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Abstract
Let F be a totally real field in which a prime number p > 2 is inert. We continue
the study of the (generalized) Goren–Oort strata on quaternionic Shimura varieties
over finite extensions of Fp . We prove that, when the dimension of the quaternionic
Shimura variety is even, the Tate conjecture for the special fiber of the quaternionic
Shimura variety holds for the cuspidal �-isotypical component, as long as the two
unramified Satake parameters at p are not differed by a root of unity.
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1. Introduction
One of the most important conjectures in algebraic geometry is the Tate conjecture
on algebraic cycles (see [31]). The general case of this conjecture is far from being
proved. In this article, we will consider the Tate conjecture for Hilbert modular vari-
eties modulo an inert prime.

Let F be a totally real field of degree gD ŒF WQ�, and let p > 2 be a prime num-
ber inert in F . Let AF be the adele ring, and let A1F (resp., A1;pF ) be the subring of
finite adeles (resp., prime-to-p finite adeles) of F . Fix a neat open compact subgroup
K DKpKp �GL2.A1F /, where Kp DGL2.OFp / and Kp �GL2.A

1;p
F /. Let X be

the Hilbert modular scheme of level K . This is a quasiprojective smooth scheme over
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Z.p/ of relative dimension g. For a fixed prime `¤ p, the `-adic étale cohomology
group Hg

et .XQ;Q`/ is equipped with a commuting action of GalQ WD Gal.Q=Q/ and
the Hecke algebra HK WD Q`ŒKnGL2.A1F /=K�. Let � D �1 ˝ �1 be a cuspidal
automorphic representation of GL2.AF / such that the Archimedean component �1
is a discrete series of parallel weight 2, and such that the K-fixed vectors �1;K ¤ 0.
We put

H
g
et .XQ;Q`/Œ�� WDHomHK

�
�1;K ;H

g
et .XQ;Q`/

�
:

Let �� W Gal.Q=F /!GL2.Q`/ denote the Galois representation attached to � (see,
e.g., [32]). Then the main result of [2] essentially says that the semisimplification of
the GalQ-moduleHg

et .XQ;Q`/Œ�� is isomorphic to the Asai representation As.��/ WDN
Ind

GalQ
GalF

.��/, which is the tensor induction of �� from GalF to GalQ.1 By our

assumption on p, both �� and Hg
et .XQ;Q`/ are unramified at p. It makes sense to

view As.��/ and Hg
et .XQ;Q`/Œ�� as GalFp -modules.

Assume that g is even so that X is even-dimensional. For q a power of p, we
write Frobq 2GalFp for the geometric q-Frobenius. We put

T .�;Fp/ WD
[
j�1

As.��/.g=2/
Frob

pj
D1

for the space of Tate classes of As.�/.g=2/ defined over a finite extension of Fp .
If the two (generalized) eigenvalues of ��.Frobpg / are denoted by ˛� and ˇ� , then
.As.��/.g=2//.Frobpg / has generalized eigenvalues ˛i�ˇ

g�i
� =pg

2=2 with multiplic-
ity
�
g
i

�
for i D 0; : : : ; g. We know that ˛�ˇ�=pg is a root of unity. From this, it is easy

to see that dimQ`
T .�;Fp/ �

�
g
g=2

�
, and the equality holds if ˛�=ˇ� is not a root of

unity. Therefore, the Tate conjecture predicts that there are
�
g
g=2

�
algebraic cycles on

XFp
that contribute to T .�;Fp/.

In this article, we take a purely characteristic p approach to construct the desired
algebraic cycles onXFp

, and we show that these cycles contribute to all the geometric

Tate classes inHg
et .XQ;Q`.g=2//Œ�� if the eigenvalues of ��.Frobpg / are sufficiently

general.

Definition 1.1
We say that a morphism X ! Y of schemes is an r -step iterated P1-bundle if this
morphism admits a factorization X WD Yr ! Yr�1 ! � � � ! Y0 WD Y , where each
Yi ! Yi�1 is a P1-bundle. When Y is the spectrum of a field, we say that X is an
r -step iterated P1-tower.

1Conjecturally, Hg
et .XQ;Q`/Œ�� is semisimple so that it is isomorphic to As.�� /. This conjecture is true if

As.�� / is irreducible. For more discussion, see [26].
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The main results of our work include the following.

THEOREM 1.2
Assume that g D ŒF W Q� is even and that K is neat. Let B1 denote the quaternion
algebra over F ramified exactly at all Archimedean places, and let ShK.B1/ WD
B�1n.B ˝F A1F /

�=K be the associated discrete Shimura variety over Fp . Here, we
fix an isomorphism .B1˝F A1F /

� ŠGL2.A1F / so that the Hecke algebra HK acts
on H 0.ShK.B1/;Q`/.
(1) There exist algebraic correspondences

ShK.B1/
pi
 �Xi

qi
�!XFp

; i D 1; : : : ;
�
g
g=2

�
;

such that pi is a g=2-step iterated P1-bundle (so each connected component
ofXi is isomorphic to a g=2-step iterated P1-tower), qi is a closed immersion,
and both pi and qi are equivariant for prime-to-p Hecke correspondences.

(2) Let � be a cuspidal automorphic representation of GL2.AF / associated to
a holomorphic Hilbert cuspidal eigenform of parallel weight 2, and let �B
be the Jacquet–Langlands transfer of � to an automorphic representation of
.B1 ˝AF /

�. Denote by ˛� and ˇ� the two eigenvalues of ��.Frobpg /. We
put similarly

H 0
�
ShK.B1/;Q`

�
Œ�B � WDHomHK

�
�
1;K
B ;H 0

�
ShK.B1/;Q`

��
:

Then the natural mapM
1�i�. gg=2/

H 0
�
ShK.B1/;Q`

�
Œ�B �

˚p�
i

���!
M

1�i�. gg=2/

H 0
et.Xi;Fp ;Q`/Œ�B �

Gysin
���! T .�;Fp/�H

g
et

�
XFp

;Q`.g=2/
�
Œ��

is injective if ˛� ¤ ˇ� , and is isomorphic to T .�;Fp/ if ˛�=ˇ� is not a root
of unity. In particular, if ˛�=ˇ� is not a root of unity, then the Tate conjec-
ture is true for the �-isotypic component of Hg

et .XFp
;Q`.g=2// over all finite

extensions of Fp .

In fact, we prove a result stronger than the one stated here. A full statement will
be given later in Theorem 1.7.

Remark 1.3
(1) These cycles X1; : : : ;X. gg=2/

realize the Jacquet–Langlands correspondence

geometrically and, at the same time, they give the Tate classes for the �-
isotypical component when �p is sufficiently general. We expect the union
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of them to be the supersingular locus (this will be proved in a future article
[22] by Yifeng Liu and the first author). The geometric realization of Jacquet–
Langlands correspondence was first studied by Ribet [29], [30] and Helm
[13], [14]. They gave some examples of the cycles in the case of modular
or Shimura curves and unitary Shimura varieties that realizes the Jacquet–
Langlands correspondence geometrically. The geometric aspect of this tech-
nique is further developed by the authors in [33]. From this point of view,
the theorem above may be understood as: geometric Jacquet–Langlands cor-
respondence can give “generic” Tate classes on the special fiber of the Hilbert
modular varieties.

(2) Our construction does not give sufficient algebraic cycles on XFp
when ˛� D

ˇ� . For instance, for g D 2, it follows from the Hodge index theorem and
our computation of the intersection matrix of X1 and X2 on XFp

(see Exam-

ple 1.9) that the contribution of X1 and X2 to T .�;Fp/ is 1-dimensional if
˛� D ˇ� . It is an interesting question to find extra “exotic” algebraic cycles
that are not cohomologically equivalent to our cycles.

(3) If one instead considers the Tate conjecture of Hilbert modular varieties over
the generic fiber (namely over Q), then this topic has a long history dating back
to 1980s. But the situation is very different for the discussion in the present
article. For a general � that is not CM or the base change from a smaller field,
the space of Tate classes As.��/.g=2/GalQ is zero. In contrast, the Tate classes
in As.��/.g=2/ on the special fiber at an inert prime always have dimension
at least

�
g
g=2

�
. So the Tate conjecture of X over Q is a very different question

from the Tate conjecture of XFp over Fp . We list below some known results
for the Tate conjecture of Hilbert modular varieties over Q.
� If � is non-CM, then this conjecture was proved by Harder, Langlands,

and Rapoport in [12] when gD 2. In fact, they show that As.��/.1/GalQ

is nonzero only if � is the base change of a cuspidal automorphic
representation of GL2.AQ/, in which case Hirzebruch–Zagier cycles
account for the Tate classes. Similar but partial results were obtained
by Ramakrishnan [27] and Getz–Hahn [8] in the higher-dimensional
cases.

� When gD 2 and � is CM, more algebraic cycles are expected to con-
tribute to As.��/.1/GalQ ; this case was solved independently by Murty
and Ramakrishnan [25] and by Klingenberg [18] by reducing to the
Lefschetz (1,1)-theorem for Hodge classes.

� When g D 2 and � is the base change of a cuspidal automorphic
representation of GL2;Q, Langer [19] constructed a variant of the
Hirzebruch–Zagier cycle in characteristic 0 and showed that its reduc-
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tion modulo p contributes to a 1-dimensional subspace of T .�;Fp/.
His cycles are strictly contained in the union of our cycles X1 [ X2.
But it is expected that a lot more cycles will be on the special fiber XFp

than on the generic fiber X , and so Langer’s construction seems to be
hard to generalize to general � .

(4) Despite the difference between the Tate conjecture over Q and that over finite
fields, it is an interesting question to study the interrelation between the reduc-
tion of cycles in characteristic 0 and cycles in characteristic p that we con-
struct. Such study has interesting corollaries in arithmetic and geometric appli-
cations (e.g., bounding Selmer groups; see a series of works of Yifeng Liu and
the first author [20]–[22]).

(5) After the first draft of this article, analogues of Theorem 1.2 for special fibers
of other Shimura varieties have appeared in recent works (see, e.g., [15], [35]).

(6) A very recent preprint by Ichino and Prasanna [16] constructed certain `-
adic Hodge classes over the generic fiber of the product of two quaternionic
Shimura varieties to realize the Jacquet–Langlands correspondence. It would
be interesting to understand the relations between their Hodge classes and our
cycle classes on the special fiber.

1.4. Generalized Goren–Oort cycles
We now explain the construction of the cycles. We allow g to be of arbitrary parity,
and we let r be an integer with 1� r � bg=2c. In the present article we will construct
explicitly

�
g
r

�
generalized Goren–Oort cyclesX1; : : : ;X.gr/

of codimension r inXFpg

such that eachXi is isomorphic to an r -step iterated P1-bundle over (the characteristic
p fiber of ) some .g � 2r/-dimensional quaternionic Shimura variety. Moreover, the
construction is compatible with prime-to-p Hecke correspondences when the tame
levelKp changes. We point out an important feature of these cycles: the codimension
of eachXi is the same as the iterated P1-bundle dimension. As pointed out by Xinwen
Zhu, the union of these Xi ’s should be the Zariski closure of the Newton stratum of
XFpg

with slope . r
g
; : : : ; r

g
; g�r
g
; : : : ; g�r

g
/, where both r

g
and g�r

g
appear with g

times. In particular, if g is even and r D g
2

, then the union of Xi ’s should be exactly
the supersingular locus of XFpg

.

Fix an isomorphism �p W Qp
'
�!C. Composing with �p defines a bijection between

the set of p-adic embeddings of F with that of its Archimedean places. Since p is
inert in F , the image of every p-adic embedding of F lies in the maximal unram-
ified extension of Qp ; hence the p-Frobenius � acts naturally on the set of p-adic
embeddings. We label the p-adic embeddings of F by ¹�i j i 2 Z=gZº such that
�iC1 D � ı �i , and we let1i D �p ı �i denote the corresponding Archimedean place
of F . For an even subset S of Archimedean places of F , we denote by BS the quater-
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nion algebra over F which ramifies exactly at S. When S is the set of all Archimedean
places, we also write SD1. Fix an isomorphism .BS˝F A1F /

� ŠGL2.A1F / so that
K can be viewed as an open compact subgroup of .BS˝F A1F /

�. For a certain sub-
set T � S, we will define in Section 2.9 a quaternionic Shimura variety ShK.BS;T/

over Fpg attached to the reductive group ResF=Q.B�S / of level K . This is a .g� #S/-
dimensional smooth variety, which is proper if S is nonempty. Here, the subset T
means some modification on the usual Deligne homomorphism in the definition of
ShK.GS;T/ (see Section 2.1). The Shimura varieties ShK.GS;T/ with the same S but
different choices of T will have the same geometry, but the Galois actions on the
geometric-connected components of ShK.GS;T/ will be different.

The basic idea under the constructions of the Goren–Oort cycles is as follows.
Recall that there are exactly g divisors, say Y1; : : : ; Yg , in the Goren–Oort strat-
ification (or Ekedahl–Oort stratification) of XFpg

. The main result of [33] shows
that, when g � 1, each Yi is isomorphic to a P1-fibration over ShK.BSi ;Ti / with
Si D ¹1i ;1i�1º and Ti D ¹1iº. Actually, the results of [33] apply to more gen-
eral quaternionic Shimura varieties. For r D 1, the generalized Goren–Oort cycles of
codimension 1 are defined to be these Goren–Oort divisors Yi ’s. When r � 2, we con-
sider the g� 2 Goren–Oort divisors Zj of ShK.BSi ;Ti / for j 2 ¹i � 2; : : : ; i �gC 1º
(see Proposition 2.31). Taking the inverse image of Zj in Yi , we get a codimen-
sion 2 cycle Yi;j in XFp

, which admits a two-step iterated P1-bundle morphism
Yi;j ! Zj ! ShK.Bi;j /, where ShK.Bi;j / is some quaternionic Shimura variety
of dimension g � 4. This gives the construction for r D 2. In the general case, the
codimension r generalized Goren–Oort cycles on XFp

are obtained by repeating this
process r times.

Example 1.5
(1) When g D 2, there are two Goren–Oort divisors X1;X2 on XF

p2
, and each

Xi is isomorphic to a P1-bundle over the discrete Shimura set ShK.B�1;Ti /Fp
with Ti D ¹1iº. We remark that the cycle constructed by Langer in [19] is
completely contained in (but not equal to) the union X1 [X2.

(2) When gD 3, there are three Goren–Oort divisors on XF
p3

, say Y1; Y2; Y3. For

i 2 Z=3Z, each Yi is a P1-fibration over ShK.BSi ;Ti / as discussed above.
(3) When gD 4, there are six Goren–Oort cycles of codimension 2 on XF

p4
. We

start with the four Goren–Oort divisors Y1; : : : ; Y4 of XF
p4

. Then for each

i 2 Z=4Z, we have a P1-fibration �i W Yi ! ShK.BSi ;Ti /. On each quater-
nionic Shimura surface ShK.BSi ;Ti /, there are two Goren–Oort divisors, say
Zi�2 and Zi�3, corresponding to 1i�2 and 1i�3, respectively. Then each
of Zj with j 2 ¹i � 2; i � 3º is again isomorphic to a P1-fibration over
the 0-dimensional Shimura variety ShK.B1;Ti / with Ti D ¹1i ;1i�2º. Put
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Xi;j WD �
�1
i .Zj / � Yi . This is a codimension 2 cycle on XF

p4
. In Theo-

rem 2.32, we will see that X1;3 D X3;1 D Y1 \ Y3 and that X2;4 D X4;2 D
Y2\Y4, so the six Goren–Oort cycles of codimension 2 are exactlyX1;3;X2;4;
X1;2;X2;3;X3;4;X4;1. Note that the geometry of these six cycles are not the
same: each irreducible component of X1;3 and X2;4 are isomorphic to .P1/2,
while that of the other four Goren–Oort cycles is isomorphic to the P1-bundle
P.OP1.p/˚OP1.�p// over P1 (see Example 3.10).

After finishing the present article, we were informed that when gD 4, the geom-
etry of these cycles was already known to Yu [36], using a different method.

The best way (so far) to parameterize the generalized Goren–Oort cycles is to use
some combinatorial data, called periodic semimeanders (mostly for the benefit of later
computation of the Gysin-restriction matrix). A periodic semimeander of g nodes is a
graph where g nodes are aligned equidistantly on a section of a vertical cylinder, and
are either connected pairwise by nonintersecting curves (called arcs) drawn above
the section, or connected by a straight line (called semilines) to C1 at the top of

the cylinder. We use r to denote the number of arcs. For example, • • • • • • and

• • • • • • are both semimeanders of six points with r D 2 and 3, respectively. An
elementary computation shows that there are

�
g
r

�
semimeanders of g nodes with r

arcs for r � g
2

. (For a detailed discussion, see Section 3.1.)
To each periodic semimeander a with g nodes and r arcs, one can associate a

generalized Goren–Oort cycle Xa of codimension r in XF
p2g

(we refer the reader
to Section 3.8 for the precise definition). The g nodes of a periodic semimeander a
correspond to the g Archimedean places 11; : : : ;1g from the left to the right. By
construction,Xa is an r -step iterated P1-bundle over the quaternionic Shimura variety
ShK.BSa;Ta/, where Sa consists of all Archimedean places of F corresponding to the
end nodes of all r arcs, and Ta consists of those corresponding to the right ends of
the r arcs. We will denote by

�a W Xa! ShK.BSa;Ta/

the projection map. For instance, when gD 4 and r D 2, the cycles X1;3 and X2;4 in

Example 1.5 correspond to the semimeanders • • • • and • • • • , and the other 4
cycles X1;2;X2;3;X3;4;X4;1 correspond respectively to the semimeanders

1.6. Main theorem revisited
We now describe our main results. We consider a regular multiweight .k;w/ 2 ZgC1

with k D .k1; : : : ; kg/, that is, a collection of integers such that ki � 2 and ki � w
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mod 2. There is an automorphic étale local system L.k;w/ on X , which is a lisse
Q`-sheaf of rank

Qg
iD1.ki � 1/ pure of Deligne weight g.w � 1/ (see Section 2.10).

We fix a cuspidal automorphic representation � D �1˝�1 of GL2.AF / associated
to a holomorphic Hilbert modular forms of weight .k;w/ such that �1;K ¤ 0. Let
�� W GalF !GL2.Q`/ be the Galois representation attached to � , and let As.��/DN

IndGalF
GalQ

.��/ be the Asai representation of �� . Let HKp WDQ`ŒK
pnGL2.A

1;p
F /=

Kp� denote the prime-to-p Hecke algebra, and let �1;p be the prime-to-p part of � .
We put

H
g
et .XFp

;L.k;w//Œ�� WDHomHKp

�
.�1;p/K

p

;H
g
et .XFp

;L.k;w//
�
:2

According to [2], the GalFp -module Hg
et .XFp

;L.k;w//Œ�� has the same semisimplifi-
cation as

As.��/jGalFp D
O

Ind
GalFp
GalFpg

.�� jGal
F
g
p

/:

Fix an integer r with 1� r � g=2. We denote by Br
; the set of periodic semime-

anders of g nodes and r arcs. As explained above, for each a 2Br
;, we have a general-

ized Goren–Oort cycleXa inXF
p2g

of codimension r , which admits an r -step iterated

P1-bundle morphism �a W Xa! ShK.BSa;Ta/. We can also define an automorphic

étale local system L
.k;w/
Sa;Ta on ShK.BSa;Ta/ (see Section 2.10), which is compatible

with the local system L.k;w/ on X in the sense that there is a canonical isomorphism
��a L

.k;w/
Sa;Ta ŠL.k;w/jXa

. When .k;w/D .2; : : : ; 2/, both L
.k;w/
Sa;Ta and L.k;w/ are the

constant sheaf Q`. We consider the composite map

Gysa W H
g�2r
et

�
ShK.BSa;Ta/Fp ;L

.k;w/

.Sa;Ta/

�
��a
��!H

g�2r
et .Xa;Fp

;L.k;w/jXa
/

Gysin
���!H

g
et

�
XFp

;L.k;w/.r/
�
;

where the second arrow is the Gysin map. Since the construction of Xa is compati-
ble with prime-to-p Hecke correspondence, Gysa is equivariant under the action by
HKp . The main result of this article is the following.

THEOREM 1.7
Let ˛;ˇ denote the two eigenvalues of ��.Frobpg /. Consider the map induced by the
direct sum of Gysin maps

Gys W
M
a2Br

;

H
g�2r
et

�
ShK.BSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
Œ��

2It should be noted that, by the strong multiplicity 1 theorem, we then have an isomorphism
HomHKp

�
�1;p;K

p
;H

g
et .XFp

;L.k;w//
�
ŠHomHK

�
�1;K ;H

g
et .XFp

;L.k;w//
�
.
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P
a Gysa
�����!H

g
et

�
XFp

;L.k;w/.r/
�
Œ�� (1.7.1)

on the �-isotypic components. Then the following statements hold:
(1) If ˛¤ ˇ, then the morphism Gys is injective.
(2) If ˛=ˇ is not a 2nth root of unity for any n � g,3 then Gys induces an iso-

morphism when restricted to the generalized eigenspaces of Frobp2g on both
source and target with eigenvalues ˛2rˇ2.g�r/=p2rg .

This theorem will be proved as a special case of Theorem 4.5. This theorem can
be viewed as a version of geometric Jacquet–Langlands transfer from the quaternionic
Shimura varieties ShK.BSa;Ta/’s to X . As for the applications to the Tate conjecture,
we assume that g is even. Then for all periodic semimeanders a with g nodes and g

2

arcs, we have Sa D1, and the Goren–Oort cycle Xa;Fp
is a collection of .g=2/-step

iterated P1-bundles parameterized by the common discrete Shimura set4

ShK.B1/Fp DB
�
1n.B1˝F A1F /

�=K: (1.7.2)

Applying Theorem 1.7 to the case .k;w/D .2; : : : ; 2/ gives Theorem 1.2.

1.8. Overview of the proof of Theorem 1.7
We consider the restriction map

Resa W H
g
et

�
XFp

;L.k;w/.r/
�
Œ�� ! H

g
et

�
Xa;Fp

;L.k;w/jXa
.r/
�
Œ��

Tr�a ;Š
�����!H

g�2r
et

�
ShK.BSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
Œ��;

where the second map is the trace isomorphism. We get thus a composite map

M
b2Br

;

H
g�2r
et

�
ShK.BSb;Tb/Fp ;L

.k;w/
Sb;Tb

�
Œ��

Gys
��!H

g
et

�
XFp

;L.k;w/.r/
�
Œ��

ResWD
L

a Resa

M
a2Br

;

H
g�2r
et

�
ShK.BSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
Œ��

(1.8.1)

3The reason why we have 2nth (as opposed to nth) root of unity here is purely technical (see Remark 4.6(3)).
4Our previous notation for this Shimura set should be ShK.B1;Ta /Fp . Since they are all canonically isomorphic
for all a, we omit Ta from the notation.



1560 TIAN and XIAO

When .k;w/ is of parallel weight 2, this is essentially the intersection matrix of the
cyclesXa’s inXFp

. The upshot is that each “matrix entry” Resa ıGysb can be read off
from the periodic semimeanders a and b (see Theorem 4.4), and the determinant of
the intersection matrix is closely related to the determinant of the Gram matrix of the
link representation of periodic Temperley–Lieb algebras, which has been computed
in [24]. Using this result, one can compute explicitly the determinant of ResıGys,
which does not vanish as long as ˛ ¤ ˇ. Theorem 1.7(1) follows immediately, and
statement (2) is obtained from statement (1) along with a direct computation of the
dimensions of the generalized eigenspaces of Frobp2g with the given eigenvalue.

Example 1.9
(1) If g D 2 and r D 1, then the intersection matrix .Resa ıGysb/a;b2B1

;
(under

certain basis) is  
�2p ˛C ˇ

p2 ˛Cˇ
˛ˇ

�2p

!
;

whose determinant is p2.˛ � ˇ/2=.˛ˇ/.
(2) Assume that g D 3 and that r D 1. Even though the Shimura varieties

ShK.GSa;Ta/ for a 2B1
; are not exactly the same, we nevertheless have an

isomorphism (see Proposition A.3)

H 1
et

�
ShK.BSa;Ta/Fp ;Q`

�
Œ��Š

�
�� ˝ det.��/.1/

�
jGalFp

for each a 2B1
; as a GalF

p3
-module. The intersection matrix (under a suitable

basis) is 0@�2p ��1 �

� �2p ��1

��1 � �2p

1A ;
where � is some operator which acts as scalar multiplication by .˛=ˇ/1=3

(resp., by .ˇ=˛/1=3) on the eigenspace of Frobp3 D ˛ˇ
2=p3 (resp., Frobp3 D

˛2ˇ=p3) in Œ�� ˝ det.��/.1/�jGalFp . The determinant of the above matrix is
�p3.˛ � ˇ/2=.˛ˇ/.

Structure of this article
In Section 2, we recall necessary facts about Goren–Oort stratification from [33].
Some of the proofs are mostly bookkeeping, but also technical (the readers may skip
these). In Section 3, we first recall the combinatorics about periodic semimeanders
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and then give the definition of the Goren–Oort cycles associated to periodic semime-
anders. In Section 4, we state our main Theorem 4.5 and prove it assuming Theo-
rem 4.4, which says that the Gysin-restriction matrix for Goren–Oort cycles is roughly
the same as the Gram matrix of the corresponding periodic semimeanders. This key
theorem, Theorem 4.4, is proved in Section 5. The Appendix includes a proof of the
description of the cohomology of quaternionic Shimura varieties. This is well known
to the experts, but we include it there for completeness.

1.10. Notation
For a field L, we use GalL to denote its absolute Galois group. For a number field L,
we write AL (resp., A1L , A1;pL ) for its ring of adeles (resp., finite adeles, finite adeles
away from a rational prime p). When LD Q, we suppress the subscript L (e.g., by
writing A1). Let p

L
denote the idele of A1L which is p at all p-adic places and trivial

elsewhere. We also normalize the Artin reciprocity map Art W A�L=L
�!Galab

L so that
a local uniformizer at a finite place v corresponds to a geometric Frobenius element
at v.

Throughout this article, we fix F a totally real field of degree g > 1 over Q. Let
† denote the set of places of F , and let †1 be the subset of all real places. We fix
a prime number p > 2 inert in the extension F=Q.5 We also set p D pOF , Fp the
completion of F at p, Op the valuation ring, and kp the residue field.

