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Abstract. We develop a factorization method to obtain an explicit characterization of a (pos-
sibly nonconvex) Dirichlet scattering object from measurements of time-dependent causal scattered
waves in the far field regime. In particular, we prove that far fields of solutions to the wave equation
due to particularly modified incident waves characterize the obstacle by a range criterion involving
the square root of the time derivative of the corresponding far field operator. Our analysis makes
essential use of a coercivity property of the solution of the Dirichlet initial boundary value problem
for the wave equation in the Laplace domain. This forces us to consider this particular modification
of the far field operator. The latter in fact can be chosen arbitrarily close to the true far field operator
given in terms of physical measurements.

Key words. inverse scattering, factorization method, wave equation
AMS subject classifications. 35J25, 35P25, 35Q60, 35R30

DOI. 10.1137/18M1214809

1. Introduction. Reconstructing the shape of an obstacle from measurements
of time-dependent scattered waves is an important classical inverse scattering prob-
lem with many potential applications such as in nondestructive testing and medical
imaging by ultrasound waves. Commonly used inversion methods, such as Kirchhoff
or travel time migration (see, for instance, [6, 8, 9] and references therein), are usually
based on high frequency or weak scattering approximations. More recently, new fam-
ilies of imaging techniques that avoid these approximations by relying on the use of
multistatic measurements have been proposed (see, for instance, [1, 11, 12, 16, 29, 36]
and references therein). They are commonly referred to as sampling methods. How-
ever, most of these techniques have been developed only in the frequency domain.
One of the prominent members of this family is the so-called factorization method
[27, 29]. The main advantage of this method, as opposed to other sampling techniques,
is that it yields a mathematically rigorous characterization of the scatterer’s shape
in terms of the data. Therefore, in addition to suggesting a fast numerical inversion
algorithm that is justified for noisy data, it also implies a uniqueness result for the
associate inverse problem. Designing a mathematically justified sampling method, in
particular a factorization method, in the time domain is still an open problem. Our
intention here is to provide a theoretical framework that would help in clarifying why
this is a hard problem. Indeed here we prove the factorization method for a (small)
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perturbation of the far field operator that is more conducive to analyzing the problem
using the Laplace transform instead of the Fourier transform. In order to ensure a
symmetric factorization that is a fundamental requirement for the method, we con-
sider waves associated with “conjugated” wave numbers. The latter transforms in the
time domain as a multiplicative factor involving the imaginary part of the frequency.
Hence our result should be seen as a step forward toward the goal of developing a
time domain mathematically justified linear sampling type method.

What is the benefit of developing the factorization method in the time domain?
In fact, linear sampling methods can be formulated at a single frequency, but it is
well-known that to achieve reasonable reconstruction they need multistatic data on a
large spatial aperture. On the other hand, the resolution of reconstructions heavily
depends on the interrogating frequency, and for a discrete set of frequencies (inte-
rior eigenvalues) these methods do not work, which becomes an issue because good
or bad frequencies depend on the unknown scatterer. Using time-domain data can
be a remedy for these issues. In fact preliminary numerical results using the linear
sampling method indicate that using time domain data reduces the spacial aperture
as well as the number of receivers/transmitters without compromising the quality of
the reconstructions [13, 14, 15, 21, 22, 24]. When given time-dependent scattering
data, one might also be tempted to take formal Fourier transforms of the data and
then to apply single frequency reconstruction methods at several frequencies. The
paper [23] shows that this can lead to numerical difficulties for sampling methods. In
addition, superimposing single frequency images does not respect the causality prop-
erty of the fields. Thus the natural way to handle time-domain data is to develop
reconstruction methods in the framework of a time-dependent wave equation. A first
attempt to consider sampling methods (more precisely, the linear sampling method)
in a somewhat different time-dependent setting was made in [15]. Unfortunately, the
method proposed in [15] and subsequently in [22, 24] does not provide a rigorous
mathematical characterization of the obstacle, due to an approximation argument
used in the mathematical justification of the method. (See [12] for the time-harmonic
case.) The characterization provided in the present paper is designed for the far field
full aperture setting as opposed to the near-field (possibly partial aperture) setting
considered in [15]. The far field full aperture setting introduces an additional mathe-
matical structure that allows one to go beyond the results of [15]. Roughly speaking,
since incident and scattered fields are only adjoint if one additionally reverses time, in
the near field setting or partial aperture one loses symmetry, which in turn determines
important factorization properties of the measurement operator. We also mention the
work in [39] as an attempt to develop a factorization method in the time domain for
the Robin problem.

Finally, we would like to mention other works related to inverse problems for waves
in the time domain. Apart from the above-mentioned sampling methods, other tech-
niques for inverse scattering problems, namely, the probe method and the point-source
method [10, 32] as well as the enclosure method [25, 26], also have been extended to
time domain problems. Furthermore, many authors investigated time reversal tech-
niques, partially linked with control theoretic approaches (see, e.g., [5, 7,9, 17, 30, 33,
34, 35]). It is worth noting that many of these results rely on geometric assumptions
for the obstacle, whereas we only suppose that the scatterer is a Lipschitz domain
with connected complement. Of course, the price to pay is that our characterization
requires measurements of the causal wave for all (positive) times.

The outline of the paper is as follows. In the next section, we formulate the direct
and inverse scattering problem for the wave equation with a Dirchlet obstacle and
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define the concept of the far field pattern for causal waves as well as the time domain
far field operator. In section 3, we introduce the time domain retarded Herglotz func-
tion, derive the basic factorization of the far field operator, and define the analytical
framework to study this factorization. The middle operator in the factorization is re-
lated to the solution operator of the initial boundary value problem, which we study
in terms of retarded potentials. Here we recall important results on the properties of
these potentials due to Bamberger and Ha Duong in [4], which are obtained by inter-
mediately using the Laplace transform framework. Section 4 is dedicated to deriving
our main inversion result, which is stated in Theorem 4.5. In particular, we show that
in order to obtain a symmetric factorization, we need to consider the far fields due to
modified incident waves. The latter are the inverse Laplace transform of entire solu-
tions to the Helmholtz equation with complex wave number with negative imaginary
part. The corresponding far fields give rise to a perturbed far field operator, which
assumes a symmetric factorization with coercive middle operator leading to the proof
of the factorization method. The appendix contains some abstract known results from
the literature that we use in our proofs.

