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Abstract

Let F be a totally real field in which a prime number p > 2 is inert. We continue
the study of the (generalized) Goren—Qort strata on quaternionic Shimura varieties
over finite extensions of I ,. We prove that, when the dimension of the quaternionic
Shimura variety is even, the Tate conjecture for the special fiber of the quaternionic
Shimura variety holds for the cuspidal r-isotypical component, as long as the two
unramified Satake parameters at p are not differed by a root of unity.

Contents

1. Introduction . . . . . . . . . ... 1551
2. Goren—Oort stratification . . . . . . . . . . ... ... ... ... 1561
3. Goren—Oortcycles . . . . . . . . . ... 1591
4. Cohomology of Goren—QOortcycles . . . . . . . .. ... . ... ... 1600
5. Computation of the intersection matrix . . . . . . . . . . ... .. .. 1610
Appendix. Cohomology of quaternionic Shimura varieties . . . . . . . . . 1633
References . . . . . . . . . . .. 1636

1. Introduction

One of the most important conjectures in algebraic geometry is the Tate conjecture
on algebraic cycles (see [31]). The general case of this conjecture is far from being
proved. In this article, we will consider the Tate conjecture for Hilbert modular vari-
eties modulo an inert prime.

Let F be a totally real field of degree g = [F : Q], and let p > 2 be a prime num-
ber inert in F. Let Af be the adele ring, and let A% (resp., A%"”) be the subring of
finite adeles (resp., prime-to- p finite adeles) of F. Fix a neat open compact subgroup
K = KPK, C GL2(A®), where K, = GL>(OF,) and K? C GLo(A%Z"?). Let X be
the Hilbert modular scheme of level K. This is a quasiprojective smooth scheme over
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Zp) of relative dimension g. For a fixed prime £ # p, the £-adic étale cohomology
group HE (Xg Qy) is equipped with a commuting action of Galg := Gal(Q/Q) and
the Hecke algebra Hg := Q¢[K\GL2(A%)/K]. Let m = 7°° ® 7 be a cuspidal
automorphic representation of GL, (A ) such that the Archimedean component 77
is a discrete series of parallel weight 2, and such that the K-fixed vectors 7°X #£ 0.
We put

Hég:(X@, @()[7'[] = HOIII](K (noo’K9 Hegt(X@9 @[))

Let p; : Gal(Q/F) — GL,(Qy) denote the Galois representation attached to 7 (see,
e.g., [32]). Then the main result of [2] essentially says that the semisimplification of
the Galg-module HE (Xg» Qy)[rr] is isomorphic to the Asai representation As(py) 1=
®Indg:}% (px), which is the tensor induction of p, from Galr to Galg.! By our
assumption on p, both p, and HS (Xg» Q) are unramified at p. It makes sense to
view As(p,) and HE (X@,@g)[]‘[] as Galg,-modules.

Assume that g is even so that X is even-dimensional. For ¢ a power of p, we
write Frob, € Galy, for the geometric ¢-Frobenius. We put

7 (. Fp) = | As(on) (g/2) ™" ="
Jj=1

for the space of Tate classes of As()(g/2) defined over a finite extension of F .
If the two (generalized) eigenvalues of p, (Frob,s) are denoted by o, and B, then
(As(px)(g/2))(Frob,s) has generalized eigenvalues ol B ﬁ_i /pE ?/2 with multiplic-
ity (f) fori =0,...,g. Weknow that o, 8,/ p¥ is aroot of unity. From this, it is easy
to see that dimg, T (7, F ) > (,,), and the equality holds if @ /B is not a root of
unity. Therefore, the Tate conjecture predicts that there are ( g§2) algebraic cycles on
X, that contribute to T (7, F,).

In this article, we take a purely characteristic p approach to construct the desired
algebraic cycles on XFP’ and we show that these cycles contribute to all the geometric
Tate classes in HZ (Xg» Q¢(g/2))[n] if the eigenvalues of p, (Frob <) are sufficiently
general.

Definition 1.1

We say that a morphism X — Y of schemes is an r-step iterated P! -bundle if this
morphism admits a factorization X :=Y, - Y,_; — --- > Yy := Y, where each
Y; — Y;_; is a P'-bundle. When Y is the spectrum of a field, we say that X is an
r-step iterated P -tower.

!Conjecturally, HS (X@,@g)[ﬂ] is semisimple so that it is isomorphic to As(p, ). This conjecture is true if
As(py) is irreducible. For more discussion, see [26].
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The main results of our work include the following.

THEOREM 1.2

Assume that g = [F : Q] is even and that K is neat. Let By, denote the quaternion
algebra over F ramified exactly at all Archimedean places, and let Shg(Boo) 1=
BZ\(B ®F AF)*/K be the associated discrete Shimura variety over F,. Here, we
fix an isomorphism (Boo @ p AF)™ = GL2(AR) so that the Hecke algebra K acts
on HO(Shk (Bso). Q).

(1) There exist algebraic correspondences

Di qi .
Shi (Boo) <= Xi => Xz . i =1.....(5,).

such that p; is a g/2-step iterated P'-bundle (so each connected component
of X; is isomorphic to a g | 2-step iterated P'-tower), q; is a closed immersion,
and both p; and q; are equivariant for prime-to-p Hecke correspondences.

2) Let 7 be a cuspidal automorphic representation of GLy(AF) associated to
a holomorphic Hilbert cuspidal eigenform of parallel weight 2, and let g
be the Jacquet—Langlands transfer of w to an automorphic representation of
(Boo @ AF)*. Denote by ay and By the two eigenvalues of py (Frob,s). We
put similarly

H°(Shg (Boo), Q)] := Homye, (15, HO(Shg (Bso), Qy))-

Then the natural map

— ®ep; —
P H(Shk(Bwo). Q)] —> B  HIXir,.Qo)lrs]
1=i=(,%5) 1=i=(,7,)

Gysin -~ — g —

—> T (7,Fp) € Hg (Xﬁp,Qe(g/Z))[”]
is injective if oy # By, and is isomorphic to T(N,Fp) if ar /Br is not a root
of unity. In particular, if oy /By is not a root of unity, then the Tate conjec-
ture is true for the m-isotypic component of HS (XFP ,Qe(g/2)) over all finite
extensions of F p.

In fact, we prove a result stronger than the one stated here. A full statement will
be given later in Theorem 1.7.

Remark 1.3

(1) These cycles Xi,..., X (.5 realize the Jacquet-Langlands correspondence
geometrically and, at the same time, they give the Tate classes for the -
isotypical component when 7, is sufficiently general. We expect the union
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of them to be the supersingular locus (this will be proved in a future article

[22] by Yifeng Liu and the first author). The geometric realization of Jacquet—

Langlands correspondence was first studied by Ribet [29], [30] and Helm

[13], [14]. They gave some examples of the cycles in the case of modular

or Shimura curves and unitary Shimura varieties that realizes the Jacquet—

Langlands correspondence geometrically. The geometric aspect of this tech-

nique is further developed by the authors in [33]. From this point of view,

the theorem above may be understood as: geometric Jacquet—Langlands cor-
respondence can give “generic” Tate classes on the special fiber of the Hilbert
modular varieties.

Our construction does not give sufficient algebraic cycles on XFP when o, =

Br. For instance, for g = 2, it follows from the Hodge index theorem and

our computation of the intersection matrix of X; and X, on X Fp (see Exam-

ple 1.9) that the contribution of X; and X, to ‘T(n,Fl,) is 1-dimensional if
ar = Br. It is an interesting question to find extra “exotic” algebraic cycles
that are not cohomologically equivalent to our cycles.

If one instead considers the Tate conjecture of Hilbert modular varieties over

the generic fiber (namely over QQ), then this topic has a long history dating back

to 1980s. But the situation is very different for the discussion in the present
article. For a general 7 that is not CM or the base change from a smaller field,
the space of Tate classes As(py)(g/2)%% is zero. In contrast, the Tate classes
in As(pr)(g/2) on the special fiber at an inert prime always have dimension
at least ( g‘g;z). So the Tate conjecture of X over Q is a very different question
from the Tate conjecture of Xg, over IF,. We list below some known results

for the Tate conjecture of Hilbert modular varieties over Q.

i If 7 is non-CM, then this conjecture was proved by Harder, Langlands,
and Rapoport in [12] when g = 2. In fact, they show that As(p, )(1)%%e
is nonzero only if & is the base change of a cuspidal automorphic
representation of GL,(Ag), in which case Hirzebruch—Zagier cycles
account for the Tate classes. Similar but partial results were obtained
by Ramakrishnan [27] and Getz—Hahn [8] in the higher-dimensional
cases.

i When g =2 and & is CM, more algebraic cycles are expected to con-
tribute to As(p,)(1)542; this case was solved independently by Murty
and Ramakrishnan [25] and by Klingenberg [18] by reducing to the
Lefschetz (1,1)-theorem for Hodge classes.

i When g = 2 and m is the base change of a cuspidal automorphic
representation of GL, g, Langer [19] constructed a variant of the
Hirzebruch—Zagier cycle in characteristic 0 and showed that its reduc-
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tion modulo p contributes to a 1-dimensional subspace of T(n,Fp).
His cycles are strictly contained in the union of our cycles X; U X5.
But it is expected that a lot more cycles will be on the special fiber X,
than on the generic fiber X, and so Langer’s construction seems to be
hard to generalize to general 7.

4) Despite the difference between the Tate conjecture over QQ and that over finite
fields, it is an interesting question to study the interrelation between the reduc-
tion of cycles in characteristic 0 and cycles in characteristic p that we con-
struct. Such study has interesting corollaries in arithmetic and geometric appli-
cations (e.g., bounding Selmer groups; see a series of works of Yifeng Liu and
the first author [20]-[22]).

(®))] After the first draft of this article, analogues of Theorem 1.2 for special fibers
of other Shimura varieties have appeared in recent works (see, e.g., [15], [35]).

(6) A very recent preprint by Ichino and Prasanna [16] constructed certain £-
adic Hodge classes over the generic fiber of the product of two quaternionic
Shimura varieties to realize the Jacquet-Langlands correspondence. It would
be interesting to understand the relations between their Hodge classes and our
cycle classes on the special fiber.

1.4. Generalized Goren—QOort cycles

We now explain the construction of the cycles. We allow g to be of arbitrary parity,
and we let r be an integer with 1 <r < |g/2]. In the present article we will construct
explicitly (%) generalized Goren-Oort cycles X1, ..., X ) of codimension r in X .

such that each X; is isomorphic to an r-step iterated P! -bundle over (the characteristic
p fiber of ) some (g — 2r)-dimensional quaternionic Shimura variety. Moreover, the
construction is compatible with prime-to-p Hecke correspondences when the tame
level K” changes. We point out an important feature of these cycles: the codimension
of each X; is the same as the iterated P' -bundle dimension. As pointed out by Xinwen
Zhu, the union of these X;’s should be the Zariski closure of the Newton stratum of
Xr,. with slope (é, e é, %, e gg;r), where both é and gg;r appear with g
times. In particular, if g is even and r = %, then the union of X;’s should be exactly
the supersingular locus of X .

Fix an isomorphism ¢, : Q » =C. Composing with ¢, defines a bijection between
the set of p-adic embeddings of F' with that of its Archimedean places. Since p is
inert in F, the image of every p-adic embedding of F lies in the maximal unram-
ified extension of Q,; hence the p-Frobenius o acts naturally on the set of p-adic
embeddings. We label the p-adic embeddings of F by {t; | i € Z/gZ} such that
7,41 =0 o 1;, and we let 0o; = (), o 7; denote the corresponding Archimedean place
of F. For an even subset S of Archimedean places of F', we denote by Bg the quater-
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nion algebra over F' which ramifies exactly at S. When S is the set of all Archimedean
places, we also write S = oo. Fix an isomorphism (Bs ® r A7) = GL,(A%) so that
K can be viewed as an open compact subgroup of (Bs ® r AZ)*. For a certain sub-
set T € S, we will define in Section 2.9 a quaternionic Shimura variety Shg (Bs, r)
over F ¢ attached to the reductive group Resr/q(Bg) of level K. This is a (g —#S)-
dimensional smooth variety, which is proper if S is nonempty. Here, the subset T
means some modification on the usual Deligne homomorphism in the definition of
Shx (Gs,r) (see Section 2.1). The Shimura varieties Shx (Gg,r) with the same S but
different choices of T will have the same geometry, but the Galois actions on the
geometric-connected components of Shg (G, ) will be different.

The basic idea under the constructions of the Goren—Oort cycles is as follows.
Recall that there are exactly g divisors, say Yi,...,Y,, in the Goren—Oort strat-
ification (or Ekedahl-Oort stratification) of X]ppg. The main result of [33] shows
that, when g > 1, each Y; is isomorphic to a P'-fibration over Shi(Bs, r;) with
Si = {00;,00;_1} and T; = {00;}. Actually, the results of [33] apply to more gen-
eral quaternionic Shimura varieties. For r = 1, the generalized Goren—Oort cycles of
codimension 1 are defined to be these Goren—QOort divisors Y;’s. When r > 2, we con-
sider the g —2 Goren—Oort divisors Z; of Shx (Bg, r,) for j e{i —2,...,i —g+1}
(see Proposition 2.31). Taking the inverse image of Z; in Y;, we get a codimen-
sion 2 cycle Y; ; in XIB_‘,,’ which admits a two-step iterated P'-bundle morphism
Y, j = Zj — Shx(B;,j), where Shg(B; ;) is some quaternionic Shimura variety
of dimension g — 4. This gives the construction for » = 2. In the general case, the
codimension r generalized Goren—Oort cycles on XF,, are obtained by repeating this
process r times.

Example 1.5

(D) When g = 2, there are two Goren—Oort divisors X1, X, on Xsz’ and each
X; is isomorphic to a P!-bundle over the discrete Shimura set Sh k(BXn,)F,
with T; = {00;}. We remark that the cycle constructed by Langer in [19] is
completely contained in (but not equal to) the union X; U X5.

(2) When g = 3, there are three Goren—Oort divisors on X F 3> 52y Y:1,Y>,Ys. For
i € 7Z/3Z, each Y; is a P!-fibration over Shk (Bg; ;) as discussed above.

3) When g = 4, there are six Goren—Oort cycles of codimension 2 on XFP .- We
start with the four Goren—Oort divisors Y7,...,Ys of X]Fp 4~ Then for each
i € Z/4Z, we have a P!-fibration m;: ¥; — Shg (Bg,,r;). On each quater-
nionic Shimura surface Shg (Bs, ;), there are two Goren—Oort divisors, say
Zi—» and Z;_3, corresponding to co;_, and oco;_3, respectively. Then each
of Z; with j € {i —2,i — 3} is again isomorphic to a P!-fibration over
the 0-dimensional Shimura variety Shg (Boo,r;) With T; = {00;,00;_5}. Put
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Xi,; = n7"(Z;) C Y;. This is a codimension 2 cycle on Xp 4 In Theo-
rem 2.32, we will see that X3 = X3; =Y; NY; and that X5 4 = X4, =
Y> N Y4, so the six Goren—Oort cycles of codimension 2 are exactly X 3, X2 4,
X1,2,X2,3, X34, X4,1. Note that the geometry of these six cycles are not the
same: each irreducible component of X 3 and X5 4 are isomorphic to (IP’I)Z,
while that of the other four Goren—Oort cycles is isomorphic to the P!-bundle
P(Op1 (p) ® Op1 (—p)) over P! (see Example 3.10).

After finishing the present article, we were informed that when g = 4, the geom-

etry of these cycles was already known to Yu [36], using a different method.

The best way (so far) to parameterize the generalized Goren—Oort cycles is to use
some combinatorial data, called periodic semimeanders (mostly for the benefit of later
computation of the Gysin-restriction matrix). A periodic semimeander of g nodes is a
graph where g nodes are aligned equidistantly on a section of a vertical cylinder, and
are either connected pairwise by nonintersecting curves (called arcs) drawn above
the section, or connected by a straight line (called semilines) to +oo at the top of

the cylinder. We use r to denote the number of arcs. For example, “» l ') l ¢ and

m are both semimeanders of six points with r = 2 and 3, respectively. An
elementary computation shows that there are (f) semimeanders of g nodes with r
arcs forr < %. (For a detailed discussion, see Section 3.1.)

To each periodic semimeander a with g nodes and r arcs, one can associate a
generalized Goren—Oort cycle X, of codimension 7 in X[sz < (we refer the reader
to Section 3.8 for the precise definition). The g nodes of a periodic semimeander a
correspond to the g Archimedean places 001,...,00, from the left to the right. By
construction, X, is an r-step iterated P! -bundle over the quaternionic Shimura variety
Shg (Bs,,r, ), where S, consists of all Archimedean places of F corresponding to the
end nodes of all r arcs, and T, consists of those corresponding to the right ends of
the r arcs. We will denote by

Tq- Xa e ShK(BSu,Tu)
the projection map. For instance, when g =4 and r = 2, the cycles X;,3 and X, 4 in

Example 1.5 correspond to the semimeanders » ¢ » ¢ and é» & » , and the other 4
cycles X1,2, X2 3, X34, X4,1 correspond respectively to the semimeanders

Ne, e o, Viay

1.6. Main theorem revisited
We now describe our main results. We consider a regular multiweight (k, w) € Z&*!
with k = (k1,...,kg), that is, a collection of integers such that k; > 2 and k; = w
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mod 2. There is an automorphic étale local system £%®) on X, which is a lisse
Qg-sheaf of rank ]_[‘ig=1 (k; — 1) pure of Deligne weight g(w — 1) (see Section 2.10).
We fix a cuspidal automorphic representation 7 = 7°° ® 7, of GL, (A F) associated
to a holomorphic Hilbert modular forms of weight (k,w) such that 7°X £ 0. Let
px: Galp — GL3(Qy) be the Galois representation attached to 7, and let As(p,) =
R Indgzig (pr) be the Asai representation of pr. Let Hgr := Qy[K?\ GLo(AFF)/
KP] denote the prime-to- p Hecke algebra, and let 77°°-? be the prime-to- p part of 7.

We put
HE (X5, . £®)[x] := Homge,, (x>?)%" HE (X5, . £&)) 2

According to [2], the Galg,,-module H§ (X7, £%w))[7] has the same semisimplifi-
cation as

Galp p

As(pr)laatr, = @) Indgy,” (pxlcal,s )-

Fix an integer r with 1 <r < g/2. We denote by B}, the set of periodic semime-
anders of g nodes and r arcs. As explained above, for each a € *Bf,, we have a general-
ized Goren—Oort cycle X in X; F,2¢ of codimension r, which admits an r-step iterated
P!-bundle morphism 7,: X, — Shg(Bs, r,). We can also define an automorphic
étale local system xé’—;’@i on Shg(Bs,,r,) (see Section 2.10), which is compatible
with the local system £&®) on X in the sense that there is a canonical isomorphism
n:éﬁé%ﬁz ~ éﬁ(k’"’)|xu. When (k,w) = (2,...,2), both ié%lfﬁz and L&) are the

constant sheaf Q. We consider the composite map
-2 k,
Gysy: HE ™ (Shi (Bs,,)5,. L5 )
Ta -2 Gysin
LN Hg r(Xa,]?,,»:ﬁ(k’w”Xa) Ay He&t’ (XFP’ x(k,w)(r))’
where the second arrow is the Gysin map. Since the construction of X, is compati-

ble with prime-to- p Hecke correspondence, Gys, is equivariant under the action by
Hxr. The main result of this article is the following.

THEOREM 1.7
Let o, 8 denote the two eigenvalues of pr (Frob,e). Consider the map induced by the
direct sum of Gysin maps

_ k,
Gys: @ HE Zr(ShK(Bsﬂ,Tu)F,,’ié},ﬁi)[”]

,
aeBy,

It should be noted that, by the strong multiplicity 1 theorem, we then have an isomorphism
Hom](‘Kp (T(OO,[),K"’ s Hegf (Xﬁp 5 x(&,w))) = Homye, (”ooAKs H;Y(Xﬁp B x(&,w))).
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> . Gysg Hﬁ(XFp7£(k’w)(’"))[”] (1.7.1)

on the m-isotypic components. Then the following statements hold:

(1)  Ifa # B, then the morphism Gys is injective.

2) If /B is not a 2nth root of unity for any n < g,> then Gys induces an iso-
morphism when restricted to the generalized eigenspaces of Frob ,2¢ on both
source and target with eigenvalues o> B2(&=7) | p27€.

This theorem will be proved as a special case of Theorem 4.5. This theorem can
be viewed as a version of geometric Jacquet-Langlands transfer from the quaternionic
Shimura varieties Shg (Bs, 7, )’s to X . As for the applications to the Tate conjecture,
we assume that g is even. Then for all periodic semimeanders a with g nodes and %
arcs, we have S, = 00, and the Goren—Oort cycle X aFp is a collection of (g/2)-step
iterated P!-bundles parameterized by the common discrete Shimura set*

Shi (Boo)z, = B\ (Boo ®F AF)/K. (1.7.2)

Applying Theorem 1.7 to the case (k, w) = (2,...,2) gives Theorem 1.2.

1.8. Overview of the proof of Theorem 1.7
We consider the restriction map

Resq: HE (X, & ()x] -  HE(X,5,. £%"|x,()l7]

Trrg ,=

k,
— HE T (Shic(Bs )5, £55) ),
where the second map is the trace isomorphism. We get thus a composite map

— k, Gys
P HE ™ (Shk(Bsy.)5,. Lot )] —> HE (Xz,. £%2) (1)) [n]
beBy

Res:=@, Resq

@ HE™ 2r ShK(Bsu,Tu)Fp i:(i.ff}l“)a)[ ]

a€Bf
(1.8.1)
3The reason why we have 2nth (as opposed to zth) root of unity here is purely technical (see Remark 4.6(3)).

4Our previous notation for this Shimura set should be Shx (Boo )@p . Since they are all canonically isomorphic
for all a, we omit T, from the notation.
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When (k, w) is of parallel weight 2, this is essentially the intersection matrix of the
cycles X,’sin XF,,- The upshot is that each “matrix entry” Res, oGysy, can be read off
from the periodic semimeanders a and b (see Theorem 4.4), and the determinant of
the intersection matrix is closely related to the determinant of the Gram matrix of the
link representation of periodic Temperley—Lieb algebras, which has been computed
in [24]. Using this result, one can compute explicitly the determinant of Res oGys,
which does not vanish as long as « # . Theorem 1.7(1) follows immediately, and
statement (2) is obtained from statement (1) along with a direct computation of the
dimensions of the generalized eigenspaces of Frob ,2¢ with the given eigenvalue.

Example 1.9
(1) If g =2 and r = 1, then the intersection matrix (Res, oGysb)u,bE% ! (under

certain basis) is
—2p a+p

whose determinant is p?(a — B)?/(af).

2) Assume that ¢ = 3 and that r = 1. Even though the Shimura varieties
Shg(Gs,r,) for a € %éj are not exactly the same, we nevertheless have an
isomorphism (see Proposition A.3)

HY(Shk (Bs, 20z, @) ] 2= [pr @ det(on) (1),

foreach a € %é asa Gahgp3 -module. The intersection matrix (under a suitable
basis) is

-2p '
n —2p n '],
b =2p

where 7 is some operator which acts as scalar multiplication by (a/f)!/3
(resp., by (B/a)'/3) on the eigenspace of Frob 3 = af?/ p> (resp., Frob 3 =
@?B/p?) in [px ® det(px)(1)]|Gais, - The determinant of the above matrix is

—p>(e—B)*/(@p).