We fix an isomorphism �p W C
'
�!Qp . Let Qpg denote the unramified extension

of Qp of degree g in Qp , and let Zpg be its valuation ring. Postcomposition with
�p induces a bijection between the set of Archimedean places and †1 DHom.F;R/
and the set of p-adic embeddings Hom.F;Qpg /ŠHom.OF ;Fpg /. In particular, the
absolute Frobenius � acts on †1 by sending � 2 †1 to �� WD � ı � ; this makes
†1 into one cycle. Let Qur

p denote the maximal unramified extension of Qp , and let
Zur
p denote its valuation ring. For a finite field Fq , we denote by Frobq 2 GalFq the

geometric Frobenius element.

2. Goren–Oort stratification
We first recall the Goren–Oort stratification of the special fiber of quaternionic
Shimura varieties and their descriptions, following [33]. We tailor our discussion to a
later application, and hence we will focus on certain special cases discussed in [33].

2.1. Quaternionic Shimura varieties
Let S be a set of places of F of even cardinality such that p … S. Put S1 D S\†1

5Although most of our argument works equally well when p is only assumed to be unramified, we insist on
assuming that p is inert, which largely simplifies the notation so that the proof of the main result is more
accessible (but see Remark 4.6(1)).
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and Sc1 D †1 � S1,6 and d D #Sc1. We also fix a subset T of S1. We denote by
BS the quaternion algebra over F ramified exactly at S. Let GS;T D ResF=Q.B�S / be
the associated Q-algebraic group. Here we inserted the subscript T because we use
the following Deligne homomorphism:

hS;T W S.R/DC� �! GS;T.R/Š .H
�/S1�T 	 .H�/T 	GL2.R/S

c
1

xC yi 7�!
�
.1; : : : ; 1/; .x2C y2; : : : ; x2C y2/;

�
. x y
�y x /; : : : ; .

x y
�y x /

��
:

When TD ;, the Deligne homomorphism hS;; is the same as hS considered in [33,
Section 3.1]. The GS;T.R/-conjugacy class of hS;T is independent of T and is isomor-
phic to HS WD .h

˙/S
c
1 , where h˙ D P1.C/�P1.R/. Consider the Hodge cocharacter

	S;T W Gm;C
z 7!.z;1/
�����! SC ŠGm;C 	Gm;C

hS;T
��!GS;T;C:

Here, the composite of the natural inclusion C� D S.R/ ,! S.C/ with the first (resp.,
second) projection S.C/!C� is the identity map (resp., the complex conjugation).

The reflex field FS;T—that is, the field of definition of the conjugacy class of
	S;T—is a finite extension of Q sitting inside C and hence inside Qp via �p . It is clear
that the p-adic closure of FS;T in Qp is contained in Qpg , the unramified extension
of Qp of degree g in Qp . Instead of working with an occasional smaller reflex field,
we are content with working with Shimura varieties over Qpg .

We fix an isomorphism GS;T.Qp/' GL2.Fp/ and we put Kp D GL2.Op/. We
will only consider open compact subgroupsK �GS;T.A

1/7 of the formK DKpK
p

with Kp an open compact subgroup of GS;T.A
1;p/, or occasionally K D IwpKp

with Iwp WD .
O�p Op

pOp O�p
/ when Sc1 D ;. For such a K , we have a Shimura variety

ShK.GS;T/ defined over Qpg , whose C-points (via �p) are given by

ShK.GS;T/.C/DGS;T.Q/nHS 	GS;T.A
1/=K:

We put ShKp .GS;T/ WD lim
 �Kp

ShKpKp .GS;T/. This Shimura variety has dimension
d D #Sc1. There is a natural morphism of geometrically connected components

�0
�
ShKp .GS;T/Qp

�
�! F

�;cl
C nA

1;�
F =O�p ; (2.1.1)

where F �C is the subgroup of totally positive elements of F �, and the superscript
cl stands for taking closure in the corresponding topological space. The morphism

6Note that the upper script c was used to denote complex conjugation in [33]. In the present arrticle, however,
we use it to mean taking the set-theoretic complement.
7In earlier articles of this series, the open compact subgroup K was denoted by KS . We choose to drop the
subscript because, for all S we encounter later, the group GS.A

1/ is isomorphic, and hence we can naturally
identify theKS’s for different S’s.
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(2.1.1) is an isomorphism if Sc1 ¤; by [4, Théorème 2.4]. Following the convention
in [33, Section 2.11], we call the preimage of an element x 2 F �;cl

C nA
1;�
F =O�p under

the map (2.1.1) a geometrically connected component, even though it is not geomet-
rically connected when Sc1 D ;. The preimage of 1 is called the neutral geometric
connected component, which we denote by ShKp .GS;T/

ı
Qp

.

Note that, for different choices of T, the Shimura varieties ShK.GS;T/ are isomor-
phic over Qp (in fact over Q if we have not p-adically completed the reflex field), but
the actions of Gal.Qp=Qpg / depend on T. By Shimura’s reciprocity law (see [4] or
[33, Section 2.7]), the action of Gal.Qp=Qpg / on �0.ShKp .GS;T/Qp / factors through
GalFpg Š Gal.Zur

p=Zpg /, so that the connected components of ShKp .GS;T/Qp are
actually defined over Qur

p , the maximal unramified extension of Qp . More precisely,

the action of the geometric Frobenius of Fpg on F �;cl
C nA

1;�
F =O�p , induced through

the homomorphism (2.1.1), is given by multiplication by the finite idele

.p
F
/.2#TC#Sc1/ 2 F

�;cl
C nA

1;�
F =O�p :

8 (2.1.2)

This determines a reciprocity map:

Recp W GalFpg �! F
�;cl
C nA

1;�
F =O�p :

Write 
 W GS;T ! ResF=Q.Gm/ for the reduced norm homomorphism. Following
Deligne’s recipe [5] of connected Shimura varieties, we put

GS;T;p WD
�
GS;T.A

1;p/=O
�;cl
F;.p/

�
	GalFpg

9 (2.1.3)

and define EGS;T to be the subgroup of GS;T;p consisting of pairs .x; �/ such that 
.x/
is equal to Recp.�/�1. Here, O

�;cl
F;.p/

denotes the closure of O�
F;.p/

in GS;T.A
1;p/.

The limit ShKp .GS;T/Qur
p

carries an action by GS;T;p , and EGS;T is the stabilizer of
each geometrically connected component. Conversely, if ShKp .GS;T/

�
Qur
p

is a geomet-
rically connected component, then one can recover ShKp .GS;T/ from ShKp .GS;T/

�
Qur
p

by first forming the product

ShKp .GS;T/
�
Qur
p
	EGS;T

GS;T;p

and then taking the Galois descent to Qpg .

8When Sc1D; or, equivalently, when ShKp .GS;T/ is a 0-dimensional Shimura variety, the action of Frobpg

is given by multiplication by the finite idele .p
F
/#T in the center ResF=QGm ofGS;T . This gives the canonical

model for the discrete Shimura variety in the sense of [33, Section 2.8].
9Comparing with [33, (2.11.3)], we dropped the star extension because the center ofGS;T is ResF=QGm , which
has trivial first cohomology. We also include the Galois part into the definition of G to simplify notation here.
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Notation 2.2
Note that GS;T.A

1/ depends only on the finite places contained in S. In later appli-
cations, we will consider only pairs of subsets .S0;T0/ such that S0 contains the same
finite places as S. In that case, we will fix an isomorphism GS0;T0.A

1/ŠGS;T.A
1/,

and denote them uniformly by G.A1/ when no confusions arise. Similarly, we have
its subgroup G.A1;p/�G.A1/ consisting of elements whose p-component is triv-
ial. Thus, we may viewK (resp.,Kp) as an open compact subgroup ofG.A1/ (resp.,
G.A1;p/).

Under this identification, the group GS;T;p is independent of S;T, and we hence-
forth write Gp for it. Its subgroup EGS;T in general depends on the choice of S and T.
However, the key point is that, if S0 and T0 are another pair of subsets satisfying sim-
ilar conditions and #S1 � 2#TD #S01 � 2#T0 (which will be the case we consider
later in this article), then the subgroup EGS;T is the same as EGS0;T0

.

Remark 2.3
Using Proposition 2.7 and Construction 2.12 later, we have access to most of the
statements in [33] which were initially proved for unitary groups and interpreted
using connected Shimura varieties. The key point mentioned in Notation 2.2 has the
additional benefit that the description of the Goren–Oort strata actually descends to
quaternionic Shimura varieties because now the subgroups EGS;T are compatible for
different S’s and T’s.

2.4. An auxiliary CM field
To use the results in [33] (which rely on Carayol’s construction), we fix a CM exten-
sion E=F such that
� every place in S is inert in E=F , and
� the place p splits as qNq in E=F if #Sc1 is even, and it is inert in E=F if #Sc1

is odd.
These conditions imply that BS splits over E . In later applications, we will need to
consider several subsets S at the same time. We note that, for all subsets S involved
later, the finite places contained in S are the same, and thus #Sc1 will have the same
parity. In particular, this means that we can fix for the rest of this article one CM field
E that satisfies the above conditions (for the initial BS).

We will frequently use the following two finite idele elements:
(1) p

F
denotes the finite idele in A1F which is p at p and is 1 elsewhere (which

we have already introduced in Section 1.10);
(2) when p splits into qNq in E , q denotes the finite idele in A1E which is p at q,

p�1 at Nq, and 1 elsewhere.
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Let †E;1 denote the set of complex embeddings of E . We fix a choice of subset
QS1 �†E;1 such that the natural restriction map †E;1!†1 induces an isomor-

phism QS1
Š
�! S1. When p splits into qNq, we use QS1=q (resp., QS1= Nq) to denote the

subset of places in QS1 inducing q (resp., Nq) through the isomorphism �p . We put

�QS1 WD # QS1= Nq � # QS1=q: (2.4.1)

We note that all the subsets QS1 that we encounter later in this article will all have the
same �QS1 .

We write Ep for Fp ˝F E . It is the quadratic unramified extension of Fp if p is
inert and it is Eq 	E Nq if p splits. We set OEp

WDOp˝OF OE .
We put QS D .S; QS1/. Put TE;QS;T D TE D ResE=Q.Gm/, where the subscript

. QS;T/ means that we take the following Deligne homomorphism:

hE;QS;T W S.R/�!TE;QS;T.R/D
M
�2†1

.E ˝F;� R/
� Š .C�/S1�T 	 .C�/T 	 .C�/S

c
1

z D xC yi 7�!
�
. Nz; : : : ; Nz/; .z�1; : : : ; z�1/; .1; : : : ; 1/

�
:

Here, the isomorphism E ˝F;� R'C for � 2 S1 is given by the chosen embedding
Q� 2 QS1 lifting � . One has the system of 0-dimensional Shimura varieties
ShKE .TE;QS;T/ with C-points given by

ShKE .TE;QS;T/.C/DE
�;clnTE;QS;T.A

1/=KE ;

for any open compact subgroupKE � TE;QS;T.A
1/ŠA

1;�
E . We putKE;p DO�E;p �

TE;QS;T.Qp/ and write ShKE;p .TE;QS;T/ D lim
 �KpE

ShKp
E
KE;p

.TE;QS;T/ as the inverse

limit over all open compact subgroups KpE � TE;QS;T.A
1;p/. (As in Notation 2.2, we

identify TE;QS;T.A
1/ for all QS and T, and we write TE .A1/ for it, so KE is naturally

its subgroup.)
Under the isomorphism �p W C Š Qp , the image of the reflex field of

ShKE .TE;QS;T/ is contained in Qp2g . It makes sense to talk about ShKE .TE;QS;T/Qp2g .

AsKE;p is hyperspecial, the action of GalQ
p2g

on ShKE .TE;QS;T/.Qp/ is unramified.
So ShKE .TE;QS;T/Qp2g is the disjoint union of the spectra of some finite unramified
extension of Qp2g , and it has an integral canonical model over Zp2g by taking the
spectra of the corresponding rings of integers. Denote by ShKE .TE;QS;T/ its special
fiber. By Shimura’s reciprocity law, the action of the geometric Frobenius Frobp2g of
Fp2g on ShKE .TE;QS;T/.Fp/ is given by
(i) when p is inert in E=F , multiplication by .p

F
/#.S1�#T/�#T D .p

F
/#S1�2#T

and
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(ii) when p splits into qNq, multiplication by

$
2.#QS1= Nq�#T/
q $

2.#QS1=q�#T/
Nq D .p

F
/#S1�2#T.q/�QS1 ;

where$q (resp.,$ Nq) is the finite idele in A1E which is p at the place q (resp.,
Nq) and is 1 elsewhere, q is the idele defined in Section 2.4(2) above, and �QS1
is defined in (2.4.1).

In particular, if . QS0;T0/ is another pair as above such that #S01 � 2#T0 D #S1 � 2#T
and such that �QS1 D�QS01 if p splits, then there exists an isomorphism of Shimura
varieties over Fp2g ,

ShKE .TE;QS;T/
Š
�! ShKE .TE;QS0;T0/; (2.4.2)

compatible with the Hecke action of TE .A1;p/ on both sides as KpE varies.

2.5. A unitary Shimura variety
Let Z D ResF=Q.Gm/ be the center of GS;T. Put G00

QS
DGS;T 	Z TE;QS;T, which is the

quotient of GS;T 	 TE;QS;T by Z embedded antidiagonally as z 7! .z; z�1/. Consider
the product Deligne homomorphism

hS;T 	 hE;QS;T W S.R/DC�! .GS;T 	 TE;QS;T/.R/;

which can be further composed with the quotient map to G00
QS

to get

h00QS W S.R/DC�! .GS;T 	Z TE;QS;T/.R/ŠG
00
QS
.R/:

Note that h00
QS

does not depend on the choice of T� S1 (hence the notation), and its

conjugacy class is identified with HS D .h
˙/S

c
1 . Let K 00p denote the (maximal) open

compact subgroup GL2.Op/ 	O�p O�E;p of G00
QS
.Qp/. We will consider open compact

subgroups of the formK 00 DK 00pK
00p �G00

QS
.A1/ withK 00p �G00

QS
.A1;p/. These data

give rise to a Shimura variety ShK00.G
00
QS
/ (defined over Qp2g ), whose C-points (via

�p) are given by

ShK00.G
00
QS
/.C/DG00QS.Q/n

�
HS 	G

00
QS
.A1/

�
=K 00:

We put ShK00p .G
00
QS
/ WD lim
 �K00p

ShK00.G
00
QS
/. Its geometrically connected components

admit a natural map

�0
�
ShK00p .G

00
QS
/Qp

�
�! .F

�;cl
C nA

1;�
F =O�p /	 .E

1nA1E=O
NE=FD1

Ep
/; (2.5.1)

where NE=F is the norm from E to F , and E1 (resp., A1E ) is the subgroup of E�

(resp., A�E ), with norm 1 in F � (resp., A�F ). As in the quaternionic case, this is an
isomorphism if Sc1 ¤;. We write ShK00p .G

00
QS
/ı
Qp

for the preimage of 1	 1 and call it

the neutral geometrically connected component of the unitary Shimura variety.
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We can define the group EG00
QS

and G 00
QS;p

for the Shimura data .G00
QS
; h00
QS
/ as in Sec-

tion 2.1 (see, e.g., [33, Section 2.11] for the recipe). First, we spell out the Shimura
reciprocity map:

Rec00p W GalF
p2g
�! .F

�;cl
C nA

1;�
F =O�p /	 .E

1nA
1;NE=FD1

E =O
NE=FD1

Ep
/: (2.5.2)

The Frobenius image Rec00p.Frobp2g / is given as follows:
� when p is inert in E=F , Rec00p.Frobp2g /D .pF /

2g 	 1,
� when p splits in E=F , Rec00p.Frobp2g /D .pF /

2g 	 .q/2�QS1 .

We put G 00
QS;p
D .G00

QS
.A1;p/=O

�;cl
E;.p/

/ 	 GalF
p2g

,10 and we define EG00
QS

to be its sub-

group of pairs .x; �/ such that 
00.x/ is equal to Rec00p.�/
�1, where


00 W G00
QS
DGS;T 	Z TE;QS;T ResF=Q.Gm/	ResE=Q.Gm/NE=FD1

.g; t/
�

.g/NE=F .t/; t=Nt

�
is the natural morphism from G00

QS
to its maximal Abelian quotient.

Remark 2.6
Similar to Notation 2.2, if S0 is another subset of places of F containing the same
finite places as S (together with a choice of QS01), then G00

QS0
.A1/ is isomorphic to

G00
QS
.A1/. We fix such an isomorphism and denote it uniformly asG00.A1/. Hence we

naturally identify groups G 00
QS;p

for different QS’s. When #S1 D #S01 and�QS1 D�QS01
if p splits in E=F , the subgroup EG00

QS0
� G 00

QS0;p
can be also identified with EG00

QS
� G 00

QS;p
.

Indeed, in this case the reciprocity map Rec00p for QS and QS0 is the same.

PROPOSITION 2.7
(1) We have a canonical isomorphism EGS;T Š EG00

QS
, and we have that

ShKp .GS;T/
ı
Qur
p

together with the action of EGS;T is isomorphic to

ShK00p .G
00
QS
/ı
Qur
p

together with the action of EG00
QS
.

(2) The Shimura varieties ShK.GS;T/ (resp., ShK00.G
00
QS
/) admit integral canon-

ical models over Zpg (resp., over Zp2g ), and the connected Shimura variety
ShKp .GS;T/

ı
Qur
p
Š ShK00p .G

00
QS
/ı
Qur
p

admits an integral canonical model over Zur
p .

Proof
For (1), the case when TD ; is treated in [33]. In general, note that the sequence of
morphisms

10As in the footnote to (2.1.3), we omitted the star product in the definition of this group when compared with
[33, (2.11.3)] because the center ResE=Q.Gm/ of G00

QS;T
has trivial first cohomology.
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G00QS GS;T 	 TE;QS;T!GS;T

is compatible with the associated Deligne homomorphism, and the conjugacy classes
of Deligne homomorphisms into various algebraic groups defined above are canon-
ically identified. Standard facts (e.g., [33, Corollary 2.17]) about Shimura varieties
imply that the series of morphisms of Shimura varieties

ShK00p .G
00
QS
/ ShKp .GS;T/	Zpg ShKE;p .TE;QS;T/! ShKp .GS;T/

induce isomorphisms on the neutral connected components. Hence, by [33, Theo-
rem 3.14], there exists an integral canonical model for ShK00p .G

00
QS
/ over Zp2g , and

thus the neutral connected component ShK00p .G
00
QS
/ı Š ShKp .GS;T/

ı admits an inte-
gral canonical model over Zur

p . Applying 	EGS;T
GS;T;p , the latter induces an integral

canonical model of ShKp .GS;T/ over Zur
p , which descends to Zpg (see [33, Corol-

lary 2.17]).

Remark 2.8
Item (2) of Proposition 2.7 is a consequence of the much more general theory of Kisin
[17]. However, in the following, we will need essentially this explicit relationship
between the integral models of ShK.GS;T/ and those of ShK00.G

00
QS
/.

Notation 2.9
We use ShKp .GS;T/, ShKE;p .TE;QS;T/, ShK00p .G

00
QS
/; : : : to denote the integral models

over Zpg or Zp2g of the corresponding Shimura varieties, and we use systematically
roman letters to denote the special fibers of Shimura varieties:

Sh‹.GS;T/
?
Fp
WD Sh‹.GS;T/

?
Zur
p
˝Zur

p
Fp and

Sh‹.GS;T/ WD Sh‹.GS;T/	Zpg Fpg

for ‹DK or Kp , and ?D ı or ;, and

ShKE;p .TE;QS;T/Fp2g WD ShKE;p .TE;QS;T/˝Z
p2g

Fp2g ;

ShK00p .G
00
QS
/F
p2g
WD ShK00p .G

00
QS
/˝Z

p2g
Fp2g ;

and similarly with open compact subgroups KE D KE;pK
p
E � TE .A

1/ and also
with K 00 DK 00pK

00p �G00.A1/. We put ShK00p .G
00
QS
/ı
Fp
D ShK00p .G

00
QS
/ı
Zur
p
˝Zur

p
Fp .

2.10. Automorphic local systems
We now study the automorphic sheaves on these Shimura varieties. Fix a prime `¤ p
and an isomorphism �` W C' Q`. Let .k;w/ be a regular multiweight, which means
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a tuple .k;w/ 2 Z†1 	 Z such that k� � w .mod 2/ and k� � 2 for all � 2 †1.
Consider the algebraic representation

�
.k;w/
S;T D��2†1

�
Symk��2.std_/˝ det

k��w
2

�
ofGS;T˝QCŠ

Q
�2†1

GL2.C/, where std is the standard representation of GL2.C/.

As explained in [23], we have an automorphic Q`-lisse sheaf L
.k;w/
S;T on ShKp .GS;T/

associated to �.k;w/S;T . Note that L
.k;w/
S;T is pure of weight .w � 2/.g � #S1C 2#T/.

We fix a section Q†�†E;1 of the natural restriction map†E;1!†1 (which is
independent of the choices QS1). Consider the following 1-dimensional representation
of TE;QS;T˝Q CŠ

Q
Q�2 Q†Gm;Q� 	Gm;Q� ,

�w
E; Q†
D
O
Q�2 Q†

x2�w ı prE;Q� ;

where Q� is the complex conjugate embedding of Q� , prE;Q� is the projection to the
Q� -component, and x2�w is the character of C� given by raising to the .2 � w/th
power. This representation gives rise to a lisse Q`-étale sheaf Lw

E;QS;T; Q†
pure of weight

.w� 2/.#S1 � 2#T/ on ShKE;p .TE;QS;T/. If ShKE .TE;QS0;T0/ is another Shimura vari-
ety with #S01 � 2#T0 D #S1 � 2#T and � W ShKE .TE;QS;T/Š ShKE .TE;QS0;T0/ is the
isomorphism (2.4.2), then we have a natural isomorphism:

��.Lw

E;QS0;T0; Q†
/
Š
�!Lw

E;QS;T; Q†
: (2.10.1)

Let ˛T W GS;T 	 TE;QS;T!G00
QS

denote the natural quotient morphism. We have the
following diagram:

ShKp .GS;T/ ShKp .GS;T/	Zpg ShKE;p .TE;QS;T/
pr1

pr2

˛T

ShK00p .G
00
QS
/

ShKE;p .TE;QS;T/

(2.10.2)

By our definition, the tensor product representation �.k;w/S;T ˝ �w
E; Q†

of GS;T 	

TE;QS;T factors through G00
QS
. This defines a Q`-lisse sheaf L

00.k;w/

QS; Q†
on ShK00p .G

00
QS
/ such

that we have a canonical isomorphism:

˛�T.L
00.k;w/

QS; Q†
/Š pr�1.L

.k;w/
S;T /˝ pr�2.L

w

E;QS;T; Q†
/: (2.10.3)
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Put D D BS ˝F E . Then our choice of E=F in Section 2.4 implies that D Š
M2�2.E/, which explains the omission of S in our notation. We fix such an isomor-
phism and then take a maximal order OD ŠM2�2.OE /. Recall that there exists a ver-
sal family of Abelian varieties of dimension 4g a W A00

QS
D A00

QS;K00p
! ShK00p .G

00
QS
/ (see

[33, Section 3.20]) equipped with a natural action by OD . Here, “versal” means that
the Kodaira–Spencer map for the family A00

QS
is an isomorphism. Using A00

QS
, L
00.k;w/

QS; Q†

can be reinterpreted as follows. Put H`.A00QS/ D R
1a�.Q`/, which is an `-adic local

system on ShK00p .G
00
QS
/ equipped with an induced action by M2�2.E/. For each Q� 2

†E;1, let H`.A00QS/Q� denote the direct summand of H`.A00QS/ on which E acts via

E
Q�
�! C

�`
�! Q`. Let e D . 1 00 0 / 2 M2�2.E/ denote the idempotent element. We put

H`.A00QS/
ı
Q�
D e �H`.A00QS/Q� , which is an `-adic local system on ShK00p .G

00
QS
/ of rank 2. We

have a canonical decomposition:

H`.A
00
QS
/D

M
Q�2 Q†

�
H`.A

00
QS
/Q� ˚H`.A

00
QS
/
Q�

�
D
M
Q�2 Q†

�
H`.A

00
QS
/
ı;˚2
Q�
˚H`.A

00
QS
/
ı;˚2

Q�

�
:

Using this, we obtain the following explicit description:

L
00.k;w/

QS; Q†
D
O
Q�2 Q†

�
Symk��2H`.A

00
QS
/ıQ� ˝

�
^2H`.A

00
QS
/ıQ�
�w�k�

2
�
: (2.10.4)

Remark 2.11
We will introduce a general construction below to relate the unitary Shimura varieties
and the quaternionic Shimura varieties. We point out beforehand that the entire con-
struction is modeled on the following question: By Hilbert’s Theorem 90, we have an
exact sequence

1! F �;clnA
1;�
F =O�p !E�;clnA

1;�
E =O�Ep

z 7!z= Nz
����!E1nA

1;1
E =O

NE=FD1

Ep
! 1:

The construction involves picking a preimage of some element in the target of the
surjective map above. In general, there is no canonical choice of this preimage, and
all choices form a torsor under the group F �;clnA

1;�
F =O�p . In the very special case

when the element in the target of the surjective map is trivial, one can have a canonical
choice of its preimage, namely, the identity element 1.

Construction 2.12
We now discuss a very important process that allows us to transfer certain corre-
spondences on the unitary Shimura varieties ShK00p .G

00
QS
/ to the quaternionic Shimura

varieties ShKp .GS;T/. Throughout this section we assume that we are given two sets
of data— QS;T and QS0;T0 as above—and that they satisfy the following conditions,
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#S1 � 2#TD #S01 � 2#T0; �QS1 D�QS01 if p splits in E=F; (2.12.1)

and we assume that the finite places contained in S and those in S0 are the same. By
(2.4.2), this implies that the Shimura varieties ShKE;p .TE;QS;T/ and ShKE;p .TE;QS0;T0/
are isomorphic.

Suppose now that we are given a correspondence between the two unitary Shi-
mura varieties

ShK00p .G
00
QS
/
� 00

 ��X
�00

�! ShK00p .G
00
QS0
/; (2.12.2)

where the group G 00
QS;p
Š G 00

QS0;p
acts on all three spaces and the morphisms are equi-

variant for the actions. We further assume that the fibers of � 00 are geometrically
connected.