The first two authors would like to add the following statement: We dedicate this
paper to the memory of Professor Armin Lechleiter, with whom we started working on
this project in 2017. Professor Armin Lechleiter prematurely passed away in January
2018 at the age of 35. Collaborating with Armin was a most pleasant, memorable
experience and an intellectual challenge. His loss will be strongly felt by all colleagues
and friends who had the privilege to know him personally.

2. Problem setting for Dirichlet obstacles. We consider a Dirichlet scat-
tering object D C R3 that we suppose to be a Lipschitz domain. The obstacle D is
allowed to possess several components; however, the exterior R? \ D of D is assumed
to be connected. Without loss of generality we suppose that D contains the origin.
Wave propagation in R? \ D is described by the wave equation

(2.1) OPu—Au=0 inR*\D xR,

subject to a Dirichlet boundary condition on 0D, and such that u vanishes for ¢t < T.
Here, T € R is a given “initial” time. Given an incident wave u’(z,t) solving the
wave equation in R® x R, and such that the restriction u’|,  vanishes for t <T, the
scattered field is defined as u® := u — u’. This wave field solves the direct scattering
problem (2.1) together with the boundary condition u® = —u® on D and the causality
condition u®(z,t) =0 for ¢t < T.

For causal solutions to the wave equation there exists the notion of an associated
far field. Roughly speaking, the far field describes the behavior of the wave far away
from the scatterer. Due to the time-dependence of the wave, the far field of a scattered
wave depends on a direction £ € S? := {f € R3, || = 1} and on a time variable ¢ € R.
Analysis of the far field of solutions to the wave equation goes back to Friedlander [18,
19]. For instance, in [18] it is shown that a twice continuously differentiable solution
u® to (2.1) satisfies
(2.2) rlggo ruf(ré,r+t) =u>(&t) foré €S*andt € R
for a function u™ : §? x R — R called the far field of u*.

We shall here formally explain the setting of the inverse scattering problem. We
use incident waves in the form of wave fronts,

u'(z,t;0) == 6(t—0 - ),
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where 6 € S? is a given direction. These distributional solutions to the wave equation
then formally satisfy the causality condition with T' < —d, where d := sup,p |z|. We
formally associate a far field u®(&,t;0) to these incident fields. The inverse problem
is to reconstruct the geometry D from the knowledge of u®°(£,t;60) on S? x R x S2.
Central to our method is the far field operator F' defined (at least formally) as

(Fg)(.1) ::// U (€t — to: 0)g(0,10) dOdty for £ € S and ¢ € R
R JS2

and for regular functions g € C§°(S? x R). Using the linearity of the forward problem,
this operator maps densities g to the far field pattern u°° associated to the incident
field

(2.3) vg(x,t) = /R/S2 0(t —to—0-x)g(0,to)d dty = /S2 g(0,t—06 - x)do.

As indicated in the introduction, we shall prove a characterization of the domain D
in terms of a modified far field operator that can be arbitrarily close to the physical
far field operator F'.

3. Retarded potentials and solutions to the wave equation. Our analysis
of direct and inverse time domain scattering problems relies on retarded potentials,
and we would like to recall standard results concerning the retarded single-layer po-
tential. These results give a rigorous solution theory for exterior wave propagation
problems, which will allow us (in the beginning of section 3.3) to rigorously define the
far field operator on smooth functions with compact support.

Let us recall that k(z,t) = §(t—|x|)/4m|x| is the fundamental solution for the wave
equation in three dimensions [38]. Using this fundamental solution we can formally
introduce layer potentials. Define the single-layer potential on 9D by

(SLy) (. ) = / /6 K =3t — )0l to) () diy

_ [ W=D gy for s e R\ OD and tE R

oD 4|z — y|

(3.1)

The corresponding single-layer operator is

V(y,t — |z —yl)
SY)(x,t) = ————=ds for x € 9D and t € R.
(s0)w.t) = [ PEL I au)

The importance of these potentials is obvious from the fact that for a given incident
wave u’(x,t), the scattered wave u® is given by

(3.2) u® = —=SL[S™'(v|,,)] mR*\DxR.

We briefly recall the main theoretical results for the direct scattering problem, based
on Laplace transform techniques [4, 31].

For a Hilbert space X we denote by D(R; X) = C§°(R; X)) smooth and compactly
supported X-valued functions. Further, D’(R; X) are X-valued distributions on the
real line and the corresponding tempered distributions are S’'(R; X). We also set

L'(R;X):={feD(R; X), e f(t) € S'(R; X) for some oy € R}.
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The Laplace transform of f € L'(R; X) is

(3.3) L[f](s) := /OO et f(t) dt, s=w+ioc for o> oy,

— 00
If o = 0, then the Laplace transform coincides with the usual Fourier transform. We
introduce for each m € R the Hilbert spaces

oco+io

HM'R; X) = {f e L/(R; X), /

—oo+io

[sP ILF)(s)I1% ds < 00}

for m € R and o € R, endowed with the norm

oco+io 1/2
@) = ( [ e ds>

—oo+io

/]

and obvious inner product (see, e.g., [4, 38]).

Denote by X* the dual space of X with a duality pairing denoted by (,) X X" We
then clearly see that H_ ™ (R, X*) can be identified with the dual space of H"(R, X)
with respect to the duality pairing

B4)  (f,9) :/ (Llgl(s), LIf1(3) x+ x dSZ/ e 27 g (t), F() x- x dt.

