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Abstract—The last decade has seen tremendous advances
in the transformation of ubiquitous control, computing and
communication platforms that are anytime, anywhere. These
platforms allow humans to interact with machines through
sensing, control and actuation functions in ways not imaginable a
few decades ago. While robust control techniques aim to maintain
autonomous system performance in the presence of bounded
modeling errors, they are not designed to manage large multi-
parameter variations and internal component failures that are
inevitable during lengthy periods of field deployment. To address
the trustworthiness of autonomous systems in the field, we
propose a cross-layer error resilience approach in which errors
are detected and corrected at appropriate levels of the design
(hardware-through software) with the objective of minimizing the
latency of error recovery while maintaining high failure coverage.
At the control processor level, soft errors in the digital control
processor are considered. At the system level, sensor and actuator
failures are analyzed. These impairments define the health of the
system. A methodology for adapting the control procedure of the
autonomous system to compensate for degraded system health is
proposed. It is shown how this methodology can be applied to
simple linear and nonlinear control systems to maintain system
performance in the presence of internal component failures.
Experimental results demonstrate the feasibility of the proposed
methodology.

Index Terms—System resilience, error tolerance, checksum
encoding, autonomous systems

[. INTRODUCTION

Intelligent autonomous systems are emerging as promising
technological marvels to improve human life. The electronics
industry is investing significant resources in the pursuit of
enabling autonomous driving systems. However, the inherent
disconnect between the electronics and control industries is
raising valid questions about the safety and reliability of
these systems since the control designers assume that the
underlying digital, mixed-signal and electro-mechanical sys-
tems operate reliably and safely. Recent accidents on trial
deployment of self-driving cars [1-4] have generated serious
doubts about the successful deployment of these vehicles in
the commercial arena due to the possibility of life-threatening
consequences in presence of malfunctions in the electrical
and electronic sub-systems. To ensure reliable and dependable
operation of autonomous systems, robust cross-layer (digital,
mixed-signal and control) error resilience methods need to
be developed that deliver ultra-high levels of dependability
(equal to safety/dependability of aircraft and space travel),
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on a per-system basis to thousands of autonomous systems
for the technology to ever become commercially successful
on a massive scale. The primary objective of this research is
to address the trustworthiness of these systems by proposing
a real-time cross-layer control adaptation where an error-
checking scheme detects performance deviations due to varied
failure mechanisms and extracts key diagnostics about the
root-cause of underlying failures to update the control law for
satisfying the system objective with high coverage and low
cost.

The idea of implementing failure tolerance through check-
sums was the fundamental concept behind algorithm-based
fault tolerance (ABFT) [5; 6] and further used for error
resilience in complex signal processing algorithms [7] and
linear state variable systems [8; 9]. While error detection
could be performed with low overhead in [8], error correc-
tion incurred large overheads both in area and time using
the proposed algorithms. To resolve this, probabilistic and
guided error compensation schemes were proposed in [10-13].
The present research employs similar encoding techniques in
control systems and propose real-time error resilience tech-
niques for online detection and correction of faults in systems
operating under arbitrary failure mechanisms. Here, the errors
are detected in the stage where the errors has happened and
the control law has been adjusted to correct the error quickly
in the next stage.

In this paper, we briefly describe the proposed methodology
of real-time cross-layer control adaptation in Section II. The
error resilience is demonstrated on three different test cases in
Sections III, IV and V. Finally we conclude in Section VI.

II. PROPOSED METHODOLOGY: REAL-TIME CROSS-LAYER
CONTROL ADAPTATION

The proposed methodology is applicable to any nonlinear
real-time dynamical system that is represented by the state-
space equations:

x = f(t,x,u)

where, x € R"™ is the state variable, u € R™ and y € R?
are the inputs and outputs of the system and x = ‘(%‘. The ap-
propriate control input u is computed by the designed control
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law from the user input r and output y. The core contribution
of the proposed research is demonstrated in Figure 1.
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Fig. 1. Overview of real-time control adaptation methodology

The real-time checking methodology encodes the system
dynamics and creates a single error signal e from the inputs
r, u and y. In case of linear systems, the system in 1
simplifies to X = Ax + Bu where A and B are system
and input matrices. A single checksum e is computed by
encoding the matrices A and B through a coding vector as
discussed in [14; 15]. In contrast, for nonlinear systems, the
error e is computed through nonlinear mapping functions that
encode the system dynamics f(.) and h(.) as described in
[16]. The error e stays within a pre-computed threshold while
the system operates in a fault-free manner. In presence of
faults (parametric failures, soft errors, computational mistakes,
mixed-signal system degradation or environmental anomalies),
the error e crosses the threshold, indicating the presence of
errors.

It has been demonstrated for both linear [15] and nonlinear
[17] systems that the transient waveform of error e contains
diagnostic information about the underlying cause of failures
and has strong correlation with the parameters of the optimal
control strategy. The control adaptation protocol shown in
Figure 1 is trained in pre-deployment stage to predict the
optimal control parameters from the transient error waveform
through diagnostic analysis of the root cause of the failure
mechanisms. In the post-deployment stage, the trained control
adaptation protocol is invoked in the digital controller stage
in presence of faults when the error e crosses the threshold
and the nominal control law is modified to satisfy the system
objective in real-time with low latency.