Step I: We will complete the correspondence above into the commutative diagram

ShKp .GS;T/�Spec.F
pd

/ ShKE;p .TE;QS;T/

˛T

Y

�� ��

˛00T

ShKp .GS0;T0 /�Spec.F
pd

/ ShKE;p .TE;QS0;T0 /

˛0
T0

ShK00p .G
00
QS
/ X

�00 �00

ShK00p .G
00
QS0
/

(2.12.3)

so that Y is defined as the Cartesian product of the left square, and the top line is
equivariant for the actions of GS;T;p 	A

1;�
E Š GS0;T0;p 	A

1;�
E . For this, it suffices to

lift the morphism �00 to ��. We point out that both ˛T and ˛0T0 map every geometrically
connected component isomorphically to a geometrically connected component of the
target.

We now separate the discussion (but not in an essential way) depending on
whether Sc1 is empty.
� When Sc1 ¤ ;, let Y ı denote the preimage .��/�1.ShKp .GS;T/

ı
Fp
	 ¹1º/,

where 1 denotes the neutral point, namely, the image of 1 2 A
1;�
E in

ShKE;p .TE;QS;T/Fp . By our assumption on � 00, Y ı is a geometrically con-
nected component of Y . Its image under �00 ı ˛00T lies in a geometric con-
nected component of ShK00p .G

00
QS0
/, say ShK00p .G

00
QS0
/�
Fp

, corresponding to some

.x; s/ 2 .F
�;cl
C nA

1;�
F =O�p / 	 .E

1nA
1;1
E =O

NE=FD1

Ep
/ via the map (2.5.1). By

Hilbert’s Theorem 90, there exists t 2E�;clnA
1;�
E =O�Ep

with t=Nt D s, and the

choice of t is unique up to F �;clnA
1;�
F =O�p . We claim that giving a .GS;T;p 	

A
1;�
E /-equivariant map �� as above is equivalent to choosing such a t . Indeed,

let ShKp .GS0;T0/
�
Fp

be the connected component of ShKp .GS0;T0/Fp corre-

sponding to y D xNE=F .t/
�1 via the map (2.1.1). Then ˛0T0 sends
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ShKp .GS0;T0/
�
Fp
	 ¹tº isomorphically to ShK00p .G

00
QS0
/�
Fp

. Note that Y (resp.,

ShKp .GS0;T0/ 	Spec.F
pd
/ ShKE;p .TE;QS0;T0/) can be recovered from Y ı (resp.,

ShKp .GS0;T0/
�

Fp
	 ¹tº for any t 2E�;clnA

1;�
E =O�Ep

11) by applying �	EGS;T

.GS;T;p 	E
�;clnA

1;�
E =O�Ep

/. Here, recall that EGS;T is isomorphic to EG00
QS

by

Proposition 2.7(1), and it embeds into the product GS;T;p 	E
�;clnA

1;�
E =O�Ep

as follows: the morphism from EGS;T to GS;T;p is the natural embedding and
that to E�;clnA

1;�
E =O�Ep

is given by first projecting to the Galois factor and
then applying the Shimura reciprocity map as specified in Section 2.4(i) and
(ii). Therefore, once such a t is chosen, we can define �� as the morphism
obtained by applying �	EGS;T

.GS;T;p 	E
�;clnA

1;�
E =O�Ep

/ to the composite
map

Y ı
�00ı˛00T
����! ShK00p .G

00
QS0
/�
Fp

�
�! ShKp .GS0;T0/

�
Fp
	 ¹tº;

where the last isomorphism is the inverse of the restriction of ˛0T0 to
ShKp .GS0;T0/

�
Fp
	 ¹tº. Conversely, it is also clear that such a t is determined

by ��.
� When Sc1 D ;, a slight rewording is needed. Let Xı denote the preimage

under � 00 of the Fp-point 1 2 ShK00p .G
00
QS
/Fp . So it is mapped under �00 to a

point g00 2 ShK00p .G
00
QS
/Fp . Let Y ı denote the preimage under �� of the Fp-

point .1;1/ 2 ShKp .GS;T/Fp 	ShKE;p .TE;QS;T/Fp . Then the map �� must take

Y ı to an Fp-point .x; t/ in ˛0�1T0 .g
00/, and, conversely, �� is determined by

this choice of such a point by the same argument as above using the fact that
�� is equivariant for the .GS;T;p 	A

1;�
E /-action.

In summary, one can always define such a lift ��, depending on a choice of a
certain element t 2 E�;clnA

1;�
E =O�Ep

which is unique up to multiplication by an

element of F �;clnA
1;�
F =O�p . In this case, we say that �� is constructed with shift

t . In general, we do not have a canonical choice for t , and hence neither for ��.
However, in the special case when ShK00p .G

00
QS0
/�
Fp

is the neutral connected component

ShK00p .G
00
QS0
/ı
Fp

in the former case and g00 D 1 in the latter case, there is a canonical

choice of such a lift, namely, the neutral connected component ShKp .GS0;T0/
ı
Fp
	 ¹1º

in the former case and .1;1/ in the latter case. So under this additional hypothesis, we
do have a canonical map ��.

Step II: Suppose that we have constructed the diagram (2.12.3) with shift t (which
is canonical up to an element of F �;clnA

1;�
F =O�p ), and we want to obtain a correspon-

dence

11We point out that E�;clnA1;�E =O�Ep
is canonically isomorphic to O

�;cl
E;.p/

nA
1;p;�

E .
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ShKp .GS;T/F
p2g

�
 �Z

�
�! ShKp .GS0;T0/F

p2g
: (2.12.4)

For this, it suffices to construct (2.12.4) over Fp which carries an equivariant action of
GalF

p2g
. Starting with the top row of (2.12.3), composing �� with multiplication by

t�1 (note that ShKE;p .TE;QS0;T0/ is in fact a group scheme), we get a correspondence12

ShKp .GS;T/Fp 	 ShKE;p .TE;QS;T/Fp

��

 �� Y
t�1ı��

�����! ShKp .GS0;T0/Fp 	 ShKE;p .TE;QS0;T0/Fp ; (2.12.5)

which respects the projection to ShKE;p .TE;QS;T/Fp
	
Š ShKE;p .TE;QS0;T0/Fp . Taking the

fiber of (2.12.5) over 1 of ShKE;p .TE;QS;T/Fp would give (2.12.4) (base-changed to

Fp), but to descend we need to modify the Galois action above (so that the Galois
action preserves the fiber over 1) as follows: we change the action of Frobp2g on
(2.12.5) by further composing with a Hecke action given by 1 	 .p

F
/2#T�#S1 2

G.A1/	A
1;�
E if p is inert inE=F , and 1	.p

F
/2#T�#S1.q/��QS1 if p splits inE=F .

This way, we have constructed a new Galois action on the factor ShKE;p .TE;QS;T/Fp .
By usual Galois descent, we get (2.12.4).

Step III: We will obtain a sheaf version of the construction above; namely, if in
addition, we are given an isomorphism of sheaves

�00] W � 00�.L
00.k;w/

QS; Q†
/
Š
�! �00�.L

00.k;w/

QS0; Q†
/; (2.12.6)

then we will construct an isomorphism of sheaves

�] W ��.L
.k;w/
S;T /

Š
�! ��.L

.k;w/

S0;T0 /; (2.12.7)

which again depends on the choice of t in Step I. First, pulling back (2.12.6) along
˛00T in the commutative diagram (2.12.3), we get

˛00�T .�
00]/ W .��/�

�
˛�T.L

00.k;w/

QS; Q†
/
� Š
�! .��/�

�
˛0�T0.L

00.k;w/

QS0; Q†
/
�
:

Taking into account the isomorphism (2.10.3), we have

˛00�T .�
00]/ W .��/�

�
pr�1.L

.k;w/
S;T /˝ pr�2.L

w

E;QS;T; Q†
/
�

Š
�! .��/�

�
pr0�1 .L

.k;w/

S0;T0 /˝ pr0�2 .L
w

E;QS0;T0; Q†
/
�
:

12Once again, this correspondence depends on the choice of t , which is unique up to multiplication by an element
of O�;cl

F;.p/
nA
�;1;p

F .
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Composing this with the action of t�1, we get an isomorphism

.��/�
�
pr�1.L

.k;w/
S;T /˝ pr�2.L

w

E;QS;T; Q†
/
�

Š
�! .t�1 ı ��/�

�
pr0�1 .L

.k;w/

S0;T0 /˝ pr0�2 .L
w

E;QS0;T0; Q†
/
�
:

Since we may also identify the sheaves Lw

E;QS;T; Q†
with Lw

E;QS0;T0; Q†
using (2.10.1), we

may restrict the morphism above to the fiber over the neutral point 1 and get a mor-
phism of sheaves (2.12.7) that we want over Fp . (Once again, this morphism is unique
up to multiplication with an element of F �;clnA

1;�
F =O�p .) To descend it back down

to Fp2g , we modify the action of the Frobenius by composing it with a central Hecke
action as in Step II above. This concludes the needed construction.

We point out that the the above contruction depends on the choice of the element
t 2 E�;clnA

1;�
E =O�E;p that appeared in Step I, and such t is determined only up to

multiplication by an element of F �;clnA
1;�
F =O�p . We call � the morphism associated

to �00 with shift t . When ShK00p .G
00
QS
/�
Fp
D ShK00p .G

00
QS
/ı
Fp

in Step I, we can take t D 1

and we get a canonically determined � with shift 1.
Finally, let us mention where the choice made in Step I is specified later in this

article. In Section 3.8, we invoke this construction to define the Goren–Oort cycles;
this is where the choice will be fixed. Moreover, this choice will retroactively deter-
mine the choice we make when applying this construction to define the link mor-
phisms in Section 2.19, whenever that section is quoted. The shift will allow us to
keep track of the choices we made.

Remark 2.13
Suppose that we are given two correspondences as in Construction 2.12. Namely, we
have
� subsets of QSi , Ti for i D 1; 2; 3 such that #Si;1 � 2#Ti , the subset of Si of

finite places, and �QSi;1 are independent of i (if p splits in E=F ),
� two G 00

QSi ;p
-equivariant correspondences between Shimura varieties

ShK00p .G
00
QSi
/
� 00
i
 ��Xi

�00
i
�! ShK00p .G

00
QSiC1

/

with i D 1; 2 such that � 00i is a fiber bundle with geometrically connected
fibers.

Then we can compose these two correspondences to get a correspondence

ShK00p .G
00
QS1
/
� 00
3
 ��X3 WDX1 	�00

1
;Sh
K00p

.G00
QS2
/;� 00
2
X2

�00
3
�! ShK00p .G

00
QS3
/:

Thus we may apply Construction 2.12 to get correspondences .�1; �1/ and .�2; �2/
on the quaternionic Shimura varieties
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X3
�3 �3

X1�1 �1 X2�2 �2

ShKp .GS1;T1/ ShKp .GS2;T2/ ShKp .GS3;T3/;

(2.13.1)

with shifts t1; t2. Then their composition .�3; �3/D .�2; �2/ ı .�1; �1/ is the corre-
spondence of quaternionic Shimura varieties associated to .� 003 ; �

00
3/ with shift t1t2.

Conversely, if we apply Construction 2.12 to .� 00i ; �
00
i / to get three correspondences

.�i ; �i / for i D 1; 2; 3 such that .�3; �3/D .�2; �2/ ı .�1; �1/, then their shifts satisfy
the equality t3 D t1t2.

2.14. Hecke operators at p
In this section, we consider the case Sc1 D;, namely, when the Shimura varieties are
discrete. We want to relate the Hecke operators at p for the unitary and quaternionic
Shimura varieties in a manner similar to that above. In this section, we assume that p
splits in E=F , which is the case we will encounter later.

Let Iwp �GL2.Op/ denote the subgroup consisting of matrices which are upper
triangular when modulo p. The discussion in this section is designed to cover this
case and give an integral canonical model ShIwp .GS;T/ of the Shimura variety with
Iwahori level structure. We denote by Tp the Hecke correspondence given by the
following diagram:

ShIwp .GS;T/

�2�1

ShKp .GS;T/ ShKp .GS;T/;

(2.14.1)

where �1 is the natural projection and �2 sends the double coset of x 2 G.A1/ to
that of x.p

�1
F

0

0 1
/.

For the unitary Shimura variety, we have G00.Qp/Š GL2.Fp/	F �p .E
�
q 	E

�
Nq /,

and we use Iw00p to denote the subgroup Iwp 	O�p .O
�
Eq
	O�E Nq/. Similarly, we have

an integral model ShIw00p .G
00
QS
/ of the unitary Shimura variety with this Iwahori level

structure. The element � 00q D ..
p�1 0
0 1

/; .1;p// 2G00.Qp/ gives rise to a Hecke opera-
tor Tq corresponding to the double coset K 00p�

00
qK
00
p . Geometrically, it is given by the

diagram
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ShIw00p .G
00
QS
/

� 00
2

� 00
1

ShK00p .G
00
QS
/ ShK00p .G

00
QS
/

(2.14.2)

where � 001 is the natural projection and � 002 sends the double coset of x 2G00.A1/ to
that of x� 00q .

In language similar to the preceding section (except that we cannot quote it
directly because the morphism � 00 therein would not have geometrically connected
fibers), we may phrase the relation between the Hecke correspondences Tp and Tq
in terms of the following commutative diagram (with Tq vertical on the left and Tp
vertical on the right):

ShK00p .G
00
QS
/ ShKp .GS;T/	 ShKE;p .TE;QS;T/

˛T

ShKp .GS;T/
fiber over 1

ShIw00p
.G00
QS
/

� 00
1

� 00
2

ShIwp .GS;T/	 ShKE;p .TE;QS;T/

natural

˛T

x 7!x..
p�1
F

0

0 1
/;$ Nq/

ShIwp .GS;T/
fiber over 1

�1

�2ShK00p .G
00
QS
/ ShKp .GS;T/	 ShKE;p .TE;QS;T/

˛T

x 7!x.1;$�1
Nq
/

ShKp .GS;T/	 ShKE;p .TE;QS;T/ ShKp .GS;T/
fiber over 1

So we may view Tp as the correspondence associated to Tq in a similar fashion to
Section 2.12, with shift $Nq 2E�;clnA

1;�
E =O�Ep

.

2.15. Links
We recall briefly the notion of links introduced in [33, Section 7]. We put gD ŒF WQ�
points aligned equidistantly on a section of a vertical cylinder, each point correspond-
ing to an Archimedean place in †1 (also identified with a p-adic embedding of F
via �p W C ' Qp) so that the Frobenius action is equivalent to shifting the points in
one direction. For a subset S of places of F as above, we label places in S1 by a
plus sign and places in Sc1 by a node. We call the entire picture a band correspond-
ing to S. We often draw the picture in the 2-dimensional xy-plane by thinking of the
x-coordinate modulo g. We present the points �0; : : : ; �g�1 on the x-axis with coor-
dinates x D 0; : : : ; g � 1, such that the Frobenius shifts the points to the right by 1,
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and shifts �g�1 back to �0 (by first shifting to x D g and thinking of the x-coordinate
modulo g). For example, if F has degree 6 over Q and S1 D ¹�1; �3; �4º, then we
draw the band as .

Suppose that S0 is another set of places of F with even cardinality such that it
contains exactly the same finite places of F as S and satisfies #S1 D #S01. We put
the band for S above the band for S0 on the same cylinder. In the 2-dimensional pic-
ture, we draw the band for S on the line y D 1 and the band for S0 on the line y D�1.
For each of the nodes of S, we draw a curve starting from it and go monotonically
downward, linking to a node of S0 (and ignore the plus signs) such that all the curves
do not intersect with each other. Such a graph is called a link � W S! S0. Two links
are considered the same if the curves can be continuously deformed to each other
while keeping all curves from intersecting. We say that a curve is turning to the left
(resp., right) if it can be deformed into a smooth curve which has positive (resp.,
negative) tangent slopes in the 2-dimensional picture. The displacement of a curve
in � is the number of points it travels to the right, which is the difference between
the x-coordinates of the ending and starting points of the curve (adding an appropri-
ate multiple of g according to the times the curve wraps around the cylinder). The
displacement is negative if the curve turns to the left. The total displacement v.�/ is
the sum of displacements of all curves. For example, if gD 5 and S1 D ¹�1; �3º and
S01 D ¹�2; �4º, then the link given by

�D (2.15.1)

has total displacement v.�/ D 3 C 3 C 2 D 8. For another example, the action of
Frobenius � twists the band and gives rise to a link � W S! �.S/, called the Frobenius
link, for which every curve is turning to the right with displacement 1. Here �.S/ is
the set of places containing the same finite places as S, but �.S/1 D �.S1/. Its total
displacement is v.�/D d D #Sc1.

For a link � W S! S0, we use ��1 W S0! S to denote the link obtained by reflect-
ing the picture about the equator of the cylinder. For two links � W S! S0 and �0 W S0!
S00, we have a natural composition of links �0 ı � W S! S00 given by putting the pic-
ture of � on top of the picture of �0 and joining the nodes corresponding to S0. It is
obvious that v.��1/D�v.�/ and v.�0 ı �/D v.�0/C v.�/. When discussing the rel-
ative positions of two nodes of the band associated to S, it is convenient to use the
following.

Notation 2.16
For � 2 Sc1, let n� be the minimal positive integer such that ��n� � 2 Sc1. We put
�� WD ��n� � . We use �C to denote the place in Sc1 such that .�C/� D � .
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Example 2.17
A link from S to itself must be an integer power of the fundamental link �S (i.e., to
link each � to �C by shifting to the right with displacement n�C ). An example would

be The total displacement of a fundamental link is exactly v.�S/D g D
ŒF WQ�.

Remark 2.18
As pointed out to us by one of the anonymous referees, one can give an abstract
definition of links as follows. Let bSc1 denote the preimage of Sc1 under the projec-
tion map Z! Z=gZ, and (for counting purpose) we view Sc1 as a subset ofbSc1 by
identifying it with its lift in ¹0; : : : ; g � 1º. Then a link from S to S0 is a bijective
and strictly increasing function � W bSc1!bS0c1 (and it would follow automatically that
�.x C g/D �.x/C g). The composition of links is the same as the composition of
such functions. A link is turning to the left (resp., right) if and only if �.x/� x (resp.,
�.x/� x) for every x 2bSc1. The displacement of � is

P
x2Sc1

�.x/� x.

2.19. Link morphisms, I
Let S and S0 be two even subsets of places of F consisting of the same finite places
and #S1 D #S01. Let � W S! S0 be a link. We say that � is a right-turning link if all
its curves (if there are any) are turning to the right. We allow the case S1 D†1 (so
that there are no curves in the link � at all), in which case we say that � is the trivial
link. In this section, we assume that � is right-turning. For each node � 2 Sc1, we use
m.�/ to denote the displacement of the curve connected to � in �. Let QS1 and QS01 be
(any) lifts of S1 and S01 as in Section 2.4. We have two unitary Shimura varieties,
ShK00p .G

00
QS
/ and ShK00p .G

00
QS0
/, as defined in Section 2.5.

We now recall the definition of the link morphism on ShK00p .G
00
QS
/ associated to

the right-turning link � as in [33, Definition 7.5]. Let n be an integer, which is always
taken to be 0 if p is inert in E . A link morphism of indentation degree n associated to
� on ShK00p .G

00
QS
/ is a pair .�00

.n/;]
; �
00]

.n/
/, where

(1) �00
.n/;]
W ShK00p .G

00
QS
/ ! ShK00p .G

00
QS0
/ is a morphism of Shimura varieties that

induces a bijection on geometric points;
(2) �

00]

.n/
W A00
QS
! �00�

.n/;]
.A00
QS0
/ is a p-quasi-isogeny of Abelian varieties compatible

with the OD-actions, the polarizations, and the tame level structures;
(3) for each geometric point x of ShK00p .G

00
QS
/ with image x0 D �00

.n/;]
.x/, if we

write QD.A00
QS;x
/Q� for the Q� -component of the covariant Dieudonné module of

A00
QS;x

for each Q� 2 †E;1, then there exists, for each Q� 2 ScE;1, some tQ� 2 Z
independent of the point x such that

�
0]

.n/;�

�
F
m.�/

es;A00
QS;x

�
QD.A00QS;x/Q�

��
D pt Q� QD.A00QS0;x0/
m.�/ Q� ;
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where Fm.�/
es;A00
QS;x
W QD.A00

QS;x
/Q� ! QD.A00

QS;x
/
m.�/ Q� is the m.�/th iteration of the

essential Frobenius for A00
QS;x

defined in [33, Section 4.2]; and
(4) when p splits as qNq in E , the degree of the quasi-isogeny

�
00]

.n/;q
W A00QSŒq

1�! �00�.n/;]
�
A00QS0 Œq

1�
�

of the q-divisible groups is p2n.
When the indentation degree n is clear by the context, we write simply .�]; �]/ for

.�.n/;]; �
]

.n/
/.

For our purpose, the most important property we need is the following.

LEMMA 2.20 ([33, Proposition 7.8])
Let � W S! S0 be a link as above. Then there exists at most one link morphism
.�00
.n/;]

; �
00]

.n/
/ with indentation degree n from ShK00.G00QS/ to ShK00.G00QS0/.

Example 2.21
Let S and QS be as in the preceding section. Let �2 W S! �2.S/ be the second iteration
of the Frobenius link on S. Put �2 QS D .�2.S/; �2. QS1//. In [33, Section 3.22], we
introduced natural morphisms called the twisted (partial) Frobenius,

F
00
p2
W ShK00p .G

00
QS
/! ShK00p .G

00

2 QS
/;

together with a quasi-isogeny of Abelian varieties,

�00
p2
W A00QS! .F00

p2
/�A00


2 QS
:

Such a morphism is characterized by the fact that the morphism p�00
p2

is given by

the p2-relative Frobenius. Then, in the language of the link morphism introduced
above, .F00

p2
; �00

p2
/ is the link morphism on ShK00p .G

00
QS
/ associated to the link �D �2 of

indentation degree 0 if p is inert in E=F and of indentation degree 2�QS1 if p splits
in E=F (see [33, Example 7.7(1)]).

Example 2.22
When p splits into qNq in E=F , consider the Hecke operator Sq given by multipli-
cation by 1 	 q�1 2 G00.A1/ D G.A1/ 	A1;�

F
A
1;�
E on the unitary Shimura vari-

ety. We start with the versal family of Abelian varieties A00
QS

on ShK00p .G
00
QS
/, putting

B WD A00
QS
˝OE Nq � q

�1 equipped with the induced action by OD . Let 
q W A00
QS
! B

denote the natural p-quasi-isogeny induced by OE ! Nqq
�1. We equip B with the

natural prime-to-p level structure compatible with 
q. The polarization �A00
QS

on A00
QS

naturally induces a polarization �B on B such that �A00
QS
D 
_q ı �B ı 
q. There is a

unique morphism,
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Sq W ShK00p .G
00
QS
/! ShK00p .G

00
QS
/;

which, together with 
q, gives a link morphism for the trivial link id W S! S of inden-
tation degree 2g. If we apply Construction 2.12 to the correspondence

ShK00p .G
00
QS
/ ShK00p .G

00
QS
/id

Sq

ShK00p .G
00
QS
/;

then we can lift it to an endomorphism of ShKp .GS;T/	ShKE;p .TQS;T/ given by multi-
plication by ..p

F
/�1;$�2Nq / 2G.A1/	A1;�

F
A
1;�
E . So the endomorphism Sp given

by multiplication by the central element .p
F
/�1 may be viewed as the morphism

on the quaternionic Shimura variety obtained by applying Construction 2.12 to the
morphism �00 D Sq with shift $2

Nq .

2.23. Normalizations of link morphisms
Keep the notation of Section 2.19 and assume moreover that
� the link morphism .�00

.n/;]
; �
00]

.n/
/ on ShK00p .G

00
QS
/ exists,

� �QS1 D�QS01 if p splits in E=F , and
� we are given two subsets T� S1 and T0 � S01 such that #TD #T0.

Let .k;w/ 2 Z†1	Z be a regular multiweight as in Section 2.10, and let L
00.k;w/

QS; Q†
and

L
00.k;w/

QS0; Q†
be the corresponding `-adic étale local systems on ShK00p .G

00
QS
/ and

ShK00p .G
00
QS0
/, respectively. Then the p-quasi-isogeny �00]

.n/
induces an isomorphism of

étale local systems

L
00.k;w/

QS; Q†

Š
�! �00�.n/;]L

00.k;w/

QS0; Q†
:

Applying Construction 2.12 to the link morphism .�00
.n/;]

; �
00]

.n/
/ (with X D ShK00p .G

00
QS
/

and � 00 in (2.12.2) equal to the identity), we get a pair of morphisms,

�.n/;] W ShKp .GS;T/! ShKp .GS0;T0/ and �
]

.n/
W L

.k;w/
S;T

Š
�! ��.n/;].L

.k;w/

S0;T0 /;

depending on some t 2 E�;clnA
1;�
E =O�E;p (See the end of Section 2.12). In the

remainder of this article, we call .�.n/;]; �
]

.n/
/ (or simply �.n/;] for short) the link mor-

phism with indentation degree n on the quaternionic Shimura variety ShKp .GS;T/

with shift t . Note that by Lemma 2.20 and Construction 2.12, for a fixed lifting QS
of S, an indentation degree n, and a shift t , there exists at most one link morphism
.�.n/;]; �

]

.n/
/ on ShK.GS;T/.