—oo+io —00

oco-+tio

For T' € R we define
H'Ror; X) ={f € H*(R; X),such that f(t) =0 for t < T},
which is a closed subspace of H"(R; X) and
H}'(Ror; X) = {fle>m, f € HY'(R; X)}

endowed with the quotient norm (see, e.g., [37]). For T € R, m > 0 and o > 0, we
have the following inclusions:

HM"(Ror; X) C L2(Ror; X) € Hy™(Ror; X) C€ H™(Rors X).

Moreover, H; ™(Rsp; X*) can be identified with the dual space of H”(Rsp; X) with
respect to the duality pairing defined in (3.4). Now we assume that H is a Hilbert
pivot space in the duality X*, X, i.e., X C H C X* with dense inclusions, and that
the duality pairing coincides with the inner product associated with H. Then we also
have that ~
HI(Rs7; X) C L2(Rop; H) C H™(Ror; X¥)

and the three spaces form a Gelfand triple with a pivot space L2 (Rsr; H).

The following theorem is proved in [4] (see also [38]).

THEOREM 3.1 (Bamberger and Ha Duong [4]). Let m € R, 0 >0, and T € R.

(i) The single-layer operator S is invertible and the inverse

S~1: H™(Rsp; HY2(OD)) — H™ 2(Rsp; HY/2(0D))
is bounded. The single-layer potential
SL: H(Rs7; H-Y/2(0D)) — H 1 (Rop; HY(R?))

s bounded.

(ii) For boundary data h € H?(Rsp; HY2(0D)) there is a unique solution u =
SL(S~'g) in a2 (Ro7; HY(R3\ D)) of the boundary value problem 02u — Au = 0
in(R3\D)xR,u=h ondD xR, andu=0 fort <T.
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3.1. Retarded Herglotz waves. The first step toward a rigorous definition of
the far field operator and its mapping properties is to study the properties of the
incident retarded Herglotz wave functions v, defined in (2.3). We remark that v, is a
regular solution to the wave equation in R® x R, at least for smooth and compactly
supported g. Recall that d = sup,¢p |z].

LEMMA 3.2. Let m € R, | € Ny, and o > 0. Then the mapping g — vy, is
bounded from HTY(R; L3(S?)) into H™(R; HY(D)). If T € R and g(-,t) vanishes for
t <T, then vy(-,t) vanishes in D fort <T —d.

Proof. For smooth and compactly supported g € C§°(R; C°°(S?)), the application
of the Laplace transform and Fubini’s theorem yields that

Llvg|(z, k) = [ exp(ikt) [ ¢(0,t—0-x)dodt
(3.5) /R /S

= /S2 exp(ik 6 - x) /R exp(ikr)g(0,r)drdf = /S2 exp(ik 0 - x)L[g](0, k) dO

for k:=w +io, w € R and fixed ¢ > 0. The product rule shows that

O (kP Llvg) (k) = Bk~ /S exp(ik0 - )Llg) (0, ) 0

+ kP /S2 (i0 - ) exp(ik 0 - ) L][g](0, k) dO + kP /SQ exp(ik 6 - 2)0RL[g) (0, k) df

for 8 € N. Since |exp(ikf-z)| < C(o) for all z € D, 6 € S, and w € R, we conclude
(after differentiating with respect to x) that

1047 Lug) (B) 771

l
< Clo, D) 3P (1 + AP (L[] 1) Eaes) + IORLI)C e ) -

7=0
Due to the definition of H™(R; H'(D)) and the transformation rules, we estimate that

||Ug||%1;"(R;HZ(D)) < CHgH?{ng(Rng(Szr))

for smooth ¢ with compact support. This bound extends by density from
O3 (R; (%) to H™H(R; L2(S2)).

Now, assume that the density g(-,t) vanishes for t <T. Forz € D and t <T —d
we have t—0 - < T for all § € S? and hence g(-,t—6 - x) vanishes on S?. Thus, the
right-hand side of (2.3) implies that vy(x,t) vanishes for x € D and ¢t <T —d. d

Combining the above lemma with the trace theorem from H'(D) into H'/?(0D)
shows that g — v,|,, is also bounded from H™+!(R; L*(S?)) into HI'(R; H'/2(8D)).
In what follows, this mapping is called the Herglotz operator and is denoted by

Hg = vglypyr -

Remark 3.3. If one formally takes a Laplace transform of the retarded Herglotz
wave vy given by (3.5), then one finds at each k = w + ic a Herglotz wave function
in the Laplace domain with density L[g](-, k) and complex wave number k := w + io
(see, e.g., [16] in the case of real wave number).
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3.2. Far fields associated with single-layer potentials. To properly define
the far field operator we need to extend definition (2.2) of far fields associated to
smooth solutions to the wave equation to single-layer potentials with densities that
are not regular in time. To this end, let us consider (causal) solutions to the wave
equation in form of a single-layer potential,

(3.6)

o) = L)@t = | W ds(y) forz € R*\Dandt€R.

LEMMA 3.4. Let ¢y € C*(R;C*>°(9D)) and define v by (3.6). Then

(3.7) lim rv(ré,r+1t) = %/ Y(y,t+€ - y)ds(y) for £ €S* andt € R.
r—00 oD

Proof. For smooth and compactly supported 1 it holds that

r
lim rv(r§,r +t) = lim — ————Y(y,r+t —|rE —y|) ds(y).
M ro(ré,r+6) = lim | e r€ —yl) ds(y)
However, for r > 2d, where d := sup,¢p ||,
‘1 r ‘_ If—y/rl—l‘_ € —y/r]>—1 '
¢ =yl € —y/r| €= y/rl(I€—y/rI+1)
—y/r*> -1
< ‘ggy_/y'/ﬂ <26 —y/rP — 1] <4l¢-yl/r+20y/r]> < C(ly|)/r.
Moreover,
r e — 2 y—lyP* _ f~y+§-y<1_|§_y/r)— ly[?
T+ =yl L+lE—y/rl) r+r&—yl
Hence, |r — |[r§ — y|—¢& - y| < C(ly])/r, which implies (3.7). O

Thus we can consider the far field mapping

1
(33) Rive [ v pas).