Structure of this article

In Section 2, we recall necessary facts about Goren—Oort stratification from [33].
Some of the proofs are mostly bookkeeping, but also technical (the readers may skip
these). In Section 3, we first recall the combinatorics about periodic semimeanders
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and then give the definition of the Goren—Oort cycles associated to periodic semime-
anders. In Section 4, we state our main Theorem 4.5 and prove it assuming Theo-
rem 4.4, which says that the Gysin-restriction matrix for Goren—Oort cycles is roughly
the same as the Gram matrix of the corresponding periodic semimeanders. This key
theorem, Theorem 4.4, is proved in Section 5. The Appendix includes a proof of the
description of the cohomology of quaternionic Shimura varieties. This is well known
to the experts, but we include it there for completeness.

1.10. Notation
For a field L, we use Galy, to denote its absolute Galois group. For a number field L,
we write Ay, (resp., AJ°, Azo’p ) for its ring of adeles (resp., finite adeles, finite adeles
away from a rational prime p). When L = Q, we suppress the subscript L (e.g., by
writing A®). Let p L denote the idele of AS° whichis p atall p-adic places and trivial
elsewhere. We also normalize the Artin reciprocity map Art: A7 /L* — GalaLb so that
a local uniformizer at a finite place v corresponds to a geometric Frobenius element
at v.

Throughout this article, we fix F a totally real field of degree g > 1 over Q. Let
3 denote the set of places of F', and let X, be the subset of all real places. We fix
a prime number p > 2 inert in the extension F/Q.°> We also set p = pOF, F, the
completion of F at p, @, the valuation ring, and k, the residue field.

We fix an isomorphism ¢, : C = Q,. Let Qpe denote the unramified extension
of Q, of degree g in @p, and let Z e be its valuation ring. Postcomposition with
tp induces a bijection between the set of Archimedean places and X, = Hom(F, R)
and the set of p-adic embeddings Hom(F, Qp¢) = Hom(OF,F p¢). In particular, the
absolute Frobenius o acts on ¥, by sending v € ¥, to 07 := 0 o 7; this makes
Y into one cycle. Let Q;r denote the maximal unramified extension of Q, and let
Z', denote its valuation ring. For a finite field g, we denote by Frob, € Galg, the
geometric Frobenius element.

2. Goren-Oort stratification

We first recall the Goren—Oort stratification of the special fiber of quaternionic
Shimura varieties and their descriptions, following [33]. We tailor our discussion to a
later application, and hence we will focus on certain special cases discussed in [33].

2.1. Quaternionic Shimura varieties
Let S be a set of places of F of even cardinality such that p ¢ S. Put Sgo = SN Xo

3 Although most of our argument works equally well when p is only assumed to be unramified, we insist on
assuming that p is inert, which largely simplifies the notation so that the proof of the main result is more
accessible (but see Remark 4.6(1)).
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and S§, = X — Seol and d = #5¢,. We also fix a subset T of So,. We denote by
Bg the quaternion algebra over F ramified exactly at S. Let Ggr = Resg/q(BS) be
the associated Q-algebraic group. Here we inserted the subscript T because we use
the following Deligne homomorphism:

hsr: S(R) = CX — Ggr(R) 2 (H*)50T x (H*)T x GL,(R)Ss
x+yir— (L. D2+ y% o x2+) ((5 ). (5 D).

When T = @, the Deligne homomorphism /g g is the same as hg considered in [33,
Section 3.1]. The Gg r(R)-conjugacy class of /g r is independent of T and is isomor-
phic to 5 := (h¥)55, where h* = P! (C) — P! (R). Consider the Hodge cocharacter

z>(z,1) hs.r
st Gme ——— Sc = G, X Gue — Gsrc-

Here, the composite of the natural inclusion C* = S(R) < S(C) with the first (resp.,
second) projection S(C) — C* is the identity map (resp., the complex conjugation).

The reflex field Fs—that is, the field of definition of the conjugacy class of
Ms,r—is a finite extension of Q sitting inside C and hence inside @p via tp. Itis clear
that the p-adic closure of Fg ¢ in @p is contained in Q ¢, the unramified extension
of Q, of degree g in Q - Instead of working with an occasional smaller reflex field,
we are content with working with Shimura varieties over Q s

We fix an isomorphism G r(Qp) ~ GL,(F,) and we put K, = GL>(0,). We
will only consider open compact subgroups K C G r(A®) of the form K = K, K?
with K# an open compact subgroup of Ggr(A°>?), or occasionally K = Iw,K?”

. ox 0 . .
with Iw, := (p(gp (95) when S¢ = 0. For such a K, we have a Shimura variety

8hk(Gg,r) defined over Q ¢, whose C-points (via ¢,) are given by
8hk (Gs,1)(C) = G50 (Q)\Hs X Gs,2(A®) /K.

We put $hg,(Gs,r) := 1<i_r_nKp 8hkrk,(Gs,r). This Shimura variety has dimension
d = #5¢,. There is a natural morphism of geometrically connected components

0(8hk,(Gsr)g,) — FL\AF™/0F, (2.1.1)

where F is the subgroup of totally positive elements of F*, and the superscript
cl stands for taking closure in the corresponding topological space. The morphism

%Note that the upper script ¢ was used to denote complex conjugation in [33]. In the present arrticle, however,
we use it to mean faking the set-theoretic complement.

7In earlier articles of this series, the open compact subgroup K was denoted by Ks. We choose to drop the
subscript because, for all S we encounter later, the group Gs(A®°) is isomorphic, and hence we can naturally
identify the K’s for different S’s.
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(2.1.1) is an isomorphism if S # @ by [4, Théoréme 2.4]. Following the convention
in [33, Section 2.11], we call the preimage of an element x € F:’CI\A%O’X /O, under
the map (2.1.1) a geometrically connected component, even though it is not geomet-
rically connected when SS, = @. The preimage of 1 is called the neutral geometric
connected component, which we denote by 8hg, (GS,T)T’@I’.

Note that, for different choices of T, the Shimura varieties 5 g (G 1) are isomor-
phic over Q p (in fact over Q if we have not p-adically completed the reflex field), but
the actions of Gal(Q »/Qpz) depend on T. By Shimura’s reciprocity law (see [4] or
[33, Section 2.7]), the action of Gal(@p/(@pg) onmo(8hg), (GS,T)@p) factors through
Galp,, = Gal(Z}j/Zpz), so that the connected components of $hg, (GS,T)@[’ are
actually defined over QY, the maximal unramified extension of Q,. More precisely,
the action of the geometric Frobenius of [F,¢ on FI’CI\ACI’,?’X /0O, induced through
the homomorphism (2.1.1), is given by multiplication by the finite idele

o »cl ,
(p ) BFTH9) € FENAT ™ /O 8 (2.1.2)
This determines a reciprocity map:
¢l )
Rec,: Galp,, —> F{\AT™/0O).

Write v: Ggr — Resp/g(G) for the reduced norm homomorphism. Following
Deligne’s recipe [5] of connected Shimura varieties, we put

Fsmp = (Gen(A®P)/OF()) x Galg . ° (2.1.3)

and define Eg, , to be the subgroup of ¥ 1 , consisting of pairs (x, o) such that v(x)
is equal to Rec, (o) ~!. Here, (9;:?1)) denotes the closure of (9;,(1)) in Gg (A%?).

The limit 8/ g, (Gs,1)qy carries an action by s 1, and Eg, , is the stabilizer of
each geometrically connected component. Conversely, if §h g, (GS,T)(EDur is a geomet-
rically connected component, then one can recover g , (G r) from Shg, (GS,T)(E%r
by first forming the product

Sth (GS,T)éug XSGS,T gS,T,p

and then taking the Galois descent to Q p«.

8When S5, = @ or, equivalently, when 84k, (G 1) is a 0-dimensional Shimura variety, the action of Frob ¢
is given by multiplication by the finite idele ( P F)*"T in the center Res /g G, of G r. This gives the canonical
model for the discrete Shimura variety in the sense of [33, Section 2.8].

c’Compalring with [33, (2.11.3)], we dropped the star extension because the center of G, is Res 7/ G, which
has trivial first cohomology. We also include the Galois part into the definition of § to simplify notation here.
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Notation 2.2

Note that Gg,r(A*) depends only on the finite places contained in S. In later appli-
cations, we will consider only pairs of subsets (S’, T/) such that S’ contains the same
finite places as S. In that case, we will fix an isomorphism Gg/ v (A*) = G5 1 (A),
and denote them uniformly by G(A°°) when no confusions arise. Similarly, we have
its subgroup G(A°>?) C G(A™) consisting of elements whose p-component is triv-
ial. Thus, we may view K (resp., K?) as an open compact subgroup of G(A*°) (resp.,
G(A®P)).

Under this identification, the group §s r p, is independent of S, T, and we hence-
forth write §,, for it. Its subgroup &g, , in general depends on the choice of S and T.
However, the key point is that, if " and T/ are another pair of subsets satisfying sim-
ilar conditions and #So, — 2#T = #S., — 2#T’ (which will be the case we consider
later in this article), then the subgroup Eg, . is the same as 8Gs/,T/'

Remark 2.3

Using Proposition 2.7 and Construction 2.12 later, we have access to most of the
statements in [33] which were initially proved for unitary groups and interpreted
using connected Shimura varieties. The key point mentioned in Notation 2.2 has the
additional benefit that the description of the Goren—Oort strata actually descends to
quaternionic Shimura varieties because now the subgroups €g, , are compatible for
different S’s and T’s.

2.4. An auxiliary CM field
To use the results in [33] (which rely on Carayol’s construction), we fix a CM exten-
sion E/F such that

. every place in S is inert in £/ F, and
. the place p splits as qq in E/F if #S¢ is even, and it is inert in E/F if #3¢
is odd.

These conditions imply that Bg splits over E. In later applications, we will need to
consider several subsets S at the same time. We note that, for all subsets S involved
later, the finite places contained in S are the same, and thus #S$_ will have the same
parity. In particular, this means that we can fix for the rest of this article one CM field
E that satisfies the above conditions (for the initial Byg).
We will frequently use the following two finite idele elements:
(D P denotes the finite idele in A% which is p at p and is 1 elsewhere (which
we have already introduced in Section 1.10);
(2)  when p splits into qq in E, q denotes the finite idele in AF which is p at g,
p~!atq,and 1 elsewhere.
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Let X g, denote the set of complex embeddings of E. We fix a choice of subset
Seo €% E,co such that the natural restriction map X g o — Xoo induces an isomor-
phism So0 — Seo. When p splits into qd, we use Seo/q (1€SP., Seo/g) to denote the
subset of places in Sy inducing q (resp., q) through the isomorphism ¢ p- We put

As_ ' =#500/5 — #500/q (2.4.1)

We note that all the subsets So, that we encounter later in this article will all have the
same Ag_ .

We write E, for F, ® r E. It is the quadratic unramified extension of Fj, if p is
inert and itis Eq X Ej if p splits. We set O, := Oy Qo O .

We put S = (S,Sc). Put Tg 51 = Tg = Resgq(Gm), where the subscript
(S,T) means that we take the following Deligne homomorphism:

hEgn: SR) —Tg5,(R) = P (E @ R)* 2 (C)5°77 x (C)F x (C)5

€200

z=x+yir— (G,....0), L. z7h) (L. L D).

Here, the isomorphism E ® g ; R >~ C for 7 € Sy is given by the chosen embedding
T € Seo lifting 7. One has the system of O-dimensional Shimura varieties
Shk . (Tg 5.,) with C-points given by

ghKE (TE,é,T)(C) = EX’CI\TE,é,T(AOO)/KE s

for any open compact subgroup Kg C Ty 5 1(A™) = A%O’X. Weput Kg, , = (Qjém C
Tg 5.(Qp) and write hk, ,(Tgzr) = l(i_IllKg SthKE‘p (Tg 5.r) as the inverse

limit over all open compact subgroups K% C Tg 5o (A°P). (As in Notation 2.2, we
identify T 5 (A*) for all S and T, and we write Tg (A™) for it, so K is naturally
its subgroup.)

Under the isomorphism ¢,: C = Q p» the image of the reflex field of
Shk(Tg 5.7) is contained in Q ,2¢ . It makes sense to talk about 87k . (TE’g,T)szg .
As K p is hyperspecial, the action of Galsz conShg, (TE,g,T)(@ p) is unramified.
So 8hk, (TE,giT)sz . 18 the disjoint union of the spectra of some finite unramified
extension of Q ,2¢, and it has an integral canonical model over Z ,2¢ by taking the
spectra of the corresponding rings of integers. Denote by Shg . (Tg 5 1) its special
fiber. By Shimura’s reciprocity law, the action of the geometric Frobenius Frob ,2¢ of
F 24 on Shg (TE’ng)(Fp) is given by
(i)  when p is inert in E/F, multiplication by (p F)#(Sfx’_*w)_*"tT = (pp)foeT"

and
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(i)  when p splits into qq, multiplication by

Ei(#éoo/a—#T)gé(#éoo/q—#T) — (BF)#SOO—Z#T(E)A§OO7
where @, (resp., @ 3) is the finite idele in A% which is p at the place q (resp.,
q) and is 1 elsewhere, q is the idele defined in Section 2.4(2) above, and Az__
is defined in (2.4.1).

In particular, if (3, T') is another pair as above such that #S.,, — 2#T" = #So, — 2#T

and such that Az = Ag  if p splits, then there exists an isomorphism of Shimura

varieties over [F p2e>

Shg, (T 5.0) — Shg,. (Tg ), (2.4.2)

compatible with the Hecke action of Tg (A°?) on both sides as K g varies.

2.5. A unitary Shimura variety

Let Z = Resr;g(Gy,) be the center of Gg r. Put Gé’ = Gg,r Xz Tg 5.1, which is the
quotient of Gsr X Tg 5 by Z embedded antidiagonally as z (z,z71). Consider
the product Deligne homomorphism

hS,T X hE,é,T: S(R) = CX —> (GS,T X TE,é,T)(R)’
which can be further composed with the quotient map to Gé’ to get
h’g’: S(R) =C* —= (Ggr xz Tg 5.0)(R) = Gé’(R).

Note that hg does not depend on the choice of T C Sy, (hence the notation), and its
conjugacy class is identified with $5 = (§F)5. Let K Z denote the (maximal) open
compact subgroup GL2(0y) X gx Og,p of Gg (Q@p). We will consider open compact
subgroups of the form K" = K K"? C GZ(A*) with K"P C GZ(A°>?). These data
give rise to a Shimura variety &4 K//(Gg ) (defined over Q,2¢), whose C-points (via
Lp) are given by

$hgr(GY)(C) = GLQ\(%s x GLA™))/K".

We put 8h K} (Gg )= LiﬂlKup Sh K//(Gg ). Its geometrically connected components
admit a natural map

c X N =1
wo(8hky(GY)g,) — (F NAR/0X) x (EN\Af /O, (2.5.1)

where Ng,p is the norm from E to F, and E! (resp., A}E) is the subgroup of E*

(resp., A%), with norm 1 in F* (resp., A%). As in the quaternionic case, this is an

isomorphism if S5, # @. We write 8/ g (Gé’ )f@ for the preimage of 1 x 1 and call it
V2

the neutral geometrically connected component of the unitary Shimura variety.
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We can define the group 8(;// and 9 ‘o for the Shimura data (GZ, %) as in Sec-
tion 2.1 (see, e.g., [33, Section 2 11] for the recipe). First, we spell out the Shimura
reciprocity map:

ech: Galp ,, —> (F\AF™/07) x (ENAT"#/F 7! /(ngvf/le). (2.5.2)

The Frobenius image Recg (Frob 2¢) is given as follows:

. when p is inertin E£/F, Rec’, (Frob 2¢) = (p )¢ x 1,

. when p splits in E/F, Rec’, (Frob ,2¢) = (EF)Zg X (g)*A5c0.

We put § = (Gé’(A‘x”P)/(QE”C(;)) x Galp ,, ,10 and we define €gy to be its sub-
group of pairs (x, o) such that v/ (x) is equal to Rec;/) (0)7!, where

v Gg =Gsrxz Tgzr — Resp/o(Gn) x ResE/Q(Gm)NE/F=1

(g.1) 1 (v(&)NE/F(1),1/1)
is the natural morphism from Gg to its maximal Abelian quotient.

Remark 2.6

Similar to Notation 2.2, if S’ is another subset of places of F containing the same
finite places as S (together with a choice of S.), then Gg, (A®®) is isomorphic to
G’ /(A®°). We fix such an isomorphism and denote it uniformly as G” (A®°). Hence we
naturally identify groups § 5 for different S’s. When #So, = #5/, and Az, = Ay,
if p splits in £/ F, the subgroup 8Gu C §~ , can be also identified with SGg C ﬁé’ >

Indeed, in this case the reciprocity map Rec for S and &' is the same.

PROPOSITION 2.7

(1)  We have a canonical isomorphism &g, = SGé” and we have that
Shk, (GS,T)(‘@}; together with the action of &g, Iis isomorphic to
Shgr, (Gg)(a% together with the action of 8Gé’~

2) The Shimura varieties 8hg(Gg 1) (resp., /ShK//(Gg)) admit integral canon-
ical models over Zpys (resp., over 7 p2e ), and the connected Shimura variety
Shk, (GS,T)(‘éup,- ~ /8th (Gé/)@“,; admits an integral canonical model over ;.

Proof
For (1), the case when T = @ is treated in [33]. In general, note that the sequence of
morphisms

19As in the footnote to (2.1.3), we omitted the star product in the definition of this group when compared with
[33, (2.11.3)] because the center Res g /q (Gy) of G” has trivial first cohomology.
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1
G§ < GS,T X TE,g,T — GS,T

is compatible with the associated Deligne homomorphism, and the conjugacy classes
of Deligne homomorphisms into various algebraic groups defined above are canon-
ically identified. Standard facts (e.g., [33, Corollary 2.17]) about Shimura varieties
imply that the series of morphisms of Shimura varieties

5hK;;(Gg) «—8hk,(Gsn) Xz, Shky ,(Tg50) > Shk,(Gsr)

induce isomorphisms on the neutral connected components. Hence, by [33, Theo-
rem 3.14], there exists an integral canonical model for 84 Kl (Gé’ ) over Z 28> and
thus the neutral connected component 84 Kl (Gg )° = 8hk,(Gg,r)° admits an inte-
gral canonical model over Z;. Applying X€Gq s,7,p, the latter induces an integral
canonical model of 8hg ,(Gg,r) over Z;r, which descends to Z e (see [33, Corol-
lary 2.17]). O

Remark 2.8

Item (2) of Proposition 2.7 is a consequence of the much more general theory of Kisin
[17]. However, in the following, we will need essentially this explicit relationship
between the integral models of 81 x(Gg ) and those of $h g~ (Gg ).

Notation 2.9

We use $hk,(Gs ), Shky ,(Tg 5.0) 5hK;; (Gé’), ... to denote the integral models
over Zps or Z,2¢ of the corresponding Shimura varieties, and we use systematically
roman letters to denote the special fibers of Shimura varieties:

Sh?(GS,T)]BI,p 1= 8hy(Gs,0)ym ®zy F, and
Sho(Gs,r) := 8ha(Gs,r) Xz,¢ Fpse
for ?= K or K, and x = o or @, and
Ship , (Tg52)F g = Shkp ,(TE g 1) ®z o Fpoe.
Shgr (Gg)[[:ng :=38hgy (Gg) ®7 ¢ F e,
and similarly with open compact subgroups Kg = Kg , K g C Te(A®) and also

with K" = Ky K"? C G”(A*). We put Shg, (Gg)%p = 8hgy(GL)g ®zy F,.

2.10. Automorphic local systems
We now study the automorphic sheaves on these Shimura varieties. Fix a prime £ # p
and an isomorphism t¢: C >~ Q. Let (k, w) be a regular multiweight, which means
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a tuple (k,w) € Z¥> x Z such that k; = w (mod 2) and k, > 2 for all 7 € T
Consider the algebraic representation

Pqu’ﬂw) Meex. (Sym ™ 2(std") ® det TZ_W)

of Gsr®C =[], ez, GL2(C), where std is the standard representation of GL2(C).
As explained in [23], we have an automorphic @g—lisse sheaf é(igﬁw) on 8hg,(Gs,r)
associated to pg,}w). Note that éﬁg&w) is pure of weight (w — 2)(g — #Seo + 2#T).

We fix a section ¥ C X g o Of the natural restriction map X g oo — X0 (Which is
independent of the choices S ). Consider the following 1-dimensional representation
of Tg 50 ®C=[lic5Gmi <G, 7,

w _ 2—w
Prs=Qx " opre s,

7es
where 7 is the complex conjugate embedding of 7, prg z is the projection to the
T-component, and x2~¥
power. This representation gives rise to a lisse Q-étale sheaf éf"’ 5 pure of weight
(W —2)#Soo —2#T) on Shk, ,(Tg 5.1)- If Shgx (T 3 ) is another Shimura vari-
ety with #S_ ) — 2#T' = #So, — 2#T and y: Shg . (Tg z,) = Shk . (Tg gz v) is the
isomorphism (2.4.2), then we have a natural isomorphism:

is the character of C* given by raising to the (2 — w)th

LY Q) LY (2.10.1)

ES1,%°

Letar: Ggr X Tg 5 r — GZ denote the natural quotient morphism. We have the
following diagram:

pry o
Sth(GS,T) ~ /Sth(GS,T) XZpg 5hKE,p(TE,§,T) - ShK%(Gg)

l -

ShKE.p (TE,é,T)
(2.10.2)

By our definition, the tensor product representation ,oL’w)

Tg 5,v factors through G7. This defines a Q-lisse sheaf éC’ (k ®)
that we have a canonical 1som0rphlsm

® pzj of Ggr x
on 8h gy (GY) such

T(:ﬁ”(k w)) =~ pr’ (:CL w)) ®pf2($ (2.10.3)

ESTfJ)‘
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Put D = Bs ®  E. Then our choice of E/F in Section 2.4 implies that D =~
M2 (E), which explains the omission of S in our notation. We fix such an isomor-
phism and then take a maximal order O p =~ M5x>(O@E). Recall that there exists a ver-
sal family of Abelian varieties of dimension 4g a: A% = Ag, k™ Shir (GY) (see
[33, Section 3.20]) equipped with a natural action by @p. Here, “versal” mearils( lzhﬁ)t
ne )
can be reinterpreted as follows. Put Hg(Ag) = R'a.(Qy), which is an £-adic local
system on 8h K} (Gg ) equipped with an induced action by M,x,(E). For each 7 €

Y E.00, let Hg(A’é’); denote the direct summand of Hg(Ag) on which E acts via

the Kodaira—Spencer map for the family A’é’ is an isomorphism. Using Ag ,

ESCcS Qq- Let e = () € Maxa(E) denote the idempotent element. We put
H(A%); = e~ Hy(AY)z, which is an £-adic local system on $/ g7 (GY) of rank 2. We
have a canonical decomposition:

o,H2
).

He(A9) = D(H(AD: & HeAYz) = D(HADT ™ & He(A]
) 7e¥
Using this, we obtain the following explicit description:

w—k

L1 = Q) (sym T HAADT ® (NHAADY) 7). @104
7es
Remark 2.11

We will introduce a general construction below to relate the unitary Shimura varieties
and the quaternionic Shimura varieties. We point out beforehand that the entire con-
struction is modeled on the following question: By Hilbert’s Theorem 90, we have an
exact sequence

2 EARopE T

L — FNARY /05 — EXN\AT™ /0%
The construction involves picking a preimage of some element in the target of the
surjective map above. In general, there is no canonical choice of this preimage, and
all choices form a torsor under the group F ><’CI\A(}O’>< / (9;. In the very special case
when the element in the target of the surjective map is trivial, one can have a canonical
choice of its preimage, namely, the identity element 1.

Construction 2.12

We now discuss a very important process that allows us to transfer certain corre-
spondences on the unitary Shimura varieties Shg# (Gg ) to the quaternionic Shimura
varieties Shg , (Gg,r). Throughout this section we assume that we are given two sets
of data— S, T and §’, T’ as above—and that they satisfy the following conditions,
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#Soo —HT =#S — 24T,  Ag_=Ag_ ifpsplisin E/F,  (2.12.1)

and we assume that the finite places contained in S and those in S are the same. By
(2.4.2), this implies that the Shimura varieties Shg , ,(Tg 3) and Shgx, (Tg & 1)
are isomorphic.

