
Error Resilient Neuromorphic Networks Using
Checker Neurons

(Invited Paper)

Sujay Pandey, Suvadeep Banerjee and Abhijit Chatterjee,
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

Abstract—The last decade has seen tremendous advances in
the application of artificial neural networks to solving problems
that mimic human intelligence. Many of these systems are
implemented using traditional digital compute engines where
errors can occur during memory accesses or during numer-
ical computation. While such networks are inherently error
resilient, specific errors can result in incorrect decisions. This
work develops a low overhead error detection and correction
approach for multilayer artificial neural networks, here the
hidden layer functions are approximated using checker neurons.
Experimental results show that a high coverage of injected errors
can be achieved with extremely low computational overhead
using consistency properties of the encoded checks. A key side
benefit is that the checks can flag errors when the network is
presented outlier data that do not correspond to data with which
the network is trained to operate.

I. INTRODUCTION

There has been significant interest in non-Von Neumann

architectures for computing in the recent past due to the

projected end of Moore’s law of scaling [1]. Machine learning

algorithms based on neural network architectures [2], [3] have

emerged as an exciting new paradigm for information technol-

ogy with applications in artificial intelligence, image/signal

processing and control. This has spurred interest in imple-

mentations of such architectures in VLSI using conventional

multi-processors [4] and semi-synchronous machines such as

IBM’s True North chip [5] based on spiking neural networks.

A key problem that emerges in the silicon implementation

of neuromorphic systems is the tolerance of such systems

to soft errors induced by ultra low voltage operation and

environmental noise. While neuromorphic systems have some

degree of resilience to data input and computational errors [6],

there is always fear that when these errors become large (such

as when errors occur in the most significant bits of arithmetic

computation), the numerical results or classification decisions

made by such systems will be incorrect. There has been work

in the past on designing failure-tolerant neuromorphic systems

[7], [8], [9]. However, these target either permanent failure

modes or incur significant overhead for implementing failure

tolerance. In contrast, this paper develops a low cost soft-error

error resilience approach for multilayer perceptron networks.

In this approach, one or more checker neurons are used to

approximate the functions of a set of neurons in the input,

output or hidden layers of a multilayer perceptron network.

Typically, one checker neuron is used to check the functions of

five or more neurons of the neural network using a consistency

checking algorithm.. A Checker Neuron is placed between two

hidden layers such that it takes input from the previous layer

and is trained to match the summation of outputs of the next

layer. The goal is to design the checking circuitry in such a

way that the overhead of error resilience is less than 20%. It is

seen that high (detection) coverage of soft errors that actually

affect the results produced by the neural network is achieved

across diverse test cases.

The fundamental contributions of this work are:

• Real time error detection is demonstrated using encoded

consistency checks for artificial neural networks using

low computational overhead.

• An approximate error correction approach is proposed

which produces close to the target output results from the

neural network. This method is mainly targeted towards

deep neural network applications.

• It is shown that through the use of the proposed consis-

tency checks, the presence of outlier input data(as defined

earlier) is detected in real time without the need to do

extensive statistical analysis of network input data.

The rest of the paper is organized as follows. Section II

provides background related to the proposed work. Section III

describes the proposed approach. Section IV presents experi-

mental results. Conclusions and future work are discussed in

Section V.

II. BACKGROUND

A multilayer perceptron also called as an Artificial Neural

Network consists of an input layer, output layer and one or

more hidden layers in between them. The hidden layers consist

of neurons which are the weighted summations of outputs of

the previous layer with non-linear activation functions. Figure

1 shows a general neural network with inputs I1 to In, outputs
O1 to Om and N hidden layers with p neurons each. The bias

