
Cross-Layer Control Adaptation for Autonomous
System Resilience

(Invited Paper)

Md Imran Momtaz1, Suvadeep Banerjee1, Sujay Pandey1, Jacob Abraham2 and Abhijit Chatterjee1
1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA 30332

2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712

E-mail: {momtaz, sbanerjee49, spandey38}@gatech.edu, jaa@cerc.utexas.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—The last decade has seen tremendous advances
in the transformation of ubiquitous control, computing and
communication platforms that are anytime, anywhere. These
platforms allow humans to interact with machines through
sensing, control and actuation functions in ways not imaginable a
few decades ago. While robust control techniques aim to maintain
autonomous system performance in the presence of bounded
modeling errors, they are not designed to manage large multi-
parameter variations and internal component failures that are
inevitable during lengthy periods of field deployment. To address
the trustworthiness of autonomous systems in the field, we
propose a cross-layer error resilience approach in which errors
are detected and corrected at appropriate levels of the design
(hardware-through software) with the objective of minimizing the
latency of error recovery while maintaining high failure coverage.
At the control processor level, soft errors in the digital control
processor are considered. At the system level, sensor and actuator
failures are analyzed. These impairments define the health of the
system. A methodology for adapting the control procedure of the
autonomous system to compensate for degraded system health is
proposed. It is shown how this methodology can be applied to
simple linear and nonlinear control systems to maintain system
performance in the presence of internal component failures.
Experimental results demonstrate the feasibility of the proposed
methodology.

Index Terms—System resilience, error tolerance, checksum
encoding, autonomous systems

I. INTRODUCTION

Intelligent autonomous systems are emerging as promising

technological marvels to improve human life. The electronics

industry is investing significant resources in the pursuit of

enabling autonomous driving systems. However, the inherent

disconnect between the electronics and control industries is

raising valid questions about the safety and reliability of

these systems since the control designers assume that the

underlying digital, mixed-signal and electro-mechanical sys-

tems operate reliably and safely. Recent accidents on trial

deployment of self-driving cars [1–4] have generated serious

doubts about the successful deployment of these vehicles in

the commercial arena due to the possibility of life-threatening

consequences in presence of malfunctions in the electrical

and electronic sub-systems. To ensure reliable and dependable

operation of autonomous systems, robust cross-layer (digital,

mixed-signal and control) error resilience methods need to

be developed that deliver ultra-high levels of dependability

(equal to safety/dependability of aircraft and space travel),

on a per-system basis to thousands of autonomous systems

for the technology to ever become commercially successful

on a massive scale. The primary objective of this research is

to address the trustworthiness of these systems by proposing

a real-time cross-layer control adaptation where an error-

checking scheme detects performance deviations due to varied

failure mechanisms and extracts key diagnostics about the

root-cause of underlying failures to update the control law for

satisfying the system objective with high coverage and low

cost.

The idea of implementing failure tolerance through check-

sums was the fundamental concept behind algorithm-based

fault tolerance (ABFT) [5; 6] and further used for error

resilience in complex signal processing algorithms [7] and

linear state variable systems [8; 9]. While error detection

could be performed with low overhead in [8], error correc-

tion incurred large overheads both in area and time using

the proposed algorithms. To resolve this, probabilistic and

guided error compensation schemes were proposed in [10–13].

The present research employs similar encoding techniques in

control systems and propose real-time error resilience tech-

niques for online detection and correction of faults in systems

operating under arbitrary failure mechanisms. Here, the errors

are detected in the stage where the errors has happened and

the control law has been adjusted to correct the error quickly

in the next stage.

In this paper, we briefly describe the proposed methodology

of real-time cross-layer control adaptation in Section II. The

error resilience is demonstrated on three different test cases in

Sections III, IV and V. Finally we conclude in Section VI.