Suppose now that we are given a correspondence between the two unitary Shi-
mura varieties

Shiy (GY) < X 1 Shgy (G, (2.12.2)

where the group ﬁé” >~ ﬁé’,,p acts on all three spaces and the morphisms are equi-
variant for the actions. We further assume that the fibers of 7" are geometrically
connected.

Step I: We will complete the correspondence above into the commutative diagram

> n*

Sth (GS,T) XSpec(]de) ShKE'p(TE.é.T) . Y > Sth (Gs’.T’) XSpec(]de) ShKE'p(TE,é/,T/)

/
l ar aff/ l ©o
” i

7T n

Shkfp, (Gé/) X ShKZ (Gg,)

(2.12.3)

so that Y is defined as the Cartesian product of the left square, and the top line is
equivariant for the actions of 5.7 , X AY" = g v , x AL ™. For this, it suffices to
lift the morphism 1" to . We point out that both e and e/, map every geometrically
connected component isomorphically to a geometrically connected component of the
target.
We now separate the discussion (but not in an essential way) depending on
whether S¢_ is empty.
. When S&, # @, let Y° denote the preimage (7*) ! (Shg,, (Gs,p)g xA{1}),
4
where 1 denotes the neutral point, namely, the image of 1 € A%O’X in
Shk, , (TE,g’T)Fp. By our assumption on 7", Y° is a geometrically con-
nected component of Y. Its image under 7" o @/ lies in a geometric con-
nected component of Shg# (Gg,), say Shgr (Gg, % , corresponding to some
P
(x.5) € (FN\AF™/05) x (ENAF" /O 577 ~") via the map (2.5.1). By
Hilbert’s Theorem 90, there exists t € EX’CI\A(]?’X/(Z?p with ¢/t = s, and the
choice of £ is unique up to F***"\AZ"™/@X. We claim that giving a (s,r,p X
A%O’X)—equivariant map 1 as above is equivalent to choosing such a ¢. Indeed,
let Shg, (GS/,T/)% be the connected component of Shg, (GS’,T’)F,, corre-
p

sponding to y = xNE/F(t)_1 via the map (2.1.1). Then «, sends
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Shg, (GS/,T/)%p x {t} isomorphically to Shgr (Gg,)%p. Note that Y (resp.,
Shg,(Gg 1) Xspec(F ,q) Shky ,(Tg & 1)) can be recovered from Y° (resp.,
Shg, (GS/,T/)%F x {t} forany t € Ex"‘l\A%o’X/Ogp ') by applying — xgg_
(Gs,1,p X EXNAT/ ng)‘ Here, recall that g, , is isomorphic to SGéf by
Proposition 2.7(1), and it embeds into the product sz, , X E*N\AT"/ (9,’§p
as follows: the morphism from &g, , to s r,, is the natural embedding and
that to E*N\AT""/ (91)5,, is given by first projecting to the Galois factor and
then applying the Shimura reciprocity map as specified in Section 2.4(i) and
(ii). Therefore, once such a ¢ is chosen, we can define n* as the morphism
obtained by applying — xgg,  (9s,1,p X EX’CI\A?’X/OEP) to the composite
map

v° 25 Shyy (G)3 ) = Shi, (Gero)s x 1),

where the last isomorphism is the inverse of the restriction of a/, to
Shg,, (GS’,T’)%p x {t}. Conversely, it is also clear that such a ¢ is determined
by n*.

When S¢ = 0, a slight rewording is needed. Let X° denote the preimage
under " of the F,-point 1 € Shgy (GY)g,. So it is mapped under 1" to a
point g” € Shg (Gé’)FF. Let Y° denote the preimage under 7> of the F ,-
point (1,1) € Shg, (Gs,T)Fp xShg, , (TE,g,T)Fp. Then the map 1™ must take
Y° to an FF,-point (x,¢) in a/,'(g”), and, conversely, n* is determined by
this choice of such a point by the same argument as above using the fact that
n* is equivariant for the (§s,7,, x AZ"™)-action.

In summary, one can always define such a lift n*, depending on a choice of a

certain element ¢ € E*\AT""/ O, which is unique up to multiplication by an
element of F>*"\AR/ O, In this case, we say that ™ is constructed with shift
t. In general, we do not have a canonical choice for ¢, and hence neither for n*.

However, in the special case when Sh Kl (Gg,)% is the neutral connected component
4

Shgr (Gg,)% in the former case and g” = 1 in the latter case, there is a canonical
p

choice of such a lift, namely, the neutral connected component Shg, (GS/,T/)% x {1}

in the former case and (1, 1) in the latter case. So under this additional hypothesis, we

do have a canonical map n*.

Step I1: Suppose that we have constructed the diagram (2.12.3) with shift # (which

is canonical up to an element of F >“CI\A(}O’X / (9;‘), and we want to obtain a correspon-

dence

"'We point out that E X’CI\A?‘X/OEP is canonically isomorphic to (921?”) \AF P,
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g n
Sth (GS,T)]szg <~ 7 — Sth (GS’,T’)szg . (2124)

For this, it suffices to construct (2.12.4) over F p which carries an equivariant action of
Gal[pp2 .- Starting with the top row of (2.12.3), composing 7™ with multiplication by

t~! (note that Shg ., (TE 3 1) is in fact a group scheme), we get a correspondence!?

Shg, (Gs,1)5, X Shky ,(TE 5 0)F,
x t_l Onx
<Y — Shk, (Gor)g, X Shkp , (Te 2 a5, (212.5)

which respects the projection to Shg . , (TE,ggT)Fp é Shk, , (TE,g/’T/)?p . Taking the
fiber of (2.12.5) over 1 of ShKE,p(TE,é,T)Fp would give (2.12.4) (base-changed to
Fp), but to descend we need to modify the Galois action above (so that the Galois
action preserves the fiber over 1) as follows: we change the action of Frob ¢ on
(2.12.5) by further composing with a Hecke action given by 1 x (p F)Z#T_#Soo €
G(A®)x AT ™ if pisinertin E/F,and 1x (EF)Z#T_#Soo (ﬂ)‘Aéoo if psplitsin E/ F.
This way, we have constructed a new Galois action on the factor Shg . ,(Tg 51)7 -
By usual Galois descent, we get (2.12.4).

Step 111: We will obtain a sheaf version of the construction above; namely, if in
addition, we are given an isomorphism of sheaves

// . ”*(iﬂ(— w)) ”*(i//(_ w)) (2126)
then we will construct an isomorphism of sheaves

(@& S e &), (2.12.7)

s/, 1

which again depends on the choice of ¢ in Step 1. First, pulling back (2.12.6) along
o7 in the commutative diagram (2.12.3), we get

//*(n//ﬁ) (7)* ( T(:@//L,w)))i(UX)*( /S//(kzw)))

Taking into account the isomorphism (2.10.3), we have

o« (") : (r)* (pri(e % w))®pr2(éﬁESTE))

= (P (L) @iy (LY L )-

120nce again, this correspondence depends on the choice of ¢, which is unique up to multiplication by an element
of (91XP zlp)\AX Rl
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Composing this with the action of !, we get an isomorphism

()" (pr (£85") @ pry (L% . )
= " on)” (pry" (‘:egf:rlj)) ®p /*(‘:ﬁE g, E))

Since we may also identify the sheaves é@w BT w1th éﬁ‘g ¥ s using (2.10.1), we
may restrict the morphism above to the fiber over the neutral point 1 and get a mor-
phism of sheaves (2.12.7) that we want over F p- (Once again, this morphism is unique
up to multiplication with an element of F>**"\AZ"/ O,".) To descend it back down
to I 24, we modify the action of the Frobenius by composing it with a central Hecke
action as in Step II above. This concludes the needed construction.

We point out that the the above contruction depends on the choice of the element
teE X’CI\A%O’X / Og’p that appeared in Step I, and such ¢ is determined only up to
multiplication by an element of F' X’CI\A%O’X / (9;‘. We call 1 the morphism associated
to 0 with shift t. When Shg (Gg)%p = Shgy, (Gg)%p in Step I, we can take t = 1
and we get a canonically determined »n with shift 1.

Finally, let us mention where the choice made in Step I is specified later in this
article. In Section 3.8, we invoke this construction to define the Goren—Oort cycles;
this is where the choice will be fixed. Moreover, this choice will retroactively deter-
mine the choice we make when applying this construction to define the link mor-
phisms in Section 2.19, whenever that section is quoted. The shift will allow us to
keep track of the choices we made.

Remark 2.13

Suppose that we are given two correspondences as in Construction 2.12. Namely, we

have

. subsets of S;, T; for i = 1,2,3 such that #S; 00 — 2#T;, the subset of S; of
finite places, and Agim are independent of i (if p splitsin E/F),

. two ﬁé” ’p—equivariant correspondences between Shimura varieties

i a

7 m;
ShK:’; (ng) <« Xi —> ShK’/ (G/S/ +1)

with i = 1,2 such that 7]’ is a fiber bundle with geometrically connected
fibers.
Then we can compose these two correspondences to get a correspondence

// 4

n3
ShKU(G )(—X:; —Xl Xn”Sh //(G”)n” Xz—)ShK”(G//)

Thus we may apply Construction 2.12 to get correspondences (71, 7n1) and (72, 72)
on the quaternionic Shimura varieties
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3 X3 n3
1 X1 771/ \ﬂz’\ X n2
Sth (GS1,T1) Sth (GSZ,Tz) Sth (GS3,T3)7

(2.13.1)

with shifts #1,7,. Then their composition (73, n3) = (72, 12) o (71, 11) is the corre-
spondence of quaternionic Shimura varieties associated to (3, 77%) with shift #,75.
Conversely, if we apply Construction 2.12 to (7], 7)) to get three correspondences

(i, m;) fori = 1,2, 3 such that (73, 13) = (772, 2) © (;r1, 1), then their shifts satisfy
the equality 3 = £115.

2.14. Hecke operators at p

In this section, we consider the case S., = @, namely, when the Shimura varieties are
discrete. We want to relate the Hecke operators at p for the unitary and quaternionic
Shimura varieties in a manner similar to that above. In this section, we assume that p
splits in E/ F, which is the case we will encounter later.

Let Iw, C GL(0,) denote the subgroup consisting of matrices which are upper
triangular when modulo p. The discussion in this section is designed to cover this
case and give an integral canonical model 8hyy,(Gg,r) of the Shimura variety with
Iwahori level structure. We denote by 7, the Hecke correspondence given by the
following diagram:

Shyy,(Gs,1) (2.14.1)
S
/Sth (GS,T) gth (GS,T)»

where 71 is the natural projection and 7, sends the double coset of x € G(A™) to
that ofx(E;F1 ‘1)).

For the unitary Shimura variety, we have G”(Q,) = GL,(F,) XFx (Ey % E;),
and we use Iw’l’, to denote the subgroup Iw, X@x ((9§CI X (92&)' Similarly, we have
an integral model & hlw’;, (Gg ) of the unitary Shimura variety with this Iwahori level
structure. The element ;' = (( Po_l (1’), (1, p)) € G"(Q,) gives rise to a Hecke opera-
tor Ty corresponding to the double coset Ky, K. Geometrically, it is given by the
diagram
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Shyy, (GZ) (2.14.2)

SN
Shir (GY) Shyr (GY)

where 7] is the natural projection and 75 sends the double coset of x € G”(A™) to
that of xyy.

In language similar to the preceding section (except that we cannot quote it
directly because the morphism 7" therein would not have geometrically connected
fibers), we may phrase the relation between the Hecke correspondences 7}, and T
in terms of the following commutative diagram (with T}, vertical on the left and T},
vertical on the right):

, % fiber over 1
ShKZ (Gé) < Sth (GS,T) X ShKEp (TE,é,T) Sth (GS,T)
ny natural 1
or fiber over 1
Shyy (GY) <—— Shi, (Gs;r) x Shk, , (Tg 51) Shiw, (Gs,r)
7y x»—)x((ﬁ(})«‘ 1),w;|)
QT
Shgy (GY) <—— Sh,(Gsx) xSk, , (Tg 5 0) ™
xr—>x(1,wa*1)
fiber over 1
Sth (GS,T) X ShKE,,,(TE,g,T) Sth (GS,T)

So we may view T}, as the correspondence associated to Ty in a similar fashion to
. . . _ x,cl 00, X X
Section 2.12, with shift wz € E“\Ag /(9Ep.

2.15. Links

We recall briefly the notion of links introduced in [33, Section 7]. We put g = [F : Q]
points aligned equidistantly on a section of a vertical cylinder, each point correspond-
ing to an Archimedean place in X (also identified with a p-adic embedding of F
viat,: Cx~ Q p) so that the Frobenius action is equivalent to shifting the points in
one direction. For a subset S of places of F as above, we label places in Sy, by a
plus sign and places in SS, by a node. We call the entire picture a band correspond-
ing to S. We often draw the picture in the 2-dimensional xy-plane by thinking of the
x-coordinate modulo g. We present the points 7o, ..., Tg—1 on the x-axis with coor-
dinates x =0, ..., g — 1, such that the Frobenius shifts the points to the right by 1,
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and shifts 7y back to 1o (by first shifting to x = g and thinking of the x-coordinate
modulo g). For example, if F has degree 6 over Q and S, = {71, 73, 74}, then we
draw the band as e + e + + e.

Suppose that S’ is another set of places of F with even cardinality such that it
contains exactly the same finite places of F as S and satisfies #So, = #S/,,. We put
the band for S above the band for S’ on the same cylinder. In the 2-dimensional pic-
ture, we draw the band for S on the line y = 1 and the band for S’ on the line y = —1.
For each of the nodes of S, we draw a curve starting from it and go monotonically
downward, linking to a node of S’ (and ignore the plus signs) such that all the curves
do not intersect with each other. Such a graph is called a link n: S — S’. Two links
are considered the same if the curves can be continuously deformed to each other
while keeping all curves from intersecting. We say that a curve is turning to the left
(resp., right) if it can be deformed into a smooth curve which has positive (resp.,
negative) tangent slopes in the 2-dimensional picture. The displacement of a curve
in 7 is the number of points it travels to the right, which is the difference between
the x-coordinates of the ending and starting points of the curve (adding an appropri-
ate multiple of g according to the times the curve wraps around the cylinder). The
displacement is negative if the curve turns to the left. The total displacement v(n) is
the sum of displacements of all curves. For example, if g = 5 and Sy, = {71, 73} and
Sl = {12, 74}, then the link given by

+ @+ @
n=‘\‘\:‘\+ (2.15.1)

has total displacement v(7) = 3 + 3 + 2 = 8. For another example, the action of
Frobenius o twists the band and gives rise to alink o : S — 0 (S), called the Frobenius
link, for which every curve is turning to the right with displacement 1. Here o (S) is
the set of places containing the same finite places as S, but 0(S)eo = 0(Seo). Its total
displacement is v(0) = d =#S¢,.
For alink n: S— S/, we use n~': 8’ — S to denote the link obtained by reflect-
ing the picture about the equator of the cylinder. For two links : S — S’ and n’': 8’ —
S”, we have a natural composition of links ' o n: S — S” given by putting the pic-
ture of 7 on top of the picture of 1" and joining the nodes corresponding to S’. It is
obvious that v(n~') = —v(n) and v(’ o n) = v(1’) + v(n). When discussing the rel-
ative positions of two nodes of the band associated to S, it is convenient to use the
following.

Notation 2.16
For 7 € 8¢, let n; be the minimal positive integer such that o777 € S¢ . We put
7 :=0"""t. Weuse t " to denote the place in S, such that (t1)” = .
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Example 2.17
A link from S to itself must be an integer power of the fundamental link ns (i.e., to
link each 7 to T by shifting to the right with displacement 1.+ ). An example would

+ Q\+
be \:>§\0 +. The total displacement of a fundamental link is exactly v(ng) = g =
[F:Q].

Remark 2.18

As pointed out to us by one of the anonymous referees, one can give an abstract
definition of links as follows. Let §go denote the preimage of S¢, under the projec-
tion map Z — Z/gZ, and (for counting purpose) we view S¢S, as a subset of §go by
identifying it with its lift in {0,...,g — 1}. Then a link from S to S’ is a bijective
and strictly increasing function 7: §go — /S\{fo (and it would follow automatically that
n(x + g) = n(x) + g). The composition of links is the same as the composition of
such functions. A link is turning to the left (resp., right) if and only if (x) > x (resp.,
n(x) < x) for every x € §go The displacement of 7 is ersé;o n(x) — x.

2.19. Link morphisms, [
Let S and S’ be two even subsets of places of F consisting of the same finite places
and #So = #S/,. Let n: S — S’ be a link. We say that 7 is a right-turning link if all
its curves (if there are any) are turning to the right. We allow the case Seo = Yo (SO
that there are no curves in the link 7 at all), in which case we say that 7 is the trivial
link. In this section, we assume that 7 is right-turning. For each node 7 € S¢, we use
m(7) to denote the displacement of the curve connected to 7 in 7. Let Soo and é’oo be
(any) lifts of So, and S, as in Section 2.4. We have two unitary Shimura varieties,
Shgy (G%) and Shgy (GZ)), as defined in Section 2.5.
We now recall the definition of the link morphism on Sh K (Gg ) associated to
the right-turning link 7 as in [33, Definition 7.5]. Let n be an integer, which is always
taken to be 0 if p is inert in E. A link morphism of indentation degree n associated to
n on Shgy (G7) is a pair (’7/(/n),n’ n'(/f)), where
(1) r]’(’n)’ﬁ: Shgr (GY) — Shgr(GY) is a morphism of Shimura varieties that
induces a bijection on geometric points;

) r/(f): A’é — n/(;“),ﬂ(A’é,) is a p-quasi-isogeny of Abelian varieties compatible
with the @ p-actions, the polarizations, and the tame level structures;

(3)  for each geometric point x of Shgr(GY) with image x’ = n’(’n)’ﬂ(x), if we
write J@(A’g’,x); for the T-component of the covariant Dieudonné module of
Ag,x for each T € X g, then there exists, for each 7 € S%,oo, some tz € Z
independent of the point x such that

G @ (A - A
Wane (FIS) (DAL )2)) = p7 DAL, )gmeoe,
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where F::;Zx: @(Ag’x); — O’D(A’g’,x)(,m(r); is the m(7)th iteration of the
essential Frobenius for Ag . defined in [33, Section 4.2]; and

4) when p splits as qq in E, the degree of the quasi-isogeny

Ny : AA%] = 17 5 (A% [0%))

of the g-divisible groups is p?".
When the indentation degree n is clear by the context, we write simply (7, n*) for

#
(n(n),#v ﬂ(n))-
For our purpose, the most important property we need is the following.

LEMMA 2.20 ([33, Proposition 7.8])
Let n: S — S’ be a link as above. Then there exists at most one link morphism
(n’(’n) " n/(/f)) with indentation degree n from Shg~(G?) to Shg»(G%).

Example 2.21

Let S and S be as in the preceding section. Let 62 : S — 02(S) be the second iteration
of the Frobenius link on S. Put 025 = (62(S),0%(Se0)). In [33, Section 3.22], we
introduced natural morphisms called the twisted (partial) Frobenius,

12t Shiy(GL) — Shiy (Gllg),

028

together with a quasi-isogeny of Abelian varieties,
ngz : A/g/ - (3;’2)*#25-

Such a morphism is characterized by the fact that the morphism png , is given by
the p2-relative Frobenius. Then, in the language of the link morphism introduced
above, (SZ 5 r)g ») is the link morphism on Shg (G%) associated to the link n = o? of
indentation degree 0 if p is inert in £/ F and of indentation degree 2Az__ if p splits
in E/F (see [33, Example 7.7(1)]).

Example 2.22

When p splits into qq in E/F, consider the Hecke operator S, given by multipli-
cation by 1 x g7 € G”(A®) = G(A™) X poo.x A% on the unitary Shimura vari-
ety. We start with the versal family of Abelian varieties A% on Shgr (GY), putting
B .= A’é’ ®o, G- q ! equipped with the induced action by Op. Let @q: Ag — B
denote the natural p-quasi-isogeny induced by O — qq~—'. We equip B with the
natural prime-to-p level structure compatible with ¢4. The polarization A A7 On A’é
naturally induces a polarization Ag on B such that A AL = ¢y o Ap © ¢q. There is a
unique morphism,
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Sq: Shiy(GY) — Shgy (G),

which, together with ¢, gives a link morphism for the trivial link id: S — S of inden-
tation degree 2g. If we apply Construction 2.12 to the correspondence

S
Shyy (GY) Shig (GY) —— Shgy,(GY),

then we can lift it to an endomorphism of Shg , (Gs,r) X Shg , , (75 ;) given by multi-
plication by ((p F)_1 w:?) € G(A®) x A5 A% So the endomorphism S, given
by multiplication by the central element ( Pr )~ 1 may be viewed as the morphism
on the quatermomc Shimura Varlety obtamed by applying Construction 2.12 to the
morphism 1" = S, with shift wﬁ .

2.23. Normalizations of link morphisms

Keep the notation of Section 2.19 and assume moreover that
. the link morphism (r)’(’n) ¥ n/(f)) on Shgr (GY) exists,
. As = Ag if psplitsin E/F, and

. we are glven two subsets T € Soo and T/ C S such that #T = #T".

Let (k, w) € Z¥> x Z be a regular multiweight as in Section 2.10, and let 93"(— ) and

éﬁg,(kiw) be the corresponding {-adic étale local systems on Shgr (Gg) and

Sh Ky (Gg,), respectively. Then the p-quasi-isogeny n/(f) induces an isomorphism of
étale local systems

nk, w) = ,,* 1k, w)
is,z »ﬁxsfz :

Applying Construction 2.12 to the link morphism (n’(’n) " n/(f)) (with X' = Shg (GY)
and 7 in (2.12.2) equal to the identity), we get a pair of morphisms,

S/ T/

Ng: Shk,(Gsg) > Shi, (Gew)  and b 0 2850 S (280,

depending on some ¢ € EX’CI\A%O’X/OE’)D (See the end of Section 2.12). In the

remainder of this article, we call (1) 4, n'(in)) (or simply 7)) 4 for short) the link mor-
phism with indentation degree n on the quaternionic Shimura variety Shg ,(Gs,r)
with shift t. Note that by Lemma 2.20 and Construction 2.12, for a fixed lifting S
of S, an indentation degree 7, and a shift ¢, there exists at most one link morphism

(1ny - Tiyy) On Shi (Gis2).
The link morphism (1), n?n)) induces a homomorphism of the cohomology
groups,
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P Y (k,w) * (k,w)
Myt Hot(Shk, (G w)g, . £50)) —> HE(Shk, (Gs)s, . My 4(£90))

- K
Het (Sth (GS,T)FP ’ i(sj’}‘w))v

which is equivariant under the Hecke action by G(A°) and the Galois action by

Gals ,, 13 We fix a square root p'/2 € Q; of p. We put
x 1,
o = otz 1o (2.23.1)

and we call it the normalized link morphism on the cohomology groups of quater-
nionic Shimura varieties associated to n with indentation degree n and shift #. This
normalization will be justified in Lemma 2.29(2). When the link morphism r;’(’n),‘i :
Shgy (GZ) — Shgy (GZ)) preserves the neutral connected components, ¢ =1 is a
canonical choice, and in that case, n(*n) is canonically defined.