vector Bi is defined as B̄i = [bi,1bi,2...bi,p] The output of the

jth neuron in the ith layer HLi,j = f(WSi,j + bi,j) where

WSi,j =
p∑

k=1

W i,j
i−1,j ∗ HLi−1,k. Here W i,j

i−1,k is the weight

by which the output of the kth neuron is multiplied before

being input to the activation function f() of the jth neuron in

layer i. This is easily generalized to networks with different

number of neurons in all hidden layers. The non linear function

f,considered in this work, also called as activation function is a

sigmoid function defined as f(x) = 1
(1+e−x) . Other activation

functions can be hyperbolic tangent, hard limiters etc. Figure 2

135978-1-5386-5992-2/18/$31.00 c©2018 IEEE

Fig. 1. A Simple Artificial Neural Network

Fig. 2. Hardware Implementation of a Artificial Neural Network

shows the most common implementation of general neural net-

work computations. A neuron is represented by a processing

element (PE) which consists of a multiply and accumulate unit.

The weight matrices are stored in off-chip memory as shown.

These weights are fetched into the local memory (MEM). The

PE performs the weighted summation and finally the activation

function is applied and the data output (OP) is fed to buffer.

In this kind of implementation errors can generally occur

during the calculation of the weighted sum or the activation

function. Some errors in the neural network might not affect

the output significantly whereas can cause a significant error.

These critical errors can make the overall system unreliable.

The proposed work deals with soft errors induced by radiation

which result in the form of bit or word errors.

III. PROPOSED APPROACH

In this work the engine data-set [10] which has Fuel rate and

Speed as the two inputs to the system and Torque and Nitrous

oxide emissions as the two outputs of the system is considered.

It consists of 1199 samples. The network considered here

consists of two hidden layers with three neurons per hidden

layer.

A. Error detection using consistency checks

Consistency checks performed by introducing extra neurons

between the layers of neural network. These extra neurons

called the checker neurons approximate the functions of hidden

and input/output layer neurons with lower order non linear

approximation. As shown in Figure 3, the checker network

with an additional bias is deployed between two hidden layers.

There may be one or more checker neurons in the checker

network (only one checker neuron is shown in Figure 3 for

ease of explanation). The checker neurons are trained after

Fig. 3. Artificial Neural Network with Checker Module

the original network has been trained to correlate with the

summation of the next layer of the trained network(DUT).

The output of the checker neuron is calculated as follows.

WSchki,j =

p∑

k=1

V i,j
i−1,k ∗HLi−1,j (1)

Chk opi = f(WSchki,j + bi,j) (2)

Vi−1,j are the weights of the checker network, WSchki,j is

the weighted sum at the checker neuron, HLi−1,j are the

outputs of previous layer, ¯CBi is the bias of the checker

neuron Chki and Chk opi is the checker output. The output

Fig. 4. Correlation between checker Neuron Vs Hidden layer summation

of the adder block is Add opi =
p∑

j=1

HLi,j The overall

error of the system as shown in Figure 3 is computed as:

ERRORi = Add opi − Chk opi The error value, ERRi,

is expected to stay within a certain threshold and go out of

this threshold if an error occurs in the system. To explain

this a simple neural network with two inputs, two outputs

and two hidden layers with five neurons is presented. Here

the weights and biases of the system were randomly chosen

136 24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018)

and a uniformly sampled input stimulus between -10 to +10

was applied to the system. The checker neuron was added

as explained earlier and was trained to correlate with the

sum of the next layer. Figure 4(a) output of the summation

of next hidden layer neurons(HiddenLayerSum),Figure 4(b)

shows the output from checker neuron (CheckerOut) and

Figure 4(c) shows the difference between them. From this

figure it is apparent that the correlation between the checker

neuron output and the hidden layer summation is significant.

B. Error correction approach

Fig. 5. Error correction scheme

When an error in the ith layer is flagged (ERROR in Figure

5 is non zero), the computation of the respective hidden layer

is bypassed. However, since there is one less functional layer

of neurons in the network than before, the weights and biases

of neurons associated with all layers that are fed by the error

affected layer, need to be recalculated. The objective is to

make sure the overall neural network produces close to target

results using computations from one less layer than the original

network. In each error case corresponding errors in the ith

layer of the neural network, the weights and biases of all

successive layers that result in acceptable network computation

are precomputed using the same training data set used to train

the original network. These precomputed weights and biases

are stored in look up table that can be dynamically updated in

the neural network architecture as shown in Figure 2 without

any loss of computation throughput by merely indexing a

different array in memory.