Motivated by (2.2), we call u>® = Rt the far field pattern of a retarded single-layer
potential u = SLip. Note that the formal application of the Laplace transform to
R yields simply the time-harmonic far field pattern of a time-harmonic single-layer
potential (see the calculations below (3.9)).

LEMMA 3.5. For m € R, ¢ > 0 the mapping R defined by (3.8) extends to a
bounded operator from H™(R; H=Y/2(dD)) into H™ '(R; L*(S?)). Furthermore, if
Y € H(R; H-'/2(0D)) wanishes for t < T, then Ry vanishes fort < T —d.

Proof. For smooth and compactly supported ¢ € C§°(R; C°°(S?)), the application
of the Laplace transform and Fubini’s theorem yields that

(3.9 L[RY](k) = /Rexp(ikt) - P(x,t40 - x) ds(z) dt

= /aD exp(—ik 6 - x) / exp(ikr)v(z,r) drds(x)

R

_ / exp(—ik 0 - 2) L[] (x, k) ds(z)
oD
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for k :=w+1io, w € R, and ¢ > 0. Then the estimate

/ exp(—ik 0 - x) L[] (z, k) ds,
oD

< CO)IKIILYIC Bl r-120p)

implies the results. ]

The operator R (multiplied by 47) is the formal adjoint of H for the inner product
of L?(R; L?(S?)), since

o) [ [rgvataso) = [ [ [ o000 ot st dras
:/Sz/Rg(H,r)/aDz/J(y,r+9~y)d5(y)drd9:47T/SZ/Rngdtd0

for smooth functions ¥ and g with compact support in time.

3.3. Factorization and mapping properties of the far field operator.
Consider a smooth density g € C§°(R; C*°(S?)) and let v, be the associated Herglotz
wave. The scattered field corresponding to the incident field vy, known to exist by
Theorem 3.1, is u® = —SL(¢)), where ¢ := S™(vg4|sp). Following Lemma 3.4, we
define the far field 4> associated with u® as u®® = —Rt. The far field operator F is
then defined to map ¢ to u™, that is, F' : g — u®°. It is immediately clear that the
far field operator can be factorized as

(3.10)

1
(3.11) Fg:=—RS 'Hyg EH*S_IHQ

at least for smooth densities g € C§°(R; C>°(S?)). We set
(3.12) G:= RS,

which in fact is the operator that maps h + oo, Where u is the far field of the
unique causal solution to the boundary value problem 92u — Au = 0 in (R3\ D) x R,
u=~hondD xR, and u =0 for ¢t <T. Thus we can write

(3.13) Fg=—-GHg.

PROPOSITION 3.6. The far field operator F is well-defined and bounded from
H™2(R; L2(S?)) into H™2(R; L?(S?)) for m € R, 0 > 0. In addition, let T € R.
Then the truncated far field operator F™ : g — Fgl;>. defines a bounded map from
H?2(Rs,; L2(S?)) into H™2(Rs,; L2(S?)).

Proof. Thanks to Lemma 3.2, Theorem 3.1, and Lemma 3.5, we know that
#H is bounded from H'(R; L*(S?)) into H™ ' (R; H'/2(0D)), that S~! is bounded
from H™(R; HY/2(0D)) into H? 2(R; H-Y/2(9D)), and that R is bounded from
H™(R; H='/2(0D)) into H?~'(R; L?(S?)), respectively. Now, the mapping prop-
erties of F™ are an immediate consequence of the definitions of H™2(R~,; L*(S?))
and H™2(Rs,; L*(S?)). o

As part of the above proof, we also have the following mapping properties con-
cerning the solution-to-far field operator G.

PROPOSITION 3.7. The solution-to-far field operator G is well-defined and bounded
from H™R; H'/2(0D)) into H?3(R; L*(S?)) for m € R, o > 0.
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4. The perturbed far field operator. For reasons that will become clear later
in our analysis, we need to consider a perturbed form of the far field operator. To
this end, we consider the modified Herglotz operator given by

Ho 1 g = vy laDxR,

where
vy (7,t) 1= / g(0,t —0-2)e* @) qg.
s2

Note that vg is the time convolution of 6(t — 6 - 2)e??%) with density ¢(6,t). Fol-
lowing the proof of Lemma 3.2 for fixed o > 0, we have that H, : H™(R; L?(S?)) —
H™ Y(R; H'/?(8D)). In terms of the operator H,, and the solution operator G' given
by (3.12), we now define the perturbed far field operator F, : H™"%(R; L*(S?)) —
H—*(R; L*(S)) by

(4.1) Fpg = —GHog.

If we let uS°(&,t;6) be the far field of the unique causal solution to the boundary
value problem 0?u — Au = 0in (R*\ D) x R, u = —u’ |[spxr on D x R, and u = 0
for t < T, where ul (x,t;6) := 6(t — 0 - 2)e??(?"*) 9 € S?, then for smooth densities g
with compact support, the far field operator can formally be written as

(42) (Frg)(@t) = [ [ (et = tos6)g(6.t0) dbit,
RJS
We remark that the Laplace transform of this “incident field” is
L, 10)](6, ) = eFF00) = gilomio)0),

where k = w +i0, w € R, ¢ > 0, and § € S?. Hence L[ul(x,t;0)](0,k) is an
entire solution of the Helmholtz equation Av + (w — ic)?v = 0. On the other hand
the Laplace transform of the corresponding scattered field L[uZ](-, k; ) is a radiating
solution to the Helmholtz equation Av + (w + io)?v = 0 with the far field pattern
given by L[u*](&, k;0) for £ € S?. In the same way as for real wave numbers, it is
also possible for k = w + io, 0 > 0, to define the far field pattern of radiating fields
and to show that vanishing far fields imply vanishing scattered fields. In this case the
radial part in the corresponding asymptotic expansion is an exponentially decaying
function. We refer the reader to [40] for the concept of the far field pattern and a
proof of the Rellich’s lemma for the Helmholtz equation with complex wave number
k = w +io for ¢ > 0. The Laplace transform of the perturbed far field operator then
reads

L[Fog)(&, k) = . L[g)(0, k) Llug")(€; k: 0) dO.