Let n;: S; — S and n,: Sy — S3 be two links with all curves turning to the
right, satisfying the conditions above; that is, all S; have the same set of finite places,
#Sl,oo = #Sz,oo = #83,00, #T, = #T, = #T3, and Agl’oo = Agzgoo = Agssoo if p
splits in £/ F. Suppose then that there are link morphisms (n;/, ()b n;:%ni)) fori =
1,2 on unitary Shimura varieties with indentation degree ;. Then the composed mor-

phism

y ) ” M. ny). ” M3 (1), 1
M, SPi(Og,) —— Shi (Gg,) ——— Shi (G,

together with the composed quasi-isogeny

4 17"% ng
M )t M2n))

m LA L0 g " 1% 1% "
Mz, A5 7 Mens(Bs) = Tl 472004 (A5,):
gives the (unique) link morphism on the unitary Shimura varieties with indentation

[ H 4 4 P/ /!
degree i’l.12 =n;+ l’l.2 assomatéd to the comp(.)sef:l lmk' ’712,(n12)"_. '72,(ng) o 171,(,{1).
From this, we get a link morphism of quaternionic Shimura varieties of indentation
degree nj,,

M.(ny).4 N2.(np).4
N12,(n12).4 - Sth (GSI,Tl) — Sth (Gsz,Tz) EEE— Sth (GS3,T3)7

such that the shift of 713, (,,,),4 1S the product of the shifts of 1y (,,).4 and 12 ()4
Moreover, we have 77, (112) = n 1) © n (1) O0 the cohomology groups of quater-
nionic Shimura varieties.

3Here, G(A™°) denotes the common finite adelic points of G5 ¢ and Gy v according to Notation 2.2.
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2.24. Automorphic representations

Following [34, Section 5.10], for a regular multiweight (k,w) we use A, ) to

denote the set of cuspidal automorphic representations 7w of GL, (A ) such that

. the Archimedean component 7, for each t € ¥, is a holomorphic discrete
series of weight k, — 2 with central character x > x* 2,

. and the p-component 7, is spherical.

We write 9P to denote the prime-to-p finite part of 7.

For mr € Ak, ), if v is a finite place of F such that the v-component 7, is spher-

ical (i.e., nf’ L2©r) # 0), then we write T, and S, for the Hecke operators given

by the double cosets GL,(OF,)( wgl ‘1)) GL,(OF,) and GL, ((QFU)wv_1 GL2(OF,),
respectively. We write T, (7) and S, (;r) for the eigenvalues for the actions of 7, and
Sy on nf’ L2(OF “). We denote by p,: Galp — GLZ(@K) the Galois representation
attached to 7 normalized so that if v is a finite place of F' at which 7 is spherical,
then the action of a geometric Frobenius at v has trace equal to T, (). Let pr , be
the restriction of pr to Galg ,, (note that p is unramified at p since 7y, is spherical).
The characteristic polynomial of p ,(Frob,s) is given by

X2 —Ty(m)X + Sy () ps. (2.24.1)

We say that a cuspidal automorphic representation 7 € sk ) appears in the
cohomology of the Shimura variety Shx (Gg, 7) if, for each finite place v of S, the
local component 7, of m is square-integrable so that 7 is the image (under the
Jacquet-Langlands correspondence) of a unique automorphic representation 7 g, of
Gs,r(A) = (Bs ®g A)*, and, moreover, (n%‘;)K is nonzero. When 7 appears in
Shx (Gs,r), the actions of Hecke operators T), can be expressed as Hecke correspon-
dence on the étale cohomology H:f (Shg (GS,T)ED , éﬁg&w)). Moreover, the action of
Sy is exactly as given in Example 2.22; when Soo = Yo, the action of T, is exactly

as given in Section 2.14.

Notation 2.25
For 7 € s w) and a Q¢[G(A*?)]-module M, we write

M[ﬂ] = Hom@Z[G(Aoo,p)](ﬂ'lo;:p,M)

for its mw-isotypical component. By the strong multiplicity 1 theorem for quaternion
algebras, mp, is determined by nz’p; this justifies the notation for M [r]. There is
also a finite version, as follows. Let K? C G(A°*"?) be an open compact subgroup
so that (nlo;;’p)K ” is a nonzero irreducible module over the prime-to-p Hecke alge-
bra Hgr := Qu[K?\G(A®P)/KP]. Then rp, is determined by the #g»-module

(ngos’p)Kp. For an #g»-module M, we have

M[x]:=Homgy,., ((nz’p)Kp,M).
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PROPOSITION 2.26
Let w € A w) be a cuspidal automorphic representation appearing in the cohomol-
ogy of the Shimura variety 8hg (Gg r). Then we have a canonical isomorphism

Hlt(ShK (GS,T)FP , :Eé%jw)) [ﬂ]Fr-s.x,

_ 025 ® [det(prp) (DI ifi =d.
0 ifi #d,

equivariant under the action of the geometric Frobenius Frob,s. Here, the super-

(2.26.1)

script Fr-s.s. means taking the semisimplification as a Frob ps-module. In particular,
if ayx and By are the two (generalized) eigenvalues of px, ,(Frobps), then the (gen-

eralized) eigenvalues of the action of Frob ,2¢ on Hgt(ShK(GS,T)ﬁp,;g(SkT%W))[;T] are

p_zg#Ta,z,(i+#T)ﬁ,2,(d_i+#T) with multiplicity (”li) for0<i<d.

Proof

The first part of the proposition is well known to experts. We defer its proof to the
Appendix (see Proposition A.3). The explicit description of the action of Frob ,2¢ is
straightforward. U

PROPOSITION 2.27

Assume that d = #SS_ # 0. Then the following statements hold.

(1) The 2gth iteration of the Frobenius link 0% : S — S coincides with the 2d -
fold self-composition of the fundamental link ng introduced in Example 2.17.

2) The link morphism on Sh K} (Gg) with indentation degree 0 associated to
08 = ngd exists, and it is given by
(a) g-fold self-composition (S/p/z)g ifpisinertin E/F; and

(b) (S’p’z)g . Sq_Ag“’ if p splits in E/F, where S, is defined as in Exam-
ple 2.22.
Moreover, this link morphism preserves the neutral geometrically connected

component Shg(GZ)S and hence induces a canonical link morphism
4 S’Fp

(né"zo) 4 néd(on)) on the quaternionic Shimura variety Shg ,(Ggs ) with shift

1 for any fixed subset T C Soo.
(3) Let

* k, k,
2)70): H (Shx(Gs )5, £85") > HY (Shk (Gs.n)s, £85")
be the normalized link morphism (2.23.1) induced by (né‘io) 4 r}zd(bﬁ)). Then
we have an equality of operators on cohomology groups,

(12%)fy) = P9 - Frob ¢ 0 S, 4727, 2.27.1)
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where Sy, is the Hecke operator given by the central element g;l € G(A™).
In particular, for each w € A ) and each integer i with 0 <i < d, the (gen-
eralized) eigenspace of Frob ,2¢ on He’f (ShK(GS,T)Fp , ;@ékj%w))[n] with eigen-

value p~2& #Ta,z,(l +D) ,Bi(d_’ D) s the same as the (generalized) eigenspace

of (Uéd)zo) with eigenvalue (ot /Br)* 4.

Proof
Item (1) is evident. For item (2), we first check that the maps given by (a) and (b)
are link morphisms with indentation degree 0 associated to the link néd. This fol-
lows easily from Examples 2.21 and 2.22. By the uniqueness of link morphisms
(Lemma 2.20), they are the link morphisms we sought.

We next show that the link morphism in the unitary case preserves the neutral geo-
metrically connected component Sh g (G g )%p . This is a direct computation using the

Shimura reciprocity map (in Section 2.5), which we spell out now. Denote by ®?¢ the
Frobenius endomorphism of Shg# (Gg ) relative to F ,2¢. Then (gg )8 is nothing but

the composition of ®?¢ with the Hecke operator S, ¥, where S, is the Hecke corre-
spondence given by the central element ( E;l, 1) € G(A®) x IV AOEO’X ~ G"(A®).
Recall that the set of geometrically connected components of Shg (Gé’ ) is given by

X,C X N —
mo(Shxy (GO, ) = (FINAT™/0) x (ENAL /057",

The action of ®2¢ on my(Sh K (Gg )Fp) coincides with the arithmetic Frobenius
Frob;zlg € Gal]sz o » Which is computed already by (2.5.2). We now list the actions
of these operators on the geometrically connected components.

Operator When p splits When p is inert
% | (p,) ® x (@) i | (p,) Ex1
Sp (pp) > x1 (pp)>x1
Sy Ixq~? N/A

It is now clear that the link morphisms given in (1) and (2) preserve the neutral geo-
metrically connected component. This verifies (2).

We now turn to the proof of (3). It suffices to verify (2.27.1) because S, acts on
the 7r-component by the scalar w, (p~!) = @ B/ p¥ according to (2.24.1), and then
item (3) would follow immediately?rom the following easy computation:

p—dg x p—2g#Ta721(i+#T)ﬁ721(d—i+#T) % (Otnﬁn/pg)_(d+2#T) — (aﬂ/ﬂﬂ)Zi_d.
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To prove (2.27.1), we first compute the canonical lift of the link morphism
((n? (0)) (n? (0))’41) to an endomorphism of Shg , (Gs,r) x Shk . ,(Tg 5..) appear-
ing in Step I of Construction 2.12 (and the shift in Step II is trivial in our case). This
lift is clearly a composition of the Frobenius endomorphism relative to F ,2¢, which
we denote by 28, and the action of a Hecke operator given by a central element x in
G(A*™®) x A%O’X. This central element x is characterized by (and uniquely determined
by) the following two conditions:

(a) the resulting link morphism on Shg , (G r) X Shg, ,(Tg 51) preserves the
neutral connected component;

(b)  under the natural projection G(A®) x AT — G(A®) x A AT =
G”(A*), x is mapped to the central element ((p)¥. 1) if pisinertin E/F
and to ((Ep)g’ (ﬂ)Aéoo) if p splitsin E/F.

We claim that x = ((EF)#S&,H#T’ (EF)#SOO_Z#T) if pisinertin E/F, and x =
((EF)#SgO"’Z#T, (EF)#SW_Z#T(E)Aéoo) if p splits in E/F. Clearly, this element sat-
isfies (b) above. To see (a), we note that the action of CDig on the geometrically
connected component is the image of the arithmetic Frobenius Frob;zlg under the
Shimura reciprocity maps in Section 2.1 and Section 2.4; namely,

((EF)_Z#S&_MT, (EF)Z#T_#SOO) if pisinertin E/F,
((EF)_Z#SgO_4#T’ (EF)Z#T—#SOO (ﬂ)—Agoo) if p splits in E/F

But this element is exactly (v x id)(x~!).
Now, taking the fiber over 1 € Shg . ,(Tg 5,) tells us that the (canonical) link
morphism (T)g)(o),n is the Frobenius endomorphism CIDZG‘%’S . on Shg, (Gg,r) relative

to F,2; composed with the Hecke operator given by multiplication by the first

—#SS,—24T
coordinate of x, namely, S,

= Sp_d_Z#T. For the action of (ng)(*o) on
(ShK (Gg T)Fp éﬁ(k w)) we note that the induced action of the Frobenius endo-

morphism CDG on cohomology coincides with Frob ,2¢ (as opposed to the arith-

metic Frobemus) So we have (1 d)(o) = p~?8 . Frob p2¢ © Sy d=2#T \where p—9¢
is the normalization factor in (2.23.1). ThlS proves (2.27.1) and hence the Proposi-
tion. O

2.28. Link morphisms, 11
Let n: S — S’ be a general link. Then there exists an integer N > 0 such that the

2N = o Y = (zHY
right-turning, where 7g is the fundamental link for S (2.17). Suppose that the link

composition of the links §: =noo on:S—> g is

morphism on Shg» (Gg ) associated to £ with indentation degree n exists. Then we
put, for each 7 € Ak w),
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(29%) " )
————— H (Shg, (G )5, Lo ) 7]

s/, 1

* k,
IR He‘tl (Sth (GS/’T/)FP ’ ;C(_ w))[n]

ST

i:(,;1) k,
% Hd (Shk, (Gs)z,. £55") 7]

and refer to it as the normalized link morphism on the cohomology group of quater-
nionic Shimura varieties associated to 7 with indentation degree n. Here the link
morphism (524 )ZO) is taken to be the canonical one, so that it is invertible by Propo-
sition 2.27. The shift of n(*n) is defined to be the same as that of E(*n) (as (ngd )20)
has shift 1). By Lemma 2.20 on the uniqueness of link morphisms, this definition
does not depend on the choice of N (but on the shift of & (*n)) and is compatible with
compositions.

LEMMA 2.29

(1) Forany link n: S — &/, there exist an integer N > 0 and another right-turning
link €: ' — S such that € on: S — S is the same as 628V : § — S.

(2)  Ifn: s — S is a right-turning link and the link morphism (n’(’rl)’u, n/(/f)) on
Sh Kl (Gé’ ) with indentation degree n associated to 0 exists, then there exists
N > 0 such that the link morphism associated to n~! o (ng,d)N: S'— S of
indentation —n exists.

(3)  Let n: S — S’ be the link as in (2), and let nyy: Shg,(Gszr) —
Shk,(Gy 1) be the link morphism with some shift t obtained by applying
Construction 2.12 to "/(/n),:i' If n~': 8’ — S denotes the inverse link, then the
morphism

_ k, k,
(7 HE (Shg, (Gsn)s, . £5") — HE (Shk, (Goa)g, . 252))

with shift t =1 is the same as the inverse of r)zn). Moreover, ifr)’(’n) § (or, equiv-
alently, N 4) is finite flat of degree p* @ where v(n) denotes the total dis-
placement of n, then we have an equality

—v(n)/2

~1
M )m=rp Tty

where Try ., . is the trace map on cohomology induced by the finite flat mor-
phism 1) 4.

Proof
Item (1) is obvious. For item (2), we may first find N so that £ := n~! o (72?)" has
all curves turning to the right. Then we consider the two morphisms
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Shiey (G2) Shi; (G5)
’m %]\ém

Since the link morphism 7, 3 induces a bijection on the closed points, [14, Proposi-
tion 4.8] implies that, after possibly enlarging N, the map (r;é,d )é\(;),ﬁ factors through
N(n).4> aS N4 © &. It is easy to see that & gives the required link morphism.

The first part of (3) follows from the uniqueness of the link morphism (Lemma
2.20). For the second part of (3), note that the composed morphism

v(m/2py*
k, V4 7](,,) k,
HY (Shx, (Gern)s,  £571) H{ (Shk, Gy, - £65")
Tr”(n),::t k
—— H{ (Shg,(Ger v, ;ggg:;i))

is nothing but the multiplication by p¥®™, according to our normalization of nzn) y in
(2.23.1). It follows immediately that (n™'){_,) = p2TY, O

2.30. Goren—Qort divisors

We recall the definition of the Goren—Oort stratification from [33, Section 4]. We will
make essential use of the case of divisors. Let Shg, (G r) be the special fiber of a
quaternionic Shimura variety of the type considered in Section 2.1. We fix throughout
this article a choice of lifting Seo of Seo, and let Sh Kl (Gé’ ) be the associated unitary
Shimura variety.

In [33, Definition 4.6, Section 4.9], we defined, for each t € S, the Goren—Oort
divisor Shgy (GZ)r of Shgy(GY) at T as the vanishing locus of the 7-partial Hasse
invariant of the versal family Ag - Bach Shgr (Gg ). is projective and smooth by [33,
Proposition 4.7]. Transferring these structures to the quaternionic Shimura varieties
using Proposition 2.7, we get a Goren—Oort divisor Shg , (Gg,z). on Shg ,(Gs,r) for
each 7 € S{,. When T = #, this is done in [33, Section 4.9], and the general case is
the same.

For a subset J C s¢,, we put Shg,(Gsr); = ()\,es Shk,(Gsr): and
Shgr(G%)s = (\res Shgy(GY)c. The closed subvarieties Shg,(Gsr)s (resp.,
Shgy (Gg )s) with J running through the subsets of S¢_ form the Goren—Oort strati-
fication of Shk, (Gs,r) (resp., Shgr (GY)).

The main results of [33] give an explicit description of all closed Goren—Oort
strata Sh K (Gé’ )s (resp., Shg ,(Gsr)s) as a P!-power bundle over another unitary
(resp., quaternionic) Shimura variety. We list results from [33] that we will make use
of later. (One more result will be used later in proving Lemma 5.14.)
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PROPOSITION 2.31

Let T € SC. Assume that T~ = o~ "7t is different from t (see Notation 2.16 for the
notation). We put S; = SU {t, 7~} and T; = T U {t}. Let S; o be the lifting of St.c0
derived from S according to the rule of [33, Section 5.3], and put S; = (S¢, é,,oo).
In particular, Az = Az when p splitsin E/F.

(1)  There exists a P'-bundle fibration

7T.2/2 ShK}ﬁ (G/g/)r - ShK}; (G/g/r)t

equivariant for the action of G »

=9/ » and a p-quasi-isogeny of Abelian
schemes on ShKn(Gg)f,

CI)”{', : Ag —> JT;,* (Ag,)
By Construction 2.12, this gives rise to a P'-bundle fibration,
g ShK,, (Gs;r)e — ShK,; (Gs;,10),

with some shift t; =t (S, T) € EX’CI\AO};”X/(9;;F that is compatible with the
Hecke action of G(A®P). Moreover, there is an isomorphism of étale sheaves
for each given regular multiweight (k,w),

k, = k,
7t 285 Isng, (Gomye — T (EER)).

The morphisms w, and ng are uniquely determined once t ; is fixed.

(2)  Let O(1) be the tautological quotient line bundle on Shg ,(Gs 1), for the Pl-
bundle given by m,. If Tt~ is different from t, then the normal bundle of the
closed immersion Shg ,(Gs,z): = Shg ,(Gs,z) is, up to tensoring a line bun-
dle which is a torsion class in the Picard group of Shk,(Gg 1)+, the same as
O(=2p") = O(1)®2P"7),

Proof
In item (1), the existence of 7/ is a special case of [33, Corollary 5.9]. Roughly speak-
ing, this P!-bundle m) parameterizes the lines (the Hodge filtration) in the reduced
77 := o "7 T-component of the relative de Rham homology of the versal family Agr
over Sh Ky (Ggr ). Itis straightforward to check that the condition (2.12.1) is satisfied
for the pairs (S, T) and (S;, T;). We apply Construction 2.12 to deduce the existence
of (7, nt ) from that of (7}, @,7).

Item (2) follows from [33, Proposition 6.4], when noting that the quaternionic
Shimura varieties and the unitary Shimura varieties have isomorphic geometrically
connected components. O
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Proposition 2.26(1) implies that we have a morphism,
* | * (k,w) * (k,w)
m s HY (ShK (Gs, 1, )F,,’ Ls, ,Tr) — H} (ShK(GS,T)t,Fp, Ls )

equivariant under the actions of the prime-to-p Hecke algebra #k . It is canonical
up to the ambiguity of choosing the shift in Construction 2.12.

THEOREM 2.32
(D) Let 1,15 € SS, be two places such that Ty, 1,1 , T, are distinct. We have a
Cartesian diagram:

Tt

Sth (GS,T){‘EI ,‘L’z) —_— Sth (GST1 ’TTI )'Cz

l Ty Tty \L
Ty

Sth (Gsrz,sz )fl - Sth (Gsrl 155T7) ,fz)

If we use the notation of shifts of these -, as in Proposition 2.31(1), then we
have an equality,

tr, (Ss T)ttz (S‘L’l > Trg) =t (Sv T)trl (Srz, Trz)-

Moreover, we have a commutative diagram of induced morphisms on the coho-
mology groups:
Jré‘z

* _ (k. w) * _ (k. w)
Hj (Sth (GSq USt, ,Try UTr, )]Fp > xs,1 USz,.Tr UTT2) > HJ (Sth (Gsrl JTry )rz‘lF,, > xs,l JTry )

* *
\L 'Trfl \L .T[.!l
*

T,
(k.w) (k.w)
He’l( (Sth (GSrZ,Trz)rlﬁpﬂx i ) Het (Sth (GS,T){TlArz}ﬁp’xSfTw )

St .Tr,
2) Let T € S& be a place such that T,©+, 1™ are distinct. Putn =n + —n, if p
splitsin E/F and n =0 if p is inert in E/F. Let n: S;+ = SU{t", 7} —
S¢ = S U {t, 77} be the link given by straight lines, except sending t~ to t™

over T.

T T - o+ T+t

...+I+...+ +...+++...+++...+I+...

ceoet @ toeoet + toeooet + foeoet @ ftoeoet @ foooe

Let 1(y).4 be the morphism defined by the following commutative diagram:
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Sth(GS,T)-['F -~ Sth(GS,T){tJ",r} (CEE Sth(GS,T)‘L' (2321)

T+ \L \L TTr

N(n).4
Shi, (s, , v+ ) Shx, (Gs, ).

Then the following statements hold.

(a) The map 1) .4 is the morphism obtained by applying Construction 2.12
10 a link morphism on Shgr, (Gg +) with indentation degree n.

(b)  Iftre EXNAR/OF | for ? =1, 7" denotes the shift of the corre-
spondence

Shg, (Gsy,1y) Z Shg, (Gs,r)r = Shg,, (Gs,1),

then 1) 4 has shift tr+t;1.

() The morphism 1, 4 is finite flat of degree prm.

(d) The p-quasi-isogeny between the versal families of Abelian varieties
on Shgy, (th+) given by

¢J‘[,/ @ .
1% AN + A 7! (A
5 < Ag — !
nr+(Asr+)|shK};(Gg){,+,,} S|ShK};(Gé’){T+.” o ( Sr)|ShK;;(Gé’)<T+,T}
induces a link morphism on the sheaves nﬁ - g&w
(n) ST+

n:n),ﬁ (éC(S%’,"T)z). Then the induced normalized link morphism nzn) on

the cohomology groups constructed as in Section 2.23 fits into the fol-
lowing commutative diagram:

H(Shk,(Gsa)e+5,) — = Hg(Shk,(Gsn)ir+ oy 5,) < Hi(Shk,(Gso)r5,)

= ~ 7
* —
o+ T - r T
— 2
_ p(rlr+nr+)/ "(*n)

HET(Sth(GsT+,TT+)ﬁ,,) HeT(Sth(Gsf,Tr)ﬁp)

(2.32.2)

where the upper horizontal arrows are natural restriction maps. Here,
for simplification, we have suppressed the sheaves from the notation.
For instance, H(Shk,(Gss1)+5,) should be understood as
H(Shg, (Gs,p) e+ 7, iékf&w) Ishg , (Gs.2),+)-
(3)  Assume that S, = {t,7"} (and hence p splits in E/F). Then
Shk,(Gs,){z,c—} is isomorphic to the special fiber of the 0-dimensional
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Shimura variety Shyy,(Gs, r,) of Iwahori level at p. Let 1: S;— — S
denote the link map (with no curve). Then the link morphism n@,—)y4 -
Shg,(Gg,—,r,—) = Shg , (Gs, 1, ) of indentation degree 2n.— associated to
n exists, and the following diagram

ShK,, (GS,T){f.r*)

/ =

Shg, (Gs,.1,) Shg, (Gs,— =) ——> Shg, (Gs, .1,)
Nne—)

is (the base change to F,c of) the Hecke correspondence T, on
Shg,(Gs,,r,)- If t2 € EX’Cl\A%Q’X/(Q}aD for 2= 1,7 denotes the shift of
the correspondence

Shi, (Gsy.r,) <= Shg, (Gs1)? < Shi, (Ge.r),

then N, —y4 has shift wqtt_ltrf. Moreover, the map induced by the diagram
above on cohomology groups,

Mp—yomr—)*
He(z (Sh[{(Gs.r Tt )Fp) —— He(z (ShK(GS,T){‘[,r_},FP)

Trr
r_> Htg (ShK(GSr ,Tt )Fp)’

is the usual Hecke action Ty,. Here, as in (2), we have suppressed the sheaves
from the notation.

Proof

The analogues of (1), (2)(a), and (2)(c) for unitary Shimura varieties were proved
in [33, Proposition 7.12, Theorem 7.16]. The statements here follow from Construc-
tion 2.12.

