Biogenic and synthetic MnO₂ nanoparticles: size and growth probed with absorption and Raman spectroscopies and dynamic light scattering

Alexandra V. Soldatova,[†] Gurusamy Balakrishnan,^{†,^} Oyeyemi F. Oyerinde,^{†,#} Christine A. Romano,^{§,}

Bradley M. Tebo,[§] and Thomas G. Spiro*,[†]

[†]Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States

§Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, Oregon 97239, United States

*Corresponding Author: spiro@chem.washington.edu

ABSTRACT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

MnO₂ nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulphate reduction of permanganate, their sizes controlled with adsorbates acting as capping agents: bicarbonate, phosphate, and pyrophosphate. Biogenic colloids, products of the manganese oxidase, Mnx, were similarly characterized. The bandgap energies of the colloids were found to increase with decreasing hydrodynamic diameter, D_h, and were proportional to 1/D_h², as predicted from quantum confinement theory. The intensity ratio of the two prominent Mn–O stretching Raman bands also varied with particle size, consistent with the ratio of edge to bulk Mn atoms. Reactivity of the synthetic colloids toward reduction by Mn²⁺, in the presence of pyrophosphate to trap the Mn³⁺ product, was proportional to the surface to volume ratio, but showed surprising complexity. There was also a remnant unreactive fraction, likely attributable to Mn(III)-induced surface passivation. The bandgap was similar for biogenic and synthetic colloids of similar size, but decreased when the enzyme solution contained pyrophosphate, which traps the intermediate Mn(III) and slows MnO₂ growth. The bandgap/size correlation was used to analyze the growth of the enzymatically produced MnO₂ oxides.

INTRODUCTION

Redox cycling of manganese is a key geochemical process in the environment.¹ Under aerobic conditions, Mn(IV) is the stable form and, in nature, occurs in a variety of Mn oxide minerals, which are typically composed of Mn(IV) with small amounts of Mn(III). Such Mn(III,IV) oxides are ubiquitous in soils and sediments.² In the absence of oxygen, anaerobic bacteria are capable of using MnO₂ as an electron sink to support their metabolism,³⁻⁷ producing

aquo-Mn²⁺, which is stable. Mn(II) can be oxidized to insoluble Mn(III,IV) oxides through both abiotic and biotic processes in the environment. However, abiotic manganese oxidation is much slower than biological oxidation, which is carried out by a variety of different bacteria and fungi.⁸⁻¹⁸ Some bacteria oxidize Mn(II) indirectly through the production of superoxide radical (O₂), which oxidizes Mn(II) to Mn(III), subsequently forming MnO₂ by an as yet unknown mechanism. 19-22 Other bacteria use peroxides to oxidize Mn(II) via calcium-binding animal heme peroxidases (AHP), ^{23,24} but many others utilize O₂ directly via multicopper oxidases (MCOs). 25,26 Microbial oxidation of Mn²⁺ is the likely origin of most MnO₂ in the environment. 14 Consequently, the mechanisms of biogenic MnO₂ formation and maturation are of considerable interest. Previous studies have involved whole organisms or fragments that support the reaction, and interpretation has been uncertain because of the complexity of the molecular interactions in these systems. Isolation of the responsible enzymes has proven difficult, although genomic analyses implicate MCOs in a number of bacteria. 25-33 One of these, MnxG, has now been expressed recombinantly, together with accessory proteins MnxE and MnxF as a multimeric complex.^{34,35} The mechanism of this enzyme has been shown to exploit the polynuclear chemistry of manganese, in the oxidation states II, III, and IV, in order to overcome barriers to electron transfer, and to nucleate MnO₂ nanoparticles. ^{36,37} Biogenic MnO₂, similar to birnessite-like minerals—layered manganese oxides prevalent

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Biogenic MnO₂, similar to birnessite-like minerals—layered manganese oxides prevalent in nature—is nanoparticulate (20–100 nm) and contains thin (3–5 nm) stacks of sheets composed of edge-sharing MnO₆ octahedra, albeit with many Mn vacancies. ^{17,38-44} Upon ageing, these particles undergo structural and redox transformation into more crystalline Mn oxides of various mineral phases depending on conditions such as dissolved Mn(II) concentration, pH, temperature and medium: a 10 Å phyllomanganate at low Mn(II) concentrations;⁴¹ feitknechtite at high