The link morphism .�.n/;]; �
]

.n/
/ induces a homomorphism of the cohomology

groups,
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Q�?.n/ W H
?
et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
�!H?

et

�
ShKp .GS;T/Fp ; �

�
.n/;].L

.k;w/

S0;T0 /
�

.�
]

.n/
/�1

�����!H?
et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T

�
;

which is equivariant under the Hecke action by G.A1/ and the Galois action by
GalF

p2g
.13 We fix a square root p1=2 2Q` of p. We put

�?.n/ D
1

pv.�/=2
Q�?.n/; (2.23.1)

and we call it the normalized link morphism on the cohomology groups of quater-
nionic Shimura varieties associated to � with indentation degree n and shift t . This
normalization will be justified in Lemma 2.29(2). When the link morphism �00

.n/;]
W

ShK00p .G
00
QS
/! ShK00p .G

00
QS0
/ preserves the neutral connected components, t D 1 is a

canonical choice, and in that case, �?
.n/

is canonically defined.
Let �1 W S1! S2 and �2 W S2! S3 be two links with all curves turning to the

right, satisfying the conditions above; that is, all Si have the same set of finite places,
#S1;1 D #S2;1 D #S3;1, #T1 D #T2 D #T3, and �QS1;1 D �QS2;1 D �QS3;1 if p

splits in E=F . Suppose then that there are link morphisms .�00
i;.ni /;]

; �
00]

i;.ni /
/ for i D

1; 2 on unitary Shimura varieties with indentation degree ni . Then the composed mor-
phism

�0012;.n12/;] W ShK00p .G
00
QS1
/
�00
1;.n1/;]

�����! ShK00p .G
00
QS2
/
�00
2;.n2/;]

�����! ShK00p .G
00
QS3
/;

together with the composed quasi-isogeny

�
00]

12;.n12/
W A00QS1

�
00]

1;.n1/

����! �00�1;.n1/;].A
00
QS2
/
�00�
1;.n1/;]

.�
00]

2;.n2/
/

�����������! �00�1;.n1/;]�
00�
2;.n2/;]

.A00QS3/;

gives the (unique) link morphism on the unitary Shimura varieties with indentation
degree n12 WD n1 C n2 associated to the composed link �00

12;.n12/
WD �00

2;.n2/
ı �00

1;.n1/
.

From this, we get a link morphism of quaternionic Shimura varieties of indentation
degree n12,

�12;.n12/;] W ShKp .GS1;T1/
�1;.n1/;]
�����! ShKp .GS2;T2/

�2;.n2/;]
�����! ShKp .GS3;T3/;

such that the shift of �12;.n12/;] is the product of the shifts of �1;.n1/;] and �2;.n2/;].
Moreover, we have �?

12;.n12/
D �?

1;.n1/
ı �?

2;.n2/
on the cohomology groups of quater-

nionic Shimura varieties.

13Here, G.A1/ denotes the common finite adelic points of GS;T and GS0;T0 according to Notation 2.2.
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2.24. Automorphic representations
Following [34, Section 5.10], for a regular multiweight .k;w/ we use A.k;w/ to
denote the set of cuspidal automorphic representations � of GL2.AF / such that
� the Archimedean component �� for each � 2 †1 is a holomorphic discrete

series of weight k� � 2 with central character x 7! xw�2,
� and the p-component �p is spherical.
We write �1;p to denote the prime-to-p finite part of � .

For � 2A.k;w/, if v is a finite place of F such that the v-component �v is spher-

ical (i.e., �
GL2.OFv /
v ¤ 0), then we write Tv and Sv for the Hecke operators given

by the double cosets GL2.OFv /.
$�1v 0
0 1

/GL2.OFv / and GL2.OFv /$
�1
v GL2.OFv /,

respectively. We write Tv.�/ and Sv.�/ for the eigenvalues for the actions of Tv and

Sv on �
GL2.OFv /
v . We denote by �� W GalF ! GL2.Q`/ the Galois representation

attached to � normalized so that if v is a finite place of F at which � is spherical,
then the action of a geometric Frobenius at v has trace equal to Tv.�/. Let ��;p be
the restriction of �� to GalFpg (note that �� is unramified at p since �p is spherical).
The characteristic polynomial of ��;p.Frobpg / is given by

X2 � Tp.�/X C Sp.�/p
g : (2.24.1)

We say that a cuspidal automorphic representation � 2 A.k;w/ appears in the
cohomology of the Shimura variety ShK.GS;T/ if, for each finite place v of S, the
local component �v of � is square-integrable so that � is the image (under the
Jacquet–Langlands correspondence) of a unique automorphic representation �BS of
GS;T.A/ D .BS ˝Q A/�, and, moreover, .�1BS

/K is nonzero. When � appears in
ShK.GS;T/, the actions of Hecke operators Tv can be expressed as Hecke correspon-

dence on the étale cohomology Hd
et .ShK.GS;T/Fp ;L

.k;w/
S;T /. Moreover, the action of

Sp is exactly as given in Example 2.22; when S1 D†1, the action of Tp is exactly
as given in Section 2.14.

Notation 2.25
For � 2A.k;w/ and a Q`ŒG.A

1;p/�-module M , we write

MŒ�� WDHomQ`ŒG.A
1;p/�.�

1;p
BS

;M/

for its �-isotypical component. By the strong multiplicity 1 theorem for quaternion
algebras, �BS is determined by �1;pBS

; this justifies the notation for MŒ��. There is
also a finite version, as follows. Let Kp � G.A1;p/ be an open compact subgroup
so that .�1;pBS

/K
p

is a nonzero irreducible module over the prime-to-p Hecke alge-

bra HKp WD Q`ŒK
pnG.A1;p/=Kp�. Then �BS is determined by the HKp -module

.�
1;p
BS

/K
p

. For an HKp -module M , we have

MŒ�� WDHomHKp

�
.�
1;p
BS

/K
p

;M
�
:
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PROPOSITION 2.26
Let � 2A.k;w/ be a cuspidal automorphic representation appearing in the cohomol-
ogy of the Shimura variety ShK.GS;T/. Then we have a canonical isomorphism

H i
et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
Œ��Fr-s:s:

D

´
�˝d�;p ˝ Œdet.��;p/.1/�˝#T if i D d;

0 if i ¤ d;
(2.26.1)

equivariant under the action of the geometric Frobenius Frobpg . Here, the super-
script Fr-s.s. means taking the semisimplification as a Frobpg -module. In particular,
if ˛� and ˇ� are the two (generalized) eigenvalues of ��;p.Frobpg /, then the (gen-

eralized) eigenvalues of the action of Frobp2g on H i
et.ShK.GS;T/Fp ;L

.k;w/
S;T /Œ�� are

p�2g#T˛
2.iC#T/
� ˇ

2.d�iC#T/
� with multiplicity

�
d
i

�
for 0� i � d .

Proof
The first part of the proposition is well known to experts. We defer its proof to the
Appendix (see Proposition A.3). The explicit description of the action of Frobp2g is
straightforward.

PROPOSITION 2.27
Assume that d D #Sc1 ¤ 0. Then the following statements hold.
(1) The 2gth iteration of the Frobenius link �2g W S! S coincides with the 2d -

fold self-composition of the fundamental link �S introduced in Example 2.17.
(2) The link morphism on ShK00p .G

00
QS
/ with indentation degree 0 associated to

�2g D �2dS exists, and it is given by
(a) g-fold self-composition .F00

p2
/g if p is inert in E=F ; and

(b) .F00
p2
/g � S

��QS1
q if p splits in E=F , where Sq is defined as in Exam-

ple 2.22.
Moreover, this link morphism preserves the neutral geometrically connected
component ShK00p .G

00
QS
/ı
Fp

and hence induces a canonical link morphism

.�2dS;.0/;]; �
2d;]

S;.0// on the quaternionic Shimura variety ShKp .GS;T/ with shift
1 for any fixed subset T� S1.

(3) Let

.�2dS /?.0/ W H
d
et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
!Hd

et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
be the normalized link morphism (2.23.1) induced by .�2dS;.0/;]; �

2d;]

S;.0//. Then
we have an equality of operators on cohomology groups,

.�2dS /?.0/ D p
�dg � Frobp2g ı S

�d�2#T
p ; (2.27.1)
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where Sp is the Hecke operator given by the central element p�1
F
2 G.A1/.

In particular, for each � 2A.k;w/ and each integer i with 0� i � d , the (gen-

eralized) eigenspace of Frobp2g onHd
et .ShK.GS;T/Fp ;L

.k;w/
S;T /Œ�� with eigen-

value p�2g#T˛
2.iC#T/
� ˇ

2.d�iC#T/
� is the same as the (generalized) eigenspace

of .�2dS /?
.0/

with eigenvalue .˛�=ˇ�/2i�d .

Proof
Item (1) is evident. For item (2), we first check that the maps given by (a) and (b)
are link morphisms with indentation degree 0 associated to the link �2dS . This fol-
lows easily from Examples 2.21 and 2.22. By the uniqueness of link morphisms
(Lemma 2.20), they are the link morphisms we sought.

We next show that the link morphism in the unitary case preserves the neutral geo-
metrically connected component ShK00p .G

00
QS
/ı
Fp

. This is a direct computation using the

Shimura reciprocity map (in Section 2.5), which we spell out now. Denote byˆ2g the
Frobenius endomorphism of ShK00p .G

00
QS
/ relative to Fp2g . Then .F00

p2
/g is nothing but

the composition of ˆ2g with the Hecke operator S�gp , where Sp is the Hecke corre-
spondence given by the central element .p�1

F
; 1/ 2G.A1/	A1;�

F
A
1;�
E ŠG00.A1/.

Recall that the set of geometrically connected components of ShK00p .G
00
QS
/ is given by

�0
�
ShK00p .G

00
QS
/Fp

�
Š .F

�;cl
C nA

1;�
F =O�p /	 .E

1nA1E=O
NE=FD1

Ep
/:

The action of ˆ2g on �0.ShK00p .G
00
QS
/Fp / coincides with the arithmetic Frobenius

Frob�1
p2g
2 GalF

p2g
, which is computed already by (2.5.2). We now list the actions

of these operators on the geometrically connected components.

Operator When p splits When p is inert
ˆ2g .p

F
/�2g 	 .q/�2�QS1 .p

F
/�2g 	 1

Sp .p
F
/�2 	 1 .p

F
/�2 	 1

Sq 1	 q�2 N/A

It is now clear that the link morphisms given in (1) and (2) preserve the neutral geo-
metrically connected component. This verifies (2).

We now turn to the proof of (3). It suffices to verify (2.27.1) because Sp acts on
the �-component by the scalar !�.p�1/D ˛�ˇ�=pg according to (2.24.1), and then
item (3) would follow immediately from the following easy computation:

p�dg 	 p�2g#T˛2.iC#T/
� ˇ2.d�iC#T/

� 	 .˛�ˇ�=p
g/�.dC2#T/ D .˛�=ˇ�/

2i�d :
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To prove (2.27.1), we first compute the canonical lift of the link morphism
..�2dS;.0//

00
]
; .�2dS;.0//

00]/ to an endomorphism of ShKp .GS;T/ 	 ShKE;p .TE;QS;T/ appear-
ing in Step I of Construction 2.12 (and the shift in Step II is trivial in our case). This
lift is clearly a composition of the Frobenius endomorphism relative to Fp2g , which

we denote by ˆ2g� , and the action of a Hecke operator given by a central element x in
G.A1/	A

1;�
E . This central element x is characterized by (and uniquely determined

by) the following two conditions:
(a) the resulting link morphism on ShKp .GS;T/ 	 ShKE;p .TE;QS;T/ preserves the

neutral connected component;
(b) under the natural projection G.A1/ 	 A

1;�
E ! G.A1/ 	A1;�

F
A
1;�
E Š

G00.A1/, x is mapped to the central element ..p
F
/g ; 1/ if p is inert in E=F

and to ..p
F
/g ; .q/�QS1 / if p splits in E=F .

We claim that x D ..p
F
/#S

c
1C2#T; .p

F
/#S1�2#T/ if p is inert in E=F , and x D

..p
F
/#S

c
1C2#T, .p

F
/#S1�2#T.q/�QS1 / if p splits in E=F . Clearly, this element sat-

isfies (b) above. To see (a), we note that the action of ˆ2g� on the geometrically
connected component is the image of the arithmetic Frobenius Frob�1

p2g
under the

Shimura reciprocity maps in Section 2.1 and Section 2.4; namely,´
..p

F
/�2#Sc1�4#T; .p

F
/2#T�#S1/ if p is inert in E=F;

..p
F
/�2#Sc1�4#T; .p

F
/2#T�#S1.q/��QS1 / if p splits in E=F:

But this element is exactly .
 	 id/.x�1/.
Now, taking the fiber over 1 2 ShKE;p .TE;QS;T/ tells us that the (canonical) link

morphism .�dS /.0/;] is the Frobenius endomorphism ˆ
2g
GS;T

on ShKp .GS;T/ relative
to Fp2g composed with the Hecke operator given by multiplication by the first

coordinate of x, namely, S�#Sc1�2#T
p D S�d�2#T

p . For the action of .�dS /
?
.0/

on

Hd
et .ShK.GS;T/Fp ;L

.k;w/
S;T /, we note that the induced action of the Frobenius endo-

morphism ˆ
2g
GS;T

on cohomology coincides with Frobp2g (as opposed to the arith-

metic Frobenius). So we have .�2dS /?
.0/
D p�dg � Frobp2g ı S

�d�2#T
p , where p�dg

is the normalization factor in (2.23.1). This proves (2.27.1) and hence the Proposi-
tion.

2.28. Link morphisms, II
Let � W S! S0 be a general link. Then there exists an integer N � 0 such that the
composition of the links � W D � ı �2gN D � ı .�2dS /N D .�2dS0 /

N ı � W S! S0 is
right-turning, where �S is the fundamental link for S (2.17). Suppose that the link
morphism on ShK00p .G

00
QS
/ associated to � with indentation degree n exists. Then we

put, for each � 2A.k;w/,
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�?.n/ W H
d
et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
Œ��

�
.�2dS /?

.0/

��N
����������!Hd

et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
Œ��

�?
.n/
��!Hd

et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T

�
Œ��

and refer to it as the normalized link morphism on the cohomology group of quater-
nionic Shimura varieties associated to � with indentation degree n. Here the link
morphism .�2dS /?

.0/
is taken to be the canonical one, so that it is invertible by Propo-

sition 2.27. The shift of �?
.n/

is defined to be the same as that of �?
.n/

(as .�2dS /?
.0/

has shift 1). By Lemma 2.20 on the uniqueness of link morphisms, this definition
does not depend on the choice of N (but on the shift of �?

.n/
) and is compatible with

compositions.

LEMMA 2.29
(1) For any link � W S! S0, there exist an integerN > 0 and another right-turning

link � W S0! S such that � ı � W S! S is the same as �2gN W S! S.
(2) If � W S! S0 is a right-turning link and the link morphism .�00

.n/;]
; �
00]

.n/
/ on

ShK00p .G
00
QS
/ with indentation degree n associated to � exists, then there exists

N > 0 such that the link morphism associated to ��1 ı .�2dS0 /
N W S0! S of

indentation �n exists.
(3) Let � W S ! S0 be the link as in .2/, and let �.n/;] W ShKp .GS;T/ !

ShKp .GS0;T0/ be the link morphism with some shift t obtained by applying
Construction 2.12 to �00

.n/;]
. If ��1 W S0! S denotes the inverse link, then the

morphism

.��1/?.�n/ W H
d
et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T

�
�!Hd

et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
with shift t�1 is the same as the inverse of �?

.n/
. Moreover, if �00

.n/;]
(or, equiv-

alently, �.n/;]) is finite flat of degree pv.�/, where v.�/ denotes the total dis-
placement of �, then we have an equality

.��1/?.�n/ D p
�v.�/=2 Tr�.n/;] ;

where Tr�.n/;] is the trace map on cohomology induced by the finite flat mor-
phism �.n/;].

Proof
Item (1) is obvious. For item (2), we may first find N so that � WD ��1 ı .�2dS0 /

N has
all curves turning to the right. Then we consider the two morphisms
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ShK00p .G
00
QS
/

�.n/;]

ShK00p .G
00
QS0
/

.�2d
S0
/N
.0/;]

ShK00p .G
00
QS0
/

Since the link morphism �.n/;] induces a bijection on the closed points, [14, Proposi-
tion 4.8] implies that, after possibly enlarging N , the map .�2dS0 /

N
.0/;]

factors through
�.n/;], as �.n/;] ı �]. It is easy to see that �] gives the required link morphism.

The first part of (3) follows from the uniqueness of the link morphism (Lemma
2.20). For the second part of (3), note that the composed morphism

Hd
et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

� pv.�/=2�?.n/
�������!Hd

et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T

�
Tr�.n/;]
�����!Hd

et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
is nothing but the multiplication by pv.�/, according to our normalization of �?

.n/;]
in

(2.23.1). It follows immediately that .��1/?
.�n/
D p�v.�/=2 Tr�.n/;] .

2.30. Goren–Oort divisors
We recall the definition of the Goren–Oort stratification from [33, Section 4]. We will
make essential use of the case of divisors. Let ShKp .GS;T/ be the special fiber of a
quaternionic Shimura variety of the type considered in Section 2.1. We fix throughout
this article a choice of lifting QS1 of S1, and let ShK00p .G

00
QS
/ be the associated unitary

Shimura variety.
In [33, Definition 4.6, Section 4.9], we defined, for each � 2 Sc1, the Goren–Oort

divisor ShK00p .G
00
QS
/� of ShK00p .G

00
QS
/ at � as the vanishing locus of the � -partial Hasse

invariant of the versal family A00
QS
. Each ShK00p .G

00
QS
/� is projective and smooth by [33,

Proposition 4.7]. Transferring these structures to the quaternionic Shimura varieties
using Proposition 2.7, we get a Goren–Oort divisor ShKp .GS;T/� on ShKp .GS;T/ for
each � 2 Sc1. When TD ;, this is done in [33, Section 4.9], and the general case is
the same.

For a subset J � Sc1, we put ShKp .GS;T/J D
T
�2J ShKp .GS;T/� and

ShK00p .G
00
QS
/J D

T
�2J ShK00p .G

00
QS
/� . The closed subvarieties ShKp .GS;T/J (resp.,

ShK00p .G
00
QS
/J ) with J running through the subsets of Sc1 form the Goren–Oort strati-

fication of ShKp .GS;T/ (resp., ShK00p .G
00
QS
/).

The main results of [33] give an explicit description of all closed Goren–Oort
strata ShK00p .G

00
QS
/J (resp., ShKp .GS;T/J ) as a P1-power bundle over another unitary

(resp., quaternionic) Shimura variety. We list results from [33] that we will make use
of later. (One more result will be used later in proving Lemma 5.14.)
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PROPOSITION 2.31
Let � 2 Sc1. Assume that �� D ��n� � is different from � (see Notation 2.16 for the
notation). We put S� D S[ ¹�; ��º and T� D T[ ¹�º. Let QS�;1 be the lifting of S�;1
derived from QS1 according to the rule of [33, Section 5.3], and put QS� D .S� ; QS�;1/.
In particular, �QS�;1 D�QS1 when p splits in E=F .
(1) There exists a P1-bundle fibration

� 00� W ShK00p .G
00
QS
/� ! ShK00p .G

00
QS�
/�

equivariant for the action of G 00
QS;p
D G 00

QS� ;p
, and a p-quasi-isogeny of Abelian

schemes on ShK00.G00QS/� ,

ˆ� 00� W A00QS! � 00�� .A
00
QS0
/:

By Construction 2.12, this gives rise to a P1-bundle fibration,

�� W ShKp .GS;T/� �! ShKp .GS� ;T� /;

with some shift t� D t� .S;T/ 2E�;clnA
1;�
E =O�Ep

that is compatible with the
Hecke action of G.A1;p/. Moreover, there is an isomorphism of étale sheaves
for each given regular multiweight .k;w/,

�]� W L
.k;w/
S;T jShKp .GS;T/�

Š
�! ��� .L

.k;w/
S� ;T� /:

The morphisms �� and �]� are uniquely determined once t� is fixed.
(2) Let O.1/ be the tautological quotient line bundle on ShKp .GS;T/� for the P1-

bundle given by �� . If �� is different from � , then the normal bundle of the
closed immersion ShKp .GS;T/� ,! ShKp .GS;T/ is, up to tensoring a line bun-
dle which is a torsion class in the Picard group of ShKp .GS;T/� , the same as
O.�2pn� /DO.1/˝.�2p

n� /.

Proof
In item (1), the existence of � 00� is a special case of [33, Corollary 5.9]. Roughly speak-
ing, this P1-bundle � 00� parameterizes the lines (the Hodge filtration) in the reduced
Q�� WD ��n� Q� -component of the relative de Rham homology of the versal family A00

QS�
over ShK00p .G

00
QS�
/� . It is straightforward to check that the condition (2.12.1) is satisfied

for the pairs . QS;T/ and . QS� ;T� /. We apply Construction 2.12 to deduce the existence
of .�� ; �

]
� / from that of .� 00� ;ˆ� 00� /.

Item (2) follows from [33, Proposition 6.4], when noting that the quaternionic
Shimura varieties and the unitary Shimura varieties have isomorphic geometrically
connected components.
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Proposition 2.26(1) implies that we have a morphism,

��� W H
?
et

�
ShK.GS� ;T� /Fp ;L

.k;w/
S� ;T�

�
�!H?

et

�
ShK.GS;T/�;Fp ;L

.k;w/
S;T

�
;

equivariant under the actions of the prime-to-p Hecke algebra HKp . It is canonical
up to the ambiguity of choosing the shift in Construction 2.12.

THEOREM 2.32
(1) Let �1; �2 2 Sc1 be two places such that �1; �2; ��1 ; �

�
2 are distinct. We have a

Cartesian diagram:

ShKp .GS;T/¹�1;�2º

��1

��2

ShKp .GS�1 ;T�1
/�2

��2

ShKp .GS�2 ;T�2
/�1

��1
ShKp .GS�1;�2 ;T�1;�2

/

If we use the notation of shifts of these ��i as in Proposition 2.31(1), then we
have an equality,

t�1.S;T/t�2.S�1 ;T�2/D t�2.S;T/t�1.S�2 ;T�2/:

Moreover, we have a commutative diagram of induced morphisms on the coho-
mology groups:

H?
et

�
ShKp .GS�1[S�2 ;T�1[T�2

/Fp ;L
.k;w/
S�1[S�2 ;T�1[T�2

� ���2

���1

H?
et

�
ShKp .GS�1 ;T�1

/�2;Fp ;L
.k;w/
S�1 ;T�1

�
���1

H?
et

�
ShKp .GS�2 ;T�2

/�1;Fp ;L
.k;w/
S�2 ;T�2

� ���2

H?
et

�
ShKp .GS;T/¹�1;�2º;Fp ;L

.k;w/
S;T

�
(2) Let � 2 Sc1 be a place such that �; �C; �� are distinct. Put nD n�C � n� if p

splits in E=F and nD 0 if p is inert in E=F . Let � W S�C D S [ ¹�C; �º !
S� D S[ ¹�; ��º be the link given by straight lines, except sending �� to �C

over � :

Let �.n/;] be the morphism defined by the following commutative diagram:
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ShKp .GS;T/�C

�
�C

ShKp .GS;T/¹�C;�º

Š

ShKp .GS;T/�

��

ShKp .GS
�C
;T
�C
/

�.n/;]

ShKp .GS� ;T� /:

(2.32.1)

Then the following statements hold.
(a) The map �.n/;] is the morphism obtained by applying Construction 2.12

to a link morphism on ShK00p .G
00
QS
�C
/ with indentation degree n.

(b) If t‹ 2 E�;clnA
1;�
E =O�E;p for ‹D �; �C denotes the shift of the corre-

spondence

ShKp .GS‹;T‹/
�‹
 � ShKp .GS;T/‹ ,! ShKp .GS;T/;

then �.n/;] has shift t�Ct
�1
� .

(c) The morphism �.n/;] is finite flat of degree pv.�/.
(d) The p-quasi-isogeny between the versal families of Abelian varieties

on ShK00p .G
00
QS
�C
/ given by

� 00�
�C
.A00QS

�C
/jSh

K00p
.G00
QS
/
¹�C;�º

ˆ
�00

�C

 ����A00QSjSh
K00p

.G00
QS
/
¹�C;�º

ˆ
�00�
���! � 00�� .A

00
QS�
/jSh

K00p
.G00
QS
/
¹�C;�º

induces a link morphism on the sheaves �
]

.n/
W L

.k;w/
S
�C
;T
�C
�!

��
.n/;]

.L
.k;w/
S� ;T� /. Then the induced normalized link morphism �?

.n/
on

the cohomology groups constructed as in Section 2.23 fits into the fol-
lowing commutative diagram:

H?
et

�
ShKp .GS;T/�C;Fp

�
H?

et

�
ShKp .GS;T/¹�C;�º;Fp

�
H?

et

�
ShKp .GS;T/�;Fp

�

H?
et

�
ShKp .GS

�C
;T
�C
/Fp

�
��
�C

Š

H?
et

�
ShKp .GS� ;T� /Fp

�
���

p
.n�Cn

�C
/=2
�?
.n/

(2.32.2)

where the upper horizontal arrows are natural restriction maps. Here,
for simplification, we have suppressed the sheaves from the notation.
For instance, H?

et .ShKp .GS;T/�C;Fp / should be understood as

H?
et .ShKp .GS;T/�C;Fp ;L

.k;w/
S;T jShKp .GS;T/�C

/.
(3) Assume that Sc1 D ¹�; �

�º (and hence p splits in E=F ). Then
ShKp .GS;T/¹�;��º is isomorphic to the special fiber of the 0-dimensional
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Shimura variety ShIwp .GS� ;T� / of Iwahori level at p. Let � W S�� ! S�
denote the link map (with no curve). Then the link morphism �.n�� /;] W

ShKp .GS�� ;T�� /
'
�! ShKp .GS� ;T� / of indentation degree 2n�� associated to

� exists, and the following diagram

ShKp .GS;T/¹�;��º

�� ���

ShKp .GS� ;T� / ShKp .GS�� ;T�� /
�.n�� /

Š

ShKp .GS� ;T� /

is (the base change to Fpg of ) the Hecke correspondence Tp on
ShKp .GS� ;T� /. If t‹ 2 E�;clnA

1;�
E =O�Ep

for ‹ D �; �C denotes the shift of
the correspondence

ShKp .GS‹;T‹/
�‹
 � ShKp .GS;T/‹ ,! ShKp .GS;T/;

then �.n�� /;] has shift $Nqt�1� t�� . Moreover, the map induced by the diagram
above on cohomology groups,

H 0
et

�
ShK.GS� ;T� /Fp

� .�.n�� /ı��� /�
����������!H 0

et

�
ShK.GS;T/¹�;��º;Fp

�
Tr��
���!H 0

et

�
ShK.GS� ;T� /Fp

�
;

is the usual Hecke action Tp. Here, as in (2), we have suppressed the sheaves
from the notation.

Proof
The analogues of (1), (2)(a), and (2)(c) for unitary Shimura varieties were proved
in [33, Proposition 7.12, Theorem 7.16]. The statements here follow from Construc-
tion 2.12.