Item (2)(b) regarding shifts follows directly from Remark 2.13. Item (2)(d)
directly follows from the construction of 77?,,) and n(*n). For item (3), the analogous
statement for unitary Shimura varieties Shg (Gg,) (with T, replaced by T,) was
proved in [33, Theorem 7.16(2)]. One deduces (3) using the construction in Sec-
tion 2.14, and computes the shifts by Remark 2.13. O

3. Goren-Oort cycles

In this section, we investigate certain generalizations of the Goren—Oort strata studied
in [9], which are called the Goren—Oort cycles. They are parameterized by certain
combinatorial data, which are called the periodic semimeanders. We will show later
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that the intersection matrix of the Goren—Oort cycles turns out to be closely related
to the Gram matrix associated to these periodic semimeanders (which explains our
choice of the combinatorial model).

3.1. Periodic semimeanders

The combinatorial construction that we will use later is related to the so-called link
representations of periodic Temperley—Lieb algebras, which appear naturally in the
study of mathematical physics (see, e.g., [6], [10], [24]). We will simply state here the
main result with minimal input, and refer the reader to [24] for a detailed discussion
of the mathematical physics background and the proofs.

We slightly modify the usual definition of periodic semimeanders to adapt to our
situation. Recall that F is a totally real field of degree g and that S, T are introduced
as in Section 2.1, and d = #S¢_. We consider the band associated to S defined as in
Section 2.15, and recall that the band is placed on a cylinder, but we often draw it over
the 2-dimensional xy-plane with the x-coordinate taken modulo g.

A periodic semimeander for S is a collection of curves (arcs) that link two nodes
of the band for S, and straight lines (semilines) that link a node to infinity (+oco0 in the
y-direction) subject to the following conditions.

. All the arcs and semilines lie on the cylinder above the band (that is to have
positive y-coordinate in the 2-dimensional picture).

. Each node of the band for S is exactly one endpoint of an arc or a semiline.

. There are no intersection points among these arcs and semilines.

The number of arcs is denoted by r (so r < d/2), and the number of semilines d —2r
is called the defect of the periodic semimeander. Two periodic semimeanders are con-
sidered the same if they can be continuously deformed into each other while keeping
the above three properties in the process. We use B¢ to denote the set of semimean-
ders for S with r arcs (up to the deformations). For example, if F' has degree 7 over
Q, r =2, and S = {001, 004}, then we have

B2 = {l+n+n,\+lm.’, ml+n,\+n+l.’, mml
Lamalcanlamlodanl)

(3.1.1)

When drawing in the xy-plane, points are placed on the x-axis at points of coordi-
nates (0,0),...,(g —1,0), and the diagram for a periodic semimeander is taken to be
periodic in the x-direction of period g. The curves connecting the points can connect
across the imaginary boundary lines at x = —1/2 and x = g — 1/2 (which are iden-
tified). See, for example, (3.1.1). An elementary calculation shows that #57% = (d).

r
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A standard presentation of a semimeander is where all the arcs are monotonic in
the x-direction (namely, it does not twist back and forth). Using the x y-plane picture,
we define the left and right end-nodes of an arc, as follows.

. When the arc appears as one arc in the standard presentation, its left (resp.,
right) end-node is the left (resp., right) endpoint of the arc.
. When the arc appears in two parts linked through the imaginary boundary lines

atx = —1/2 and x = g —1/2, its left (resp., right) end-node is the right (resp.,
left) endpoint of the arc.

For a € B, we use £(a) to denote the fotal span of a, that is, the sum of the span
of all curves over the band, where the span takes into account the periodicity at the
imaginary boundary. For example, the last element of B2 in (3.1.1) has two arcs with
spans 1 and 5, respectively, and hence its total span is 6. The second element of B2
in (3.1.1) has two arcs with spans 1 and 2, respectively, and hence its total span is 3.

Remark 3.2

We chose the graphic presentation of semimeanders because it is intuitive, but one
might argue that it lacks rigorousness (if one holds the highest standard). We point
out that there are more abstract definitions of semimeanders which make our argu-
ment rigorous. For example, one of the anonymous referees kindly suggested to us the
following definition. As in Remark 2.18, we write §go for the preimages of S&, under
the projection Z — 7/g7Z (and view S<_ as the subset of S N {0,..., g — 1} consist-
ing of the lifts of its elements). A periodic semimeander is a function f : §go — §go
satisfying

. fx+g=/fx)+g.

. f(f(x) =x,
. for every x,y Eggo such that x < y < f(x), we have x < f(y) < f(x) and
J#y.

This definition is equivalent to the graphic definition. Indeed, for such a function f,
the graph corresponding to f is given as follows. We draw an arc between the node at
x and the node at f(x) if f(x) # x, and we draw a semiline attached to a node at x if
f(x) = x. With this definition, one can perform most of the combinatorics involved
with semimeanders and links in this article, while keeping the argument rigorous. For
example, the span of a semimeander a (associated to a function f above) is given
by £(a) = % ersgo | f(x) — x|. One can check that all of our intuitive descriptions
of operations involving periodic semimeanders can be translated to this language and
therefore made rigorous.

3.3. Gram matrix
For a,b € ‘Bf, we consider the drawing D(a, b) obtained by taking the mirror image
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of b reflected about the x-axis and then identifying the d nodes of b with those of a

according to their labelings.

. We say that a loop (namely, a closed curve) in D(a, b) is contractible if it can
be continuously contracted to a point on the cylinder (ignoring all other curves
and lines on the picture). We write mq(a, b) for the number of contractible
loops in D(a, b).

. We say that a loop in D(a, b) is noncontractible if, ignoring other curves and
lines on the picture, it can be continuously deformed into a loop wrapped
around the cylinder. (Since all loops do not intersect themselves, the loop can
only wrap the cylinder for one round.) We write m(a,b) for the number
of noncontractible loops in D(a, b). This number can be nonzero only when
r=d/2.

. We use S, to denote the union of S with the nodes that are connected to some
arc of a. So the band of S, may be obtained from the band of a by replacing
the end-nodes of arcs in a with plus signs. We define Sy similarly.

. Assume that r < d /2, that neither two semilines of a nor two semilines of b
are connected together in D(a, b). We define the reduction of D(a,b) to be a
link ng,,s, from the band of S, to the band of Sy such that each node t, of
Sq (corresponding to an element of Sﬁ’oo) is linked to a node 7y of Sy, in the
same way as the semiline at 7, is linked to the semiline at 7, in D(a,b). In
practice, this amounts to removing all the (contractible) loops in D(a, b), and
then continuously deforming the remaining curves into a link (with top and
bottom extended by semilines). We put m, (a, b) to be the total displacement
of 154,55 -

d When r = %, Sa = Sp contains all the Archimedean places. For consistency,
we write 1g s, for the trivial link from the band of S, to the band of Sy (as
there are no nodes on the bands).

We define the Gram product to be the following pairing:

Qe(v) ifr<d/2,

(-|')s:%gx‘3g—>{_ )
Q¢[T] ifr=4d/2.

0 if in the diagram D(a, b), two semilines
of a(or of b) are connected, then
(=2)molab)ymu(a:b)  otherwise if r < d/2,and

(=2)ymo(a.0)m7(a.b)  otherwise if r = d /2.

(alb)s =

Note that only one of 7, (a, b) and mr (a, b) can be nonzero by definition. We use U
to denote the Q-vector space with basis Bf and extend the Gram product linearly to
all of VL.
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Example 3.4
The following examples are copied from [24].

(1) _laNa J b = Jmfn\n, D(a.b) =

a
|

> the reduction of the Ilink is 7g,s,

+++++++++

03

T+
» and (a|b)g = (=2)v 2.

2 a = J {avall, v = @Hn D(a,b) =

,and (a|b)s =0.

)

6, and D(a,b) =

B a=véendaarénd, b =
(S X

,and {(a|b)g = (=2)3T2.

Remark 3.5

When S = @, the vector space U7, is the link representation of the so-called periodic
Temperley—Lieb algebra & T L Py (T, —2) under the notation of [24]. (In particular, we
specialize the theory to the case when the quantum variable g = i.) With respect to
the bilinear form we introduced earlier, the representation is T-Hermitian with respect
to the natural involution T on the Temperley—Lieb algebra. Since we will not use the
structure of this representation, we simply refer to [24, Section 2.3] for further dis-
cussion. It seems that the mysterious relationship between this mathematical physics
calculation and our Shimura variety calculation probably comes from some common
representation theory feature. It might be an intriguing question to ask what quantiza-
tion could mean for Shimura varieties (or its local analogues) so that the intersection
matrix computed in a similar manner as ours would have a chance to match the quan-
tized version of the Gram determinant in [24]
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The following theorem is essentially the main theorem of [24] (which seems to
have been known by [10] using a different argument).

THEOREM 3.6

Putty, = lr;(l) (”ll) Let & denote the Gram matrix ({a | b)) q pessz- Then its deter-
minant is given as follows.

(1) When d is even, det®/? = £(T2 — 4yta.as2,

(2)  Forr<d/2 det®L = £(v8 —v8)>dr,

Proof

When S =0 (so d = g), this is a special case of [24, Theorem 4.1]. Indeed, the
parameter ¢ in that theorem is 7 in our notation, and since its § is —2, its Cy are
equal to 1 for all k. One easily simplifies the formula from [24] to the one stated in
this theorem.

The general case requires little modification, but the method of the proof may be
viewed as a toy model for the proof of Theorem 4.5 later. When r = %, we just sim-
ply ignore all points corresponding to So. This verifies item (1). So we assume that
r< % from now on to prove item (2). We use (a|b)4 to denote the pairing computed
by removing all points from S, (and shrink the cylinder accordingly) and hence with
displacements computed with respect to only the d nodes. Let &/, denote the corre-
sponding matrix. Then [24, Theorem 4.1] implies that det &”, = #(v¥ — v=%)2%.r
We need to compare det &', with det 8¢, by showing that det &5 can be obtained by
replacing all v¢ in the expression of det &7 by v¥.

By the definition of determinant, det &§ is the sum over all permutations s of
the set BY, of the product of the sign sgn(s) and, for every cycle (a;...a;) in s, the
product

(ar]az)s - (azlaz)s - (as]ar)s. (3.6.1)

The same applies to det®’,, except that the product (3.6.1) is taken for the pair-
ing (:|-)4. The product (3.6.1), if not zero, is equal to (—2)™0v™v, where my =
mo(ag,az) + --- + mo(a;,ay) is the sum of the total number of contractible loops
in the diagrams D(aq,a3), D(az,a3),..., D(a;,a1), and my, = my(a,az) + - +
my (@,

ap) is equal to the total displacement of the composition of the link

NSa;»Sa; © " °MNSay.Sa; © MSay.Says (3.6.2)

by the additivity of total displacements as remarked in Section 2.15. Note that (3.6.2)
is in fact a link from S, to itself. So it must be an integer power n of the fundamental
link 75, defined in Section 2.15. In particular, we have m, = ng. Making the same
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observation for computing the standard Gram determinant det &”,, the product (3.6.1)
with (-|-)4 is instead equal to (—2)™0v™v with the same mg as above, and m), is
the total displacement of (3.6.2) with all points corresponding to So, removed. By the
same discussion above, we have m; = nd with the same n above. In conclusion, each
term of det B¢ can be obtained from the corresponding term of det &, via replacing
v¥ by v¥. Therefore, det 8 = +(v8 — v=8)%ar, O

Notation 3.7
Using the illustration of periodic semimeanders as in (3.1.1), we say that an arc § lies
over another arc § if the contractible closed loop in the picture given by adjoining §
with the equator contains §’ inside. For example, in the list of %é in (3.1.1), the last
five periodic semimeanders each has an arc lying over another.

In a periodic semimeander for S, a basic arc is an arc § which satisfies the fol-
lowing equivalent conditions:

. in the 2-dimensional picture, § does not lie over any other arcs,
. in the 2-dimensional picture, the only points below § are plus signs,
. § is an arc which links some 7 to T~ (see Notation 2.16 for the notation).

For example, in the list of %é in (3.1.1), each of the five periodic semimeanders in the
first row has two basic arcs, and each of the five periodic semimeanders in the second
row has one basic arc.

It is clear that every periodic semimeander has at least one basic arc, except the
one with only semilines. Given a periodic semimeander a € 8% for S with a basic arc
d linking two nodes 7,7~ € S&,, we can delete the arc and replace its end-nodes by
+ to get a periodic semimeander a\§ € %Ziim—} forsU{r,77}.

3.8. Goren—QOort cycles

We fix a pair (S, T) as before. For a periodic semimeander a for S with r arcs, we
define a pair (S, Tq) as follows: S, is obtained by adjoining to S all end-nodes of the
arcs of a and T is obtained by adjoining to T all the right end-nodes (in the sense of
Section 3.1) of the arcs of a.

We now construct the Goren—Qort cycle Shk ,(Gs r)q associated to a periodic
semimeander a for (S, T).'* Then the cycle will admit an r-step iterated P!-bundle
morphism,

7q: Shg, (Gs,p)a —> Shg, (Gsara)-
The resulting correspondence

Ut is expected that the Goren—Oort cycle Shg , (Gs.1) . is independent of the auxiliary choices for the definition
of the unitary Shimura variety Shg7 (Gg ). However, we do not know how to prove this.
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Shk, (Gs, z,) <= Shg, (Gs.1)a <> Shi, (Gs.r) (3.8.1)

will be constructed using the unitary Shimura varieties via Construction 2.12 depend-
ing on a shift 1, =g, € EX’CI\A?’X/(QXP, which is canonical up to F**'\AT""/
¢ }}p , as explained in Construction 2.12.

We proceed by induction on r > 0 to define the Goren—Oort cycle correspondence
(3.8.1). For r = 0, we define Shg,(Gs r)a := Shg,(Gs,z). Suppose that r > 1 and
that we have defined, for every 0 <¢ < r and every a € BL ', the Goren—Oort cycles
Shg,(Gs,,r, )b together with a correspondence

Shi, (Gs, y.ra) “Shg, (Gs, 2y )6 <> Shi, (Gs, r.)

with some shift ¢, associated to all the periodic semimeanders b € BY_.

We now define the Goren—Oort cycle Shg , (Gs r)q associated to every a € B.
For this, we fix a basic § as in Notation 3.7 with end-nodes t and 7. Set S5 =
SU{r,t"}and T§ = TU{r}. Then Proposition 2.31(1) implies that we have a natural
correspondence

T,
Sth (G83,T3) viid Sth (Gs,p)e = ShK,, (Gs,r)

with shift 5 (which we fix).

Let a\§ denote the periodic semimeander for Sg obtained by removing the arc §
from a and replacing the nodes at r and T~ by plus signs. So the induction hypothesis
gives a correspondence,

Ta\§

ShK,, (Gsoyra) <— ShK,, (G55,T5)a\3 — ShK,, (GSS,Tg) (3.8.2)

with shift ¢ ;\ 5, where 74\ g is an (r —1)-step iterated P!-bundle. We define the Goren—
Oort cycle Shg ,(Gg,r)q to be

Shk, (Gsr)a =75 ' (Shi, (Gss,15)a\s);

namely, it fits into the following commutative diagram where the square is Cartesian:

Sth (GS,T)u —— Sth (GS,T)8 —— Sth (GS,T)

| ]

Sth (GSS,Tg)a\S —— ShK,, (GSS,TS)

\L TTa\é

Shk,(Gs,,7,)
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The induced correspondence
Tq =T q\§OT§
Sth (Gsﬂ ,Ta) D — Sth (Gs;r)a— Sth (Gs,r)
has shift
toi=1t5-1g\s.

This completes the inductive construction of the Goren—Oort cycles. Using Theo-
rem 2.32(1), it is easy to see inductively that such a definition of Shg,(Gs 1), does
not depend on the choice of the basic arc §. (We point out that a key feature of our
construction is that the dimension of fibers of Shg ,(Gg,r)q over Shg ,(Gs, 1) is the
same as the codimension of Shk ,(Ggs r)a in Shg,(Gg,z), whichis r.)

We fix a regular multiweight (k, w). Recall that iﬁékj;w) denotes the automorphic
{-adic local system on Shg , (Gs,r). The same construction above also gives rise to a
natural isomorphism,

k, = k,
wh w2 E0) S L5 sne, oo

Remark 3.9

It was pointed out to us by X. Zhu that the union of all Goren—Oort cycles associated
to periodic semimeanders with r arcs is exactly the closure of certain Newton strata of
the unitary Shimura variety, transported to the quaternionic side. In the case of Hilbert
modular varieties, the union of all codimension r generalized Goren—Oort cycles are
exactly the closed Newton stratum associated to the Newton polygon with slopes
é and %, both with multiplicity g. So maybe the name “Goren—Oort” is slightly
misleading, as it usually refers to the stratification given by the p-torsion subgroup of

the universal Abelian varieties.

Example 3.10

Let F be of degree 6 over Q and S = T = @. Then Shg(Gg ) is (the special fiber
of ) the Hilbert modular variety for F. Let 79, ..., 75 denote the embeddings of O
into Z‘g so that T; = T; (mod 6) and Tj4+1 = 0'7;. We have a universal Abelian variety
A over Shi (Gg,g) equipped with an @ r-action.

We consider the periodic semimeander a = (o a . For each F p-point x €
Shk(Gg,g). the covariant Dieudonné module £, of the universal Abelian variety
Ay at x decomposes as D, = @f:o Dx,i, where O acts on the ith factor via
7. Let Vit Oy ,i+1 — Dx,; denote the Verschiebung map for i € Z/5Z. Then x €
Shx (Gg,p)q if and only if

VioVa(Dx3) € pDx.,i1, V4o Vs(Dy,0) € pDx 4, and
Voo VioVaoVs(Dya) S p*Dyo.
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In fact, these inclusions are forced to be equalities. In this case, Shg, (Gg,g). is justa
three-step iterated P!-bundle over the discrete Shimura variety Shx (G (),73.25})-
Moreover, one can prove that each geometric connected component is isomorphic
to the product of P! (corresponding to the arc linking 74 and t5) with the projec-
tive bundle P(Op1 (—p) ® Op1 (p)) over P! (which corresponds to the two arcs over
70, T1, T2, T3. More canonically, the second factor is the projective bundle attached to
arank 2 bundle E over P! which sits inside an exact sequence 0 — Op1(p) — E —
Op1 (—p) — 0; this exact sequence splits (noncanonically).

4. Cohomology of Goren—-Oort cycles

Let Shg,(Gs,r) be the special fiber of a quaternionic Shimura variety as in Sec-
tion 2.1. Using Gysin maps, the cohomology of the Goren—Oort cycles gives rise to
part of the cohomology of the big Shimura variety Shg , (Gs r).

4.1. Generalities on Gysin maps
We recall first some generalities on Gysin maps. Let £ be a fixed prime number, and
let k be an algebraically closed field of characteristic different from £.

Consider a closed immersion i : ¥ < X of smooth varieties over k of codimen-
sion r. The functor of direct image i, has a right adjoint, denoted by i'. For an £-adic
étale sheaf ¥ on X, i'F is the sheaf of sections of ¥ with support in Y. This is a
left exact functor, and let R%i' denote its gth derived functor. Then by relative coho-
mological purity (see [1, XVI, Théoreéme 3.7]), we have R%i'Q, = 0 for ¢ # 2r,
and a canonical isomorphism R?"i'Q, 5 Qq(—r). Explicitly, the inverse isomor-
phism Q; = R?"i'Qy(r) is given by the fundamental class of ¥ in X: cly(Y) e
Hezl,’Y (X,Qq(r)) = HO(Y, R?"i'Qy). Now, for any lisse Qg-sheaf  on X, we define
the Gysin map as the composition

Uclx (Y)

Gysin: HZ(Y,i*¥F) HIPN (X, F (1) > HIP (X, F(r). @11

where the second map is the canonical morphism from cohomology supported in
Y to the usual cohomology group. If iz: Z < X is another closed immersion of
smooth varieties such that Y intersects with Z transversally, then one has i 7 clx (Y) =
clz(Y N Z). It follows that the following diagram is commutative:

Gysin

HL(Y,i*F) HIYY (X, 7 (r)) (4.12)

\L Restr. \L Restr.

Gysin
HI(Y N Z,i5,F) — HITY(Z,i37(r))
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where the vertical maps are given by natural restrictions, and iynz: Y N Z — X is
the natural embedding.

4.2. Etale cohomology of iterated P! -bundles

We continue to assume that k is an algebraically closed field of characteristic different
from {. Let 7: X — Y be an r-step iterated P'-bundle of proper and smooth k-
varieties; that is, 7w admits a factorization

] 2] Ty
7. Xo=X —>X1 —>X;—>---— X, =7, “4.2.1)
where each 7; : X;_; — X; is a P!-bundle for 1 <i <r. Then the trace map

Trr: R* 7, (Qe(r)) = Q

is an isomorphism. We denote by cl; € H°(Y, R? 7.Qy(r)) with Trx(cl;) = 1, and
call it the fundamental class of the fibration . For any Q,-lisse sheaf ¥ on Y and
any integer ¢ > 0, the isomorphism Tr,; induces a map,

m: HI(X. 7 F (1) » HIY (Y. F @ R 1. (Qu(r))) = HI™ (V. 9),
4.2.2)

where the first morphism comes from the Leray spectral sequence Ej b= HA(Y,
RO m*F (r)) = HEP(X,7* F (r)). Explicitly,  admits the following descrip-
tion. Put mjo ;) :=m; omj_y o---om for 1 <i <r. Let O (1) be the tautological
quotient line bundle of the P!-bundle 7;, and let ¢1 (O, (1)) € H2(Xi—1,Qq(1)) be
its first Chern class. Put & = n["(‘)’i_l]cl (O (1)) € H;(X,@e(l)). By induction on r,
one deduces easily from [11, VII, Corollaire 2.2.6] a decomposition:

Hxaro)= @ (@ A HFC- ) U U s

0<j=<r 1I=<ij<-<i;j=<r

m(X) = y1,...r- (4.2.3)

In particular, the fundamental class cl, is the image of & U --- U & in HI(X,
R¥ 7, Qq(r)).

4.3. Gysin and restriction maps

We keep the notation of Section 3.8. The pair of morphisms (na,ng) induces the
following sequence of natural homomorphisms, whose composition we denote by
Gys,:

a*
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_ k,
H?f 2 (Sth (GsasTa)Fp’ ié—afff)'()l)

Ty _ k,
— Hetf > (Sth (GS,T)u,Fp ’ ”: (ig: R ))

Ta,= d— (k,w)
— Hy 2r(Sth(GS,T)u,F,,’$S,Tw |Sth(GS,T)u)

Gysin,(4.1.1) k,
R HY (Shi, (Gsa)g, . 255 ().

We can also consider the dual picture, defining the morphism Res, to be the
composition of the following homomorphisms:

k.
Resa: HY (Shg, (Gsn)g, . 25 (r))

Restriction

k,
HE (Shg, (Gs.n)o, L5 Ishx ) Gom)a (1)

@)=y v p(kw)
Het (Sth (GS,T)a,Fp’ 7Ta ;CSu,Ta (r))

70.1,(4.2.2) _ "
Bkl et Hé{ 2r (Sth (GSu,Tu)Fp , ié:’}féi)
It is clear from the construction that both morphisms Gys, and Res, are equivariant
for the prime-to- p Hecke action of G(A*?).

The following theorem is the key to proving our main result. We defer its proof
to the next section.