Mn(II) concentrations;⁴¹ triclinic birnessite in seawater (high Ca²⁺ concentrations);⁴² and todorokite in uranium-rich solutions.⁴⁵ Other studies have observed evolution of the Mn oxide from poorly crystalline initial products to more crystalline phyllomanganate or triclinic birnessite.^{20,46,47}

Their disordered structure, nanoscale morphology, and high surface area make biogenic MnO₂ nanoparticles particularly reactive toward sorption or oxidation of transition metals and other elements. The high abundance of vacancies and structural defects contributes to their oxidative capacity, giving them the ability to oxidize a variety of organic compounds, including humic substances. Consequently, biogenic oxides are good candidates for clean water technologies for treating organic and inorganic pollutants. Additionally, there is interest in exploiting them as catalysts in photoelectrochemical water splitting and in energy storage systems. As with many metal oxides, the properties and potential applications of MnO₂, including bacterial MnO₂—from water oxidation to toxic metal sequestration—are influenced strongly by the particle size, which, in turn, determines the surface area and the density of highly reactive surface and edge sites. 66-70

In this study, we use UV-visible (UV-vis) absorption spectroscopy, dynamic light scattering (DLS), Raman spectroscopy, and reduction kinetics to characterize synthetic MnO₂ preparations of varying particle size, and compare them with the Mnx-produced MnO₂ nanoparticles. The established database of spectroscopic information from the synthetic analogs can be used to evaluate the mechanism of biogenic manganese oxide growth and predict their potential environmental impact.

METHODS

MnO₂ synthesis. All chemicals were purchased from Sigma-Aldrich and were used without further purification. Solutions were prepared using Milli-Q deionized water. Manganese(II,III) oxide (Mn₃O₄) and manganese(III) oxide (Mn₂O₃) were purchased from Sigma-Aldrich. Solid phase birnessite was synthesized following the McKenzie method, by reduction of boiling KMnO₄ with 2 mole equivalent of concentrated HCl. ⁷¹ MnO₂ colloids were synthesized by the stoichiometric reduction of KMnO₄ with sodium thiosulfate (Na₂S₂O₃), following the method of Perez-Benito. 72,73 0.5 mL of 0.1 M KMnO₄ was added to ~40 mL of water. Under gentle stirring. 0.5 mL of 39 mM Na₂S₂O₃ solution was added dropwise. The reaction proceeded according to the stoichiometry:⁷²

 $8MnO_4^- + 3S_2O_3^{2-} + 2H^+ \rightarrow 8MnO_2 + 6SO_4^{2-} + H_2O.$

Color change from purple to deep dark-brown was observed, indicating the formation of colloidal MnO₂. Water was added to dilute the solution to 50 mL, giving a final Mn concentration of 1 mM. The capping agents sodium phosphate (Na₃PO₄), sodium bicarbonate (NaHCO₃), or sodium pyrophosphate (Na₄P₂O₇, abbreviated thereafter as PP) were added as 5 mM solutions. The pH values of the resulting samples were 6.8, 7.4 and 7.2, respectively, and was 6.5 in the absence of capping agents. The brown transparent MnO₂ stock solutions were stored in the dark and were found to be stable for several months; no coagulation and settling occurred. Two sets of colloids were synthesized at different times. Both sets were characterized by UV-vis and DLS. One set, denoted as (1), was used to record Raman data. The other set (2) was used for reactivity measurements. The Mn(III) content of the colloids was less than 2.5% of the total Mn, as estimated⁶⁹ by incubation in the dark with 25 mM PP, and measurement of the 254 nm absorbance, characteristic of Mn(III) pyrophosphate complexes ($\varepsilon = 6562 \, \text{M}^{-1} \text{cm}^{-1}$).