II. PROPOSED METHODOLOGY: REAL-TIME CROSS-LAYER

CONTROL ADAPTATION

The proposed methodology is applicable to any nonlinear

real-time dynamical system that is represented by the state-

space equations:

ẋ = f(t,x,u)

y = h(t,x,u)
(1)

where, x ∈ R
n is the state variable, u ∈ R

m and y ∈ R
q

are the inputs and outputs of the system and ẋ = dx
dt . The ap-

propriate control input u is computed by the designed control
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law from the user input r and output y. The core contribution

of the proposed research is demonstrated in Figure 1.

Fig. 1. Overview of real-time control adaptation methodology

The real-time checking methodology encodes the system

dynamics and creates a single error signal e from the inputs

r, u and y. In case of linear systems, the system in 1

simplifies to ẋ = Ax + Bu where A and B are system

and input matrices. A single checksum e is computed by

encoding the matrices A and B through a coding vector as

discussed in [14; 15]. In contrast, for nonlinear systems, the

error e is computed through nonlinear mapping functions that

encode the system dynamics f(.) and h(.) as described in

[16]. The error e stays within a pre-computed threshold while

the system operates in a fault-free manner. In presence of

faults (parametric failures, soft errors, computational mistakes,

mixed-signal system degradation or environmental anomalies),

the error e crosses the threshold, indicating the presence of

errors.

It has been demonstrated for both linear [15] and nonlinear

[17] systems that the transient waveform of error e contains

diagnostic information about the underlying cause of failures

and has strong correlation with the parameters of the optimal

control strategy. The control adaptation protocol shown in

Figure 1 is trained in pre-deployment stage to predict the

optimal control parameters from the transient error waveform

through diagnostic analysis of the root cause of the failure

mechanisms. In the post-deployment stage, the trained control

adaptation protocol is invoked in the digital controller stage

in presence of faults when the error e crosses the threshold

and the nominal control law is modified to satisfy the system

objective in real-time with low latency.

III. TEST-CASE I: REAL TIME DIAGNOSIS AND

CORRECTION IN DC MOTOR

In this research, the real-time error detection and correction

is demonstrated on a DC motor. The faults injected in the

system are multi-parameter perturbations in coefficient of

armature reactance La, moment of inertia J , torque constant

Ke, and armature resistance Ra. Injection of faults generates

a non-zero checksum error signal e(t) indicating the presence

of failure modes in the system.

Pre-deployment training: In the pre-deployment phase, 400

parameter-perturbed DC motor systems were created in MAT-

LAB simulation framework. The checksum error signals for

each of the systems were sampled at 100 samples per second.

200 system instances were selected in random to train a

Multivariate Adaptive Regression Spline (MARS) model with

the perturbed parameter set as target output. After training, a

MARS model was obtained with 14 basis functions.

Fig. 2. Estimated vs Actual parameter of DC motor with control

The trained model is tested for validation by the remaining

200 system instances. The strong correlation between the

actual and estimated values of the different parameters are

shown in Figure 2, thus demonstrating that the error e contains
crucial information about the failure modes. Next, a neural

network model is trained with the error signal e(t) and the

corresponding input stimulus as inputs and the different plant

parameters as target outputs. The simulation data from 128

systems along with a nominal PID controller designed to

satisfy certain specifications such as % overshoot of 5% and

rise time of 100 μs, are used to train the neural network.

Post-deployment control adaptation: In this test-case two

checksums are implemented - esystem(t) that is used to detect

errors and trigger error correction and eplant(t) that is used

to estimate system parameters. The transient waveforms of

system output ω (angular velocity of motor), eplant(t) and

esystem(t) for a fault-injected system are shown in Figure

3. Around 10 ms, esystem(t) crosses the detection threshold

indicating performance deviations. The input and eplant(t) are
recorded from 10 ms to 12.5 ms and system parameters are

predicted from pre-trained neural network model. Using these

parameters as starting conditions, a Levenberg-Marquardt op-

timization algorithm improves the accuracy of the estimated

parameters by 15 ms. The PID controller parameters and the

checksum esystem(t) are updated, thus restoring the system

specifications of overshoot from 1.1% to 3.1% and rise time

of 102 μs to 99.6 μs.
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Fig. 3. Estimated vs Actual parameter of DC motor with control