THEOREM 4.4

Fix w € A w), and fix a choice of system of shifts t, of the correspondences
Shk,(Gs, 1.) <= Shg, (Gsr)a <> Shx, (Gsr) as in Section 3.8. For a,b € B,
we have the following description of the composition:

_ k, Gys k,
HE™" (Shk, (Gsy.1, )5, L5000 ) —> HY (Shk, (Gs0)z, . L5537 (1))

Resq _ k,
e H(:ti 2r (Sth (GSa,Ta)Fp s SE(S—OR)

(1) When (a|b) = 0, the m-isotypical component of the composed map Resg o
Gys,, factors through the m-isotypical component of the cohomology group
He‘f_z(rﬂ) (Shg, (GS’,T’)FP , ;C(S%;lf))(—l) of some quaternionic Shimura vari-
ety of dimension d —2(r + 1) with #T = #T + (r + 1) and S’ having the same
set of finite places as S.

(2)  Whenr <% and (a|b) = (—2)m0@Dymo (@) ywe can define the induced link
Nsa.Sp . Sa —> Sp as in Section 3.3. Then there exists a normalized link mor-
phism in the sense of Section 2.28,
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3)

article.

NE o Ha 2 (Shk, (Gsyny )7, » g&Ew))
— H3™ (Shi, (Gs,n )5, £50)),
associated to ng, s, With shift tat;1 and indentation degree
L(a) —€(b) ifpsplitsin E/F,
:{O ifpisinertin E/F.
Moreover, we have an equality:

Res, 0Gys, = (—2)"0(@0) . pU@FLEN/2 e

Sa»Sp,(2)
When r = % and (a|b) = (=2)mo@D) Tm7(@.0) ype haye

Resq oGys, = (—2)"0(0) . pl@+LO/2 (T, /pe/2ymr @ gyt

where g, .s,, IS the trivial link from Sq to Sy and

k,
L HI7?" (Shk, (Gsy .17, £55°)

M aiS0.(2)

— k,
— H{ 7 (Shi, (G )7, £637)

is the associated normalized link morphism with shift t .t lwa m1 (@8 gnd

indentation degree z = £(a) — £(b) —mr(a,b)g.

We now assume Theorem 4.4 and deduce the following main theorem of this

THEOREM 4.5
Fix a positive integer r < i

(1)

2)

For each periodic semtmeander a € By, the Goren—Oort cycle Shg ,(Gs 1)
of the Shimura variety Shg ,(Gg 1) is a subvariety of codimension r, stable
under the action of the tame Hecke action of G(A®P). Moreover, it admits a
natural G(A®P)-equivariant r-step iterated P'-bundle morphism,

T[a N Sth (GS,T)a e Sth (GsayTa)’

to another quaternionic Shimura variety (in characteristic p).

We fix a cuspidal automorphic representation w € A ) appearing in the
cohomology of Shg ,(Gs,r) so that its associated Galois representation py
is unramified at p. Let ay and By denote the (generalized) eigenvalues of
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pr,p(Frobpe). Suppose that oy [ B is not a 2nth root of unity for any n < d so
that o2 ,B,Zr(d_i) are distinct from each other for 1 <i < d. Then the action of
Frob ,2¢ on the generalized eigenspace of He‘f (Shg,, (GS’T)FP , :Eékj%w)(r))[”]
with eigenvalue oe,zr(d_r)ﬂ,zr’ (0tn B/ pE)HT p~287 is semisimple (so that the
generalized eigenspace is a genuine eigenspace), and the direct sum of the
Gysin morphisms,

_ k,
P HI7 (Shi, (Gsn)as,. L") (7]

aeBL

ZGG Sa
=220 B (Sh, (Gsn)s, L5537 (1) [n). (4.5.1)

induces an isomorphism on the Frob ,¢-eigenspaces with eigenvalue
d— —
o7 B (@n B/ pE)HT P
(2')  Keep the notation in (2) but assume that r = % (so d is even) and (k,w) = 2.
Suppose that oy / Br is not a 2nth root of unity for n < % Then the Frob ¢ -
invariant subspace ofH:f (Shg, (GS,T)JIT‘p ,Qy (%)) [1r] is generated by the cycle
classes of Shg ,(Gs,r)q for a € %g/z.

Proof

Item (1) follows from the construction of Goren—Oort cycles in Section 3.8. Item
(2') is clearly a special case of item (2). We now focus on the proof of item (2).
By Proposition 2.26, the Frobenius semisimplification of the morphism (4.5.1) is the

same as
d_
pE20 @ (det prp(1)

aeBy

)EITED s 08 @ (det prp (1)) (). (45.2)

Thus the generalized eigenspace for the action of Frob 2, with eigenvalue
afr(d—Zr) (a”ﬂn/pg)Z(#T-l-r) — (Xfr(d_r)ﬁyzrr (aﬂﬂn/pg)Z#Tp—Zgr (4.5.3)

has dimension exactly equal to (‘5) for both sides of (4.5.1). Thanks to the assumption
on the ratio of Satake parameters, the generalized eigenspace on the left-hand side
is a genuine eigenspace (since it is the direct sum of (‘j)—copies of 1-dimensional
generalized eigenspace). Thus, the proof of (2) and (2') will be finished if we show
that (4.5.1) is injective on the corresponding generalized eigenspace.

We consider the composition of the Gysin morphisms (4.5.1) with the Restriction
morphisms:

_ k,
@ Hgf 2r (Shg, (Gsy,my )F - :ﬁé—h 'ﬁi )]
beBL
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> Gys k,
=% HY (Shk, (Gs)z,. L5271

@ Resq _ k,
=% P HI™ (Shk, (Gs,)5,. LS5 ], (4.5.4)

aeBl

Here, we switched the first sum from over a (as in (4.5.1)) to over b. Taking a basis of
the generalized eigenspace for Frob ,2¢ acting on (4.5.4) with the eigenvalue (4.5.3)
and using the description in Proposition 2.26, we arrive at the following linear map

@ @e - @ @(z 4.5.5)

beBL aeBL

of vector spaces, which is represented by a (‘j) X (‘ri)—matrix A with coefficients in
Qg. The proof of (2) will be finished if we can show that det(A) is nonzero.

We explain how this matrix A is related to the Gram matrix &7 for the periodic
semimeanders (see Theorem 3.6). Let D be the diagonal matrix, whose (a, a)-entry
with a € B is p~H®/2 1et B be the product matrix DAD. Then dropping the
auxiliary factors p(@+4®)/2 from the formulas in Theorem 4.4 gives the entries
of B. We will prove that

/2 e
det B — det&" |2y, ifr=4d/2,
det&glpe—yx . ifr<d/2,

where |72_7n and [,e—,* are formal substitutions, and Ty and 7;,,, are some formal
symbols we define later.
We first compare the entries of B with the entries of &7 when (a|b) = 0. In this
case, by Theorem 4.4(1), the 7-isotypical component of Res, 0oGys,, factors through
d-2 1 k,
HE 2 (Shi, (Gorn)g,  £670) (<]

S/,T,

for some quaternionic Shimura variety Shg ,(Gs/,r) of dimension d —2(r + 1). By

Proposition 2.26, the Frob ,2¢-eigenvalues on this cohomology group are oe,Z,(d_j ) %

B2 (otx Br/ p8) T p~28" with j =r +1,...,d —r — 1. Thanks to the assumption on
the ratio of Satake parameters, we see that oz,zr(d_j ) ﬁ,zrj for j =0,...,d are distinct.
The above list of eigenvalues does not contain (4.5.3). Thus the (a, b)-entry of B is
Zero.

Next, we separate the discussion for r < % and r = %. Suppose that r < %.
A subtle point of our argument is that we can not directly identify the matrix B with
G, entry by entry, because there is no canonical choice of basis on each of the factors
in (4.5.5). The proof resembles the proof of Theorem 3.6. The determinant of B is
equal to the sum over all permutations s of the set ‘B%, of the product of the sign

sgn(s) and, for every cycle (a; --- a;) of the permutation s, the product
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p—z(e(a1)+...+£(az)) . (Resal OGySaz)
- (Resq, oGys,,) -+ (Resq, | oGys,, )(Resq, oGys, ). (4.5.6)

Let mg = mg(ag,az) + --- + mo(as, a;) be the sum of total number of contractible
loops in the diagrams D(ay, a3), D(az,a3), ..., D(as, ay). Then, by Theorem 4.4(2),
the expression (4.5.6) is equal to (—2)™° times the following composition of link
morphisms on the cohomology groups,

ngal sSap»z(ar,a2) ° n;ﬂz,su3,z(a2,a3) 0r+-0 n;at,sﬂl,z(a,,al)’ (457)
of shift ]_[l_l aila, l)ta,t;l1 = 1 and indentation degree
-1
Y z(aiai41) + 2 (0 a1)
i=1
_ X @@) = £(ai1)) + £(an) = £(ar) =0, if p splits in E/F,
O+---+0=0, if pisinertin E/F.

So this composition (4.5.7) is the same link morphism associated to some nth power
of the fundamental link ns, for Sq,, with trivial shift and indentation degree 0
(regardless of whether p splits or not in E/F). The number n is equal to the total
displacement v(1s,, o, ©**©Ns,,..,) divided by v(7s,,) = g

Note that the action of the link morphism (ng_ ] );0) on the 1-dimensional Frob 2 -
eigenspace

2d=2r) (anlgn/Pg)z(#T+r)

(HE72" (Shk, (G, 10, ) L0, ) ™02 =0 (4.5.8)

is just the multiplication by a scalar, which we denote by A4, ,. We claim that A4, ,
does not depend on a; € B%. Indeed, for a, a’ € B with (a|a’) # 0, Theorem 4.4(2)
gives a normalized link morphism,

k, _
Hd zr(Sth(GSa”Ta’)":ﬁéz:?a/) - He‘f Zr(ShKP(GSa Tu) ié;:fl)‘z)

Mo asin()

with some indentation degree z and some shift; then

18,0y = 0.5, © (1800 © (M35 2)

provided that one of (nga)go) or (nga,)(*o) exists. When this happens, we must have
Aan = Ag n. For general a and o', we can always find a sequence a; = a,...,qa; =
a’ € BL such that (a;|a;4+1) # 0. So if for some n the link morphism (ns,)* exists,
then it does not depend on a. In the remainder of this proof, we put A, = A4, as long
as (nga)(*o) exists for some a € BY. The element A, is clearly multiplicative in 7.
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We can thus introduce the formal symbol 7} .. such that (. )" = A, whenever
(ngu)fo) exists for an integer n. Comparing this computation with det &{ in the proof
of Theorem 3.6, we see that det B is obtained by replacing every vé in det & by
By Theorem 3.6, this means that

nuniv .

1\2ta.r

detB = ﬂ:(fiumv - (numv) )

In particular, (771‘:mv)2 appears in the determinant, and hence (r)é )(*0) exists.

Finally, it follows from Proposition 2.27 that (n*,)2“ 2" = Ay@—2r) = (0tz/
B)¢~2". Our assumption implies that (et /B )92 # 1550 (n*;,)? # 1, and hence
det B # 0. This concludes (2).

We now treat the case of r = %. Similar to the discussion above, det B is equal
to the sum over all permutations s of the set BY, of the product of the signature of
s, and, for every cycle (aj ---a;) of the permutation s, the product (4.5.6). By The-
orem 4.4(3), (4.5.6) in this case is of the form (—2)"° - (T, /p&/?)™T times the link
morphism from (Sq, , Tq, ) to itself with shift [T/Z} (24, 7! 7 (@iaiti)y,

%t aj41 q
__mT(an ar) —
q

ar a1X

wa_ and indentation degree

t

> (€(ai) —€(ai-1) —mz,ig) = —mrg.

i=1

Here mo = mo(ay,a2) + --- + mo(az, ay) (resp., mr = mr(ag,az) + --- + mr(az,
a1 )) is the total number of contractible (resp., noncontractible) loops in D(ay, az), ...,
D(a;,a;). By Example 2.22 and the uniqueness of link morphisms (Lemma 2.20),
this link morphism is equal to the one associated to Sq m7/2 with shift wa_ ™T  This
in particular says that m is even. By the second part of Example 2.22, we see that
this link morphism is exactly S, Smr/2 . Therefore, (4.5.6) is given by

(=2)™0 (T, / 2T (Sp) ™ 7/2 = (=2)™ ((atx + B )*/ ()" "%,

Comparing this with the computation of det®%, we see that det B is nothing but
replacing every T2 by T, := (&x + Bx)?/z B By Theorem 3.6, we see that

et B = = (0 + Br)?/tn i — 4" = (0 — B anr) .

It is nonzero as long as &, # B."> This concludes the proof of Theorem 4.5. O

Before giving a more detailed discussion of the case o, = B, we first give some
general remarks.

5Note that we still need @ /B to avoid certain roots of unity to get (4.5.5).



1608 TIAN and XIAO

Remark 4.6

(1) We discuss the possibility of generalizing this main theorem to the case when
p is only assumed to be unramified (namely, pOr = p; ---pp). In this case,
one can construct the twisted partial Frobenius 3’” for each prime ideal p;

as in [33, Section 3.22]. Roughly speaking, on the level of moduli space, this
is to send the Abelian variety A to A/ Kerp_z ®0o - Pi, where Kerpg is the p;-

component of the kernel of Fr?: 4 — AP Suppose that one can describe
the action of each S” 2 on the cohomology of the unitary Shimura variety as

in Proposition 2. 27(3) or, more precisely, [34, Conjecture 5.18] holds true.
Then the same argument above can generalize the theorem to the case when
p is only assumed to be unramified, and every prime ideal p; behaves “in
an independent way.” More precisely, we fix r; < %’ for all i, where d; =
#(SS, N Xy;) and Xy, is the subset of p-adic embeddings that induce the
prime p;. Then the Goren—Oort cycles would be parameterized by A-tuples
whose ith component is a semimeander with d; nodes and r; arcs. Under
the genericity condition, the eigenvalues of p, (Frob,,) avoid certain roots of
unity, and the cohomology of the Goren—Oort cycles generate the subspace of
the cohomology He‘f (Shg, (GSJT)Fp,iékj}w))[n] where certain analogues of
Sgi act with appropriate eigenvalues determined by r; and Frob,,, .

Without [34, Conjecture 5.18], we can only prove the analogous statement
when r; = % for i, that is, in the case for Tate cycles.'® Moreover, since we
can not distinguish the actions of each Sgi, we would have to assume that
the eigenvalues of p, (Froby, ) are “generic,” so that all eigenvalues of Frob%
acting on Hezt(Sth (Gs,T)va :tié%w)) are “as distinct as possible,” where g
stands for the least common multiple of the inertia degrees of the p;’s. For
example, this excludes the case when both p; and p, have inertia degree 2 and
Froby,, and Frob,, have the same set of eigenvalues (which would be okay if
[34, Conjecture 5.18] is known).

2) It would be interesting to know, when p is ramified in F/Q, whether one can
prove a similar result for the special fiber of the splitting model of the Hilbert
modular variety of Pappas and Rapoport. The construction of the correspond-
ing Goren—Oort divisors is discussed in [28].

3) The construction of these Goren—Oort cycles uses the CM extension E of F.
Even though we think these cycles should be independent of the choice of

161f 7, <4 for some i, then the determinant of the intersection matrix would involve the knowledge of different
powers of the action of %”p’ ;- But we only have the information of their product S, L.F2.= ]_[l -1 3’;’ 2: On the

other hand, the case r; = % is fine, because we only use the Hecke operators, whose action on the cohomology
is known.
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E, we do not know how to prove this. This auxiliary CM extension is also
responsible for avoiding 2nth roots of unity as opposed to just nth roots of
unity. We think these issues are purely technical, as our current technique relies
very much on the PEL moduli interpretation.

(@) In the case of r = d /2 (namely, the case for Tate classes), the map (4.5.1) is
injective as long as o, # Br. We need «; /8 to avoid more roots of unity so
that both sides of (4.5.1) have the same dimension.

(5) It is tempting to ask the following question: To what extent does this imply
the semisimplicity of the Frobenius action on He‘f (Shg, (stT)FP,@[)[T[]?
Unfortunately, our theorem is in its strongest form only when «,; # f,, where
pr (Frob,e) is automatically semisimple. Thus if ® Indg:}% P 1s irreducible

as a representation of Galg, then the Galg representation H? (Shg »(Gs0)g,

Qy)[r] is isomorphic to ® Indggig P up to characters, so that Frob ¢ is semi-

simple. However, ® Inng}% p~ might be reducible (e.g., when 7 is CM). In
this case, our theorem might provide some insight into the semisimplicity of
H (Xg Qy)[r] as a representation of Galg. See also [26].

(6) It is also tempting to ask the following: In the case of r = d /2 (the Tate classes
case), is the determinant of the intersection matrix related to the higher deriva-
tives of the local L-function (to get a certain local version of the Beilinson—
Bloch conjecture)? We think the answer might be negative. Note that the deter-
minant is always a power of (a; — ), but the higher derivatives of the local
L-functions can involve factors of the form o — 8% for s < d /2. In the recent
preprint [37] of Z. Yun and W. Zhang, they seem to suggest a new philosophy
for higher derivatives of global L-functions. We do not know how to compare
the determinant of our intersection matrix to their formulation.

Remark 4.7

It is a very interesting question to understand what happens when o, = f,. We
explain this in the quadratic case. Let F' be a real quadratic field in which p is inert.
Let m € A(2,2) be a cuspidal automorphic representation with trivial central charac-
ter. Suppose that 7 appears in the cohomology of the quaternionic Shimura variety
X = Shg(Gyy,,v,),0), Wwhere vy and v, are two finite prime-to-p places of F (so
that X is proper for simplicity). Suppose that o, = 8, = £ p. For instance, when
7 comes from the base change of a usual modular form corresponding to an elliptic
curve over Q which has supersingular (good) reduction at p, then the local Satake
parameters of 7 at p are o, = B, = p. An interesting related question is: Are there
examples of 7 which do not come from base change? We consider this question as an
analogue of Coleman’s complete reducibility question (see [3, Remark 2, p. 232]).
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In this case, Hezt(XFp,@g(l))[n] is 4-dimensional, on which Frob > acts triv-

ially. More precisely, as pointed out by Prasanna, the action of Frob, on this 4-
dimensional subspace has two eigenvalues: a;/p (with multiplicity 3) and —a/p
(with multiplicity 1). There are two Goren—Oort cycles, both given by a collection
of P1’s. The m-isotypical components of their cycle classes contribute nontrivially
to the Frob,-eigenspace with eigenvalue —a/p. We claim that the m-isotypical
component of their cycles classes does not contribute to the Frob,-eigenspace with
eigenvalue o / p. Indeed, the intersection matrix B given above is degenerate (with
rank 1). Note that, for any cuspidal 7, the w-isotypical component of the rational
Néron—Severi group of X is orthogonal to the subspace of ample line bundles, and
the Hodge index theorem implies that the intersection pairing on the m-isotypical
component is nondegenerate. So the degeneracy of the intersection matrix means that
the contribution from the Goren—Oort cycles is indeed a 1-dimensional subspace of
H? (XF,, ,Q¢(1))[r], namely, the subspace with Frob p-eigenvalue —otr / p.

We think this phenomenon is comparable to the case of Heegner points: when
the rank of the elliptic curve is 1 (“generic rank”), the Heegner point gives a canoni-
cal generator of the Mordell-Weil group tensored with Q; however, when the rank
of the elliptic curve is strictly greater than 1 (“generic rank”), the Heegner point
becomes torsion. In our case, the classes of the Goren—Oort cycles are similar to
Heegner points. When the dimension of the corresponding Frobenius (generalized)
eigenspace is “generic,” the classes of the Goren—Oort cycles give a canonical basis,
but when the dimension is strictly greater than the generic one, the contribution from
the Goren—Oort cycles tends to degenerate.

5. Computation of the intersection matrix
The aim of this section is to establish Theorem 4.4 and hence to finish the proof of
the main theorems. We keep the notation from the previous section.

Notation 5.1

For simplicity, we suppress the automorphic sheaf éﬁ(s%}w), the level structure K, the
change of base to F p, and the subscript et from the notation of cohomology groups,
as they are all fixed throughout this section. For example, we write

* * k!
H (Sh(Gs,T)a) (r) for Hy (Sth (GS,T)Q,FP ) éﬁéij)(rNSth (GS,T)a)'

This should not cause any confusion because all the automorphic sheaves are com-
patible on the Goren—Oort cycles. As in Theorem 4.4, we fix a choice of system of
shifts #, of the correspondences Shg , (Gs, 1) il Shg,(Gs,r)a <> Shg,(Gs,r) as
in Section 3.8.
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Before going into the intricate induction, we first handle a few simple but essen-
tial cases. The general case will be essentially reduced to these cases.

5.2. The case of r =1anda="0
This is the case where the corresponding periodic semimeanders are given as

a=b= o T
(or their shifts), linking t with t~ =07 "7 7.
Unwinding the definition, we have the following commutative diagram:

des Resq oGys, des
H=2(Sh(Gs, r,)) H?72(Sh(Gs,,r,))

*
l TS Tq,! T

H?72(Sh(Gs,1)a) o H4(Sh(Gsn))(1) e H?(Sh(Gs,n)q)(1)

(5.2.1)

Recall that Sh(Gg 1), is a P!-bundle over Sh(Gg, r,); hence 7* and 7,4, are both
isomorphisms. By the excessive intersection formula (see [7, Section 6.3]), the com-
position of the bottom line is given by the cup product with the first Chern class of
the normal bundle of the embedding Sh(Gs,r)q <> Sh(Gg,r), which is isomorphic
to —2p"t times the universal quotient line bundle for the P!-bundle given by 7,
according to Proposition 2.31(2). Therefore, the morphism on the top row Res, oGys,,
is nothing but the multiplication by —2p"* = —2p*(@,

5.3. Thecase ofd =2andr =1witha#b
This is the case where the corresponding periodic semimeanders are given as

oo+m+ooo m+ooo+£—o

a= i 4 and b= 4 v

(or their simultaneous shifts). Let t~ denote the left end-node of the arc of a, and let
t denote is the right end-node. We have t™ = t~. Here the meaning of “left” and
“right” refers to the xy-plane presentation of a, as explained in Section 3.1.

Unwinding the definition, the morphism Res, oGys,, is the composition of the
following commutative diagram from the upper-left to the lower-right (first rightward
and then downward):
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*

HO(Sh(GShJ\b)) L HO(Sh(GS,T)r—) ﬂ' Hz(Sh(GS,T))(l)

\ \L Restr. Restr.

HO(Sh(Gon)emn) —m H2(Sh(Gan)e)(1)

Ta,!
Trrg

H°(Sh(Gs, r,))

(5.3.1)

Here, the commutativity of the square follows from the diagram (4.1.2) and the fact
that Sh(Gg 1){r,z— is the transversal intersection of Sh(Gg r);— and Sh(Gg1); in
Sh(Gg,r). The commutativity of the upper left triangle is obvious, and the commu-
tativity of the lower right triangle follows from the fact that Tr,, is the trace map
induced by the finite étale map (of 0-dimensional Shimura varieties)

Sh(Gs 1) e-1) = Sh(Gs.r)r —> Sh(Gs, 1),

and by the natural isomorphism between the pullback of the automorphic sheaf on
Sh(Gg, v, ) with that on Sh(Gs 1)z.

By Theorem 2.32(3), the diagonal composition from the upper left to the lower
right, or, equivalently, the morphism Resq oGysy, is T, o (n;a: Sb’(n))’l, where
nga,sb,(n) is the link morphism associated to the trivial link 7ng, s, : Sp — Sq With
indentation degree n = 2n,— = —({(a) — £(b) — g) and shift w47, ',. Thus the
inverse (ﬁgh,sm(n))_l = (Ns,,56.(—n))* is the link morphism associated to the link
Nsa.se = Ns,.s, With indention degree £(a) — £(b) — g and shift wa_ltatgl. This
proves Theorem 4.4(3) for the given case.

5.4. The case of r =1, d > 2, and {(a,b) = v™
Assume that m,, > 0 first. In this situation, the corresponding periodic semimeanders,
up to shifting, are given by

a= T 4 LAl and

b= T T ot

(5.4.1)
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Note that the two arcs in a and b must be adjacent; otherwise, (a, b) = 0. Let T denote
the left end-node of the (unique) arc in a, as shown in the pictures above. Then 77 is
the left end-node of the arc in b, and ™ is the right end-node of the arc in a. So if
=0 "ttt and 1T =0 "7, then my, = my(a,b) =n; +n +.