The system shown in the Figure 5 consists of checkers between

network layers (for brevity checker is only shown for the

hidden layers) called ERROR and a controller. The third

hidden layer shown in the figure called HL3 has an error and

as a result ERROR3 sends an error flag to the controller.

Since the system was already trained for a three hidden layer

Network and the output till Hidden Layer 2 is not erroneous,

the controller bypasses the 3rd Hidden layer and updates the

weights for the 4th Hidden layer for a three Hidden layer

Network. Once the error is corrected the system comes back

to the four layer system until the next error occurs. The same

concept will apply to the other layers of the system.

IV. EXPERIMENTAL RESULTS

For the experiments in this work, the soft error model cho-

sen is a single bit-flip model where the error injected module

is chosen randomly (from the activation function computations

and the weighted-sum calculations) and a randomly selected

bit of the word representation of corresponding data is flipped

for a random input data to the neural network.

A. Experiment 1: Nonlinear Function Approximation

As the first test case, we choose the appropriate neural

networks for nonlinear function approximations in a few data-

sets and demonstrate error detection and correction results.

1) Error detection using Consistency Checks: In this exper-

iment, the same neural network with two hidden layers trained

with the engine data-set is selected. Errors are injected both

in the weighted sum and the activation function computations

randomly. The system consists of two inputs and two outputs.

In an error-free operation of the network, the predicted outputs

of the trained network is slightly different from the target

outputs due to training error. The range of differences of both

outputs O1 and O2 from the target outputs are computed for

the training set and the maximum absolute difference in either

outputs is defined as ΔO1 and ΔO2. Now, each injected error

in the system operation is classified as a ‘blue’ or ‘red’ error
according to this notion - if the injected error corrupts either

one of the outputs from their corresponding target outputs

more than ΔO1 or ΔO2 respectively, it is a red error, whereas

if the prediction error of both outputs are less than ΔO1 or

ΔO2, it is a blue error. 1000 different errors are randomly

injected while the neural network is provided with the entire

1199 data samples. 1 checker neuron is implemented for the

purpose of consistency checking, The distribution of red and

blue errors on the checker module output value is shown in

Figure 6.

Fig. 6. Error detection for Engine data-set

As shown in Figure 6, the red and blue errors are plotted

on the checker module output value. The blue errors are

limited to a small value while the red errors are larger in

value. This shows that the checker module output indicates

the criticality of injected errors to the network’s operation.

If the detection threshold of the checker module is decided

based on Figure 6, a few red errors will be undetected

and be classified as false negatives. However, it is observed

that these red errors (false negatives) are less critical than

24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018) 137

the red errors lying outside the threshold chosen from the

boundary of blue errors. Fault coverage is calculated as the

percentage of red errors found outside the threshold from the

total red errors. The experiment was conducted for different

TABLE I
TEST COVERAGE FOR DIFFERENT TEST CASES

Test Case Coverage Checker neurons Hidden Layer Neurons
Engine Data set 81.90% 2 5
Chemical Data set 85.32% 1 3
Cholesterol Data set 92.67% 1 3
Body-fat Data set 83.86% 1 3

data-sets(Chemical dataset, Cholesterol dataset and Bodyfat

dataset) from MATLAB[10]. Table 1 shows the Fault coverage

for different data-sets with different hidden layer neurons and

the checker neurons.

B. Experiment 2: Character recognition problem

Here a Neural Network with two hidden layers is trained for

character recognition. The training set consists of ten alphabets

Fig. 7. Training set for character recognition test case

represented in a 9X7 image with the pixel values between 0

and 1.

The single numeric output of the system is interpreted as the

corresponding alphabet, for example output is ‘1’ for ‘A’ etc.