Item (2)(b) regarding shifts follows directly from Remark 2.13. Item (2)(d)
directly follows from the construction of �]

.n/
and �?

.n/
. For item (3), the analogous

statement for unitary Shimura varieties ShK00.G00QS0/ (with Tp replaced by Tq) was
proved in [33, Theorem 7.16(2)]. One deduces (3) using the construction in Sec-
tion 2.14, and computes the shifts by Remark 2.13.

3. Goren–Oort cycles
In this section, we investigate certain generalizations of the Goren–Oort strata studied
in [9], which are called the Goren–Oort cycles. They are parameterized by certain
combinatorial data, which are called the periodic semimeanders. We will show later
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that the intersection matrix of the Goren–Oort cycles turns out to be closely related
to the Gram matrix associated to these periodic semimeanders (which explains our
choice of the combinatorial model).

3.1. Periodic semimeanders
The combinatorial construction that we will use later is related to the so-called link
representations of periodic Temperley–Lieb algebras, which appear naturally in the
study of mathematical physics (see, e.g., [6], [10], [24]). We will simply state here the
main result with minimal input, and refer the reader to [24] for a detailed discussion
of the mathematical physics background and the proofs.

We slightly modify the usual definition of periodic semimeanders to adapt to our
situation. Recall that F is a totally real field of degree g and that S, T are introduced
as in Section 2.1, and d D #Sc1. We consider the band associated to S defined as in
Section 2.15, and recall that the band is placed on a cylinder, but we often draw it over
the 2-dimensional xy-plane with the x-coordinate taken modulo g.

A periodic semimeander for S is a collection of curves (arcs) that link two nodes
of the band for S, and straight lines (semilines) that link a node to infinity (C1 in the
y-direction) subject to the following conditions.
� All the arcs and semilines lie on the cylinder above the band (that is to have

positive y-coordinate in the 2-dimensional picture).
� Each node of the band for S is exactly one endpoint of an arc or a semiline.
� There are no intersection points among these arcs and semilines.
The number of arcs is denoted by r (so r � d=2), and the number of semilines d �2r
is called the defect of the periodic semimeander. Two periodic semimeanders are con-
sidered the same if they can be continuously deformed into each other while keeping
the above three properties in the process. We use Br

S to denote the set of semimean-
ders for S with r arcs (up to the deformations). For example, if F has degree 7 over
Q, r D 2, and SD ¹11;14º, then we have

B
2
S D

(3.1.1)

When drawing in the xy-plane, points are placed on the x-axis at points of coordi-
nates .0; 0/; : : : ; .g� 1; 0/, and the diagram for a periodic semimeander is taken to be
periodic in the x-direction of period g. The curves connecting the points can connect
across the imaginary boundary lines at x D�1=2 and x D g � 1=2 (which are iden-
tified). See, for example, (3.1.1). An elementary calculation shows that #Br

S D
�
d
r

�
.
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A standard presentation of a semimeander is where all the arcs are monotonic in
the x-direction (namely, it does not twist back and forth). Using the xy-plane picture,
we define the left and right end-nodes of an arc, as follows.
� When the arc appears as one arc in the standard presentation, its left (resp.,

right) end-node is the left (resp., right) endpoint of the arc.
� When the arc appears in two parts linked through the imaginary boundary lines

at x D�1=2 and x D g�1=2, its left (resp., right) end-node is the right (resp.,
left) endpoint of the arc.

For a 2Br
S, we use `.a/ to denote the total span of a, that is, the sum of the span

of all curves over the band, where the span takes into account the periodicity at the
imaginary boundary. For example, the last element of B2

S in (3.1.1) has two arcs with
spans 1 and 5, respectively, and hence its total span is 6. The second element of B2

S

in (3.1.1) has two arcs with spans 1 and 2, respectively, and hence its total span is 3.

Remark 3.2
We chose the graphic presentation of semimeanders because it is intuitive, but one
might argue that it lacks rigorousness (if one holds the highest standard). We point
out that there are more abstract definitions of semimeanders which make our argu-
ment rigorous. For example, one of the anonymous referees kindly suggested to us the
following definition. As in Remark 2.18, we writebSc1 for the preimages of Sc1 under
the projection Z! Z=gZ (and view Sc1 as the subset ofbSc1\¹0; : : : ; g� 1º consist-
ing of the lifts of its elements). A periodic semimeander is a function f W bSc1!bSc1
satisfying
� f .xC g/D f .x/C g,
� f .f .x//D x,
� for every x;y 2bSc1 such that x < y < f .x/, we have x < f .y/ < f .x/ and

f .y/¤ y.
This definition is equivalent to the graphic definition. Indeed, for such a function f ,
the graph corresponding to f is given as follows. We draw an arc between the node at
x and the node at f .x/ if f .x/¤ x, and we draw a semiline attached to a node at x if
f .x/D x. With this definition, one can perform most of the combinatorics involved
with semimeanders and links in this article, while keeping the argument rigorous. For
example, the span of a semimeander a (associated to a function f above) is given
by `.a/D 1

2

P
x2Sc1

jf .x/ � xj. One can check that all of our intuitive descriptions
of operations involving periodic semimeanders can be translated to this language and
therefore made rigorous.

3.3. Gram matrix
For a;b 2Br

S, we consider the drawing D.a;b/ obtained by taking the mirror image
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of b reflected about the x-axis and then identifying the d nodes of b with those of a
according to their labelings.
� We say that a loop (namely, a closed curve) in D.a;b/ is contractible if it can

be continuously contracted to a point on the cylinder (ignoring all other curves
and lines on the picture). We write m0.a;b/ for the number of contractible
loops in D.a;b/.

� We say that a loop in D.a;b/ is noncontractible if, ignoring other curves and
lines on the picture, it can be continuously deformed into a loop wrapped
around the cylinder. (Since all loops do not intersect themselves, the loop can
only wrap the cylinder for one round.) We write mT .a;b/ for the number
of noncontractible loops in D.a;b/. This number can be nonzero only when
r D d=2.

� We use Sa to denote the union of S with the nodes that are connected to some
arc of a. So the band of Sa may be obtained from the band of a by replacing
the end-nodes of arcs in a with plus signs. We define Sb similarly.

� Assume that r < d=2, that neither two semilines of a nor two semilines of b
are connected together in D.a;b/. We define the reduction of D.a;b/ to be a
link �Sa;Sb from the band of Sa to the band of Sb such that each node �a of
Sa (corresponding to an element of Sca;1) is linked to a node �b of Sb in the
same way as the semiline at �a is linked to the semiline at �b in D.a;b/. In
practice, this amounts to removing all the (contractible) loops in D.a;b/, and
then continuously deforming the remaining curves into a link (with top and
bottom extended by semilines). We put mv.a;b/ to be the total displacement
of �Sa;Sb .

� When r D d
2

, Sa D Sb contains all the Archimedean places. For consistency,
we write �Sa;Sb for the trivial link from the band of Sa to the band of Sb (as
there are no nodes on the bands).

We define the Gram product to be the following pairing:

h� j �iS W B
r
S 	B

r
S ����!

´
Q`.v/ if r < d=2;

Q`ŒT � if r D d=2:

hajbiS D

8̂̂̂̂
<̂
ˆ̂̂:
0 if in the diagram D.a;b/; two semilines

of a(or of b/ are connected, then

.�2/m0.a;b/vmv.a;b/ otherwise if r < d=2; and

.�2/m0.a;b/TmT .a;b/ otherwise if r D d=2:

Note that only one ofmv.a;b/ andmT .a;b/ can be nonzero by definition. We use Vr
S

to denote the Q`-vector space with basis Br
S and extend the Gram product linearly to

all of Vr
S.
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Example 3.4
The following examples are copied from [24].

(1) a D b D D.a;b/ D

the reduction of the link is �Sa;Sb D

and hajbiS D .�2/v�9.

(2) a D • • • • • ••••• , b D • • • • • ••••• , D.a;b/ D

• • • • • •••••

, and ha j biS D 0.

(3) a D • • • • • ••••• , b D • • • • • ••••• , and D.a;b/ D

• • • • • •••••

, and hajbiS D .�2/3T 2.

Remark 3.5
When SD ;, the vector space Vr

S is the link representation of the so-called periodic
Temperley–Lieb algebra ETLPN .T;�2/ under the notation of [24]. (In particular, we
specialize the theory to the case when the quantum variable q D i .) With respect to
the bilinear form we introduced earlier, the representation is �-Hermitian with respect
to the natural involution � on the Temperley–Lieb algebra. Since we will not use the
structure of this representation, we simply refer to [24, Section 2.3] for further dis-
cussion. It seems that the mysterious relationship between this mathematical physics
calculation and our Shimura variety calculation probably comes from some common
representation theory feature. It might be an intriguing question to ask what quantiza-
tion could mean for Shimura varieties (or its local analogues) so that the intersection
matrix computed in a similar manner as ours would have a chance to match the quan-
tized version of the Gram determinant in [24]
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The following theorem is essentially the main theorem of [24] (which seems to
have been known by [10] using a different argument).

THEOREM 3.6
Put td;r D

Pr�1
iD0

�
d
i

�
. Let GrS denote the Gram matrix .ha j bi/a;b2BrS . Then its deter-

minant is given as follows.
(1) When d is even, detGd=2S D˙.T 2 � 4/td;d=2 .
(2) For r < d=2, detGrS D˙.v

g � v�g/2td;r .

Proof
When S D ; (so d D g), this is a special case of [24, Theorem 4.1]. Indeed, the
parameter ˛ in that theorem is T in our notation, and since its ˇ is �2, its Ck are
equal to ˙1 for all k. One easily simplifies the formula from [24] to the one stated in
this theorem.

The general case requires little modification, but the method of the proof may be
viewed as a toy model for the proof of Theorem 4.5 later. When r D d

2
, we just sim-

ply ignore all points corresponding to S1. This verifies item (1). So we assume that
r < d

2
from now on to prove item (2). We use hajbid to denote the pairing computed

by removing all points from S1 (and shrink the cylinder accordingly) and hence with
displacements computed with respect to only the d nodes. Let Gr

d
denote the corre-

sponding matrix. Then [24, Theorem 4.1] implies that detGr
d
D˙.vd � v�d /2td;r .

We need to compare detGr
d

with detGrS, by showing that detGrS can be obtained by
replacing all vd in the expression of detGr

d
by vg .

By the definition of determinant, detGrS is the sum over all permutations s of
the set Br

S, of the product of the sign sgn.s/ and, for every cycle .a1 : : :at / in s, the
product

ha1ja2iS � ha2ja3iS � � � hat ja1iS: (3.6.1)

The same applies to detGr
d

, except that the product (3.6.1) is taken for the pair-
ing h�j�id . The product (3.6.1), if not zero, is equal to .�2/m0vmv , where m0 D
m0.a1;a2/ C � � � C m0.at ;a1/ is the sum of the total number of contractible loops
in the diagrams D.a1;a2/;D.a2;a3/; : : : ;D.at ;a1/, and mv D mv.a1;a2/ C � � � C
mv.at ;

a1/ is equal to the total displacement of the composition of the link

�Sat ;Sa1 ı � � � ı �Sa2 ;Sa3 ı �Sa1 ;Sa2 ; (3.6.2)

by the additivity of total displacements as remarked in Section 2.15. Note that (3.6.2)
is in fact a link from Sa1 to itself. So it must be an integer power n of the fundamental
link �Sa1 defined in Section 2.15. In particular, we have mv D ng. Making the same
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observation for computing the standard Gram determinant detGr
d

, the product (3.6.1)
with h�j�id is instead equal to .�2/m0vm

0
v with the same m0 as above, and m0v is

the total displacement of (3.6.2) with all points corresponding to S1 removed. By the
same discussion above, we havem0v D nd with the same n above. In conclusion, each
term of detGrS can be obtained from the corresponding term of detGr

d
via replacing

vd by vg . Therefore, detGrS D˙.v
g � v�g/2td;r .

Notation 3.7
Using the illustration of periodic semimeanders as in (3.1.1), we say that an arc ı lies
over another arc ı0 if the contractible closed loop in the picture given by adjoining ı
with the equator contains ı0 inside. For example, in the list of B2

S in (3.1.1), the last
five periodic semimeanders each has an arc lying over another.

In a periodic semimeander for S, a basic arc is an arc ı which satisfies the fol-
lowing equivalent conditions:
� in the 2-dimensional picture, ı does not lie over any other arcs,
� in the 2-dimensional picture, the only points below ı are plus signs,
� ı is an arc which links some � to �� (see Notation 2.16 for the notation).
For example, in the list of B2

S in (3.1.1), each of the five periodic semimeanders in the
first row has two basic arcs, and each of the five periodic semimeanders in the second
row has one basic arc.

It is clear that every periodic semimeander has at least one basic arc, except the
one with only semilines. Given a periodic semimeander a 2Br

S for S with a basic arc
ı linking two nodes �; �� 2 Sc1, we can delete the arc and replace its end-nodes by
C to get a periodic semimeander anı 2Br�1

S[¹�;��º for S[ ¹�; ��º.

3.8. Goren–Oort cycles
We fix a pair .S;T/ as before. For a periodic semimeander a for S with r arcs, we
define a pair .Sa;Ta/ as follows: Sa is obtained by adjoining to S all end-nodes of the
arcs of a and Ta is obtained by adjoining to T all the right end-nodes (in the sense of
Section 3.1) of the arcs of a.

We now construct the Goren–Oort cycle ShKp .GS;T/a associated to a periodic
semimeander a for .S;T/.14 Then the cycle will admit an r -step iterated P1-bundle
morphism,

�a W ShKp .GS;T/a! ShKp .GSa;Ta/:

The resulting correspondence

14It is expected that the Goren–Oort cycle ShKp .GS;T/a is independent of the auxiliary choices for the definition
of the unitary Shimura variety ShK00p .G

00
QS
/. However, we do not know how to prove this.
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ShKp .GSa;Ta/
�a
 �� ShKp .GS;T/a ,! ShKp .GS;T/ (3.8.1)

will be constructed using the unitary Shimura varieties via Construction 2.12 depend-
ing on a shift ta D t;;a 2 E�;clnA

1;�
E =O�Ep

, which is canonical up to F �;clnA
1;�
F =

O�Fp
, as explained in Construction 2.12.
We proceed by induction on r � 0 to define the Goren–Oort cycle correspondence

(3.8.1). For r D 0, we define ShKp .GS;T/a WD ShKp .GS;T/. Suppose that r � 1 and
that we have defined, for every 0� t < r and every a 2Br�t

S , the Goren–Oort cycles
ShKp .GSa;Ta/b together with a correspondence

ShKp .GSa;b;Ta;b/
�b
 �� ShKp .GSa;Ta/b ,! ShKp .GSa;Ta/

with some shift tb associated to all the periodic semimeanders b 2Bt
Sa

.
We now define the Goren–Oort cycle ShKp .GS;T/a associated to every a 2Br

S.
For this, we fix a basic ı as in Notation 3.7 with end-nodes � and ��. Set Sı D
S[¹�; ��º and Tı D T[¹�º. Then Proposition 2.31(1) implies that we have a natural
correspondence

ShKp .GSı ;Tı /
�ı
 � ShKp .GS;T/� ,! ShKp .GS;T/

with shift tı (which we fix).
Let anı denote the periodic semimeander for Sı obtained by removing the arc ı

from a and replacing the nodes at � and �� by plus signs. So the induction hypothesis
gives a correspondence,

ShKp .GSa;Ta/
�anı
 ��� ShKp .GSı ;Tı /anı ,! ShKp .GSı ;Tı / (3.8.2)

with shift tanı , where �anı is an .r�1/-step iterated P1-bundle. We define the Goren–
Oort cycle ShKp .GS;T/a to be

ShKp .GS;T/a WD �
�1
ı

�
ShKp .GSı ;Tı /anı

�
I

namely, it fits into the following commutative diagram where the square is Cartesian:

ShKp .GS;T/a ShKp .GS;T/ı

�ı

ShKp .GS;T/

ShKp .GSı ;Tı /anı

�anı

ShKp .GSı ;Tı /

ShKp .GSa;Ta/
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The induced correspondence

ShKp .GSa;Ta/
�aWD�anıı�ı
 ��������� ShKp .GS;T/a ,! ShKp .GS;T/

has shift

ta WD tı � tanı :

This completes the inductive construction of the Goren–Oort cycles. Using Theo-
rem 2.32(1), it is easy to see inductively that such a definition of ShKp .GS;T/a does
not depend on the choice of the basic arc ı. (We point out that a key feature of our
construction is that the dimension of fibers of ShKp .GS;T/a over ShKp .GSa;Ta/ is the
same as the codimension of ShKp .GS;T/a in ShKp .GS;T/, which is r .)

We fix a regular multiweight .k;w/. Recall that L
.k;w/
S;T denotes the automorphic

`-adic local system on ShKp .GS;T/. The same construction above also gives rise to a
natural isomorphism,

�]a W �
�
a .L

.k;w/
Sa;Ta/

Š
�!L

.k;w/
S;T jShKp .GS;T/a :

Remark 3.9
It was pointed out to us by X. Zhu that the union of all Goren–Oort cycles associated
to periodic semimeanders with r arcs is exactly the closure of certain Newton strata of
the unitary Shimura variety, transported to the quaternionic side. In the case of Hilbert
modular varieties, the union of all codimension r generalized Goren–Oort cycles are
exactly the closed Newton stratum associated to the Newton polygon with slopes
r
g

and g�r
g

, both with multiplicity g. So maybe the name “Goren–Oort” is slightly
misleading, as it usually refers to the stratification given by the p-torsion subgroup of
the universal Abelian varieties.

Example 3.10
Let F be of degree 6 over Q and SD TD ;. Then ShK.G;;;/ is (the special fiber
of ) the Hilbert modular variety for F . Let �0; : : : ; �5 denote the embeddings of OF
into Zur

p so that �i D �i .mod 6/ and �iC1 D ��i . We have a universal Abelian variety
A over ShK.G;;;/ equipped with an OF -action.

We consider the periodic semimeander aD • • • • • • . For each Fp-point x 2
ShK.G;;;/, the covariant Dieudonné module Dx of the universal Abelian variety
Ax at x decomposes as Dx D

L5
iD0Dx;i , where OF acts on the i th factor via

�i . Let Vi W Dx;iC1! Dx;i denote the Verschiebung map for i 2 Z=5Z. Then x 2
ShK.G;;;/a if and only if

V1 ı V2.Dx;3/� pDx;1; V4 ı V5.Dx;0/� pDx;4; and

V0 ı V1 ı V2 ı V3.Dx;4/� p
2Dx;0:
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In fact, these inclusions are forced to be equalities. In this case, ShKp .G;;;/a is just a
three-step iterated P1-bundle over the discrete Shimura variety ShK.G†1;¹�2;�3;�5º/.
Moreover, one can prove that each geometric connected component is isomorphic
to the product of P1 (corresponding to the arc linking �4 and �5) with the projec-
tive bundle P.OP1.�p/˚OP1.p// over P1 (which corresponds to the two arcs over
�0; �1; �2; �3. More canonically, the second factor is the projective bundle attached to
a rank 2 bundle E over P1 which sits inside an exact sequence 0!OP1.p/!E!

OP1.�p/! 0; this exact sequence splits (noncanonically).

4. Cohomology of Goren–Oort cycles
Let ShKp .GS;T/ be the special fiber of a quaternionic Shimura variety as in Sec-
tion 2.1. Using Gysin maps, the cohomology of the Goren–Oort cycles gives rise to
part of the cohomology of the big Shimura variety ShKp .GS;T/.

4.1. Generalities on Gysin maps
We recall first some generalities on Gysin maps. Let ` be a fixed prime number, and
let k be an algebraically closed field of characteristic different from `.

Consider a closed immersion i W Y ,!X of smooth varieties over k of codimen-
sion r . The functor of direct image i� has a right adjoint, denoted by i Š. For an `-adic
étale sheaf F on X , i ŠF is the sheaf of sections of F with support in Y . This is a
left exact functor, and let Rqi Š denote its qth derived functor. Then by relative coho-
mological purity (see [1, XVI, Théorème 3.7]), we have Rqi ŠQ` D 0 for q ¤ 2r ,

and a canonical isomorphism R2r i ŠQ`
Š
�! Q`.�r/. Explicitly, the inverse isomor-

phism Q`
Š
�! R2r i ŠQ`.r/ is given by the fundamental class of Y in X : clX .Y / 2

H 2r
et;Y .X;Q`.r//ŠH

0
et.Y;R

2r i ŠQ`/. Now, for any lisse Q`-sheaf F on X , we define
the Gysin map as the composition

Gysin W H q
et.Y; i

�F /
[clX .Y /
�����!H

qC2r
et;Y

�
X;F .r/

�
!H

qC2r
et

�
X;F .r/

�
; (4.1.1)

where the second map is the canonical morphism from cohomology supported in
Y to the usual cohomology group. If iZ W Z ,! X is another closed immersion of
smooth varieties such that Y intersects withZ transversally, then one has i�ZclX .Y /D
clZ.Y \Z/. It follows that the following diagram is commutative:

H
q
et.Y; i

�F /
Gysin

Restr:

H
qC2r
et

�
X;F .r/

�
Restr:

H
q
et.Y \Z; i

�
Y\ZF /

Gysin

H
qC2r
et

�
Z; i�ZF .r/

�
(4.1.2)
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where the vertical maps are given by natural restrictions, and iY\Z W Y \Z ,!X is
the natural embedding.

4.2. Étale cohomology of iterated P1-bundles
We continue to assume that k is an algebraically closed field of characteristic different
from `. Let � W X ! Y be an r -step iterated P1-bundle of proper and smooth k-
varieties; that is, � admits a factorization

� W X0 WDX
�1
�!X1

�2
�!X2! � � �

�r
�!Xr WD Y; (4.2.1)

where each �i W Xi�1!Xi is a P1-bundle for 1� i � r . Then the trace map

Tr� W R
2r��

�
Q`.r/

� Š
�!Q`

is an isomorphism. We denote by cl� 2H 0.Y;R2r��Q`.r// with Tr�.cl�/D 1, and
call it the fundamental class of the fibration � . For any Q`-lisse sheaf F on Y and
any integer q � 0, the isomorphism Tr� induces a map,

�Š W H
q
et

�
X;��F .r/

�
!H

q�2r
et

�
Y;F ˝R2r��

�
Q`.r/

�� Tr�
��!H

q�2r
et .Y;F /;

(4.2.2)

where the first morphism comes from the Leray spectral sequence Ea;b2 D H a
et .Y;

Rb���
�F .r//) H aCb

et .X;��F .r//. Explicitly, �Š admits the following descrip-
tion. Put �Œ0;i� WD �i ı �i�1 ı � � � ı �1 for 1 � i � r . Let O�i .1/ be the tautological
quotient line bundle of the P1-bundle �i , and let c1.O�i .1// 2H

2
et.Xi�1;Q`.1// be

its first Chern class. Put �i D ��Œ0;i�1�c1.O�i .1// 2H
2
et.X;Q`.1//. By induction on r ,

one deduces easily from [11, VII, Corollaire 2.2.6] a decomposition:

H
q
et

�
X;��F .r/

�
Š

M
0�j�r

� M
1�i1<			<ij�r

��H
q�2j
et

�
Y;F .r � j /

�
[ �i1 [ � � � [ �ij

�
:

Then, for an element x D
P
j

P
1�i1<			<ij�r

��.yi1;:::;ij /[ �i1 [ � � � [ �ij , one has

�Š.x/D y1;:::;r : (4.2.3)

In particular, the fundamental class cl� is the image of �1 [ � � � [ �r in H 0
et.X;

R2r��Q`.r//.

4.3. Gysin and restriction maps
We keep the notation of Section 3.8. The pair of morphisms .�a; �

]
a/ induces the

following sequence of natural homomorphisms, whose composition we denote by
Gysa:



1602 TIAN and XIAO

Hd�2r
et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
��a ;Š

�������!Hd�2r
et

�
ShKp .GS;T/a;Fp ; �

�
a .L

.k;w/
Sa;Ta/

�
�
]
a;Š

�������!Hd�2r
et

�
ShKp .GS;T/a;Fp ;L

.k;w/
S;T jShKp .GS;T/a

�
Gysin;(4.1.1)
���������!Hd

et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T .r/

�
:

We can also consider the dual picture, defining the morphism Resa to be the
composition of the following homomorphisms:

Resa W H
d
et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T .r/

�
Restriction
������!Hd

et

�
ShKp .GS;T/a;Fp ;L

.k;w/
S;T jShKp .GS;T/a.r/

�
.�
]
a/
�1;Š

������!Hd
et

�
ShKp .GS;T/a;Fp ; �

�
a L

.k;w/
Sa;Ta.r/

�
�a;Š;(4.2.2)
��������!Hd�2r

et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
:

It is clear from the construction that both morphisms Gysa and Resa are equivariant
for the prime-to-p Hecke action of G.A1;p/.

The following theorem is the key to proving our main result. We defer its proof
to the next section.

THEOREM 4.4
Fix � 2 A.k;w/, and fix a choice of system of shifts ta of the correspondences

ShKp .GSa;Ta/
�a
 �� ShKp .GS;T/a ,! ShKp .GS;T/ as in Section 3.8. For a;b 2 Br

S,
we have the following description of the composition:

Hd�2r
et

�
ShKp .GSb;Tb/Fp ;L

.k;w/
Sb;Tb

� Gysb
���!Hd

et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T .r/

�
Resa
���!Hd�2r

et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
:

(1) When hajbi D 0, the �-isotypical component of the composed map Resa ı
Gysb factors through the �-isotypical component of the cohomology group
H
d�2.rC1/
et .ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0 /.�1/ of some quaternionic Shimura vari-
ety of dimension d �2.rC1/ with #T0 D #TC .rC1/ and S0 having the same
set of finite places as S.

(2) When r < d
2

and hajbi D .�2/m0.a;b/vmv.a;b/, we can define the induced link
�Sa;Sb W Sa! Sb as in Section 3.3. Then there exists a normalized link mor-
phism in the sense of Section 2.28,
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�?Sa;Sb;.z/ W H
d�2r
et

�
ShKp .GSb;Tb/Fp ;L

.k;w/
Sb;Tb

�
!Hd�2r

et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
;

associated to �Sa;Sb with shift tat�1b and indentation degree

z D

´
`.a/� `.b/ if p splits in E=F ;

0 if p is inert in E=F .