The operator F, will play the role of the data operator in our analysis. As o — 0, we
have that F,g approaches Fg for smooth compactly supported g due to the fact that
u>® approaches u>. Indeed this convergence can be shown to hold in the operator
norm, but to carry out a rigorous analysis, one must introduce time-dependent Sobolev

spaces independent of ¢ in terms of the Fourier transform.
THEOREM 4.1. Let 0 > 0 and let ﬁg .= —4nw (04 F, — 20F,). Then

F, : H?(R; L*(S?)) — H;%/%(R; L*(S?))

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/19 to 165.230.224.162. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

FACTORIZATION METHOD FOR WAVE EQUATION 863

and the following factorization holds
Fy =M (9(S7Y) — 20871 Ho,

where 1+ Hy **(R; H-Y/2(0D)) — Hy**(R; L(S?)) is the dual operator of Ho,
HY*(R; L2(S?)) — HY*(R; HY2(0D)) in the L2-duality product defined in (3.4) and
is given by

(4.3) Ho(6,1) = dnRu(E.1) = /6 D) ds().

Proof. First we note that the mapping properties of the indicated operators are
obtained from the above with the choice of m = 5/2. From the definition of the oper-
ator R and the factorization (3.12) it is clear that 9,G = R9;(S~1). The factorization
of F, is then a direct consequence of the definition (4.1) and (3.12). To complete
the proof we only need to verify (4.3). To this end, consider g € C§°(R, L*(S?)) and
Y € C§°(R,H~/2(dD)).

(44) (Hogaw)L?’(R’szu(aD)) :/BD/Re_zot(Hgg)wdtdS(y)

= /S? /R/[)Dg(e’t_e . y)e_QU(t—G-y)w(y’t) ds(y) dtdo

= 47T/R/S2 e ?7'g Ry dodt = (9: Ho¥) 12 m,r2(s2)) - O

Our range test in the following involves the dual the operator F* : oY? (R; L?(S?))
— H;5/2(R; L2(S?)) of F, in the L2-duality product defined in (3.4). To obtain the
explicit expression of F; we first formally compute F}. To this end, for smooth
compactly supported g, h we have

Fgh /S/ “271(F,)(€,) - (€, 1) dt d

/§,2 / o ( /S / —t0;0)g (H,to)dﬁdto> (€, t) dé dt
:/R/Szg(é),to)efzoto </82/Re2a(tt0)ug°(§,tto;ﬂ)h(g,t)dfdt> a6 dto.

If we let
(4.5) ur>(£,t,0) = e*Q”ugo(O,t;f),

then F takes the form of the following time-convolution integral operator:

(F2h)(E,1) : //S (€, to — 1 0)h(0, to) dto do.

Note that u>°(&,t;6) is not a far field pattern of any physical solutions to the wave
equation, and hence the dual F is not a far field operator. Now using a denseness

argument and definition F* = [(9; — 20)F,]", we obtain that F* : HE/Z(R; L3(S?)) —
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H;**(R; L2(S?)) is given by

(4.6) (ﬁjhﬂ@t)::A;éQ&ufﬂfJo—ueﬂm&aﬁdmd&

Central to the justification of the factorization method is the following coercivity
property that forced us to introduce the modified far field operator in the first place.

LEMMA 4.2. Leto >0 andT € R or T = —oc. Define T := (0,(S™') — 2057") :

Hg/Q(R>T;H1/2(aD)) — H;g/Q(R>T;H_1/2(6D)). Then T satisfies the following
coercivity property:

(T, ) > C(U)Hw”ig(R;Hl/z(ap)) Vi e Hg/Q(R>T§ Hl/Z(aD))»

where (-,-) denotes the L2-duality product defined in (3.4) with X = HY?(0D) and
C(0) > 0 such that C(c) — 0 as o — 0.

Proof. The result is a direct consequence of [4, Propositions 2 and 4], which state
that

(47) —/Rexp(—Qot) 8DS_1(w)8twdxdtZC(O’)||¢”%§(R;H1/2(8D))

for all 1 € C°(R; H'/2(0D)). Integrating by part in time then using a density
argument yields

(4.8) / exp(—20t) 3 (S™1p) —20(S™ ) Y dadt > C(U)“¢||i§(R;H1/2(6D))
R oD

for all v € HY*(R; HY/2(OD)). 0

A corollary of this lemma and Theorem 4.1 is that
(4.9) Fy,=H:TH,
and satisfies the following coercivity property:
(4.10) <ﬁagvg> 2 C(U)||Hag||ig(R;H1/2(aD)) Vg € Hgﬂ(R; L*(8%)),

where (-, -) denotes here the L2-duality product defined in (3.4) with X = L?(S?).
We now need to deal with the causality property of the fields. To this end, let
7 > 0 be a fixed parameter and introduce the truncated far field operator

Fg fg F,,g|t2¢.
Then F7 : HY*(Rs,; L2(S?)) = Hy **(Ror; L2(S?)) and
(4.11) <F;9ag> > C(U)||H<79H2L3(R;H1/2(6D)) Vg € Hg/z(R>r§L2(Sz))~

Now let (F7)* : Hg/2(R>T; L%(S?%)) — H;5/2(]R>T; L?(S?)) be the adjoint of F7 with
respect to the LZ-duality product, which is a composition of F¥ given by (4.6) with the

zero-extension operator in "/ 2(R>T; L?(S?)). The coercivity property (4.11) shows
that the symmetric operator

FI 4+ (FD)* - HY?(Ror; LA(S?)) — H*?(Rsr; LA(S?))
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is positive. Furthermore, applying Lemma A.3 with X = H3/2(R>T;L2(Sz)) and
H = L2(R+,; L?(S?)) we deduce that

(4.12) Re Fy = F] + (F7)" = (QF) QR

for some operator Q7 : Hy*(Rs,; L2(S?)) — L2(Rs,; L2(S?)).