. The test set is created with the random noise injection into

the training set. The four training and test set characters are

shown in Figure 7. Outlier detection experiment is performed

for this test case with the help of checker module:

1) Input data set outlier detection: An important problem

in neural network research is that of determining in real
time whether the network is able to process the input data

provided to it in a reliable manner. The neural network output
cannot be trusted when it is presented input data that it
is not trained to respond to. This is called input data set
outlier detection. It is seen that the checking mechanism

of Figure 4 is extremely effective in such outlier detection.

This is because the data values produced by Chk opi and

Add opi of Figure 4 are designed to be identical across the

data set that the neural network is trained for. However, the

probability that the same holds when the neural network is

presented outlier data is very low. Currently, outlier input

data detection is possible only through extensive statistical

analysis and is hard to perform in real time. In the test

case described earlier for character recognition, characters

from the outlier set 7,N,U,X,O and W were misclassified as

G,J,F,B,I and D respectively by the neural network.

Fig. 8. Outlier detection for character recognition test case

In simulation experiments, red dots and blue dots are used

represent ERROR values produced when the neural network

is presented with outlier data and training data respectively.

Figure 8 shows ERROR values for the character recognition

problem when known (unknown) characters are presented to

the neural network for analysis. It is seen that 100% accuracy
of input data set outlier detection is achieved in real-time.

V. CONCLUSIONS

In this work, a novel scheme to make Neural Networks

error resilient was proposed. Consistency Checks is proposed

for error detection. With a minimal overhead a substantial

fault coverage was observed as explained in the experimental

results. Another significant contribution is the outlier detection

result presented using the consistency checks.

ACKNOWLEDGMENT

This research was supported in part by NSF Grant S&AS:

1723997 and by a matching grant from the Center for Co-

Design of Chip, Package and System at Georgia Tech.

REFERENCES

[1] T.Theis and H. S. P. Wong, “The end of moore’s law: A new beginning
for information technology,” in Computing in Science and Engineering,
vol. 19, no. 2, 2017, pp. 41–50.

[2] J. Hertz, J. , K. , A. Flisberg, P. , and R. G, Introduction To The Theory
Of Neural Computation, 01 1991, vol. 44.

[3] R. J. Schalkoff, Artificial neural networks /. New York :: McGraw-Hill,
1997.

[4] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
Proceedings, Design Automation and Test in Europe, March 2015, pp.
701–706.

[5] F. Akopyan, et. al., and D. Modha, “Truenorth: Design and tool flow of
a 65mw, 1 million neuron programmable neurosynaptic chip,” in IEEE
Transactions on Computer-Aided Design, vol. 34, no. 10, October 2015,
pp. 1537–1557.

[6] S. Pandey, S. Banerjee, and A. Chatterjee, “Concurrent error detection
and tolerance in kalman filters using encoded state and statistical
covariance checks,” in 2016 IEEE 22nd International Symposium on
On-Line Testing and Robust System Design (IOLTS), July 2016, pp.
161–166.

[7] D. S. Phatak and I. Koren, “Complete and partial fault tolerance of
feedforward neural nets,” IEEE Transactions on Neural Networks, vol. 6,
no. 2, pp. 446–456, Mar 1995.

[8] E. Sugawara, M. Fukushi, and S. Horiguchi, “Fault tolerant multi-layer
neural networks with ga training,” in Proceedings 18th IEEE Symposium
on Defect and Fault Tolerance in VLSI Systems, Nov 2003, pp. 328–335.

[9] G. Jian and Y. Mengfei, “Evolutionary fault tolerance method based on
virtual reconfigurable circuit with neural network architecture,” IEEE
Transactions on Evolutionary Computation, vol. PP, no. 99, pp. 1–1,
2017.

[10] “Matlab dataset.” [Online]. Available:
https://www.mathworks.com/help/nnet/gs/neural-network-toolbox-
sample-data-sets.html

138 24th International Symposium on On-Line Testing and Robust System Design (IOLTS 2018)

