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Abstract—In this research, a low cost error detection and
correction approach is developed for multilayer perceptron
networks, where checker neurons are used to encode hidden
layer functions using independent training experiments. Error
detection and correction is predicated on validating consistency
properties of the encoded checks and shows that high coverage of
injected errors can be achieved with extremely low computational
overhead.

I. INTRODUCTION

In the recent past, machine learning algorithms based on
neural network architectures [2]-[4] have emerged as an
exciting new paradigm for information technology with appli-
cations in artificial intelligence, image/signal processing and
control. This has spurred interest in implementations of such
architectures in VLSI using conventional multi-processors [5]
and semi-synchronous machines such as IBM’s True North
chip [6] based on spiking neural networks. While neuromor-
phic systems have some degree of resilience to data input
and computational errors, there is always fear that when
these errors become large (such as when errors occur in the
most significant bits of arithmetic computation), the numerical
results or classification decisions made by such systems will
be incorrect. There has been work in the past on design-
ing failure-tolerant neuromorphic systems [7]-[10]. However,
these target either permanent failure modes or incur significant
overhead for implementing failure tolerance. In contrast, this
paper develops a low cost soft-error error resilience approach
for multilayer perceptron networks. In this approach, one or
more checker neurons per input, output or hidden layer of
the original neural network are trained to compute a linear
function of the outputs of all the neurons in the layer of the
neural network being checked. Errors are detected by checking
for differences between the value generated by the checker
neurons vs. the linear function of the set of neurons being
checked in the neural network layer (called a consistency
check). A methodology for real-time error compensation is
proposed. This produces results that are close to expected
results. The fundamental contributions of this work are:

e This work demonstrates, for the first time, real time
error detection using encoded consistency checks for
artificial neural networks using minimal hardware over-
head. More specifically, we propose addition of extra
neuron(s) between the hidden layers and input/output of
the artificial neural networks. Errors that occur during
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Fig. 1. Artificial Neural Network with Checker Module

multiplications and additions as well as computation of
the neural network activation functions are detected [11].

o For critical neural network applications, an approximate
error correction approach is developed that delivers close
to expected output results from the network.

II. PROPOSED APPROACH

Here we have considered the engine data-set [12] which
has fuel rate and speed as the two inputs to the system and
torque and nitrous oxide emissions as the two outputs of the
system. The data-set consists of 1199 samples. Here the neural
network is trained to estimate the engine torque and emissions
from its fuel use and speed. We consider a two hidden layer
neural network with three neurons per hidden layer.

A. Error detection approach using Consistency checks

Error detection is performed by introducing checker neu-
rons into the layers of the neural network. These neurons
approximate the functions of hidden and input/output layer
neurons with lower order non linear approximations. As shown
in Figure 1, the checker network is deployed between two



hidden layers with an additional bias. The checker network
may contain one or more checker neurons (only one checker
neuron is shown in Figure 1 for ease of explanation). The
checker neurons are trained to produce a linear sum of the
outputs of the neurons in the layer being checked. The output
of the checker neuron is calculated as follows.
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Vi—1,; are the weights of the checker network, W Schk; ; is the
weighted sum at the checker neuron, HL;_; ; are the outputs
of previous layer, C'B; is the bias of the checker neuron C;
and C_op; is the checker output.
P
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error of the system as shown in Figure 1 is computed as:
ERROR; = A_op; — C_op; The error value, ERROR;,
lies within calibrated threshold values under nominal network
operation and exceeds this threshold under error.

B. Error correction approach

When an error in the i*" layer is flagged, the computation
of the respective hidden layer is bypassed. However, since the
network has one less functional layer of neurons than before,
the weights and biases of neurons associated with all layers
that are fed by the error affected layer, need to be recomputed.
This is done so that the overall neural network produces
acceptable results using computations from one less layer than
the original network. For each error scenario corresponding
errors in the i*" layer of the network, the weights and biases
of all successive layers that result in acceptable network
computation are precomputed using the same training data set
used to train the original network. These weights are stored
in a look up table that is dynamically updated in the neural
network without any loss of computation throughput by merely
indexing a different array in memory. This approach is useful
only in the cases where the neural network consists of many
hidden layers.

C. Error Coverage

For our experiments, the soft error model chosen is a single
bit flip model where the error injected module is chosen
randomly (among the activation function computations or the
weighted-sum calculations) and a randomly selected bit of
the word representation of corresponding data is flipped for
randomly selected input data to the network. For the engine
data set, the network consists of two inputs and two outputs,
the range of differences of both outputs Ol and O2 from
the target outputs are computed for the training set and the
maximum absolute difference is calculated as AO1 and AQO2.
An injected error in the system is considered critical and
included in coverage calculations only if it causes the output
to deviate beyond AO1 or AO2. Error coverage data for 1000
randomly injected errors for different data sets is shown in
Table I.

TABLE I
ERROR COVERAGE USING CONSISTENCY CHECKS

Data-sets Engine | Chemical | Cholesterol | Body-fat
Hidden Layer Neurons 5 3 4 4
Checker Neurons 2 1 1 1

Error coverage 81.90% 85.32% 73.75% 68.84%

III. CONCLUSIONS AND FUTURE WORK

In this work, a novel scheme for error resilience in neural
networks is proposed. Consistency checks were used for error
detection and an approximate error correction methodology
was developed. Results show that high coverage of critical
soft errors is achieved with less than 20 percent computational
overhead.
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