Moreover, we have an equality:

Resa ıGysb D .�2/
m0.a;b/ � p.`.a/C`.b//=2 � �?Sa;Sb;.z/:

(3) When r D d
2

and hajbi D .�2/m0.a;b/TmT .a;b/, we have

Resa ıGysb D .�2/
m0.a;b/ � p.`.a/C`.b//=2 � .Tp=p

g=2/mT .a;b/ ı �?Sa;Sb;.z/;

where �Sa;Sb is the trivial link from Sa to Sb and

�?Sa;Sb;.z/ W H
d�2r
et

�
ShKp .GSb;Tb/Fp ;L

.k;w/
S;T

�
�!Hd�2r

et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
S;T

�
is the associated normalized link morphism with shift tat�1b $

�mT .a;b/
Nq and

indentation degree z D `.a/� `.b/�mT .a;b/g.

We now assume Theorem 4.4 and deduce the following main theorem of this
article.

THEOREM 4.5
Fix a positive integer r � d

2
.

(1) For each periodic semimeander a 2Br
S, the Goren–Oort cycle ShKp .GS;T/a

of the Shimura variety ShKp .GS;T/ is a subvariety of codimension r , stable
under the action of the tame Hecke action of G.A1;p/. Moreover, it admits a
natural G.A1;p/-equivariant r -step iterated P1-bundle morphism,

�a W ShKp .GS;T/a! ShKp .GSa;Ta/;

to another quaternionic Shimura variety (in characteristic p).
(2) We fix a cuspidal automorphic representation � 2 A.k;w/ appearing in the

cohomology of ShKp .GS;T/ so that its associated Galois representation ��
is unramified at p. Let ˛� and ˇ� denote the (generalized) eigenvalues of
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��;p.Frobpg /. Suppose that ˛�=ˇ� is not a 2nth root of unity for any n� d so
that ˛2i� ˇ

2.d�i/
� are distinct from each other for 1� i � d . Then the action of

Frobp2g on the generalized eigenspace of Hd
et .ShKp .GS;T/Fp ;L

.k;w/
S;T .r//Œ��

with eigenvalue ˛2.d�r/� ˇ2r� .˛�ˇ�=p
g/2#Tp�2gr is semisimple (so that the

generalized eigenspace is a genuine eigenspace), and the direct sum of the
Gysin morphisms,M

a2BrS

Hd�2r
et

�
ShKp .GS;T/a;Fp ;L

.k;w/
S;T

�
Œ��

P
a Gysa
�����!Hd

et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T .r/

�
Œ��; (4.5.1)

induces an isomorphism on the Frobp2g -eigenspaces with eigenvalue

˛
2.d�r/
� ˇ2r� .˛�ˇ�=p

g/2#Tp�2gr .
(20) Keep the notation in (2) but assume that r D d

2
(so d is even) and .k;w/D 2.

Suppose that ˛�=ˇ� is not a 2nth root of unity for n� d
2

. Then the Frobp2g -
invariant subspace ofHd

et .ShKp .GS;T/Fp ;Q`.
d
2
//Œ�� is generated by the cycle

classes of ShKp .GS;T/a for a 2Bd=2
S .

Proof
Item (1) follows from the construction of Goren–Oort cycles in Section 3.8. Item
(20) is clearly a special case of item (2). We now focus on the proof of item (2).
By Proposition 2.26, the Frobenius semisimplification of the morphism (4.5.1) is the
same asM

a2BrS

�
˝.d�2r/
�;p ˝

�
det��;p.1/

�˝.#TCr/
�! �˝d�;p ˝

�
det��;p.1/

�˝#T
.r/: (4.5.2)

Thus the generalized eigenspace for the action of Frobp2g with eigenvalue

˛2.d�2r/� .˛�ˇ�=p
g/2.#TCr/ D ˛2.d�r/� ˇ2r� .˛�ˇ�=p

g/2#Tp�2gr (4.5.3)

has dimension exactly equal to
�
d
r

�
for both sides of (4.5.1). Thanks to the assumption

on the ratio of Satake parameters, the generalized eigenspace on the left-hand side
is a genuine eigenspace (since it is the direct sum of

�
d
r

�
-copies of 1-dimensional

generalized eigenspace). Thus, the proof of (2) and (20) will be finished if we show
that (4.5.1) is injective on the corresponding generalized eigenspace.

We consider the composition of the Gysin morphisms (4.5.1) with the Restriction
morphisms: M

b2BrS

Hd�2r
et

�
ShKp .GSb;Tb/Fp ;L

.k;w/
Sb;Tb

�
Œ��
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P
Gysb

����!Hd
et

�
ShKp .GS;T/Fp ;L

.k;w/
S;T

�
.r/Œ��

˚Resa
����!

M
a2BrS

Hd�2r
et

�
ShKp .GSa;Ta/Fp ;L

.k;w/
Sa;Ta

�
Œ��: (4.5.4)

Here, we switched the first sum from over a (as in (4.5.1)) to over b. Taking a basis of
the generalized eigenspace for Frobp2g acting on (4.5.4) with the eigenvalue (4.5.3)
and using the description in Proposition 2.26, we arrive at the following linear mapM

b2BrS

Q`!
M
a2BrS

Q` (4.5.5)

of vector spaces, which is represented by a
�
d
r

�
	
�
d
r

�
-matrix A with coefficients in

Q`. The proof of (2) will be finished if we can show that det.A/ is nonzero.
We explain how this matrix A is related to the Gram matrix GrS for the periodic

semimeanders (see Theorem 3.6). Let D be the diagonal matrix, whose .a;a/-entry
with a 2 Br

S is p�`.a/=2. Let B be the product matrix DAD. Then dropping the
auxiliary factors p.`.a/C`.b//=2 from the formulas in Theorem 4.4 gives the entries
of B . We will prove that

detB D

´
detGd=2S jT 2DT n

p
; if r D d=2;

detGrSjvgD�?univ
; if r < d=2;

where jT 2DT n
p

and jvgD�?univ
are formal substitutions, and T n

p and �?univ are some formal
symbols we define later.

We first compare the entries of B with the entries of GrS when hajbi D 0. In this
case, by Theorem 4.4(1), the �-isotypical component of Resa ıGysb factors through

H
d�2.rC1/
et

�
ShKp .GS0;T0/Fp ;L

.k;w/

S0;T0

�
.�1/Œ��

for some quaternionic Shimura variety ShKp .GS0;T0/ of dimension d � 2.r C 1/. By

Proposition 2.26, the Frobp2g -eigenvalues on this cohomology group are ˛2.d�j /� 	

ˇ
2j
� .˛�ˇ�=p

g/2#Tp�2gr with j D rC1; : : : ; d � r �1. Thanks to the assumption on
the ratio of Satake parameters, we see that ˛2.d�j /� ˇ

2j
� for j D 0; : : : ; d are distinct.

The above list of eigenvalues does not contain (4.5.3). Thus the .a;b/-entry of B is
zero.

Next, we separate the discussion for r < d
2

and r D d
2

. Suppose that r < d
2

.
A subtle point of our argument is that we can not directly identify the matrix B with
Sr
S entry by entry, because there is no canonical choice of basis on each of the factors

in (4.5.5). The proof resembles the proof of Theorem 3.6. The determinant of B is
equal to the sum over all permutations s of the set Br

S, of the product of the sign
sgn.s/ and, for every cycle .a1 � � �at / of the permutation s, the product
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p�2.`.a1/C			C`.at // � .Resa1 ıGysa2/

� .Resa2 ıGysa3/ � � � .Resat�1 ıGysat /.Resat ıGysa1/: (4.5.6)

Let m0 D m0.a1;a2/C � � � Cm0.at ;a1/ be the sum of total number of contractible
loops in the diagramsD.a1;a2/,D.a2;a3/, : : : ,D.at ;a1/. Then, by Theorem 4.4(2),
the expression (4.5.6) is equal to .�2/m0 times the following composition of link
morphisms on the cohomology groups,

�?Sa1 ;Sa2 ;z.a1;a2/
ı �?Sa2 ;Sa3 ;z.a2;a3/

ı � � � ı �?Sat ;Sa1 ;z.at ;a1/
; (4.5.7)

of shift
Qt�1
iD1.tai t

�1
aiC1

/tat t
�1
a1
D 1 and indentation degree

t�1X
iD1

z.ai ;aiC1/C z.at ;a1/

D

´Pt�1
iD1.`.ai /� `.aiC1//C `.an/� `.a1/D 0; if p splits in E=F;

0C � � � C 0D 0; if p is inert in E=F:

So this composition (4.5.7) is the same link morphism associated to some nth power
of the fundamental link �Sa1 for Sa1 , with trivial shift and indentation degree 0
(regardless of whether p splits or not in E=F ). The number n is equal to the total
displacement v.�Sat ;a1 ı � � � ı �Sa1;a2 / divided by v.�Sa1 /D g.

Note that the action of the link morphism .�nSa1
/?
.0/

on the 1-dimensional Frobp2g -
eigenspace�
Hd�2r

et

�
ShKp .GSa1 ;Ta1

/;L
.k;w/
Sa1 ;Ta1

�
Œ��
�Frob

p2g
D˛

2.d�2r/
� .˛�ˇ�=p

g/2.#TCr/
(4.5.8)

is just the multiplication by a scalar, which we denote by �a1;n. We claim that �a1;n
does not depend on a1 2B

r
S. Indeed, for a;a0 2Br

S with haja0i ¤ 0, Theorem 4.4(2)
gives a normalized link morphism,

�?Sa;S0a;.z/
W Hd�2r

et

�
ShKp .GSa0 ;Ta0 /;L

.k;w/
Sa0 ;Ta0

�
!Hd�2r

et

�
ShKp .GSa;Ta/;L

.k;w/
Sa;Ta

�
;

with some indentation degree z and some shift; then

.�nSa/
?
.0/ D �

?
Sa;Sa0 ;.z/

ı .�nSa0 /
?
.0/ ı .�

?
Sa;Sa0 ;.z/

/�1;

provided that one of .�nSa/
?
.0/

or .�nSa0 /
?
.0/

exists. When this happens, we must have
�a;n D �a0;n. For general a and a0, we can always find a sequence a1 D a; : : : ;at D

a0 2Br
S such that hai jaiC1i ¤ 0. So if for some n the link morphism .�nSa/

? exists,
then it does not depend on a. In the remainder of this proof, we put �n D �a;n as long
as .�nSa/

?
.0/

exists for some a 2Br
S. The element �n is clearly multiplicative in n.
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We can thus introduce the formal symbol �?univ such that .�?univ/
n D �n whenever

.�nSa/
?
.0/

exists for an integer n. Comparing this computation with detGrS in the proof
of Theorem 3.6, we see that detB is obtained by replacing every vg in detGrS by
�?univ. By Theorem 3.6, this means that

detB D˙
�
�?univ � .�

?
univ/

�1
�2td;r :

In particular, .�?univ/
2 appears in the determinant, and hence .�2Sa/

?
.0/

exists.

Finally, it follows from Proposition 2.27 that .�?univ/
2.d�2r/ D �2.d�2r/ D .˛�=

ˇ�/
d�2r . Our assumption implies that .˛�=ˇ�/d�2r ¤ 1; so .�?univ/

2 ¤ 1, and hence
detB ¤ 0. This concludes (2).

We now treat the case of r D d
2

. Similar to the discussion above, detB is equal
to the sum over all permutations s of the set Br

S, of the product of the signature of
s, and, for every cycle .a1 � � �at / of the permutation s, the product (4.5.6). By The-
orem 4.4(3), (4.5.6) in this case is of the form .�2/m0 � .Tp=p

g=2/mT times the link

morphism from .Sa1 ;Ta1/ to itself with shift
Qt�1
iD1.tai t

�1
aiC1

$
�mT .ai ;aiC1/

Nq /tat t
�1
a1
	

$
�mT .an;a1/
Nq D$

�mT
Nq and indentation degree

tX
iD1

�
`.ai /� `.ai�1/�mT;ig

�
D�mT g:

Here m0 D m0.a1;a2/C � � � Cm0.at ;a1/ (resp., mT D mT .a1;a2/C � � � CmT .at ;
a1/) is the total number of contractible (resp., noncontractible) loops inD.a1;a2/; : : : ;
D.at ;a1/. By Example 2.22 and the uniqueness of link morphisms (Lemma 2.20),
this link morphism is equal to the one associated to S�mT =2q with shift $�mTNq . This
in particular says that mT is even. By the second part of Example 2.22, we see that
this link morphism is exactly S�mT =2p . Therefore, (4.5.6) is given by

.�2/m0.Tp=p
g=2/mT .Sp/

�mT =2 D .�2/m0
�
.˛� C ˇ�/

2=.˛�ˇ�/
�mT =2:

Comparing this with the computation of detGrS, we see that detB is nothing but
replacing every T 2 by T n

p WD .˛� C ˇ�/
2=˛�ˇ� . By Theorem 3.6, we see that

detB D˙
�
.˛� C ˇ�/

2=˛�ˇ� � 4
�td;d=2 D˙�.˛� � ˇ�/2=˛�ˇ��td;d=2 :

It is nonzero as long as ˛� ¤ ˇ� .15 This concludes the proof of Theorem 4.5.

Before giving a more detailed discussion of the case ˛� D ˇ� , we first give some
general remarks.

15Note that we still need ˛�=ˇ� to avoid certain roots of unity to get (4.5.5).
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Remark 4.6
(1) We discuss the possibility of generalizing this main theorem to the case when

p is only assumed to be unramified (namely, pOF D p1 � � �ph). In this case,
one can construct the twisted partial Frobenius F00

p2
i

for each prime ideal pi
as in [33, Section 3.22]. Roughly speaking, on the level of moduli space, this
is to send the Abelian variety A to A=Ker

p2
i
˝OF pi , where Ker

p2
i

is the pi -

component of the kernel of Fr2 W A! A.p
2/. Suppose that one can describe

the action of each F00
p2
i

on the cohomology of the unitary Shimura variety as

in Proposition 2.27(3), or, more precisely, [34, Conjecture 5.18] holds true.
Then the same argument above can generalize the theorem to the case when
p is only assumed to be unramified, and every prime ideal pi behaves “in
an independent way.” More precisely, we fix ri �

di
2

for all i , where di D
#.Sc1 \ †pi

/ and †pi
is the subset of p-adic embeddings that induce the

prime pi . Then the Goren–Oort cycles would be parameterized by h-tuples
whose i th component is a semimeander with di nodes and ri arcs. Under
the genericity condition, the eigenvalues of ��.Frobpi / avoid certain roots of
unity, and the cohomology of the Goren–Oort cycles generate the subspace of
the cohomology Hd

et .ShKp .GS;T/Fp ;L
.k;w/
S;T /Œ�� where certain analogues of

F00pi
act with appropriate eigenvalues determined by ri and Frobpi

.
Without [34, Conjecture 5.18], we can only prove the analogous statement
when ri D

di
2

for i , that is, in the case for Tate cycles.16 Moreover, since we
can not distinguish the actions of each F00pi

, we would have to assume that
the eigenvalues of ��.Frobpi / are “generic,” so that all eigenvalues of Frobgp
acting on H 2

et.ShKp .GS;T/Fp ;L
.k;w/
S;T / are “as distinct as possible,” where g

stands for the least common multiple of the inertia degrees of the pi ’s. For
example, this excludes the case when both p1 and p2 have inertia degree 2 and
Frobp1 and Frobp2 have the same set of eigenvalues (which would be okay if
[34, Conjecture 5.18] is known).

(2) It would be interesting to know, when p is ramified in F=Q, whether one can
prove a similar result for the special fiber of the splitting model of the Hilbert
modular variety of Pappas and Rapoport. The construction of the correspond-
ing Goren–Oort divisors is discussed in [28].

(3) The construction of these Goren–Oort cycles uses the CM extension E of F .
Even though we think these cycles should be independent of the choice of

16If ri <
di
2

for some i , then the determinant of the intersection matrix would involve the knowledge of different

powers of the action of F00pi . But we only have the information of their product S�1p 	F
2 WD

Qh
iD1F

00

p
2
i

. On the

other hand, the case ri D
di
2

is fine, because we only use the Hecke operators, whose action on the cohomology
is known.
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E , we do not know how to prove this. This auxiliary CM extension is also
responsible for avoiding 2nth roots of unity as opposed to just nth roots of
unity. We think these issues are purely technical, as our current technique relies
very much on the PEL moduli interpretation.

(4) In the case of r D d=2 (namely, the case for Tate classes), the map (4.5.1) is
injective as long as ˛� ¤ ˇ� . We need ˛�=ˇ� to avoid more roots of unity so
that both sides of (4.5.1) have the same dimension.

(5) It is tempting to ask the following question: To what extent does this imply
the semisimplicity of the Frobenius action on Hd

et .ShKp .GS;T/Fp ;Q`/Œ��?
Unfortunately, our theorem is in its strongest form only when ˛� ¤ ˇ� , where
��.Frobpg / is automatically semisimple. Thus if ˝ Ind

GalQ
GalF

�� is irreducible

as a representation of GalQ, then the GalQ representation Hd
et .ShKp .GS;T/Q;

Q`/Œ�� is isomorphic to˝ Ind
GalQ
GalF

�� up to characters, so that Frobpg is semi-

simple. However, ˝ Ind
GalQ
GalF

�� might be reducible (e.g., when � is CM). In
this case, our theorem might provide some insight into the semisimplicity of
Hd

et .XQ;Q`/Œ�� as a representation of GalQ. See also [26].
(6) It is also tempting to ask the following: In the case of r D d=2 (the Tate classes

case), is the determinant of the intersection matrix related to the higher deriva-
tives of the local L-function (to get a certain local version of the Beilinson–
Bloch conjecture)? We think the answer might be negative. Note that the deter-
minant is always a power of .˛� � ˇ�/, but the higher derivatives of the local
L-functions can involve factors of the form ˛s � ˇs for s < d=2. In the recent
preprint [37] of Z. Yun and W. Zhang, they seem to suggest a new philosophy
for higher derivatives of global L-functions. We do not know how to compare
the determinant of our intersection matrix to their formulation.

Remark 4.7
It is a very interesting question to understand what happens when ˛� D ˇ� . We
explain this in the quadratic case. Let F be a real quadratic field in which p is inert.
Let � 2A.2;2/ be a cuspidal automorphic representation with trivial central charac-
ter. Suppose that � appears in the cohomology of the quaternionic Shimura variety
X D ShK.G¹v1;v2º;;/, where v1 and v2 are two finite prime-to-p places of F (so
that X is proper for simplicity). Suppose that ˛� D ˇ� D ˙p. For instance, when
� comes from the base change of a usual modular form corresponding to an elliptic
curve over Q which has supersingular (good) reduction at p, then the local Satake
parameters of � at p are ˛� D ˇ� D p. An interesting related question is: Are there
examples of � which do not come from base change? We consider this question as an
analogue of Coleman’s complete reducibility question (see [3, Remark 2, p. 232]).
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In this case, H 2
et.XFp

;Q`.1//Œ�� is 4-dimensional, on which Frobp2 acts triv-
ially. More precisely, as pointed out by Prasanna, the action of Frobp on this 4-
dimensional subspace has two eigenvalues: ˛�=p (with multiplicity 3) and �˛�=p
(with multiplicity 1). There are two Goren–Oort cycles, both given by a collection
of P1’s. The �-isotypical components of their cycle classes contribute nontrivially
to the Frobp-eigenspace with eigenvalue �˛�=p. We claim that the �-isotypical
component of their cycles classes does not contribute to the Frobp-eigenspace with
eigenvalue ˛�=p. Indeed, the intersection matrix B given above is degenerate (with
rank 1). Note that, for any cuspidal � , the �-isotypical component of the rational
Néron–Severi group of X is orthogonal to the subspace of ample line bundles, and
the Hodge index theorem implies that the intersection pairing on the �-isotypical
component is nondegenerate. So the degeneracy of the intersection matrix means that
the contribution from the Goren–Oort cycles is indeed a 1-dimensional subspace of
H 2

et.XFp
;Q`.1//Œ��, namely, the subspace with Frobp-eigenvalue �˛�=p.

We think this phenomenon is comparable to the case of Heegner points: when
the rank of the elliptic curve is 1 (“generic rank”), the Heegner point gives a canoni-
cal generator of the Mordell–Weil group tensored with Q; however, when the rank
of the elliptic curve is strictly greater than 1 (“generic rank”), the Heegner point
becomes torsion. In our case, the classes of the Goren–Oort cycles are similar to
Heegner points. When the dimension of the corresponding Frobenius (generalized)
eigenspace is “generic,” the classes of the Goren–Oort cycles give a canonical basis,
but when the dimension is strictly greater than the generic one, the contribution from
the Goren–Oort cycles tends to degenerate.

5. Computation of the intersection matrix
The aim of this section is to establish Theorem 4.4 and hence to finish the proof of
the main theorems. We keep the notation from the previous section.

Notation 5.1
For simplicity, we suppress the automorphic sheaf L

.k;w/
S;T , the level structure Kp , the

change of base to Fp , and the subscript et from the notation of cohomology groups,
as they are all fixed throughout this section. For example, we write

H?
�
Sh.GS;T/a

�
.r/ for H?

et

�
ShKp .GS;T/a;Fp ;L

.k;w/
S;T .r/jShKp .GS;T/a

�
:

This should not cause any confusion because all the automorphic sheaves are com-
patible on the Goren–Oort cycles. As in Theorem 4.4, we fix a choice of system of

shifts ta of the correspondences ShKp .GSa;Ta/
�a
 �� ShKp .GS;T/a ,! ShKp .GS;T/ as

in Section 3.8.
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Before going into the intricate induction, we first handle a few simple but essen-
tial cases. The general case will be essentially reduced to these cases.

5.2. The case of r D 1 and aD b

This is the case where the corresponding periodic semimeanders are given as

aD bD

(or their shifts), linking � with �� D ��n� � .
Unwinding the definition, we have the following commutative diagram:

Hd�2
�
Sh.GSa;Ta/

� Resa ıGysa

��a

Hd�2
�
Sh.GSa;Ta/

�

Hd�2
�
Sh.GS;T/a

� Gysin

Hd
�
Sh.GS;T/

�
.1/

Restr:
Hd

�
Sh.GS;T/a

�
.1/

�a;Š

(5.2.1)

Recall that Sh.GS;T/a is a P1-bundle over Sh.GSa;Ta/; hence ��a and �a;Š are both
isomorphisms. By the excessive intersection formula (see [7, Section 6.3]), the com-
position of the bottom line is given by the cup product with the first Chern class of
the normal bundle of the embedding Sh.GS;T/a ,! Sh.GS;T/, which is isomorphic
to �2pn� times the universal quotient line bundle for the P1-bundle given by �a,
according to Proposition 2.31(2). Therefore, the morphism on the top row Resa ıGysa
is nothing but the multiplication by �2pn� D�2p`.a/.

5.3. The case of d D 2 and r D 1 with a¤ b

This is the case where the corresponding periodic semimeanders are given as

aD and bD

(or their simultaneous shifts). Let �� denote the left end-node of the arc of a, and let
� denote is the right end-node. We have �C D ��. Here the meaning of “left” and
“right” refers to the xy-plane presentation of a, as explained in Section 3.1.

Unwinding the definition, the morphism Resa ıGysb is the composition of the
following commutative diagram from the upper-left to the lower-right (first rightward
and then downward):
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H 0
�
Sh.GSb;Tb/

� ��
b

H 0
�
Sh.GS;T/��

� Gysin

Restr:

H 2
�
Sh.GS;T/

�
.1/

Restr:

H 0
�
Sh.GS;T/¹��;�º

� Gysin

Tr�a

H 2
�
Sh.GS;T/�

�
.1/

�a;Š

H 0
�
Sh.GSa;Ta/

�
(5.3.1)

Here, the commutativity of the square follows from the diagram (4.1.2) and the fact
that Sh.GS;T/¹�;��º is the transversal intersection of Sh.GS;T/�� and Sh.GS;T/� in
Sh.GS;T/. The commutativity of the upper left triangle is obvious, and the commu-
tativity of the lower right triangle follows from the fact that Tr�a is the trace map
induced by the finite étale map (of 0-dimensional Shimura varieties)

Sh.GS;T/¹��;�º ,! Sh.GS;T/�
�a
��! Sh.GSa;Ta/;

and by the natural isomorphism between the pullback of the automorphic sheaf on
Sh.GSa;Ta/ with that on Sh.GS;T/� .

By Theorem 2.32(3), the diagonal composition from the upper left to the lower
right, or, equivalently, the morphism Resa ıGysb, is Tp ı .�?Sa;Sb;.n//

�1, where
�?Sa;Sb;.n/ is the link morphism associated to the trivial link �Sb;Sa W Sb! Sa with

indentation degree n D 2n�� D �.`.a/ � `.b/ � g/ and shift $Nqt�1a tb. Thus the
inverse .�?Sb;Sa;.n//

�1 D .�Sa;Sb;.�n//
? is the link morphism associated to the link

�Sa;Sb D �
�1
Sb;Sa

with indention degree `.a/ � `.b/ � g and shift $�1Nq tat
�1
b

. This
proves Theorem 4.4(3) for the given case.

5.4. The case of r D 1, d > 2, and ha;bi D vmv

Assume thatmv > 0 first. In this situation, the corresponding periodic semimeanders,
up to shifting, are given by

aD and
(5.4.1)

bD
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Note that the two arcs in a and b must be adjacent; otherwise, ha;bi D 0. Let � denote
the left end-node of the (unique) arc in a, as shown in the pictures above. Then �� is
the left end-node of the arc in b, and �C is the right end-node of the arc in a. So if
� D ��n�C �C and �� D ��n� � , then mv Dmv.a;b/D n� C n�C .