IV. TEST-CASE II: KALMAN FILTER

Kalman filter is typically used to predict the entire statistics

(mean and covariance) of system states from noisy measure-

ments of a limited subset of the system states. The exertion of

optimal control depends on the accuracy of the predicted state

values. The goal of this research is to detect errors in any un-

derlying arithmetic computation (e.g. addition/multiplication)

involved in the operation of the Kalman filter and to correct

the errors in real-time.

Error detection: For error detection, two separate linear

encodings are developed - the state and covariance checks.

These checks are designed to ensure the correctness of the

update operation of the state and covariance functions in the

Kalman filter algorithm. With concurrent execution of these

two check states, errors in all the arithmetic computations of

the Kalman filter are detected with high coverage and low

cost.

Fig. 4. Deviation in trajectory due to bit error

Error correction: On error detection, the system states are

restored from the last known error-free time step of operation

and all control/filtering operations are continured as normally

performed. This method is capable of correcting the errors in

any step of filtering operation that are caused by transient bit-

Fig. 5. Error correction using the checks

flips in the underlying digital processor. The error detection

and correction capabilities in a particle trajectory tracking

problem using Kalman filter is shown in Figures 4 and 5.

V. TEST-CASE III: BRAKE-BY-WIRE SYSTEM

We consider a brake-by-wire (BBW) system as our third

test case. These systems are replacing the mechanical and

hydraulic braking systems in modern automobiles. Details

about the system and dynamics are available in [16; 18].

Pre-deployment training: In this research, a reinforcement

learning algorithm is used for online adaptation of the control

law in presence of failures. The correlation between the

critical system parameters and the transient error waveform

is exploited to choose optimal starting conditions for the

reinforcement learning algorithm to minimize the online adap-

tation time. The nominal control law is implemented with an

actor-critic network [17] with 500 episodic simulations of the

vehicle dynamics along with different applied pedal forces.

The transient error data from 500 systems with degradation

of brake shoes and wheel velocity sensors is used to train a

MARS regression model for predicting the system parameters.

In addition, a PNN classifier is also trained to cluster the 500

systems into different clusters based on learning performance

of the nominal controller and separate reinforcement learning

weights are optimized for each cluster and stored.

Fig. 6. Real-time control law adaptation with diagnostics-assisted reinforce-
ment learning

Post-deployment control adaptation: Figure 6 illustrates the

real-time control law adaptation in a braking situation with

a degraded brake shoe. On initiation of braking at t = 1s,
the wheel angular velocity drops uniformly till t = 1.8s
when a brake shoe degradation of 10% is injected. Due to
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the reduction in applied braking force, the rate of deceleration

reduces indicating potential hazards. From t = 1s to t = 3.2s,
the error signal is recorded and the trained MARS model

estimates the perturbed parameter values from the transient

waveform. The reinforcement learning parameters are updated

according to the stored actor-critic weights from the corre-

sponding cluster to which the predicted parameter set belongs.

It is seen that exploiting the diagnostics-assisted reinforcement

learning partially recovers the braking performance at t = 3.9s
compared to t = 8s for the usual reinforcement learning

algorithm, thus demonstrating that the proposed scheme can

restore system performance under non-catastrophic actuator

degradations with low latency enabling uninterrupted system

operation.

VI. CONCLUSION

In this paper, a cross-layer adaptation for linear and non-

linear systems is presented. The effectiveness of the proposed

methodology has been demonstrated through error resilience

results from different linear and nonlinear control systems

where it is shown that system performance is restored in pres-

ence of parametric perturbations and component degradations

with low latency. Simulation data from three different systems

strongly corroborate the efficacy of the proposed technique.

Endeavors in this area will pave the way for future self-healing

autonomous systems.
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