III. TEST-CASE I: REAL TIME DIAGNOSIS AND
CORRECTION IN DC MOTOR

In this research, the real-time error detection and correction
is demonstrated on a DC motor. The faults injected in the
system are multi-parameter perturbations in coefficient of
armature reactance L,, moment of inertia .J, torque constant
K., and armature resistance R,. Injection of faults generates
a non-zero checksum error signal e(t) indicating the presence
of failure modes in the system.
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Pre-deployment training: In the pre-deployment phase, 400
parameter-perturbed DC motor systems were created in MAT-
LAB simulation framework. The checksum error signals for
each of the systems were sampled at 100 samples per second.
200 system instances were selected in random to train a
Multivariate Adaptive Regression Spline (MARS) model with
the perturbed parameter set as target output. After training, a
MARS model was obtained with 14 basis functions.
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Fig. 2. Estimated vs Actual parameter of DC motor with control

The trained model is tested for validation by the remaining
200 system instances. The strong correlation between the
actual and estimated values of the different parameters are
shown in Figure 2, thus demonstrating that the error e contains
crucial information about the failure modes. Next, a neural
network model is trained with the error signal e(t) and the
corresponding input stimulus as inputs and the different plant
parameters as target outputs. The simulation data from 128
systems along with a nominal PID controller designed to
satisfy certain specifications such as % overshoot of 5% and
rise time of 100 us, are used to train the neural network.

Post-deployment control adaptation: In this test-case two
checksums are implemented - €4y sten (t) that is used to detect
errors and trigger error correction and epjqn:(t) that is used
to estimate system parameters. The transient waveforms of
system output w (angular velocity of motor), epiqn:(t) and
€system (t) for a fault-injected system are shown in Figure
3. Around 10 ms, esystem(t) crosses the detection threshold
indicating performance deviations. The input and e;q¢(t) are
recorded from 10 ms to 12.5 ms and system parameters are
predicted from pre-trained neural network model. Using these
parameters as starting conditions, a Levenberg-Marquardt op-
timization algorithm improves the accuracy of the estimated
parameters by 15 ms. The PID controller parameters and the
checksum egystem (t) are updated, thus restoring the system
specifications of overshoot from 1.1% to 3.1% and rise time
of 102 us to 99.6 us.
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Fig. 3. Estimated vs Actual parameter of DC motor with control

IV. TEST-CASE II: KALMAN FILTER

Kalman filter is typically used to predict the entire statistics
(mean and covariance) of system states from noisy measure-
ments of a limited subset of the system states. The exertion of
optimal control depends on the accuracy of the predicted state
values. The goal of this research is to detect errors in any un-
derlying arithmetic computation (e.g. addition/multiplication)
involved in the operation of the Kalman filter and to correct
the errors in real-time.

Error detection: For error detection, two separate linear
encodings are developed - the state and covariance checks.
These checks are designed to ensure the correctness of the
update operation of the state and covariance functions in the
Kalman filter algorithm. With concurrent execution of these
two check states, errors in all the arithmetic computations of
the Kalman filter are detected with high coverage and low
cost.
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Fig. 4. Deviation in trajectory due to bit error
Error correction: On error detection, the system states are

restored from the last known error-free time step of operation
and all control/filtering operations are continured as normally
performed. This method is capable of correcting the errors in
any step of filtering operation that are caused by transient bit-
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Fig. 5. Error correction using the checks

flips in the underlying digital processor. The error detection
and correction capabilities in a particle trajectory tracking
problem using Kalman filter is shown in Figures 4 and 5.

V. TEST-CASE III: BRAKE-BY-WIRE SYSTEM

We consider a brake-by-wire (BBW) system as our third
test case. These systems are replacing the mechanical and
hydraulic braking systems in modern automobiles. Details
about the system and dynamics are available in [16; 18].

Pre-deployment training: In this research, a reinforcement
learning algorithm is used for online adaptation of the control
law in presence of failures. The correlation between the
critical system parameters and the transient error waveform
is exploited to choose optimal starting conditions for the
reinforcement learning algorithm to minimize the online adap-
tation time. The nominal control law is implemented with an
actor-critic network [17] with 500 episodic simulations of the
vehicle dynamics along with different applied pedal forces.
The transient error data from 500 systems with degradation
of brake shoes and wheel velocity sensors is used to train a
MARS regression model for predicting the system parameters.
In addition, a PNN classifier is also trained to cluster the 500
systems into different clusters based on learning performance
of the nominal controller and separate reinforcement learning
weights are optimized for each cluster and stored.

Effect of brake shoe degradation
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Fig. 6. Real-time control law adaptation with diagnostics-assisted reinforce-
ment learning

Post-deployment control adaptation: Figure 6 illustrates the
real-time control law adaptation in a braking situation with
a degraded brake shoe. On initiation of braking at ¢ = 1s,
the wheel angular velocity drops uniformly till ¢ = 1.8s
when a brake shoe degradation of 10% is injected. Due to
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the reduction in applied braking force, the rate of deceleration
reduces indicating potential hazards. From ¢ = 1s to t = 3.2s,
the error signal is recorded and the trained MARS model
estimates the perturbed parameter values from the transient
waveform. The reinforcement learning parameters are updated
according to the stored actor-critic weights from the corre-
sponding cluster to which the predicted parameter set belongs.
It is seen that exploiting the diagnostics-assisted reinforcement
learning partially recovers the braking performance at t = 3.9s
compared to t = 8s for the usual reinforcement learning
algorithm, thus demonstrating that the proposed scheme can
restore system performance under non-catastrophic actuator
degradations with low latency enabling uninterrupted system
operation.

VI. CONCLUSION

In this paper, a cross-layer adaptation for linear and non-
linear systems is presented. The effectiveness of the proposed
methodology has been demonstrated through error resilience
results from different linear and nonlinear control systems
where it is shown that system performance is restored in pres-
ence of parametric perturbations and component degradations
with low latency. Simulation data from three different systems
strongly corroborate the efficacy of the proposed technique.
Endeavors in this area will pave the way for future self-healing
autonomous systems.
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