
Checker Module output for Training set

ol

Fig. 8. Outlier detection for character recognition test case

In simulation experiments, red dots and blue dots are used
represent ERROR values produced when the neural network
is presented with outlier data and training data respectively.
Figure 8 shows ERROR values for the character recognition
problem when known (unknown) characters are presented to
the neural network for analysis. It is seen that 100% accuracy
of input data set outlier detection is achieved in real-time.

V. CONCLUSIONS

In this work, a novel scheme to make Neural Networks
error resilient was proposed. Consistency Checks is proposed
for error detection. With a minimal overhead a substantial
fault coverage was observed as explained in the experimental
results. Another significant contribution is the outlier detection
result presented using the consistency checks.

ACKNOWLEDGMENT

This research was supported in part by NSF Grant S&AS:
1723997 and by a matching grant from the Center for Co-
Design of Chip, Package and System at Georgia Tech.

REFERENCES

[1] T.Theis and H. S. P. Wong, “The end of moore’s law: A new beginning
for information technology,” in Computing in Science and Engineering,
vol. 19, no. 2, 2017, pp. 41-50.

[2] J. Hertz, J. , K., A. Flisberg, P. , and R. G, Introduction To The Theory

Of Neural Computation, 01 1991, vol. 44.

[3] R.J. Schalkoff, Artificial neural networks /. New York :: McGraw-Hill,
1997.

[4] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
Proceedings, Design Automation and Test in Europe, March 2015, pp.
701-706.

[5] F. Akopyan, et. al., and D. Modha, “Truenorth: Design and tool flow of
a 65mw, 1 million neuron programmable neurosynaptic chip,” in /EEE
Transactions on Computer-Aided Design, vol. 34, no. 10, October 2015,
pp. 1537-1557.

[6] S. Pandey, S. Banerjee, and A. Chatterjee, “Concurrent error detection
and tolerance in kalman filters using encoded state and statistical
covariance checks,” in 2016 IEEE 22nd International Symposium on
On-Line Testing and Robust System Design (IOLTS), July 2016, pp.
161-166.

[7] D. S. Phatak and I. Koren, “Complete and partial fault tolerance of
feedforward neural nets,” IEEE Transactions on Neural Networks, vol. 6,
no. 2, pp. 446-456, Mar 1995.

[8] E. Sugawara, M. Fukushi, and S. Horiguchi, “Fault tolerant multi-layer
neural networks with ga training,” in Proceedings 18th IEEE Symposium
on Defect and Fault Tolerance in VLSI Systems, Nov 2003, pp. 328-335.

[9] G. Jian and Y. Mengfei, “Evolutionary fault tolerance method based on

virtual reconfigurable circuit with neural network architecture,” /EEE

Transactions on Evolutionary Computation, vol. PP, no. 99, pp. 1-1,

2017.

“Matlab dataset.” [Online]. Available:

https://www.mathworks.com/help/nnet/gs/neural-network-toolbox-

sample-data-sets.html

[10]

24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018)