Next let us denote by H7 the restriction of Hy to Ho'*(Rs,; L2(S?)). Following
the proof of Lemma 3.2 we can view the restricted Herglotz operator as a bounded
operator between the following spaces:

HT - HY2(Rsr; L2(S?)) — HY2(Ro,_g; HY/2(OD)).
We then view the operator T as
T : H¥*(Rsor_g; HY2(8D)) — H;3/*(Rs,_q; H-Y2(0D)).
We also have
(4.13) FT = (HD)"THL,

where
(H3)* ) i= A7 Rl 5.

Indeed from Lemma 4.2
(T,) > C(U)||1/’||ig(R;H1/z(aD)) Vo € HY?(Rs,_q; H'/?(0D)).

Applying Lemma A.3 with X = Ho/?(Rs,_q; L%(S?)) and H = L2(Rs,_q; L2(0D))
we deduce that

(4.14) T+T =Q5Qr

for some operator Q : Ha'*(Rs,_g; HY/2(0D)) = L2(Rs,_g; L2(0D)). Here again,
the operator 7* is the dual of 7 with respect to the L2(R; L?(0D)) duality product.
We then obtain from (4.12), (4.13), (4.14), and Lemma A.2 that

(4.15) the ranges of (Q%)* and (Q7H:)* coincide.

4.1. A range test for D. We now prove the following important result that
relates the domain D to the range of the operator . This characterization relies on
special test functions. Let x : R — R be a smooth nontrivial function with compact
support in time and choose parameters z € R? in space. We define a family of test
functions ¢$° by

(4.16) X (&, t) = %X(t—i—g - Z) for ¢ € S? and t € R.
77

These test functions are nothing but far fields associated with point sources

t— |z —
(4.17) 0. (z,t) = W for z € R*\ {2} and t € R.
For n € R we define
(4.18) P (e = g€ t—n)  forEeSandtER,
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which is the far field associated with

N )
4.1 L(x,t) =
( 9) @77, (x ) 47T|$ _ Z|

for x € R\ {2} and t € R.

We can prove the following result.
LEMMA 4.3. Let 0 > 0 be a given. The following holds:
L. If z € D and n is such that the support in time of ¢;°, is included in R,
then there exists a 1 € L2 (Rso; H='/2(0D)) such that Hitp = Tk
2. If 2 ¢ D and n € R, then M # 5%, for all ¢ € H, **(R; H-1/?(8D)).
Proof. First we consider the case when z € D. Fix 7 such that the support in time
of 77, is included in R and set ¢ := S‘l(gomszxR). By construction, it holds

that @, . = SL(¢)). Hence, ©°, = R(1)) = (4m)""Hz1p. From the assumption the
support in time of ¢, .|, is necessarily included in Rsq. Therefore ¢, .|, p €

H™(Rs0; H/2(0D)) for any positive m. We obtain in particular from Theorem 3.1
that 1 € L2(Rso; H~'/2(dD)), which proves the first part of the lemma.
Now we consider the case when z ¢ D. Let n € R and assume that 4mpp°, = Hi¢

for some ¢ € H, >/? (R; H-'/2(9D)). Applying the Laplace transform to this equality
implies

(4.20) /E)D exp(—ik & - x)L[](z, k) ds, = e*L[x](k) exp(—ik € - 2), €€ S?

for k ;== w+io, w € R. Set fJJ(m, k) := L[Y](z, k) and denote the single-layer potential
at frequency k = w + io by

exp(ik| - —y|)
op 4ml-—yl

for ¢y € H'/2(dD). 1If equality (4.20) holds, then, using the Rellich lemma for
complex wave numbers [40] and a unique continuation principle, we obtain that

SL(k)¢ = d(y) dy

exp(ik| - —z])
4r| - —z|

SL(k)(- k) = ™1 L[x] (k) in R®\ D.
Indeed the latter cannot hold if L£[x](k) # 0 since the right-hand side does not belong
to HL_(R?\ D) while the left-hand side does. Consequently (4.20) cannot hold for

loc

any k such that L[x](k) # 0. Therefore for every n € R, ¢°, # Hj3 for all ¢ €
H? (R; H='/2(9D)). This proves the second part of the lemma. |

Remark 4.4. Ideally in the second part of Lemma 4.3 we would have liked to
prove the converse of the statement in the first part, that is, for z ¢ D and for 1 such
that the support in time of p°, is included in R>o we have that H7y # ¢p°, for all
(NS H;3/2(R>0;H’1/2(8D)). Unfortunately, we are not able to prove this result;
in other words we cannot guarantee an “if and only if” statement for the restriction
of H} to Ryg. If available, such a result would have simplified the range test in
Theorem 4.5. The weaker statement is proved in part 2 of Lemma 4.3 forces us to
add the supremum condition in the range test.

We are now in position to state and prove the main result of this section. To
this end we recall that (QF)* : L2(Rs,; L2(S?)) — Hy**(Rs,; L2(S?)) is the dual
operator of QF : H2/2(R>T; L?(S?)) — L2(Rs,; L%(S?)) given by (4.12) with respect
to the L2(R; L2(0D)) duality product. Then we can prove the following result.
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THEOREM 4.5. Let 0 > 0 be a given parameter, let z € R3, and assume that
1. € R (fized but z-dependent) is such that the support in time of ©pe 18 included
in Rso. Then for all T <0, ¢° = (QF)*or with or € L2 (R>T,L2(Sg)) such that
Sup,<q llor |2 v, ;22(s2)) < +o0 if and only if z € D.