Unwinding the definition, the morphism Res, oGys,, is the composition of the
following commutative diagram from the upper left to the lower right:

* .
T Gysin

H2(Sh(Gs, 1)) ——= H42(Sh(Gs 1)) H(Sh(Gs.r))(1)

o
Restr. Restr.

Gysin

HO2(Sh(Gs.n)rrty) —= HY(Sh(Gsr) o) (1)

\ Tq,!
O=0"1)*=

H972(Sh(Gs, 1,))

(54.2)

Once again, the commutativity of the square follows from the diagram (4.1.2) and the
fact that Sh(Gg,1)(, .+ is the transversal intersection of Sh(Gg 1)+ and Sh(Gs 1),
in Sh(Gs,r). The commutativity of the two triangles follows from the basic properties
of star pullbacks and shriek pushforwards. By Theorem 2.32(2), the morphism

6: Sh(Gsr)(zoty = SN(Gsr)ot —> Sh(Gs, r,)

is an isomorphism, and the composition

o1 -
Sh(Gs, 1) <— Sh(Gs1)(r.r+) = Sh(Gs r)r —> Sh(Gs, z,)
is exactly the link morphism
Nab.(z).4° Sh(Gs,,7,) —> Sh(Ggy 1),

associated to the link 14, 5: Sq — Sp given by

T T Tt

+...+++...+++...+I+...

...+I+...+

coet @ Foeoet + tooet + fooot @ fooot

teee (5.4.3)
with shift tut;1 and indentation degree z equal to £(a) — £(b) if p splits in £/ F and
equal to O if p is inert in E/F. Therefore, Res, oGys,, is exactly p”("ﬂxb)/zn: b.2) =

pm”/zr]; 0.(2) (note the normalization in (2.23.1)), verifying Theorem 4.4(2).
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We now come to the case where m,, is negative. In this case, the picture of a and
b in (5.4.1) are swapped. Then we have a commutative diagram similar to (5.4.2):

Ty Gysin

b
H42(Sh(Gsy 1)) —— H?72(Sh(Gs,r)+)

H4(Sh(Gs,r))(1)

l Restr. Restr.

Gysin
Hd_2 (Sh(GS,T){r,‘c"F}) — Hd (Sh(GS,T)‘L’)(l)

\ Ta,!

Hd_z (Sh(GSasTu))

and the composed diagonal morphism gives Res, oGysy. Let 77p,q: Sp — Sq denote
the inverse link of n,. Since a and b are obtained by swapping with each other
from the previous case, the link morphism 7p,q,(—z),4: Sh(Gs,,r,) = Sh(Gs, r,)
with shift #,¢;" exists, where z = £(a) — £(b) if p splits in E and z = 0 if p is
inert in E. Note also that 1y, q (7). 4 is finite flat of degree p~™ = p¥(7¢.a) by Theo-
rem 2.32. One sees easily that Res, oGys, = Try, . _., ,- By Lemma 2.29(3), this is
exactly p~v/2 M0 = p(e(a)M(b))/Zn;’b’(z). This proves Theorem 4.4(2) in
this case.

5.5. Decomposition of periodic semimeanders

Before proceeding to the inductive proof, we discuss certain ways to “decompose”
periodic semimeanders appearing in the induction. Let a € B be a periodic semime-
ander. We call a subset A of r’ arcs (r’ < r) in a saturated if for each arc § belonging
to A any arc that lies below § in the sense of Notation 3.7 belongs to A. For example,

ifa= l @ L the subset A= o0 & 62 % 6 ool is saturated, but

eedeeddéneaeisnot

Now fix a saturated A. We use a’ to denote the periodic semimeander for S given
by all the arcs in A and then adjoining semilines to the rest of the nodes. Then S is
the union of S and all nodes connected to an arc in A. We use a,.; = a\ A to denote the
periodic semimeander for S obtained by removing all the arcs in A and replacing

their end-nodes by plus signs. In the example above, a” = l l m "2 l l and

""Here A is only the set of the arcs, not including the nodes in the picture.
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= l m L where the plus signs indicates points corresponding to

ares -

S

ab 00"
By the construction of the Goren—Oort cycles in Section 3.8, we have the follow-
ing commutative diagram, where the middle square is Cartesian:

Sh(GS,T)a % Sh(GS,T)ub CH Sh(GS,T) (551)

\L ﬂub

Ta Sh(GSabﬁTab)ares — Sh(GsubﬁTub)

Tares

Sh(Gg,,1.)

Since the construction of this diagram comes from the unitary Shimura varieties, we
T res
point out that, the shift of the correspondence Sh(Gs,,r,) P Sh(Gs |7 ) )awe <
a a
Sh(GSabsTab) istp = tat;bl. From the commutative diagram, we can decompose
the morphisms Res, and Gys,, as follows:

ﬂa*

Gys,: HY72 (Sh(Gs, ,)) —> H* ™" (Sh(Gs_, 1, )ax,)

Gysin ’
— HI™2"(Sh(Gs 0 ))(r = 1)

7'[*
— B2 (Sh(Ga ) o) (F — 1)
Gysin d
—— H (Sh(GS’T))(r)
and

Restr.

Resq: H? (Sh(Gs,n))(r) —> H (Sh(Gg 1) o) (7)

T
a

by —2r’
— HO72(Sh(Gs 2 ) (r —7)
ﬂ Hd—lr/ (Sh(GSab,Tab)ares)(r - r/)
Tares:d H?™?(Sh(Gs, 2,))-

Here, to get the decomposition for Res,, we have used the fact that the trace map Try,
can be factorized as
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— ’ ’ — Tr”nb o —
R¥ 0 Qu(r) = R¥ ™27 0, i (R* 715, Q) (r) — R*" ™" 04,1 (Q) (r — 1)

Tr”ﬂres —~

-
Summing up everything in short, we obtain thus

Gys, = Gysgp 0 Gys, . Resy = Resq,,, oRes and to =1t

abs ab,a.

We will apply this to appropriate A’s to reduce the calculation to Sh(GSabsTab)
and reduce the inductive proof essentially to the cases considered above.

5.6. Decomposition of periodic semimeanders (continued)
We will also encounter the following situation: assume that the set of arcs in a periodic
semimeander a is the disjoint union of two saturated subsets A and A’. Put s = #A
and 5" = #A’ so that r = s + s". We will show that A and A’ “behave” independently.
We write a® (resp., a”') for the periodic semimeander for S given by all arcs in A
(resp., A’) and then adjoin semilines to the rest of the nodes. We put ays (resp., al,.)
for the periodic semimeander for S, (resp., S,»/) obtained by removing all arcs in A
(resp., A’) and replacing all their end-nodes by plus signs.
In this case, in view of the construction of the Goren—Oort cycle Sh(Gg )4 in
Section 3.8, we could either go through the arcs in A first, or the arcs in A’ first. So

we have the following commutative Cartesian diagram:

T .b

Sh(GS’T) Q Sh(GS,T) —— Sh(GSubaTub) (561)

ab

TA N

Sh(GS,T) QSh(GS,T)a - Sh(GSab,Tﬂb)ares

ab’

T by A/ Tares

Hu/

Sh(Gs ;. ) > Sh(Gs v oty —— Sh(Gs,r,)

where wa and mas are the morphisms defined by the natural pullback of the upper-
right and lower-left Cartesian squares, respectively. By Remark 2.13 the shifts satis-
fies the following equality:

Tl o =ta=tglgr g in EXNAT/OF . (5.6.2)

This implies that both wa and wa- are iterated P!-bundles of relative dimensions
s and s, respectively. We use a1 to denote the natural morphism
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: HZ(Shk, (Gsn)as, Lo
A et( K, ( S,T)a,Fp’ S,T (S))

= * k, =
- Het (Sth (GsubaTub)ams,Fp ’ :f’SLubu,)’%ub ® RT[A*QZ (S))

Tryz . k,
% H; 7 (Shk, (Gs 2., g&m) ),

aresyﬁp’ Sab 9Tab
where the last map is induced by the trace isomorphism R? 7a «(Q(s)) = Q.
As a consequence of the Cartesian property and Theorem 2.32(1), we have the
following commutative diagram (which is placed into (5.6.1) vertically on the right):

Thr Gysin

Hd_z‘V,(Sh(qul),.T.‘\),)a,’m)(s) - s Hd—Z»\"(Sh(G&T)u)(s) —————> HY(Sh(Gs,p)gv)(s +5")

l T aleg !t \L AL l TCab oy
*
Ta

res Gysin
Hd—2s=2s' (Sh(Gsﬂ . )) — Hd725-25 (Sh(Gsn b Tab )um) HA4=2s (Sh(Gsn» “Tob ))(Y/)

(5.6.3)

5.7. Inductive proof of Theorem 4.4

We now start the proof of Theorem 4.4 by induction on d = #S¢ or, equivalently, the
dimension of the Shimura variety Sh(Gg,r) (and also on r by keeping d — 2r fixed
throughout the induction). The base cases d = 0 and d = 1 are trivial (as there is no
nontrivial periodic semimeander).

We now assume that Theorem 4.4 holds for all Shimura varieties Shx (Gg,r) with
#35, <d.Wenow fix S, T so that #S¢ = d. The case of r = 0 is clear. We henceforth
assume that r > 0.

Let a, b € B} be as in Theorem 4.4. We fix a basic arc 8, of b, with right end-node
7 € 8¢, (and left end-node v~ € S& ). As in Section 5.5, we use by € %gaim_} to
denote the periodic semimeander b\3;, obtained by removing 8 from b and replacing
nodes 7, 7~ by plus signs. We will use 8 itself to denote the corresponding b”; that
is, we also view §y as a periodic semimeander for S with only one arc 8, (and d — 2
semilines).

The basic idea is to factor the Gysin map Gys, using Jp, in the sense of Sec-
tion 5.5, and to factor the restriction map Res, according to the following list of four
cases.

(1) The two nodes t, 7~ are both linked to semilines in a. This will force us to fall
into the case (1) of Theorem 4.4.

(i)  There is a (basic) arc 84 in a linking 7~ to t from left to right, so that &,
and §p form a contractible loop in D(a, b). In other words, §, and §; are the
same (up to deformation of the arcs). We will reduce the proof of Theorem 4.4
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to the case for S’ = S U {1,777}, TV = T U {1}, aes = a\8q, and by, and it
hence follows from the inductive hypothesis. In particular, we will see that the
contractible loop 8, and §;, contributes a factor of —2 p¢@e).

(ili)  There is an arc &, in a connecting t to 7~ wrapped around the cylinder from
right to left. In other words, &, and 8y, together form a noncontractible loop in
D(a, b). This can only happen if r = d /2. We will show that the composition
Resq oGys,, is essentially the 7},-operator composed with Resqy\s, 0Gysg\s,
for the Shimura variety with 8’ = S U {r,t~} and T/ = T U {t}, up to some
link morphism which we make explicit later.

(iv)  Neither of the above happens. Then, in a, either 7 is connected by an arc whose
other end-node is not 7, and/or v~ is connected by an arc whose other end-
node is not t. In either case, we will reduce to a case with the two nodes 7 and
7~ removed, after composing with a certain link morphism.

We now treat each of the cases separately.

5.8. Case (i)
This is the case when 7 and ¢~ are connected to semilines in a. This implies that
(a]b) = 0. So we are in the situation of Theorem 4.4(1). We need to show that the
m-isotypical component of Res, oGys,, factors through the cohomology of a Shimura
variety of smaller dimension. Let a* denote the periodic semimeander for S given by
removing the two semilines of a connected to v and t~ and reconnecting T and 7~
by a (basic) arc. Note that this is possible because §y is a basic arc, so T and T~ are
adjacent nodes in the band for S. In particular, a* € %g“.

By the discussion of Section 5.5, we see that the morphism Res, oGys,, is the
composition from the top left to the bottom right of the following commutative dia-
gram by going first downward and then rightward:

HI720 (sh(Gsy v, ))

*
\L ”5b oGys bres

H972(Sh(Gs )5, )(r — 1) i H4=2(Sh(Gs,0)q*)(r — 1)

\L Gysin \L Gysin

Restr. Ta,!

H (Sh(GS,T))(r) —— H4 (Sh(GS,T)a)(r)

H4=27(Sh(Gs, 1,))-

Here, the square is commutative because the corresponding morphisms on the Shimura
varieties form a Cartesian square. The diagram implies that the w-component of
Res, oGys,, factors through the cohomology group

H?72(Sh(Gg,p)a+ ) (r — D[] = HY720 D (Sh(Gss,, 2,.)) (— D).
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which is the m-isotypical component of the cohomology of a quaternionic Shimura
variety of dimension d — 2(r + 1). This means that the conclusion of Theorem 4.4(1)
holds if we ever arrive in case (i) during the inductive proof.

5.9. Case (ii)
This is the case when there is a basic arc 8, in a linking t~ to 7 from left to right,
and hence 3, and §y, are the same (up to deformation of the arcs). We write § for the
periodic semimeander for S with only one arc §,. We write a,.; = a\§ for the periodic
semimeander for Sg obtained by removing §, from a and replacing its end-nodes by
plus signs.

Using the discussion of Section 5.5, the morphism Resg, oGys,, is the composition
from the upper left to the upper right going all the way around: first downward to the
bottom, then all the way to the right, and finally upward:

HY72"(Sh(Gs, 1,)) HY72" (sh(Gs, z,))

l GYSpyes T ReSares
HI72(Sh(Geypy))r—1) — — — — — — — — — — — — > HY72(Sh(Ggy.n4))(r — 1)
- -]

Gysin Restr.

H972(Sh(Gs,1)s)(r —1) — H?(Sh(Gs1))(r) ——— H9(Sh(Gs1)s)(r)

As in Section 5.2, the composition of the bottom line is given by the excessive inter-
section formula, that is, to take the cup product with the first Chern class of the normal
bundle of the embedding Sh(Gs r)s < Sh(Gg,r), which is —2p*® times the class
of the canonical quotient bundle for the P!-bundle given by s, according to Propo-
sition 2.31(2). Therefore, the dotted arrow in the middle is simply multiplication by
-2 p[(‘s). From this, we deduce that

Resq oGysy, = —2p*® -Resg,,, oGys (5.9.1)

bres?

where the latter morphism is constructed over the Shimura variety Sh(Gg; r;) of
lower dimension. (Here we choose the shift ¢/, for a periodic semimeander a’ for
(Ss.Ts) to be t5 5, where @’ is a periodic semimeander of (S, T) consisting of all the
arcs and semilines of a’ together with the arc §.)
We can now complete the induction in this case, since we have already known
Theorem 4.4 for Res,,, oGys,, by the induction hypothesis.
(D If {a,b) = 0, then (ays, bres) = O for simple combinatorics reasons. Then the
m-isotypical component of Resg,, 0Gysy,  factors through the cohomology of
a lower-dimensional Shimura variety, so the same is true for Resq oGys,,.
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(2) or (3) We have (a|b) = (=2)™0v™v or (=2)""0T™7 . The picture D (s, bres) 1S
given by removing from D(a, b) the contractible loop consisting of §, and J.
So we have

— . d
_ -1 ettty ifr < 5,
(ares|bres) = (_2) (a|b) - {(_z)mo—leT ifr = %
Since we have £(a) — £(ages) = £(b) —£(bes) = £(8) and t;mt/b;i =taty ', we
see that 7s,, s, gives the same link morphism as 7g; .

5958, bres
indentation and shift). By the inductive hypothesis and (5.9.1),

(with the same

Resq oGysy, = —2p*® -Resg,,, 0Gysy,

_2pz(8) . (_2)m0_1 . p(e(ares)‘l'z(bres))/zngs'ares,Ss.hres,(z),
ifr < %,

_2p[(8) . (_2)”’!0—1 . p(e(ares)‘i'l(bres))/z(Tp/pg/z)mT 7]28 ‘

d
2

S8, bres»(2)
ifr =

(_2)m0 . p([(u)‘i‘é(b))/zngu,Sb’(Z),

d

2 9

(=2)mo . p(i(a)-i-é(b))/Z(Tp/pg/2)mT n;a,sb,(z)

4
5

ifr <

ifr =

5.10. Case (iii)

This is the case when there is an arc §, in a connecting v and v~ wrapped around the

cylinder from right to left, and hence 8, and §p together form a noncontractible loop

in D(a,b). We are forced to have d = 2r in this case (and hence p splits in E/F).

Moreover, the arc §, must lie over all other arcs of a (if there is any). We now define

a list of notations followed by an example.

. Let 84,0 (resp., 8p,e) denote the periodic semimeander of two nodes obtained
from a (resp., b) by keeping 8§, (resp., §p) and its end-nodes and replacing the
other nodes of a by plus signs.

. Let a'i = a\d, denote the periodic semimeander for S, given by removing the
arc 8, from a and replacing the nodes at T and 7~ by plus signs.

. Let o denote the periodic semimeander for S given by removing the arc §,
and adjoining two semilines attached to both t and t™.

. Let a* denote the semimeander for S obtained by replacing the arc §, in a

with 8y instead.



TATE CYCLES AND QUATERNIONIC SHIMURA VARIETIES MOD p 1621

JORPANY Y223

For example, if a = * Tand b= " *, and we choose §p to be the
arc of b linking the first and the last nodes (z and t~, resp., in the pictures), then § is
the arc linking the first and the last nodes (but “over” all other arcs). In this case, we

have
m v+ +++ 6 +édo0 6o+
Su,.z ’ 1—*’ 8[,,._ ’ 1—*’ aE: ’ ri»
laal T NE r e+
= -, at=" -, and by = - T

Our goal is to prove an equality,
Resq oGys, = Ty o1 , 5. o Res s oGys, . (5.10.1)

where n§ |, ¢ isacertain link morphism associated to the trivial link 75 . s, * Sa* —
Sas which we specify later.

Using the discussion of Section 5.5, we see that the morphism Res, oGys,, is the
composition from the top left to the bottom left of the following diagram, by going
first rightward to the end, then downward to the bottom, and finally to the left by the
long arrow:

HO(Sh(Gs, 1))

GYSpe

"
sy Gysin

HI2($h(Goyy ) (4 —1) ——= HI2(Sh(Gs)s,)(4 —1) ——= H(3h(Gen)(%)

Restr. l Restr. Restr.
*

T8, Gysin

HI2($h(Goyy ) ap) (4 —1) ——= HI2(0(Gen)ar)(§—1) ——= H(h(Ge)w)(%)

Qe

T, by

*
755 0 Gysin

HO(SN(Gs, 5,.)) ————————> HO(Sh(Gs , x,)s,.) ——> H2(Sh(Gs, x,))(1)
|

| Restr.

\
HO(sh(Gs, 1,)) H2(Sh(Gs , 2 ,)5,.)(1)

(5.10.2)
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The commutativity of the top left square in the diagram above follows from the com-
mutative diagram of morphisms of varieties, and that of the top right square follows
from (4.1.2) and the fact that Sh(Gg 1)q+ is the transversal intersection of Sh(Gg 1)s,
and Sh(Gg,r)y in Sh(Ggr). The middle rectangle of (5.10.2) is commutative by
(5.6.3) (applied with our a*, a°, and 8, being the a, a’, and a” therein, respectively).

Now, for the bottom rectangle, we are simply working with the Shimura variety
Sh(Gs v ,) and hence are reduced to the case of d = 2. Using Section 5.3, we see
that the dotted downward arrow on the left is exactly the operator 7}, times a link
morphism ngmsu* associated to the link 75, s . : Sq = Sq+, with indentation degree
—2£(8p,») and shift

wa_lt;bl,a*tab,a = w7 't M, (5.10.3)

To sum up, the morphism Res, oGys,, is the same as the composition of the downward
arrows on the left in (5.10.2). So we have proved (5.10.1).

We now complete the inductive proof of Theorem 4.4. The condition for case (iii)
implies that we are in the setup of Theorem 4.4(3). Assume that we have (a|b) =
(=2)"oT™T  The picture D(al, by) is given by removing from D(a, b) the noncon-
tractible loop consisting of §, and §,. So we have

(ambres) = T_l(u|b> — (—Z)mOTmT_l_

By the inductive hypothesis applied to the Shimura variety Shx, (Gs;, 15, ) of lower
dimension (where the shift ¢/, for a periodic semimeander a’ for (S;,, Ts, ) is taken
to be 5, &, where @ is a periodic semimeander of (S, T) consisting of all the arcs
and semilines of a’ together with the arc §y),

Resa[; OGySbres — (_2)"!0 .p(f(u'i)+€(bres))/2(7“p/pg/Z)mT—l

*
o
nSaE,Shres’(Z’)’

(5.10.4)

where 7% [ is the trivial link morphism with shift
ag’

Sbress(27)

/=1 —mpr+1 __ —1 —m7r+1 __ —1__—m7r+1
tu,:tbmwa =l5,a% 5, 1 T =tarty, @ (5.10.5)

and indentation degree z = £(al) — £(bys) — (m7 — 1)g. Combining (5.10.1) and
(5.10.4) with the numerical equalities

Lad)=L(a)— g +L£(Bpe)  and  L(bres) = £(b) — £(8p.),
we deduce that

Resg 0Gys,, = (—2)™0 pt@HON/2(T )/ pe/2ymr o px

*
o .
a* nsulz9sbres=(z/)
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The composition of the last two link morphisms is a link morphism S, — Sg* =
S.b —> Sb,, = Sp, Whose indentation degree is

—26(8p,e) +z =€(a) —£(b) —mrg

and whose shift is equal to the product of (5.10.3) and (5.10.5), or, explicitly,

—-1,—1 -1 —-mr+1 __ —1 —mr
o et =1, o,

This completes Theorem 4.4(3) in this case.

5.11. Case (iv)
Recall that 6, is a basic arc of b linking t with 7~ from right to left. We are looking at

the situation when at least one of v and 7™~ is linked to an arc in a that is not connected

to the other node. We start with a long list of combinatorics construction, followed by

two examples.

Let a° be the periodic semimeander for Sg, given by first replacing the nodes
7,7~ by plus signs, then adjoining the basic arc §y to a from underneath the
band to connect to the arcs or links that are already linked to the nodes t7, t,
and finally continuously deforming the picture so that all arcs are above the
band and all semilines are straight. Intuitively, one can view the last step as
“pulling the strings to tighten the drawing.”

Let a* denote the periodic semimeander for S modified from a* by replacing
the plus signs 7, 7~ by nodes and adjoining them by the arc .

Let a” denote the periodic semimeander for S that consists of two semilines at
both 7 and 7, all arcs in a that do not intersect with these two semilines, and
semilines at the nodes that are not connected to anything above. Let r’ (< r)
denote the number of arcs in a” so that a” € B .

Let a'ﬂr denote the periodic semimeander for Sg, obtained by removing the
two semilines at both v and v~ from a” and replacing the nodes at 7, 7~ by
plus signs.

We use a'; to denote the periodic semimeander for S given by replacing in a
the two semilines connected to T and T~ by §p.

We use 8,0 to denote the periodic semimeander for S,y consisting of only
one arc §p (and all semilines of a'jr).

We choose and fix an arc 8, of a such that

- Case (a): either t is the left end-node of §,, or

- Case (b): t~ is the right end-node of §,.

Such an arc §, exists under the assumption of Case (iv) (there might be one or

b

two such arcs). We use 7’ to denote the right endpoint of §,. Thus, t’ is neither
7 nor T~ in Case (a), and 7’ is the same as t~ in Case (b).
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We use ai, to denote the periodic semimeander for S given by deleting from
a’ the two semilines connected to the end-nodes of §, and then adjoining the
arc 6.

We use §, . to denote the periodic semimeander for S,y consisting of only
one arc §, (and all semilines of ui,).