Unwinding the definition, the morphism Resa ıGysb is the composition of the
following commutative diagram from the upper left to the lower right:

Hd�2
�
Sh.GSb;Tb/

� ��
b

��
b

Hd�2
�
Sh.GS;T/�

� Gysin

Restr:

Hd
�
Sh.GS;T/

�
.1/

Restr:

Hd�2
�
Sh.GS;T/¹�;�Cº

� Gysin

�ŠD.�
�1/�;Š

Hd
�
Sh.GS;T/�C

�
.1/

�a;Š

Hd�2
�
Sh.GSa;Ta/

�
(5.4.2)

Once again, the commutativity of the square follows from the diagram (4.1.2) and the
fact that Sh.GS;T/¹�;�Cº is the transversal intersection of Sh.GS;T/�C and Sh.GS;T/�

in Sh.GS;T/. The commutativity of the two triangles follows from the basic properties
of star pullbacks and shriek pushforwards. By Theorem 2.32(2), the morphism

� W Sh.GS;T/¹�;�Cº ,! Sh.GS;T/�C
�a
��! Sh.GSa;Ta/

is an isomorphism, and the composition

Sh.GSa;Ta/
��1

 �� Sh.GS;T/¹�;�Cº ,! Sh.GS;T/�
�b
��! Sh.GSb;Tb/

is exactly the link morphism

�a;b;.z/;] W Sh.GSa;Ta/�! Sh.GSb;Tb/;

associated to the link �a;b W Sa! Sb given by

(5.4.3)

with shift tat�1b and indentation degree z equal to `.a/� `.b/ if p splits in E=F and
equal to 0 if p is inert in E=F . Therefore, Resa ıGysb is exactly pv.�a;b/=2�?

a;b;.z/
D

pmv=2�?
a;b;.z/

(note the normalization in (2.23.1)), verifying Theorem 4.4(2).
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We now come to the case where mv is negative. In this case, the picture of a and
b in (5.4.1) are swapped. Then we have a commutative diagram similar to (5.4.2):

Hd�2
�
Sh.GSb;Tb/

� ��
b

Š

Hd�2
�
Sh.GS;T/�C

� Gysin

Restr:

Hd
�
Sh.GS;T/

�
.1/

Restr:

Hd�2
�
Sh.GS;T/¹�;�Cº

� Gysin

Hd
�
Sh.GS;T/�

�
.1/

�a;Š

Hd�2
�
Sh.GSa;Ta/

�
and the composed diagonal morphism gives Resa ıGysb. Let �b;a W Sb! Sa denote
the inverse link of �a;b. Since a and b are obtained by swapping with each other
from the previous case, the link morphism �b;a;.�z/;] W Sh.GSb;Tb/! Sh.GSa;Ta/

with shift tbt�1a exists, where z D `.a/ � `.b/ if p splits in E and z D 0 if p is
inert in E . Note also that �b;a;.�z/;] is finite flat of degree p�mv D pv.�b;a/ by Theo-
rem 2.32. One sees easily that Resa ıGysb D Tr�b;a;.�z/;] . By Lemma 2.29(3), this is
exactly p�mv=2.�?

b;a;.�z/
/�1 D p.`.a/C`.b//=2�?

a;b;.z/
. This proves Theorem 4.4(2) in

this case.

5.5. Decomposition of periodic semimeanders
Before proceeding to the inductive proof, we discuss certain ways to “decompose”
periodic semimeanders appearing in the induction. Let a 2Br

S be a periodic semime-
ander. We call a subset � of r 0 arcs (r 0 � r ) in a saturated if for each arc ı belonging
to � any arc that lies below ı in the sense of Notation 3.7 belongs to �. For example,

if aD • • • • • ••••• , the subset �D • • • • • ••••• 17 is saturated, but

• • • • • ••••• is not.
Now fix a saturated�. We use a[ to denote the periodic semimeander for S given

by all the arcs in � and then adjoining semilines to the rest of the nodes. Then Sa[ is
the union of S and all nodes connected to an arc in�. We use ares D an� to denote the
periodic semimeander for Sa[ obtained by removing all the arcs in � and replacing

their end-nodes by plus signs. In the example above, a[ D • • • • • ••••• and

17Here � is only the set of the arcs, not including the nodes in the picture.
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ares D , where the plus signs indicates points corresponding to
Sa[;1.

By the construction of the Goren–Oort cycles in Section 3.8, we have the follow-
ing commutative diagram, where the middle square is Cartesian:

Sh.GS;T/a

�a

Sh.GS;T/a[

�
a[

Sh.GS;T/

Sh.GS
a[
;T

a[
/ares

�ares

Sh.GS
a[
;T

a[
/

Sh.GSa;Ta/

(5.5.1)

Since the construction of this diagram comes from the unitary Shimura varieties, we

point out that, the shift of the correspondence Sh.GSa;Ta/
�ares
 ��� Sh.GS

a[
;T

a[
/ares ,!

Sh.GS
a[
;T

a[
/ is ta[;a D tat

�1
a[

. From the commutative diagram, we can decompose
the morphisms Resa and Gysa as follows:

Gysa W H
d�2r

�
Sh.GSa;Ta/

� �a�res
���!Hd�2r

�
Sh.GS

a[
;T

a[
/ares

�
Gysin
���!Hd�2r 0

�
Sh.GS

a[
;T

a[
/
�
.r � r 0/

��
a[

��!Hd�2r 0
�
Sh.GS;T/a[

�
.r � r 0/

Gysin
���!Hd

�
Sh.GS;T/

�
.r/

and

Resa W H
d
�
Sh.GS;T/

�
.r/

Restr:
���!Hd

�
Sh.GS;T/a[

�
.r/

�
a[;Š

���!Hd�2r 0
�
Sh.GS

a[
;T

a[
/
�
.r � r 0/

Restr:
���!Hd�2r 0

�
Sh.GS

a[
;T

a[
/ares

�
.r � r 0/

�ares;Š
����!Hd�2r

�
Sh.GSa;Ta/

�
:

Here, to get the decomposition for Resa, we have used the fact that the trace map Tr�a
can be factorized as
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R2r�a�Q`.r/ŠR
2r�2r 0�ares�.R

2r 0�a[�Q`/.r/
Tr�

a[

����!R2r�2r
0

�ares�.Q`/.r � r
0/

Tr�ares
����!Q`:

Summing up everything in short, we obtain thus

Gysa DGysa[ ıGysares
; Resa D Resares ıResa[ ; and ta D ta[ta[;a:

We will apply this to appropriate �’s to reduce the calculation to Sh.GS
a[
;T

a[
/

and reduce the inductive proof essentially to the cases considered above.

5.6. Decomposition of periodic semimeanders (continued)
We will also encounter the following situation: assume that the set of arcs in a periodic
semimeander a is the disjoint union of two saturated subsets � and �0. Put s D #�
and s0 D #�0 so that r D sC s0. We will show that� and�0 “behave” independently.

We write a[ (resp., a[0) for the periodic semimeander for S given by all arcs in �
(resp., �0) and then adjoin semilines to the rest of the nodes. We put ares (resp., a0res)
for the periodic semimeander for Sa[ (resp., Sa[0 ) obtained by removing all arcs in �
(resp., �0) and replacing all their end-nodes by plus signs.

In this case, in view of the construction of the Goren–Oort cycle Sh.GS;T/a in
Section 3.8, we could either go through the arcs in � first, or the arcs in �0 first. So
we have the following commutative Cartesian diagram:

Sh.GS;T/ Sh.GS;T/a[

�
a[

Sh.GS
a[
;T

a[
/

Sh.GS;T/a[0

�
a[0

Sh.GS;T/a
��

��0

Sh.GS
a[
;T

a[
/ares

�ares

Sh.GS
a[0
;T

a[0
/ Sh.GS

a[0
;T

a[0
/a0res

�
a
0
res

Sh.GSa;Ta/

(5.6.1)

where �� and ��0 are the morphisms defined by the natural pullback of the upper-
right and lower-left Cartesian squares, respectively. By Remark 2.13 the shifts satis-
fies the following equality:

ta[ta[;a D ta D ta[0ta[0;a in E�;clnA
1;�
E =O�Ep

: (5.6.2)

This implies that both �� and ��0 are iterated P1-bundles of relative dimensions
s and s0, respectively. We use ��;Š to denote the natural morphism
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��;Š W H
?
et

�
ShKp .GS;T/a;Fp ;L

.k;w/
S;T .s/

�
Š
�!H?

et

�
ShKp .GS

a[
;T

a[
/ares;Fp

;L
.k;w/
S
a[
;T

a[
˝R���Q`.s/

�
Tr��
���!H?�2s

et

�
ShKp .GS

a[
;T

a[
/ares;Fp

;L
.k;w/
S
a[
;T

a[

�
;

where the last map is induced by the trace isomorphism R2s��;�.Q`.s//ŠQ`.
As a consequence of the Cartesian property and Theorem 2.32(1), we have the

following commutative diagram (which is placed into (5.6.1) vertically on the right):

Hd�2s0
�
Sh.GS

a[0
;T

a[0
/a0res

�
.s/

��
�0

�
a
0
res ;Š

Hd�2s0
�
Sh.GS;T/a

�
.s/

��;Š

Gysin

Hd
�
Sh.GS;T/a[

�
.sC s0/

�
a[;Š

Hd�2s�2s0
�
Sh.GSa;Ta /

� ��ares

Hd�2s�2s0
�
Sh.GS

a[
;T

a[
/ares

� Gysin

Hd�2s
�
Sh.GS

a[
;T

a[
/
�
.s0/:

(5.6.3)

5.7. Inductive proof of Theorem 4.4
We now start the proof of Theorem 4.4 by induction on d D #Sc1 or, equivalently, the
dimension of the Shimura variety Sh.GS;T/ (and also on r by keeping d � 2r fixed
throughout the induction). The base cases d D 0 and d D 1 are trivial (as there is no
nontrivial periodic semimeander).

We now assume that Theorem 4.4 holds for all Shimura varieties ShK.GS;T/ with
#Sc1 < d . We now fix S;T so that #Sc1 D d . The case of r D 0 is clear. We henceforth
assume that r > 0.

Let a;b 2Br
S be as in Theorem 4.4. We fix a basic arc ıb of b, with right end-node

� 2 Sc1 (and left end-node �� 2 Sc1). As in Section 5.5, we use bres 2B
r�1
S[¹�;��º to

denote the periodic semimeander bnıb obtained by removing ıb from b and replacing
nodes �; �� by plus signs. We will use ıb itself to denote the corresponding b[; that
is, we also view ıb as a periodic semimeander for S with only one arc ıb (and d � 2
semilines).

The basic idea is to factor the Gysin map Gysb using ıb, in the sense of Sec-
tion 5.5, and to factor the restriction map Resa according to the following list of four
cases.
(i) The two nodes �; �� are both linked to semilines in a. This will force us to fall

into the case (1) of Theorem 4.4.
(ii) There is a (basic) arc ıa in a linking �� to � from left to right, so that ıa

and ıb form a contractible loop in D.a;b/. In other words, ıa and ıb are the
same (up to deformation of the arcs). We will reduce the proof of Theorem 4.4
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to the case for S0 D S [ ¹�; ��º, T0 D T [ ¹�º, ares D anıa, and bres, and it
hence follows from the inductive hypothesis. In particular, we will see that the
contractible loop ıa and ıb contributes a factor of �2p`.ıb/.

(iii) There is an arc ıa in a connecting � to �� wrapped around the cylinder from
right to left. In other words, ıa and ıb together form a noncontractible loop in
D.a;b/. This can only happen if r D d=2. We will show that the composition
Resa ıGysb is essentially the Tp-operator composed with Resanıa ıGysbnıb
for the Shimura variety with S0 D S [ ¹�; ��º and T0 D T [ ¹�º, up to some
link morphism which we make explicit later.

(iv) Neither of the above happens. Then, in a, either � is connected by an arc whose
other end-node is not ��, and/or �� is connected by an arc whose other end-
node is not � . In either case, we will reduce to a case with the two nodes � and
�� removed, after composing with a certain link morphism.

We now treat each of the cases separately.

5.8. Case (i)
This is the case when � and �� are connected to semilines in a. This implies that
hajbi D 0. So we are in the situation of Theorem 4.4(1). We need to show that the
�-isotypical component of Resa ıGysb factors through the cohomology of a Shimura
variety of smaller dimension. Let a� denote the periodic semimeander for S given by
removing the two semilines of a connected to � and �� and reconnecting � and ��

by a (basic) arc. Note that this is possible because ıb is a basic arc, so � and �� are
adjacent nodes in the band for S. In particular, a� 2BrC1

S .
By the discussion of Section 5.5, we see that the morphism Resa ıGysb is the

composition from the top left to the bottom right of the following commutative dia-
gram by going first downward and then rightward:

Hd�2r
�
Sh.GSb;Tb /

�
��
ıb
ıGysbres

Hd�2
�
Sh.GS;T/ıb

�
.r � 1/

Gysin

Restr:

Hd�2
�
Sh.GS;T/a�

�
.r � 1/

Gysin

Hd
�
Sh.GS;T/

�
.r/

Restr:

Hd
�
Sh.GS;T/a

�
.r/

�a;Š

Hd�2r
�
Sh.GSa;Ta /

�
:

Here, the square is commutative because the corresponding morphisms on the Shimura
varieties form a Cartesian square. The diagram implies that the �-component of
Resa ıGysb factors through the cohomology group

Hd�2
�
Sh.GS;T/a�

�
.r � 1/Œ��ŠHd�2.rC1/

�
Sh.GSa� ;Ta� /

�
.�1/Œ��;
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which is the �-isotypical component of the cohomology of a quaternionic Shimura
variety of dimension d � 2.rC 1/. This means that the conclusion of Theorem 4.4(1)
holds if we ever arrive in case (i) during the inductive proof.

5.9. Case (ii)
This is the case when there is a basic arc ıa in a linking �� to � from left to right,
and hence ıa and ıb are the same (up to deformation of the arcs). We write ı for the
periodic semimeander for S with only one arc ıa. We write ares D anı for the periodic
semimeander for Sı obtained by removing ıa from a and replacing its end-nodes by
plus signs.

Using the discussion of Section 5.5, the morphism Resa ıGysb is the composition
from the upper left to the upper right going all the way around: first downward to the
bottom, then all the way to the right, and finally upward:

Hd�2r
�
Sh.GSa;Ta/

�
Gysbres

Hd�2r
�
Sh.GSb;Tb/

�

Hd�2
�
Sh.GSı;Tı /

�
.r � 1/

��
ı

Hd�2
�
Sh.GSı;Tı /

�
.r � 1/

Resares

Hd�2
�
Sh.GS;T/ı

�
.r � 1/

Gysin

Hd
�
Sh.GS;T/

�
.r/

Restr:

Hd
�
Sh.GS;T/ı

�
.r/

�ı;Š

As in Section 5.2, the composition of the bottom line is given by the excessive inter-
section formula, that is, to take the cup product with the first Chern class of the normal
bundle of the embedding Sh.GS;T/ı ,! Sh.GS;T/, which is �2p`.ı/ times the class
of the canonical quotient bundle for the P1-bundle given by �ı , according to Propo-
sition 2.31(2). Therefore, the dotted arrow in the middle is simply multiplication by
�2p`.ı/. From this, we deduce that

Resa ıGysb D�2p
`.ı/ �Resares ıGysbres

; (5.9.1)

where the latter morphism is constructed over the Shimura variety Sh.GSı ;Tı / of
lower dimension. (Here we choose the shift t 0

a0
for a periodic semimeander a0 for

.Sı ;Tı/ to be tı;Qa0 , where Qa0 is a periodic semimeander of .S;T/ consisting of all the
arcs and semilines of a0 together with the arc ı.)

We can now complete the induction in this case, since we have already known
Theorem 4.4 for Resares ıGysbres

by the induction hypothesis.
(1) If ha;bi D 0, then hares;bresi D 0 for simple combinatorics reasons. Then the

�-isotypical component of Resares ıGysbres
factors through the cohomology of

a lower-dimensional Shimura variety, so the same is true for Resa ıGysb.
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(2) or (3) We have hajbi D .�2/m0vmv or .�2/m0TmT . The picture D.ares;bres/ is
given by removing from D.a;b/ the contractible loop consisting of ıa and ıb.
So we have

haresjbresi D .�2/
�1hajbi D

´
.�2/m0�1vmv if r < d

2
;

.�2/m0�1TmT if r D d
2
:

Since we have `.a/�`.ares/D `.b/�`.bres/D `.ı/ and t 0ares
t 0�1
bres
D tat

�1
b

, we
see that �Sa;Sb gives the same link morphism as �Sı;ares ;Sı;bres

(with the same
indentation and shift). By the inductive hypothesis and (5.9.1),

Resa ıGysb D�2p
`.ı/ �Resares ıGysbres

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�2p`.ı/ � .�2/m0�1 � p.`.ares/C`.bres//=2�?Sı;ares ;Sı;bres ;.z/

;

if r < d
2
;

�2p`.ı/ � .�2/m0�1 � p.`.ares/C`.bres//=2.Tp=p
g=2/mT �?Sı;ares ;Sı;bres ;.z/

if r D d
2
;

D

8̂̂̂̂
<̂
ˆ̂̂:
.�2/m0 � p.`.a/C`.b//=2�?Sa;Sb;.z/;

if r < d
2
;

.�2/m0 � p.`.a/C`.b//=2.Tp=p
g=2/mT �?Sa;Sb;.z/

if r D d
2
:

5.10. Case (iii)
This is the case when there is an arc ıa in a connecting � and �� wrapped around the
cylinder from right to left, and hence ıa and ıb together form a noncontractible loop
in D.a;b/. We are forced to have d D 2r in this case (and hence p splits in E=F ).
Moreover, the arc ıa must lie over all other arcs of a (if there is any). We now define
a list of notations followed by an example.
� Let ıa;� (resp., ıb;�) denote the periodic semimeander of two nodes obtained

from a (resp., b) by keeping ıa (resp., ıb) and its end-nodes and replacing the
other nodes of a by plus signs.

� Let a[� D anıa denote the periodic semimeander for Sa given by removing the
arc ıa from a and replacing the nodes at � and �� by plus signs.

� Let a[ denote the periodic semimeander for S given by removing the arc ıa
and adjoining two semilines attached to both � and ��.

� Let a? denote the semimeander for S obtained by replacing the arc ıa in a

with ıb instead.
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For example, if aD
• • • • • •

��� and bD
• • • • • •

��� , and we choose ıb to be the
arc of b linking the first and the last nodes (� and ��, resp., in the pictures), then ıa is
the arc linking the first and the last nodes (but “over” all other arcs). In this case, we
have

ıa;� D ıb;� D a
[
� D

a
[ D

• • • • • •
��� ; a

? D
• • • • • •

��� ; and bres D

Our goal is to prove an equality,

Resa ıGysb D Tp ı �
?
Sa? ;Sa

ıRes
a[�
ıGysbres

; (5.10.1)

where �?Sa? ;Sa is a certain link morphism associated to the trivial link �Sa? ;Sa W Sa?!

Sa, which we specify later.
Using the discussion of Section 5.5, we see that the morphism Resa ıGysb is the

composition from the top left to the bottom left of the following diagram, by going
first rightward to the end, then downward to the bottom, and finally to the left by the
long arrow:

H0
�
Sh.GSb;Tb /

�
Gysbres

Hd�2
�
Sh.GSıb ;Tıb

/
��
d
2
�1

� ��
ıb

Restr:

Hd�2
�
Sh.GS;T/ıb

��
d
2
�1

� Gysin

Restr:

Hd
�
Sh.GS;T/

��
d
2

�
Restr:

Hd�2
�
Sh.GSıb ;Tıb

/
a
[
�

��
d
2
�1

�
�

a
[
� ;Š

��
ıb

Hd�2
�
Sh.GS;T/a?

��
d
2
�1

� Gysin

Hd
�
Sh.GS;T/a[

��
d
2

�
�

a[;Š

H0
�
Sh.GSa? ;Ta? /

� ��
ıb;�

H0
�
Sh.GS

a[
;T

a[
/ıb;�

� Gysin

H2
�
Sh.GS

a[
;T

a[
/
�
.1/

Restr:

H0
�
Sh.GSa;Ta /

�
H2

�
Sh.GS

a[
;T

a[
/ıa;�

�
.1/

�ıa;� ;Š

(5.10.2)
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The commutativity of the top left square in the diagram above follows from the com-
mutative diagram of morphisms of varieties, and that of the top right square follows
from (4.1.2) and the fact that Sh.GS;T/a? is the transversal intersection of Sh.GS;T/ıb
and Sh.GS;T/a[ in Sh.GS;T/. The middle rectangle of (5.10.2) is commutative by
(5.6.3) (applied with our a?, a[, and ıb being the a, a[, and a[0 therein, respectively).

Now, for the bottom rectangle, we are simply working with the Shimura variety
Sh.GS

a[
;T

a[
/ and hence are reduced to the case of d D 2. Using Section 5.3, we see

that the dotted downward arrow on the left is exactly the operator Tp times a link
morphism �?Sa;Sa? associated to the link �Sa;Sa? W Sa! Sa? , with indentation degree
�2`.ıb;�/ and shift

$�1Nq t�1
a[;a?

ta[;a D$
�1
Nq t�1a? ta: (5.10.3)

To sum up, the morphism Resa ıGysb is the same as the composition of the downward
arrows on the left in (5.10.2). So we have proved (5.10.1).

We now complete the inductive proof of Theorem 4.4. The condition for case (iii)
implies that we are in the setup of Theorem 4.4(3). Assume that we have hajbi D
.�2/m0TmT . The picture D.a[�;bres/ is given by removing from D.a;b/ the noncon-
tractible loop consisting of ıa and ıb. So we have

ha[�jbresi D T
�1hajbi D .�2/m0TmT�1:

By the inductive hypothesis applied to the Shimura variety ShKp .GSıb ;Tıb
/ of lower

dimension (where the shift t 0
a0

for a periodic semimeander a0 for .Sıb ;Tıb/ is taken
to be tıb;Qa0 , where Qa0 is a periodic semimeander of .S;T/ consisting of all the arcs
and semilines of a0 together with the arc ıb),

Res
a[�
ıGysbres

D .�2/m0 � p.`.a
[
�/C`.bres//=2.Tp=p

g=2/mT�1 ı �?S
a
[
�
;Sbres ;.z

0/;

(5.10.4)

where �?S
a
[
�
;Sbres ;.z

0/
is the trivial link morphism with shift

t 0
a[�
t 0�1bres

$
�mTC1
Nq D tıb;a?t

�1
ıb;b

$
�mTC1
Nq D ta?t

�1
b $

�mTC1
Nq (5.10.5)

and indentation degree z D `.a[�/ � `.bres/ � .mT � 1/g. Combining (5.10.1) and
(5.10.4) with the numerical equalities

`.a[�/D `.a/� gC `.ıb;�/ and `.bres/D `.b/� `.ıb;�/;

we deduce that

Resa ıGysb D .�2/
m0p.`.a/C`.b//=2.Tp=p

g=2/mT ı �?Sa;Sa? ı �
?
S
a
[
�
;Sbres ;.z

0/:



TATE CYCLES AND QUATERNIONIC SHIMURA VARIETIES MOD p 1623

The composition of the last two link morphisms is a link morphism Sa ! Sa? D

S
a[�
! Sbres D Sb, whose indentation degree is

�2`.ıb;�/C z D `.a/� `.b/�mT g

and whose shift is equal to the product of (5.10.3) and (5.10.5), or, explicitly,

$�1Nq t�1
a?
ta � ta?t

�1
b $

�mTC1
Nq D tat

�1
b $

�mT
Nq :

This completes Theorem 4.4(3) in this case.

5.11. Case (iv)
Recall that ıb is a basic arc of b linking � with �� from right to left. We are looking at
the situation when at least one of � and �� is linked to an arc in a that is not connected
to the other node. We start with a long list of combinatorics construction, followed by
two examples.
� Let aı be the periodic semimeander for Sıb given by first replacing the nodes

�; �� by plus signs, then adjoining the basic arc ıb to a from underneath the
band to connect to the arcs or links that are already linked to the nodes ��; � ,
and finally continuously deforming the picture so that all arcs are above the
band and all semilines are straight. Intuitively, one can view the last step as
“pulling the strings to tighten the drawing.”

� Let a? denote the periodic semimeander for S modified from a? by replacing
the plus signs �; �� by nodes and adjoining them by the arc ıb.

� Let a[ denote the periodic semimeander for S that consists of two semilines at
both � and ��, all arcs in a that do not intersect with these two semilines, and
semilines at the nodes that are not connected to anything above. Let r 0 (< r )
denote the number of arcs in a[ so that a[ 2Br 0

S .
� Let a[C denote the periodic semimeander for Sıb obtained by removing the

two semilines at both � and �� from a[ and replacing the nodes at �; �� by
plus signs.

� We use a[� to denote the periodic semimeander for S given by replacing in a[

the two semilines connected to � and �� by ıb.
� We use ıb=a[ to denote the periodic semimeander for Sa[ consisting of only

one arc ıb (and all semilines of a[C).
� We choose and fix an arc ıa of a such that

– Case (a): either � is the left end-node of ıa, or
– Case (b): �� is the right end-node of ıa.
Such an arc ıa exists under the assumption of Case (iv) (there might be one or
two such arcs). We use � 0 to denote the right endpoint of ıa. Thus, � 0 is neither
� nor �� in Case (a), and � 0 is the same as �� in Case (b).
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� We use a[� 0 to denote the periodic semimeander for S given by deleting from
a[ the two semilines connected to the end-nodes of ıa and then adjoining the
arc ıa.

� We use ıa=a[ to denote the periodic semimeander for Sa[ consisting of only
one arc ıa (and all semilines of a[� 0 ).

� We use �
a[
�0
;a[�

to denote the link from S
a[
�0

to S
a[�

given by the reduction of

D.ıb=a[ ; ıa=a[/ as defined in Section 3.1.
� We use a[res to denote the periodic semimeander for S

a[
�0

given by deleting all

arcs in a that already appeared in a[� 0 , and changing their end-nodes to plus
signs.

� We use aıres to denote the periodic semimeander for Saı with nodes given by
deleting all arcs in aı that already appeared in a[C, and changing their end-
nodes to plus signs.

� We use �a;a? to denote the link from Sa to Sa? D .Sıb/aı , which is the restric-
tion of �

a[
�0
;a[�

to Sa.
� We use bres to denote the semimeander for Sıb obtained by deleting the arc ıb

and replacing the nodes �; �� by plus signs.
We now give two examples. In both instances, b has a basic arc connecting node

1 with 2 (starting with node 0 on the left). So node 1 is �� and node 2 is � .