Proof. First we remark that we have already seen that the range of (QF)*
coincides with the range of (H})*Q%, where we recall that

(Q7)" : Ly (Ror—a; L*(D)) = H,*/*(Ror—a; H~V/?(0D))

is given by (4.14), and (HZ)* : Hy /*(Rs,_q; H-Y2(0D)) — Hy**(Ror; L2(S?)).
We now consider the case when z € D. From the first part of Lemma 4.3, there
exists 1 € L2(Rso; H~Y/2(9D)) such that Hjtp = ©3° .. We observe that the exten-

sion by 0 of ¢ in the time half line R provides a function ¢ € L2 (Rs,; H~/2(dD))
such that (H7)*1 = ¢p° .. Let g € Hg/Z(R>T;L2(S2)) such that <‘P7°;j,zvg> = 1 in the
L2 duality. Then

oo
MooV rrniomy = et (o)
o ||¢HL§(R>0;H—1/2(6D)) ||¢HL3,(R>O;H—1/2(6D))
1

B ||1/}HL§(]R>U;H*1/2(8D)).

Now the inequality (4.11) implies that

<Re F;g,g> > C(o)Hogll72 @emirzopy V9 € Hy*(Rsr; LP(S7)),

and hence since C(o) is independent of 7 € R, we obtain

- 1
4.21 inf inf (ReFJg,9)>Clo >0,
(4.21) TS096X7< > ( )”w”Lg(]Rgo;H*l/?(aD))
where
(4.22) X, {g € HY2Ror; L2(S?)); (9,072 2) = 1}-

Then using Theorem A.1 with F' := Re F‘;, H = Q%, and T := I, we conclude
that ¢p° . is in the range of (QF)* for all 7 € R, ie., ¢y° . = (QF) 0, with o, €
L2 (R>T, 'L2(S?)). Furthermore, reasoning in the same way as above (see also the proof
of the first part of Theorem A.l) we obtain for each 7 € R and g € X,

(ReFZg.g) = |QRgl™

On the other hand
1

lorllz2 ®s.22s2))

(0r,QF9) =

1QFgll >
lorllrz s, :L2(s2))

with the equality holding for g and ¢;? . linearly dependent. Thus

1

inf <Re}5;g7g>: 5 .
9EXr lerllZz @ ,5z2s2))

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/19 to 165.230.224.162. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

868 F. CAKONI, H. HADDAR, AND A. LECHLEITER

But since from (4.21) the infimum over 7 < 0 of the left-hand side is positive, then

sup ||QT||L3(]R>T;L2(S2)) < 400.
7<0

Next consider the case when z ¢ D. Assume that for each 7 <0, pp° . = (H7)*¢¥,
Fr—3/2 -
for some ¢, € Hy **(Ro,_q; H-Y/2(8D)) and sup, <o 1Urll g=sr2 . ,.ir-1/2(0py) <

+00. The latter implies the existence of ¥ € H, >/*(R;H~Y/2(dD)) such that
(Ho)* = ©5- - this is not possible because it contradicts the second part of Lemma
4.3. Let us show that under the above assumption such a 1 exists: We denote by
U, € H;3/2(]R; H~'/2(0D)) an extension of 9, satisfying

||¢THH;3/2(R;H_1/2(8D)) < Hsz||H;3/2(R>T,d;H—1/2(6D)) + 1/|7—|

Then sup, ||1/~)T||H;3/2(R;H,1/2(8D)) < 400 and therefore (since the space is Hilbert)

there exists ¢ € H? (R; H~/2(dD)) such that (up to a subsequence) 1, weakly

converges to ¥ in H;g/Q(R; H~'2(dD)). Now, for a compactly supported function
smooth ¢, we have that

(93220 0) = (M) Yr ) = (s (HD) ) = (B, Hotp)

where we assume @(t,z) = 0 for ¢t < 79 — d for small enough 79 < 0 and (,-) is the
L2-duality. Now letting 7 — —oo in the above we have that

(6 2r0) = (Wr, Hop) = (Hit, )

and by a denseness argument this holds for all ¢ € HY?(R; H/2(9D)) implying that
(HU)*w = 90?]2,,2'

Therefore the following two possibilities can happen: (1) either there is a 79 € R
for which ¢7° _ is not in the range of (H7°)* or (2) for all 7 € R, ;¢ _ is in the range of
(H7)* but sup, ||¢T||H;3/2(R>T_d;H*1/2(8D)) = +00. In the case (1) there is nothing
to prove since it means that there exists 7o € R such that ¢p° . is not in the range
of (QF)*. In the case (2), for each fixed 7 € R we have that (;° , is in the range of
(QF)*, ie., o . = (QF)*or with o € L2(Rs,; L*(S?)). Exactly in the same way as
in the proof of the first part we have that for every 7 € R

- 1
(4.23) inf <Re Fg, g> = ;
9eX~+ HQTH%;(R>,;L2(S2))

where X, is defined by (4.22).