We use n,b @ o denote the link from S o, 10 S given by the reduction of
D(Sb/ab,&;/ab) as defined in Section 3.1.

We use a’,, to denote the periodic semimeander for S o>, given by deleting all
T

Tes
arcs in a that already appeared in a';/, and changing their end-nodes to plus
signs.

We use ag,, to denote the periodic semimeander for Sqo with nodes given by
deleting all arcs in a°® that already appeared in u*jr, and changing their end-
nodes to plus signs.

We use 7q,q+ to denote the link from S, to Sqx = (Ss, )ao, Which is the restric-
tion of Mgb, ab 10 Sa.

We use br; to denote the semimeander for S5, obtained by deleting the arc dy,
and replacing the nodes t, T~ by plus signs.

We now give two examples. In both instances, b has a basic arc connecting node

1 with 2 (starting with node 0 on the left). So node 1 is t~ and node 2 is 7.

Example 1

We take a = J o/(_\\u "5 J . Then the arc §, has to be the one connecting nodes
2 and 5 and 7’ is node 5. We are in Case (a), and we have

el lalall

80.: T v s a
livalall laalall
az_: T o , Clgz Ll o ,
ll o ﬂll ln++l++ll
ar,z Tz T’ , Sb/abz o T T’ ,
el W
8a/ab: o B ’ ai)es: o v ’
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l++(\ml lnaml
o T T’ 18 * _ T ¢ I ,

a = a
I ++++++II

l++++®l ++++0++

° __ T T T’ — T T T’

Ores = ’ nai,,ag - ’
I++++++++I
++++++++

Naa* = © 7 v

Example 2

We take a = -\\. l f{:a\. l ﬁ . Then the arc &, has to be the one connecting nodes
1 and 8 through the imaginary boundary at x = —1/2 and x = g — 1/2. We are in
Case (b), so T/ = 7~ is the node 1. We have

_o\:oooooo{; b_\}l@ll(

8aq a
visdennlle sodenlle
az_: T T . azz ‘L"l— s
“lo/(_\\olo/(- +(‘o++++ll+
ar/= T . Sb/ab: T s
+ l++++lo/+- +l+++++l++
Sa/ab: T ’ c"?es: o ’
\++®ll( \nmll(
= T , = ot ’
++o++++o0++
+++++++ll+ Ti++++I{+-
afesz T T s nazuag zna’a* — o T .19

8We give special shape to the arc linking nodes 5 and 8 here to remind the reader that this arc is obtained by
“pulling the strings.”

19%When either T or T~ is connected to a semiline, a lot of the new periodic semimeanders constructed are either
“simple” or “similar” to a.
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Using the discussion in Section 5.5, we see that the morphism Res, oGys,, is the
composition of the following diagram from the top left to the bottom, first through
Gysy,,, and then all the way to the right and then all the way downward, and finally
through TS, o] and Resp .

H72" (Sh(Gs, 1))

GYSpres

«
sy Gysin

H72(Sh(Gsy, 25,)) ——> HI72(SW(Gsn)s,) ——> H(Sh(Gsp))

Restr. Restr. Restr.
o
8p

Gysin
HA2(S0(Gey, ) ) ——>= HI2(0(Gen)yy) —————>= H(S0(Gs) )

b
al !
X
*

7
84/ab Gysin

Hd_zr/_z(Sh(Gsnb STab )) — HI'2 (Sh(ngb »Tab )s ) - Hd_zr/(Sh(GSnb »Tab ))

6/ab

Resqo \ Restr.
y/2 %
- n
PG, b 75

a/ab>
H2 ($h(Gs . r,.) HA2r'2(S0(Gs, o, ) <——— HI(Sh(Gs = ,)5,,,)

Res
\ \L es b
(xX+¥)/2p*
p Na.a*

H72 ($h(Gs, ,))

(5.11.1)

Here, the numbers x, y and the link morphisms 77;[) and 1 . will be defined

b
explicitly later. For simplicity, we have omitted the Tate twists from the notation, and
each cohomology group H“(x) should be understood as H%(x)(b) with a — 2b =

d — 2r; for instance, H?2"'~2(Sh(Gs , =, )) should be understood as
HY™2"2(Sh(Gs , « , )(r—r'—1).

We now explairn the commutativity of this diagram. The commutativity of the top
left square in the diagram above follows from the commutative diagram of morphisms
of varieties, and that of the top right square follows from (4.1.2) and the fact that
Sh(Gs,T)ag is the transversal intersection of Sh(Gs,r),» and Sh(Gg,r)s, in Sh(Gs ).
The commutativity of the middle rectangle follows from that of (5.6.3) (applied with
our ag and o being the a and a’ therein, respectively). The commutativity of the
lower trapezoid will follow from applying Section 5.4 (applied to the Shimura variety

Sh(Gs_,,r_,) with our §,q» and 8y ,» being the a and b therein), once we have clari-

a/a
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fied the meaning of y and n* 2 in Section 5.12 later. Finally, the commutativity of
the bottom parallelogram will be justified in Section 5.13 and Lemma 5.14 later.

To sum up, the morphism Res, oGys, will be the composition of (5.11.1) from
the top left to the bottom by first going all the way down and through 77;’ .*- This gives
the following equality,

Resq oGys, = p+/2p* | o Resqx oGys,, . (5.11.2)

which we will use to complete the inductive proof of Theorem 4.4 in Case (iv), as we
will explain in Section 5.15.

5.12. Link morphism Nab, a2

Now, let us get to the dettails, starting with the link morphism associated with 7. o

We distinguish the two cases: ’

Case (a). Suppose that the left node of §, is t. Example 1 above falls into this case.
All the curves in the link n o,,ab are semilines, except for one that turns to the
right, which we denote by & T The curve § sends t~ to t’. By Theorem 2.32(2),
there exists a link morphism 7 a0l with indentation degree £(§,) — £(dp)
and shift ¢ ot t ! (and also a hnk morphism on the local system as in Theo-
rem 2. 32(2)(d)) "which fits into the following commutative diagram:

Sh(GSub,Tab)sa ~ Sh(GSﬂb,Tﬂb){f’,f} — Sh(GsubaTub)sb

T§a l l ﬂsb
Tab, ab 2

Sh(GSub/sTub/) Sh(GSﬂb ,Tug)

By Theorem 2.32(2)(c), Mab, a4 is finite flat of degree p» with y =
U(T}at;/’at%’ﬁ) = £(6q) + 6(8;). Let n;b”u?: Hd—Zr/—z(Sh(Gsa'%,Tn?)) N
H?2"~2(Sh(Gs , = , )) denote the induced link homomorphism on the
cohomology grou;;fs/. Ba}f/the same argument as in Section 5.4, we see that the
trapezoid in the diagram (5.11.1) is commutative.

Case (b). Suppose now that the right node of §, is t~. Example 2 above falls into this

case. Then the only genuine curve in the link Mab, b is turning to the left with
displacement y = £(84) + £(8p). Let n a2 ab, be the inverse link of Nab, ab -
Applying the discussion in Case (a) to ny» b , one gets a link morphism
Mab a4 Sh(GsE,T‘;) — Sh(GSi/’Ti/) of indentation degree £(6p) —€(8,) and

shift ¢ » t-!. By Lemma 2.29, we get a well-defined link morphism on the
Toay
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cohomology groups

77* =(n%, )_1 = P_y/z Trnar%'nb/.ﬁ : Heg’_zr,_z (Sh(GSu’% T ))

ar’ ar a /

— HI™2"72(Sh(Gs , +,)) (5.12.1)

of indentation degree {(a) — £(b) associated to the link 7, b, ab and shift

t a, t [,1. Now the argument as in Section 5.4 proves the commutat1v1ty of the
trapezmd in the diagram (5.11.1).

5.13. Commutativity of the parallelogram in (5.11.1)
We continue the discussion above by separating the two cases.
Case (a). Consider the (r —r’—1)-step iterated P! -bundle Tgp Sh(GS @, T, )

Sh(Gs, 7, )- By applying repeatedly [33, Proposmon 7 17] and Constmctlon
2.12, one produces a commutative diagram:

7-[ll) ”5 ”rr)—r/—l
Sh(GSub T )ures X3 X> X,—yr—o — > Sh(Gsq.1q)
J/ (LI l .4 l 2.4 L Mp—y/—2.4 L Ma.a*.4
ﬂ? ﬂ; ”ffr’fl
Sh(Gs b T b)ux%s Y, Y2 ) o—— > Sh(GSa*,Tn*)
ar ar

(5.13.1)

where nl!’ and nlf’ are all P1-fibrations, the vertical arrows are link morphisms
(associated to certain links), and the composition of the top (resp., bottom)
horlzontal arrows is T (resp Tao,)- There exist at the same time link mor-

phisms ni and nu g0 ON the étale local systems satisfying a similar commuta-
tive diagram. We explain now how to construct 7; y: X1 — Y1; one chooses a
basic arc § in ab,.. Let o’

ing §. from afes and replacing the end-nodes of §. by plus signs, and let ai,,l

res,1 D€ the periodic semimeander obtained by remov-
be the periodic semimeander obtained by removing from ab, the semilines at
the end-nodes of 4. and adjoining §.. Put X; := Sh(Gg o, T ) b,

azs 1 Ores. 1

denote by

b.
7 Sh(Gs, xy dap, — X

the P! -fibration given by the arc §.. Let §.o denote the arc 7, ot (8.) obtained
by extending . using the curves of 1» o at the end-nodes of 8c. This §.0 isa
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basic arc in a;,.. We define periodic semimeanders at; 1 and a_. ; in the same
\ : ;

>, 1 and a'r’es’l with 8, replaced by §.o. Then we have a P! -fibration

JTf: Sh(GSab ’Tub )u

way as a

o — Yl = Sh(GSub I’Tab l)aﬁas,l .
If n: S“l;/.l — Sal;‘l denotes the link induced by Neb,at > then [33, Proposi-
tion 7.17] and Construction 2.12 implies the existence of the link morphism
n1,4» which fits into the left commutative square of (5.13.1). This finishes the
construction of X; and Y;. The induced link 7; has the same property as
Mg, ab s namely, all the curves of 7; are semilines, except possibly one turning
to the right. The rest of (5.13.1) can be constructed inductively in a similar
way.

Since we require the diagram (5.13.1) to be commutative, by Remark
2.13, the link morphism 714 o+ 4 has shift

Lar oty o (ShftOF NG o) = 2ot

Moreover, the indentation degree of 1q o+ 4 is £(84) — €(dp) + Z(afes) —{(ag.)
if p splits in E/F and degree O if p is inert in E/F. Note that even though
each n; y is not unique (since there are many ways to choose a basic arc of
alr’es for instance), the final link morphism 7, q* 4 is uniquely determined by
the uniqueness of link morphisms. By [33, Proposition 7.17(3)] and Construc-
tion 2.12, g q+ ¢ is finite flat of degree p?@a.a*). We have thus the normalized
link morphisms n;b,,af; and n;, o+~ on the corresponding cohomology groups as

defined in (2.23.1) induced by (”ai,,aﬁ,ﬁ’ ni",,a';) and (nﬁ,a,, ng,a*), respec-
tively. ’

Case (b). Suppose now that the right node of §, is t~. Applying the discussion
in Case (a) to the inverse link Mgb qb,» ONE gets a link morphism g+ 44 :
Sh(Gs, . r,.) = Sh(Gsg, 7,) associated to the inverse link of Na,a+ Of indenta-
tion degree £(8p) —£(8q) +L(ap.) —K(a'r’es), and shift £;1# 4. By Lemma 2.29,
we get a well-defined link morphism on the cohomology groups

Moo = (U;*,a)_l = p*{a.ar)/? Try e oyt Hd_zr(Sth,T)

— H% 2" (Shg ) (5.13.2)

Sax - Tox

of indentation degree £(8,) — £(8p) + E(u'r’es) — {(a.,) and shift tat;*1 associ-
ated to the link 7q q+.
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LEMMA 5.14

Under the above notation, put x = £(a’,) — £(a%,) and y = £(84) + £(8y). Then in
both Case (a) and Case (b) above, one has a commutative diagram of cohomology
groups:

Rest. Tags.!

H{2(80(Gs 2 )~ H{ 2 (0(Gs iy )ar) —> HI{T(SW(Gs,u 0,0))

V/2p* V/2p* c
ny n b (x+1)/2p*
J/ PG, ot l P, b » 5 ar
T p
afes !

Rest. 5
H{2(80(Gs ), oy, ) ——> H{ 2 (S0(Gs, oy da,) —> HIT(Sh(Gs, 1)

Note that the composite of the top (resp., bottom) two horizontal morphisms above is
exactly Resgo (resp., Resgp ). So this verifies the commutativity of the parallelogram
in(5.11.1).

Proof

The commutativity of the left square is evident. We check the commutativity of the

right-hand side square case by case. Suppose first that we are in Case (a) (i.e., the left

end-node of 8, is T). We distinguish three subcases:

Case (al). ©~ is linked to a semiline in a. Then both a’,, and a, contain no arcs.
It follows that x = 0, and Tab, and Tqo, are isomorphisms. In this case, the
commutativity of the right-hand side square is trivial.

Case (a2). t~ is the left end-node of an arc in a. Example 1 above falls into this
case. It is easy to see that x = y, and that the link 14 o+ contains only semi-
lines. By [33, Proposition 7.17(3)] and Construction 2.12, nq 4+ 4 is an iso-
morphism. Consider the commutative diagram (5.13.1). Both top and bottom
rows are factorizations of (r — r’ — 1)-step iterated P! -bundles as in (4.2.1).

Foreach 1 <i <r —r'—1,let§ € H2(Shg,(Gs , v, )ﬁp,@((l)) (resp.,
& € Hez(Sth (Gs , v, )Fp,@g(l))) be the inverse image of the first Chern

t
class of the tautological quotient line bundle of nf (resp., ;") as considered in
Section 4.2. Note that the only curve in n o ab links the /eft end-node of an arc

to the left end-node of an arc of a_,.

of a'r’es Then by applying iteratively [33,
Proposition 7.17(3)] and Construction 2.12, there exists a unique integer ig
with 1 <ioy <r—r'—1 such that n:b o n(gio) = p”&; . and n:b o ﬁ(i:i) =

for all i # ip. Let

z= Z ( Z Moo, Zirenif) U iy U“'Ugij)

1<j<r—r'—1 1<ij<-<i;<r—r’'—1
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be an element of Hd_zr/_z(Sh(Gsab,Tab)agﬁ) with z;,, .. €
T T

gd—2r'—2-2j (Sh(Gs,. r,.))- Then one has

o (PP 0 (2))

a
T

= T[ab 1T]Zb/ a? n(Z)
7207

Tes’*

(S0l ) UE, U V)
= pyna?es’! (Z(n:rcg (nz,a*,ﬂ(zil """ ij)) U El/l U e U é:l//))
= pyn;a*,ﬁ(zl ..... r—r'—1) = P(x+y)/277;,a* (na;’es,!(z)),

where the forth and fifth equalities use the formula (4.2.3). This shows the
commutativity of the right square in the lemma.

Case (a3). t~ 1is the right end-node of an arc in a. Then x = —y and 74,4+ contains
only semilines. Hence, 74 q+ 4 is an isomorphism as in Case (a2). We want to
show

Maax © Tag, ! = Tap,1 © (py/zn;b,,a?)'
The argument is quite similar to that of Case (a2). Let &;, £/ be as defined in
Case (a2) for 1 <i <r —r’— 1. Then by [33, Proposition 7.17(3)], we have

n:b/,ag,n(&) =§& forall 1 <i <r —r'—1 (this differs from the situation

of Case (a2) because the unique curve in 7, o, ab links the right end-node of

an arc of a’, to the right end-node of an arc of aZ,). Then the rest of the
computation is the same as in Case (a2).

Consider now Case (b) (i.e., the right end-node of &, is t™). Symmetrically, we
have three subcases:

Case (bl). t is linked to a semiline in a. Then as in Case (al), we have x = 0, and
Tq, and 7qo  are both isomorphisms. The commutativity of the right hand
side square is trivial.

Case (b2). 7 is the left end-node of an arc in a. Then x = —y, and 54,4+ contains
only semilines. Hence, 7+ o4 is an isomorphism as in Case (a2). By (5.12.1)
and (5.13.2), the desired commutativity is equivalent to

Tty e o5 OTagt = Tap 10Ty, s

ar.a s
T I/

which is an easy consequence of the compatibility of trace maps with compo-
sition.
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Case (b3). 7 is the right end-node of an arc in a. Then x = y, and ng» 44 is an
isomorphism as in Case (a2). The desired commutativity is equivalent to

y/2 (0% 1 — pvp*, )t
Tab 19D (”aﬁ,u';) =P (na*,a) © Tag!

* _ y/2. %
= Mg q Oy 1 = Tag 1o (PPN, ).

ar ,ar,
Thus the situation is exactly the same as Case (a3) above (except for switching
the roles of Sh(Gs , .z , ) and Sh(Gs , r , )), and we conclude by the same

arguments. 0

5.15. End of the proofin Case (iv)

We are now in position to complete the inductive proof of Theorem 2.32 in Case (iv).
We have shown the commutativity of the diagram (5.11.1), from which we deduce
(5.11.2):

Resq oGys, = p(x+y)/2n;,a* oResgqo oGys,,

where n;’a* is the link homomorphism associated to the link 7g q* : Sq — Sq» With
. indentation £(84) — £(8p) + Z(alr)es) —{(ap. ) if p splits in £/ F and trivial if p
isinertin E/F,
. and shift #,¢ 7).
Before proceeding, we point out the following equality of shifts which we will
use later:

-1 -1 -1
tal gl ts,arty) o =taly . (5.15.1)

Also, we point out that our decomposition of periodic semimeanders gives numerical
equalities of spans:

a) = 0(a%) + £Ga/e) +L(ay),  £(a®) =€(a%}) +£(ay,),  and 5152
£(b) = £(86) + £(byes)- o

This (and the trivial equality £(8q) = £(J,/,»)) implies that the indentation degree of
Ny o« When p splits in E/F is equal to

£(8q) —£(8p) + (K(a'r’es) - Z(afes)) ={(a)—£(b) — (€(u°) — E(bres)). (5.15.3)
Similarly, (5.15.2) also implies that

x4y =L(ad,) —£(aS,) + £(5a) + £(8p)
= {(a) 4+ £(b) — (£(a°) + £(bres))- (5.15.4)
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Now we separate the discussion according to {a|b).

(1)  If {a,b) =0, then (a°|b.s) = O for simple combinatorics reasons. Then the
m-isotypical component of Resqo oGys,, factors through the cohomology of
a lower-dimensional Shimura variety, so the same is true for Res, oGys,,.

(2) or (3) We have (a|b) = (=2)™0v™v or (—2)™0T™T . The picture D(a°, b,) can
be identified with the picture D(a, b) after deforming some curves (“pulling
strings”). In particular, we have (a°|b.s) = (a|b). By the inductive hypothesis
for the pair (Sg, ., Ts, )*° and (5.11.2), we have

Resq 0 Gys,

(x+y)/2

*
= p na,a* ° Resao oGySbres

p(x+y)/2fl;,a* o (=2)mo . p(é(uo)+e(bres))/2ng%Auo,Ssb.m,
B ifr <4,
p(x+y)/2 ;,a* o (=2)mo . p(f(a°)+4(bres))/2(Tp/pg/Z)mT "g,s[,,a

©,58 ., bres
. _d
ifr=3,
(—2)mo ‘p(é(a)+€(b))/2;7:,a* o ngab'ao,s%,bms’
. d
(5.15.4) ifr <7,
(=2)m0 - pUDHAON2(T,  pe2ym s oms,

e —d
1fr—2.

0,58 . bres

The composite of the two links is exactly nj_ o, of the needed indentation
degree by (5.15.3) and of the required shift by (5.15.1).
This concludes the proof of Theorem 4.4.

Appendix. Cohomology of quaternionic Shimura varieties

We include the proof of Proposition 2.26 regarding the cohomology of our “slightly
twisted” quaternionic Shimura varieties. It is based on comparing the cohomology
with the known case when T = @. This is certainly known to the experts, but we
could not find the exact version in the literature.

A.1. Discrete Shimura varieties for F*
Consider a Deligne homomorphism for Tr r := Resg/q(G,,) given by

20Here, as before, the shift ¢/,, for a periodic semimeander a’ for (Ss, , Ts, ) is taken to be ¢s, &/, where @’ is
a periodic semimeander of (S, T) consisting of all the arcs and semilines of a’ together with the arc §p.
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hp: S(R) = C* —— Tr(R) = (RX)T x (RX)ToeT
z = ((Iz]%.....1zP).(4,.... D).
Under this choice of Deligne homomorphism, we can define a discrete Shimura vari-
ety $hg, ,(TF,z) for K1, = (9;< whose complex points are given by
Shir ,(Tr.2)(C) = F**\AT™/0;.

It admits an integral canonical model with special fiber Shg,. » (TF,z) over Fpe (in
the sense of [33, Section 2.8]), which is determined by the Shimura reciprocity map

Recrr,p: Galp,, —> Fh\AS™ /0y

Explicitly, Recr,r,p sends the geometric Frobenius Frob ¢ to the finite idele (p r ).
Fix a prime number £ # p. The algebraic representation pi, of Trr x C =

[Tes., Gm.x sending x to (x*7*,...,x>™™) gives a lisse Qg-étale sheaf L% = of
pure weight 2(w — 2)#T on Shg,. ,(TF ).

A.2. Changing T
We need to compare the Shimura varieties Shg ,(Gg,r) and Shg, (Gs,g). Note that
the natural product morphism

pr: Ggg x Resp g Gy — Ggp

is compatible with the Deligne homomorphism /g g % Ay on the source and /&g on
the target (i.e., pro(hg,g X hy) = hgr). This gives a natural morphism of Shimura
varieties,

pre: Shg,(Gsg) x Shk, ,(TFr) — Shk,(Gs 1). (A2.1)

Moreover, the product morphism is compatible with the algebraic representations in
the sense that

k, k,
p& opr= p& B ok

So we have a natural isomorphism of sheaves,

pri (&) = & R LY (A22)

PROPOSITION A.3
Let w € Ak w) be a cuspidal automorphic representation appearing in the cohomol-
ogy of the Shimura variety 8hg (Gg ). Then we have a canonical isomorphism,
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p®4 ® [det(pr,p)(DI®*T ifi =d,

. a (k,w) Fr-s.s. __
He’t(ShK(Gs,T)[Fpais,T )] - {0 ifi #d,

equivariant for the action of the geometric Frobenius Frob,e. Here, the superscript
Fr-s.s. means taking the semisimplification as Frob s -modules.

Proof

The proposition is known when T = @ by [2, Section 3.2] (note that we have the tensor
product instead of tensorial induction because py,, is unramified at p). For general T,
the morphism (A.2.1) induces an isomorphism,

. k,
H (Shg (G o), £55")

= H,(Shx(Gsn)5, * Shir,(TFo)f,  Pra (2T

(A22)
=7 (Hy (Shk (Gsp)s,. £5")

et
0 w AT
® H (ShKT,p (TF,T)va T,T)) o,
where the superscript A?’X means to take the invariant part for the antidiagonal
action of this group (i.e., z € A%o’x acts by (z,z71)). So if w, denotes the central
character of 7, then we have

* k, * k,
H (Shg (Gs ), . £85°) [n] = HE (Shk (G p)z, . £55°) 7]
® HQ(Shk,., (Tr2)7, £1.0)@x],

where the last factor is the 1-dimensional subspace where A?’X acts through w;.
By the Shimura reciprocity map Recr,r,, recalled in Section A.1 and the Eichler—
Shimura relation (2.24.1), the geometric Frobenius Frob e acts on this 1-dimensional
space by multiplication by

0z (p )" = (det(pnp (Frob,e))/ p#))*.

This concludes the proof of this proposition. O
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