Example 1

We take aD • • • • • ••••• . Then the arc ıa has to be the one connecting nodes
2 and 5 and � 0 is node 5. We are in Case (a), and we have

ıa D
• • • • • •••••
�� � � 0 ; a[ D

• • • • • •••••
�� � � 0 ;

a
[
C D a[� D

• • • • • •••••
�� � � 0 ;

a
[
� 0 D

• • • • • •••••
�� � � 0 ; ıb=a[ D

ıa=a[ D a[res D
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a
ı D 18 a? D

• • • • • •••••
�� � � 0 ;

a
ı
res D �

a[
�0
;a[�
D

�a;a? D

Example 2

We take aD • • • • • ••••• . Then the arc ıa has to be the one connecting nodes
1 and 8 through the imaginary boundary at x D �1=2 and x D g � 1=2. We are in
Case (b), so � 0 D �� is the node 1. We have

ıa D
• • • • • •••••
�� � ; a[ D

• • • • • •••••
�� � ;

a
[
C D a[� D

• • • • • •••••
�� � ;

a
[
� 0 D

• • • • • •••••
�� � ; ıb=a[ D

ıa=a[ D a[res D

a
ı D a? D

• • • • • •••••
�� � ;

a
ı
res D �

a[
�0
;a[�
D �a;a? D

19

18We give special shape to the arc linking nodes 5 and 8 here to remind the reader that this arc is obtained by
“pulling the strings.”
19When either � or �� is connected to a semiline, a lot of the new periodic semimeanders constructed are either
“simple” or “similar” to a.
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Using the discussion in Section 5.5, we see that the morphism Resa ıGysb is the
composition of the following diagram from the top left to the bottom, first through
Gysbres

and then all the way to the right and then all the way downward, and finally
through �ı

a=a[
;Š and Resa[res

.

Hd�2r
�
Sh.GSb;Tb /

�
Gysbres

Hd�2
�
Sh.GSıb ;Tıb

/
� ��

ıb

Restr:

Hd�2
�
Sh.GS;T/ıb

� Gysin

Restr:

Hd
�
Sh.GS;T/

�
Restr:

Hd�2
�
Sh.GSıb ;Tıb

/
a
[
C

�
�

a
[
C
;Š

��
ıb

Hd�2
�
Sh.GS;T/a[�

� Gysin

Hd
�
Sh.GS;T/a[

�
�

a[;Š

Hd�2r 0�2
�
Sh.GS

a
[
�
;T

a
[
�

/
� ��

ı
b=a[

py=2�?
a
[
�0
;a[�

Res
a
ı
res

Hd�2r 0�2
�
Sh.GS

a[
;T

a[
/ı

b=a[

� Gysin

Hd�2r 0
�
Sh.GS

a[
;T

a[
/
�

Restr:

Hd�2r
�
Sh.GSa? ;Ta? /

�

p.xCy/=2�?
a;a?

Hd�2r 0�2
�
Sh.GS

a
[
�0
;T

a
[
�0

/
�

Res
a
[
res

Hd�2r 0
�
Sh.GS

a[
;T

a[
/ı

a=a[

��ı
a=a[

;Š

Hd�2r
�
Sh.GSa;Ta /

�
(5.11.1)

Here, the numbers x;y and the link morphisms �?
a[
�0
;a[�

and �?
a;a? will be defined

explicitly later. For simplicity, we have omitted the Tate twists from the notation, and
each cohomology group H a.?/ should be understood as H a.?/.b/ with a � 2b D
d � 2r ; for instance, Hd�2r 0�2.Sh.GS

a
[
�0
;T

a
[
�0

// should be understood as

Hd�2r 0�2.Sh.GS
a
[
�0
;T

a
[
�0

//.r � r 0 � 1/.

We now explain the commutativity of this diagram. The commutativity of the top
left square in the diagram above follows from the commutative diagram of morphisms
of varieties, and that of the top right square follows from (4.1.2) and the fact that
Sh.GS;T/a[�

is the transversal intersection of Sh.GS;T/a[ and Sh.GS;T/ıb in Sh.GS;T/.
The commutativity of the middle rectangle follows from that of (5.6.3) (applied with
our a[� and a[ being the a and a[ therein, respectively). The commutativity of the
lower trapezoid will follow from applying Section 5.4 (applied to the Shimura variety
Sh.GS

a[
;T

a[
/ with our ıa=a[ and ıb=a[ being the a and b therein), once we have clari-
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fied the meaning of y and �?
a[
�0
;a[�

in Section 5.12 later. Finally, the commutativity of

the bottom parallelogram will be justified in Section 5.13 and Lemma 5.14 later.
To sum up, the morphism Resa ıGysb will be the composition of (5.11.1) from

the top left to the bottom by first going all the way down and through �?
a;a? . This gives

the following equality,

Resa ıGysb D p
.xCy/=2�?a;a? ıResa? ıGysbres

; (5.11.2)

which we will use to complete the inductive proof of Theorem 4.4 in Case (iv), as we
will explain in Section 5.15.

5.12. Link morphism �
a[
�0
;a[�

Now, let us get to the details, starting with the link morphism associated with �
a[
�0
;a[�

.

We distinguish the two cases:
Case (a). Suppose that the left node of ıa is � . Example 1 above falls into this case.

All the curves in the link �
a[
�0
;a[�

are semilines, except for one that turns to the

right, which we denote by � . The curve � sends �� to � 0. By Theorem 2.32(2),
there exists a link morphism �

a[
�0
;a[� ;]

with indentation degree `.ıa/ � `.ıb/

and shift t
a[
�0
t�1
a[�

(and also a link morphism on the local system as in Theo-

rem 2.32(2)(d)), which fits into the following commutative diagram:

Sh.GS
a[
;T

a[
/ıa

�ıa

Sh.GS
a[
;T

a[
/¹� 0;�º

Š

Sh.GS
a[
;T

a[
/ıb

�ıb

Sh.GS
a
[
�0
;T

a
[
�0

/

�
a
[
�0
;a[� ;]

Sh.GS
a
[
�
;T

a
[
�

/

By Theorem 2.32(2)(c), �
a[
�0
;a[� ;]

is finite flat of degree py with y WD

v.�
a[
�0
;a[� ;]

/ D `.ıa/ C `.ıb/. Let �?
a[
�0
;a[�
W Hd�2r 0�2.Sh.GS

a
[
�
;T

a
[
�

// !

Hd�2r 0�2.Sh.GS
a
[
�0
;T

a
[
�0

// denote the induced link homomorphism on the

cohomology groups. By the same argument as in Section 5.4, we see that the
trapezoid in the diagram (5.11.1) is commutative.

Case (b). Suppose now that the right node of ıa is ��. Example 2 above falls into this
case. Then the only genuine curve in the link �

a[
�0
;a[�

is turning to the left with

displacement y D `.ıa/ C `.ıb/. Let �
a[� ;a

[
�0

be the inverse link of �
a[
�0
;a[�

.

Applying the discussion in Case (a) to �
a[� ;a

[
�0

, one gets a link morphism

�
a[� ;a

[
�0
;] W Sh.GS[� ;T

[
�
/! Sh.GS[

�0
;T[
�0
/ of indentation degree `.ıb/�`.ıa/ and

shift t
a[�
t�1
a[
�0

. By Lemma 2.29, we get a well-defined link morphism on the
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cohomology groups

�?
a[
�0
;a[�
D .�?

a[� ;a
[
�0

/�1 D p�y=2 Tr�
a
[
� ;a

[
�0
;]
W Hd�2r 0�2

et

�
Sh.GS

a
[
�
;T

a
[
�

/
�

!Hd�2r 0�2
et

�
Sh.GS

a
[
�0
;T

a
[
�0

/
�

(5.12.1)

of indentation degree `.a/ � `.b/ associated to the link �
a[
�0
;a[�

and shift

t
a[
�0
t�1
a[�

. Now the argument as in Section 5.4 proves the commutativity of the

trapezoid in the diagram (5.11.1).

5.13. Commutativity of the parallelogram in (5.11.1)
We continue the discussion above by separating the two cases.
Case (a). Consider the .r�r 0�1/-step iterated P1-bundle �a[res

W Sh.GS
a
[
�0
;T

a
[
�0

/a[res
!

Sh.GSa;Ta/. By applying repeatedly [33, Proposition 7.17] and Construction
2.12, one produces a commutative diagram:

Sh.GS
a
[
�0
;T

a
[
�0

/
a
[
res

�[
1

�
a
[
�0
;a[� ;]

X1

�[
2

�1;]

X2

�2;]

	 	 	 Xr�r0�2

�[
r�r0�1

�r�r0�2;]

Sh.GSa;Ta /

�
a;a?;]

Sh.GS
a
[
�
;T

a
[
�

/
a
ı
res

�ı
1

Y1

�ı
2

Y2 	 	 	 Yr�r0�2

�ı
r�r0�1

Sh.GS
a? ;Ta?

/

(5.13.1)

where �[i and �ıi are all P1-fibrations, the vertical arrows are link morphisms
(associated to certain links), and the composition of the top (resp., bottom)
horizontal arrows is �a[res

(resp., �aıres
). There exist at the same time link mor-

phisms �]i and �]
a;aı on the étale local systems satisfying a similar commuta-

tive diagram. We explain now how to construct �1;] W X1! Y1; one chooses a
basic arc ıc in a[res. Let a[res;1 be the periodic semimeander obtained by remov-
ing ıc from a[res and replacing the end-nodes of ıc by plus signs, and let a[� 0;1
be the periodic semimeander obtained by removing from a[� 0 the semilines at
the end-nodes of ıc and adjoining ıc. Put X1 WD Sh.GS

a
[
�0;1

;T
a
[
�0;1

/
a[res;1

, and

denote by

�[1 W Sh.GS
a
[
�0
;T

a
[
�0

/a[res
�!X1

the P1-fibration given by the arc ıc. Let ıcı denote the arc �
a[
�0
;a[�
.ıc/ obtained

by extending ıc using the curves of �
a[
�0
;a[�

at the end-nodes of ıc. This ıcı is a
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basic arc in aıres. We define periodic semimeanders a[�;1 and aıres;1 in the same
way as a[� 0;1 and a[res;1 with ıc replaced by ıcı . Then we have a P1-fibration

�ı1 W Sh.GS
a
[
�
;T

a
[
�

/aıres
�! Y1 WD Sh.GS

a
[
�;1

;T
a
[
�;1

/aıres;1
:

If �1 W Sa[
�0;1

! S
a[
�;1

denotes the link induced by �
a[
�0
;a[�

, then [33, Proposi-

tion 7.17] and Construction 2.12 implies the existence of the link morphism
�1;], which fits into the left commutative square of (5.13.1). This finishes the
construction of X1 and Y1. The induced link �1 has the same property as
�
a[
�0
;a[�

; namely, all the curves of �1 are semilines, except possibly one turning

to the right. The rest of (5.13.1) can be constructed inductively in a similar
way.

Since we require the diagram (5.13.1) to be commutative, by Remark
2.13, the link morphism �a;a?;] has shift

t
a[
�0
;a � t

�1

a[� ;a
?
� (shift of �

a[
�0
;a[�
/D tat

�1
a? :

Moreover, the indentation degree of �a;a?;] is `.ıa/� `.ıb/C `.a[res/� `.a
ı
res/

if p splits in E=F and degree 0 if p is inert in E=F . Note that even though
each �i;] is not unique (since there are many ways to choose a basic arc of
a[res for instance), the final link morphism �a;a?;] is uniquely determined by
the uniqueness of link morphisms. By [33, Proposition 7.17(3)] and Construc-
tion 2.12, �a;a?;] is finite flat of degree pv.�a;a? /. We have thus the normalized
link morphisms �?

a[
�0
;a[�

and �?
a;a? on the corresponding cohomology groups as

defined in (2.23.1) induced by .�
a[
�0
;a[� ;]

; �
]

a[
�0
;a[�
/ and .�]

a;a? ; �
]
a;a?/, respec-

tively.
Case (b). Suppose now that the right node of ıa is ��. Applying the discussion

in Case (a) to the inverse link �
a[� ;a

[
�0

, one gets a link morphism �a?;a;] W

Sh.GSa? ;Ta? /! Sh.GSa;Ta/ associated to the inverse link of �a;a? of indenta-
tion degree `.ıb/�`.ıa/C`.aıres/�`.a

[
res/, and shift t�1a ta? . By Lemma 2.29,

we get a well-defined link morphism on the cohomology groups

�?a;a? D .�
?
a?;a/

�1 D pv.�a;a? /=2 Tr�a?;a;] W H
d�2r.ShGS;T/

!Hd�2r.ShGS
a? ;Ta?

/ (5.13.2)

of indentation degree `.ıa/� `.ıb/C `.a[res/� `.a
ı
res/ and shift tat�1a? associ-

ated to the link �a;a? .
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LEMMA 5.14
Under the above notation, put x D `.a[res/ � `.a

ı
res/ and y D `.ıa/C `.ıb/. Then in

both Case (a) and Case (b) above, one has a commutative diagram of cohomology
groups:

Hd�2r 0�2
et

�
Sh.GS

a
[
�
;T

a
[
�

/
� Rest:

py=2�?
a
[
�0
;a[�

Hd�2r 0�2
et

�
Sh.GS

a
[
�
;T

a
[
�

/a?res

� �
a
ı
res ;Š

py=2�?
a
[
�0
;a[�

Hd�2r
et

�
Sh.GSa? ;Ta? /

�
p.xCy/=2�?

a;a?

Hd�2r 0�2
et

�
Sh.GS

a
[
�0
;T

a
[
�0

/
� Rest:

Hd�2r 0�2
et

�
Sh.GS

a
[
�0
;T

a
[
�0

/a[res

� �
a
[
res ;Š

Hd�2r
et

�
Sh.GSa;Ta /

�

Note that the composite of the top (resp., bottom) two horizontal morphisms above is
exactly Resaıres

(resp., Resa[res
). So this verifies the commutativity of the parallelogram

in (5.11.1).

Proof
The commutativity of the left square is evident. We check the commutativity of the
right-hand side square case by case. Suppose first that we are in Case (a) (i.e., the left
end-node of ıa is � ). We distinguish three subcases:
Case (a1). �� is linked to a semiline in a. Then both a[res and aıres contain no arcs.

It follows that x D 0, and �a[res
and �aıres

are isomorphisms. In this case, the
commutativity of the right-hand side square is trivial.

Case (a2). �� is the left end-node of an arc in a. Example 1 above falls into this
case. It is easy to see that x D y, and that the link �a;a? contains only semi-
lines. By [33, Proposition 7.17(3)] and Construction 2.12, �a;a?;] is an iso-
morphism. Consider the commutative diagram (5.13.1). Both top and bottom
rows are factorizations of .r � r 0 � 1/-step iterated P1-bundles as in (4.2.1).
For each 1 � i � r � r 0 � 1, let � 0i 2H

2
et.ShKp .GS

a
[
�0
;T

a
[
�0

/Fp ;Q`.1// (resp.,

�i 2H
2
et.ShKp .GS

a
[
�
;T

a
[
�

/Fp ;Q`.1//) be the inverse image of the first Chern

class of the tautological quotient line bundle of �[i (resp., �ıi ) as considered in
Section 4.2. Note that the only curve in �

a[
�0
;a[�

links the left end-node of an arc

of a[res to the left end-node of an arc of aıres. Then by applying iteratively [33,
Proposition 7.17(3)] and Construction 2.12, there exists a unique integer i0
with 1� i0 � r�r 0�1 such that ��

a[
�0
;a[� ;]

.�i0/D p
y� 0i0 , and ��

a[
�0
;a[� ;]

.�i /D �
0
i

for all i ¤ i0. Let

z D
X

1�j�r�r 0�1

� X
1�i1<			<ij�r�r

0�1

��aıres
.zi1;:::;ij /[ �i1 [ � � � [ �ij

�
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be an element of Hd�2r 0�2.Sh.GS
a
[
�
;T

a
[
�

/aıres
/ with zi1;:::;ij 2

Hd�2r 0�2�2j .Sh.GSa? ;Ta? //. Then one has

�a[res;Š

�
py=2�?

a[
�0
;a[�
.z/
�

D �a[res;Š
��
a[
�0
;a[� ;]

.z/

D py�a[res;Š

�X�
��
a[
�0
;a[� ;]

�
��aıres

.zi1;:::;ij /
�
[ � 0i1 [ � � � [ �

0
ij

��
D py�a[res;Š

�X�
��
a[res

�
��
a;a?;].zi1;:::;ij /

�
[ � 0i1 [ � � � [ �

0
ij

��
D py��

a;a?;].z1;:::;r�r 0�1/D p
.xCy/=2�?a;a?

�
�aıres;Š

.z/
�
;

where the forth and fifth equalities use the formula (4.2.3). This shows the
commutativity of the right square in the lemma.

Case (a3). �� is the right end-node of an arc in a. Then x D�y and �a;a? contains
only semilines. Hence, �a;a?;] is an isomorphism as in Case (a2). We want to
show

�?a;a? ı �aıres;Š
D �a[res;Š

ı .py=2�?
a[
�0
;a[�
/:

The argument is quite similar to that of Case (a2). Let �i ; � 0i be as defined in
Case (a2) for 1� i � r � r 0 � 1. Then by [33, Proposition 7.17(3)], we have
��
a[
�0
;a[� ;]

.�i / D �
0
i for all 1 � i � r � r 0 � 1 (this differs from the situation

of Case (a2) because the unique curve in �
a[
�0
;a[�

links the right end-node of

an arc of a[res to the right end-node of an arc of aıres). Then the rest of the
computation is the same as in Case (a2).

Consider now Case (b) (i.e., the right end-node of ıa is ��). Symmetrically, we
have three subcases:
Case (b1). � is linked to a semiline in a. Then as in Case (a1), we have x D 0, and

�a[res
and �aıres

are both isomorphisms. The commutativity of the right hand
side square is trivial.

Case (b2). � is the left end-node of an arc in a. Then x D �y, and �a;a? contains
only semilines. Hence, �a?;a;] is an isomorphism as in Case (a2). By (5.12.1)
and (5.13.2), the desired commutativity is equivalent to

Tr�a?;a;] ı�aıres;Š
D �a[res;Š

ı Tr�
a
[
� ;a

[
�0
;]
;

which is an easy consequence of the compatibility of trace maps with compo-
sition.
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Case (b3). � is the right end-node of an arc in a. Then x D y, and �a?;a;] is an
isomorphism as in Case (a2). The desired commutativity is equivalent to

�a[res;Š
ı py=2.�?

a[� ;a
[
�0
/�1 D py.�?a?;a/

�1 ı �aıres;Š

() �?a?;a ı �a[res;Š
D �aıres;Š

ı .py=2�?
a[� ;a

[
�0
/:

Thus the situation is exactly the same as Case (a3) above (except for switching
the roles of Sh.GS

a
[
�0
;T

a
[
�0

/ and Sh.GS
a
[
�
;T

a
[
�

/), and we conclude by the same

arguments.

5.15. End of the proof in Case (iv)
We are now in position to complete the inductive proof of Theorem 2.32 in Case (iv).
We have shown the commutativity of the diagram (5.11.1), from which we deduce
(5.11.2):

Resa ıGysb D p
.xCy/=2�?a;a? ıResaı ıGysbres

;

where �?
a;a? is the link homomorphism associated to the link �a;a? W Sa! Sa? with

� indentation `.ıa/� `.ıb/C `.a[res/� `.a
ı
res/ if p splits in E=F and trivial if p

is inert in E=F ,
� and shift tat�1a? .

Before proceeding, we point out the following equality of shifts which we will
use later:

tat
�1
a?
� tıb;a?t

�1
ıb;b
D tat

�1
b : (5.15.1)

Also, we point out that our decomposition of periodic semimeanders gives numerical
equalities of spans:

`.a/D `.a[C/C `.ıa=a[/C `.a
[
res/; `.aı/D `.a[C/C `.a

ı
res/; and

`.b/D `.ıb/C `.bres/:
(5.15.2)

This (and the trivial equality `.ıa/D `.ıa=a[/) implies that the indentation degree of
�?
a;a? when p splits in E=F is equal to

`.ıa/� `.ıb/C
�
`.a[res/� `.a

ı
res/
�
D `.a/� `.b/�

�
`.aı/� `.bres/

�
: (5.15.3)

Similarly, (5.15.2) also implies that

xC y D `.a[res/� `.a
ı
res/C `.ıa/C `.ıb/

D `.a/C `.b/�
�
`.aı/C `.bres/

�
: (5.15.4)
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Now we separate the discussion according to hajbi.
(1) If ha;bi D 0, then haıjbresi D 0 for simple combinatorics reasons. Then the

�-isotypical component of Resaı ıGysbres
factors through the cohomology of

a lower-dimensional Shimura variety, so the same is true for Resa ıGysb.
(2) or (3) We have hajbi D .�2/m0vmv or .�2/m0TmT . The picture D.aı;bres/ can

be identified with the picture D.a;b/ after deforming some curves (“pulling
strings”). In particular, we have haıjbresi D hajbi. By the inductive hypothesis
for the pair .Sıb ;Tıb/

20 and (5.11.2), we have

Resa ıGysb

D p.xCy/=2�?
a;a? ıResaı ıGysbres

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
p.xCy/=2�?

a;a? ı .�2/
m0 � p.`.a

ı/C`.bres//=2�?Sıb;aı ;Sıb;bres
;

if r < d
2
;

p.xCy/=2�?
a;a? ı .�2/

m0 � p.`.a
ı/C`.bres//=2.Tp=p

g=2/mT �?Sıb;aı ;Sıb;bres

if r D d
2
;

(5.15.4)
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
.�2/m0 � p.`.a/C`.b//=2�?

a;a? ı �
?
Sıb;aı ;Sıb;bres

;

if r < d
2
;

.�2/m0 � p.`.a/C`.b//=2.Tp=p
g=2/mT �?

a;a? ı �
?
Sıb;aı ;Sıb;bres

if r D d
2
:

The composite of the two links is exactly �?Sa;Sb of the needed indentation
degree by (5.15.3) and of the required shift by (5.15.1).

This concludes the proof of Theorem 4.4.

Appendix. Cohomology of quaternionic Shimura varieties
We include the proof of Proposition 2.26 regarding the cohomology of our “slightly
twisted” quaternionic Shimura varieties. It is based on comparing the cohomology
with the known case when T D ;. This is certainly known to the experts, but we
could not find the exact version in the literature.

A.1. Discrete Shimura varieties for F �

Consider a Deligne homomorphism for TF;T WD ResF=Q.Gm/ given by

20Here, as before, the shift t0
a0

for a periodic semimeander a0 for .Sıb ;Tıb / is taken to be tıb; Qa0 , where Qa0 is
a periodic semimeander of .S;T/ consisting of all the arcs and semilines of a0 together with the arc ıb .
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hT W S.R/DC� TF .R/D .R
�/T 	 .R�/†1�T

z
�
.jzj2; : : : ; jzj2/; .1; : : : ; 1/

�
:

Under this choice of Deligne homomorphism, we can define a discrete Shimura vari-
ety ShKT;p .TF;T/ for KT;p DO�p whose complex points are given by

ShKT;p .TF;T/.C/D F
�;clnA

1;�
F =O�p :

It admits an integral canonical model with special fiber ShKT;p .TF;T/ over Fpg (in
the sense of [33, Section 2.8]), which is determined by the Shimura reciprocity map

RecT;T;p W GalFpg �! F �;clnA
1;�
F =O�p :

Explicitly, RecT;T;p sends the geometric Frobenius Frobpg to the finite idele .p
F
/#T.

Fix a prime number ` ¤ p. The algebraic representation �wT;T of TF;T 	 C ŠQ
�2†1

Gm;� sending x to .x2�w ; : : : ; x2�w/ gives a lisse Q`-étale sheaf Lw
T;T of

pure weight 2.w � 2/#T on ShKT;p .TF;T/.

A.2. Changing T
We need to compare the Shimura varieties ShKp .GS;T/ and ShKp .GS;;/. Note that
the natural product morphism

pr W GS;; 	ResF=QGm!GS;T

is compatible with the Deligne homomorphism hS;; 	 hT on the source and hS;T on
the target (i.e., prı.hS;; 	 hT/ D hS;T). This gives a natural morphism of Shimura
varieties,

pr� W ShKp .GS;;/	 ShKT;p .TF;T/�! ShKp .GS;T/: (A.2.1)

Moreover, the product morphism is compatible with the algebraic representations in
the sense that

�
.k;w/
S;T ı prŠ �.k;w/S;; � �wT;T:

So we have a natural isomorphism of sheaves,

pr��.L
.k;w/
S;T /ŠL

.k;w/

S;; � Lw
T;T: (A.2.2)

PROPOSITION A.3
Let � 2A.k;w/ be a cuspidal automorphic representation appearing in the cohomol-
ogy of the Shimura variety ShK.GS;T/. Then we have a canonical isomorphism,
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H i
et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
Œ��Fr-s:s: D

´
�˝d�;p ˝ Œdet.��;p/.1/�˝#T if i D d;

0 if i ¤ d;

equivariant for the action of the geometric Frobenius Frobpg . Here, the superscript
Fr-s.s. means taking the semisimplification as Frobpg -modules.

Proof
The proposition is known when TD; by [2, Section 3.2] (note that we have the tensor
product instead of tensorial induction because ��;p is unramified at p). For general T,
the morphism (A.2.1) induces an isomorphism,

H?
et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
ŠH?

et

�
ShK.GS;T/Fp 	 ShKT;p .TF;T/Fp ;pr��.L

.k;w/
S;T /

�A1;�
F

(A.2.2)
Š

�
H?

et

�
ShK.GS;;/Fp ;L

.k;w/

S;;

�
˝H 0

et

�
ShKT;p .TF;T/Fp ;L

w
T;T

��A1;�
F ;

where the superscript A1;�F means to take the invariant part for the antidiagonal
action of this group (i.e., z 2 A

1;�
F acts by .z; z�1/). So if !� denotes the central

character of � , then we have

H?
et

�
ShK.GS;T/Fp ;L

.k;w/
S;T

�
Œ��ŠH?

et

�
ShK.GS;;/Fp ;L

.k;w/

S;;

�
Œ��

˝H 0
et

�
ShKT;p .TF;T/Fp ;L

w
T;T

�
Œ!� �;

where the last factor is the 1-dimensional subspace where A
1;�
F acts through !� .

By the Shimura reciprocity map RecT;T;p recalled in Section A.1 and the Eichler–
Shimura relation (2.24.1), the geometric Frobenius Frobpg acts on this 1-dimensional
space by multiplication by

!�.pF
/�#T D

�
det
�
��;p.Frobpg /

�
=pg

�
/#T:

This concludes the proof of this proposition.
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