On the other hand, again applying the inf-criterion, i.e., Theorem A.1, to the
factorization F7 = (H7)*TH. and using the coercivity property of the operator 7~
with coercivity constant independent of 7 and the fact that

ii% ”wT||1§{;3/2(R>T,d;H*1/2(8D)) = +00

we have that y
'f'f<RFT,>:O,
r<0gex, \ < redd
which together with (4.23) implies that sup,<q ||or||L2 (., ;z2(s?)) = +00. This ends
the proof of the theorem. ]
We conclude with the following remarks addressing the challenging task of letting
o — 0 as well as a possible numerical implementation of our range test.
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4.2. Conclusions. The rigorous range test for determining D is proved for the
operator I, which is not available from the measured data. As already explained, this
is because F, involves the far field of the scattered fields due to nonphysical incident
waves ul (z,t;0) := 5(t — 0 - 2)e2?®®) which aren’t solutions to the wave equations
(their Laplace transform solves the Helmholtz equation Av + (w — io)?v = 0), but
approach the physical wave fronts ul (z,t;60) := §(t — - z) as ¢ — 0. Therefore in
the limiting case of ¢ — 0, as mentioned earlier one can easily see that, at least
formally, F, approaches the physical far field operator F'. However, it is impossible
in our analysis to let ¢ — 0 because the fundamental coercivity property in Lemma
4.2 does not hold for o = 0 due to the fact that the coercivity constant C(c) — 0.
Nevertheless, when implementing the range test of Theorem 4.5, it is reasonable to
check if ¢ _ is in the range of the square root of the operator 0, F'" + (0, F')*, where
F'7 is the restriction of F' to causal functions which are zero in (—oo, 7) for fixed 7 < 0
small enough.

Concluding, despite the significant step forward that our analysis makes toward
a mathematically rigorous characterization of the support D in terms of time domain
data, this question is still not completely resolved. It is highly desirable to investigate
convergence of the range test as ¢ — 0. The generalized linear sampling method
developed in the frequency domain in [1, 2] (see also [12]) could provide a mathematical
framework for such convergence, but unfortunately at this time we are not able to
resolve it. An acceptable approach, especially from a computational point of view,
could be to find a computable way to approximate the perturbed far field operator
F, from the physical far field operator F, in a similar way as is being done for the
justification of the factorization method in the frequency domain with near field data
[20] or limited aperture data [3].

Appendix A. Auxiliary abstract results. We state and prove here some
abstract results we have used in the paper. We start with a range characterization
result known as inf-criterion proved in [12, 29]. To this end, let X and Y be two
(complex) reflexive Banach spaces with duals X* and Y*, respectively, and denote
by (,) a duality product that refers to (X*, X) or (Y*,Y) duality. We consider three
bounded operators F': X - X*, H: X —Y,and T :Y — Y™ such that

F=H'TH.

We then have the following range characterization theorem.

THEOREM A.l. Assume that there exists a constant o > 0 such that
(A1) (T, o)l = allelly Ve € R(H).
Then one has the following characterization of the range of H*:
{Y* € R(H*) and ¥* # 0} if and only if inf{|(Fy,v)|,v € X, (¥*,¢) =1} > 0.
Proof. We first observe that
(FY, )| = [(HTHY, )| = KTHY, H)l .
Hence,

(A-2) a Hy|lY < [(Fy, )| < |TIIHYIF vy € X.
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Let ¢* € R(H*) and 9* # 0. Then ¢* = H*(p*) for some p* € Y* and ¢* # 0. Let
1 € X be such that (¢*,¢) = 1. Then

1 *
[HYly = s——1H Yy [[*[ly-
ll*[ly-
> *;GP*»HW = 1= > 0
ll*[ly- oy

We then deduce, using the first inequality in (A.2), that

nf{[(Fy, )|, ¢ € X, (", ¢) =1} > > 0.

e
lo* 13-
Now assume that ¢* ¢ R(H*) and let us show that

inf{|(F,¥)|,¢ € X, (¥*,¢) =1} = 0.
From the second inequality in (A.2) it is sufficient to prove the existence of a sequence
¥y, € X such that (¢*,¢,) =1 and |[H,|ly — 0 as n — oco. Since * # 0 and X
is reflexive, there exists 1[) € X such that <7,ZJ*, @ZAJ> = 1. Setting @Zn = 1[1 — Yy, We see

that it is sufficient to show the existence of a sequence 1[1,1 € X such that
(A.3) <¢¢n> —0 and Hy, — Hiin Y.

Set V.= {y € X; (¢*,¢) =0} = {¢p*}* (where the orthogonality is to be understood
in the sense of the X*, X duality product). Since Hi € R(H), in order to prove (A.3)
it is sufficient to prove that H(V) is dense in R(H) and for the latter it is sufficient
to prove (since Y is reflexive) that H(V)* = R(H)* (where the orthogonality is to
be understood in the sense of the Y*, Y duality product). But this equality follows
from

©* € HV)* if and only if H*¢* € V+ = Vect{y*},
and hence H*p* = 0 (since ¥* ¢ R(H*)) meaning ¢* € Kern(H*) = R(H)* . 0

As a corollary we also have the following well-known result on range identities
(see also [28]).

LEMMA A.2. Let X, Hy, and Hy be separable Hilbert spaces. Assume that Q1 :
X — Hy and Q2 : X — Ha are bounded operators with adjoints Q7 5 : H12 — X,
defined by

(Quou, vig)m, , = (U, Q1 ov12)xxx+ Yu € X and vy € Hy .

If Q1Q1 = Q3Q2, then the ranges of the adjoints QF and Q% coincide in X*.

We also use the following abstract result on the square root of symmetric positive
operators.

LEMMA A.3. Let X C H C X* be a Gelfand triple with separable Hilbert spaces
H and X and assume that T is a bounded, self-adjoint, and positive operator from X
into X*. Then there exists a bounded operator @ : X — H such that T = Q*Q.

Proof. Let us introduce an isometric Hilbert space isomorphism J from H onto
X. (Note that both spaces are separable and hence such an isomorphism exists.) The
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adjoint J* is then an isometry from X* onto H. Consequently, J*oT oJ is a bounded
symmetric and nonnegative operator on H,

(JN(T(Tp), oy = (T(Jp)), Je)m >0,

for all ¢ € H. From Theorem 12.32 in [37] we know that a bounded, self-adjoint,
and positive operator on a Hilbert space possesses a unique bounded and self-adjoint

square root Qg. Let us define Q = QoJ !, which is a bounded operator from X into
H. Then T = Q*Q. 0
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