For reactivity measurements, MnO₂ colloids were centrifuged at 8000 rpm for 5 min using Amicon Ultra 0.5 mL centrifugal filters (MWCO=30 kDa), then washed with deionized water, and centrifuged again, repeating these steps three times to remove reagents and capping ligands left from the synthesis. These steps did not alter the colloidal nature of MnO₂ preparations, resulting in essentially the same UV-vis absorption spectra (compare the spectrum of MnO₂ prepared without capping ligands in Figure 1A and Figure 5A). Biogenic MnO₂ was prepared using the Mn oxidase complex, Mnx, from Bacillus sp. strain PL-12, expressed and purified as described previously.^{34,74} Mnx enzyme (50 nM Mnx in 10 mM HEPES buffer, pH=7.8) catalyzed oxidation of 1 mM manganese(II) chloride tetrahydrate (MnCl₂·4H₂O) in the presence of 0.5 mM PP, added to stabilize the MnO₂ colloidal product from coagulation and precipitation. To obtain stable colloids of bio-oxides at higher concentrations for Raman studies without pyrophosphate, a higher concentration of Mnx enzyme (~20 μM) was required to catalyze the oxidation reaction. Spectroscopic measurements. UV-vis absorption spectra and reactivity assays (190–1000 nm spectral range) were monitored with an Agilent (Santa Clara, CA, USA) 8453 UV-vis spectrophotometer, using a thermostatable multicell configuration with automated kinetic scan capability and 10 mm path length cuvettes. The samples were stirred continuously with a Spinette magnetic stirrer (Starna Cells, Atascadero, CA, USA). For reactivity measurements, the washed colloids were resuspended in 10 mM sodium phosphate buffer (NaPi), pH=7.8, to yield a concentration of ~50 µM in a 1 mL assay. 400 µM PP was added, and the reaction was initiated by addition of 50 µM manganese sulfate (MnSO₄), see Supporting Information (SI).

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Raman spectra were obtained with excitation between 407–752 nm from an Ar⁺ laser (Stabilite 2017, Spectra-Physics) and a Kr⁺ laser (2080-RS, Spectra-Physics). Scattered light was

collected and focused onto a triple spectrograph (Spex 1877) equipped with a liquid nitrogen-cooled CCD detector (model 7375-0001, Roper Scientific) operating atl10 °C. The laser power measured at the sample was 15 mW. With this power, no photodecomposition or phase transformation of the samples was observed. Spectral acquisition times were typically 10 min. Raman spectra of colloids were obtained via backscattering geometry at room temperature in spinning NMR tubes, while spectra of solid oxides were collected from pressed pellets mounted on a copper multiple sample holder. For normalization of solid samples, the 982 cm⁻¹ band from an MnSO₄ pellet was used as an external standard. Spectra of the standard were collected by a horizontal translation of the sample holder to ensure experimental conditions were unchanged. Spectra were calibrated with dimethyl formamide, and vibrational bands were fit with a mixed Gaussian-Lorentzian line shape using the GRAMS/AI software (version 7.0) from Galactic Industries.

The hydrodynamic particle sizes of MnO_2 colloids were evaluated by DLS with a Zetasizer Nano Series instrument (Malvern Instruments, Westborough, MA, USA), equipped with a He-Ne laser (λ =633 nm) and operated at a scattering angle of 173°. Samples were examined after filtering 1 mM MnO_2 solutions through a 0.2 μ m acetate filter into 1 cm disposable plastic cuvettes. Measurements were carried out at 22°C. A medium viscosity of 0.954 mPa·s and a medium refractive index of 1.330 were set. The real and imaginary parts of the refractive index for MnO_2 were set to 2.4^{75} and 0.01^{76} , respectively. Details of the DLS experiment to measure growth of enzymatically produced MnO_2 are given in the SI.

RESULTS AND DISCUSSION

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

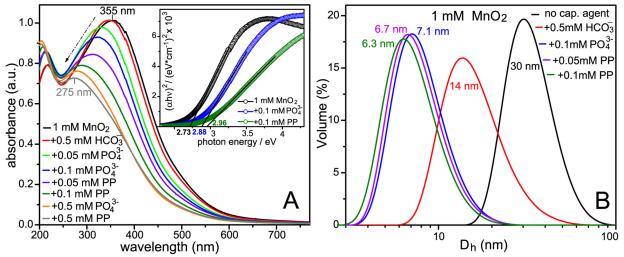
152

153

154

155

156


157

158

1. Synthetic MnO₂ Nanoparticles: Size–Band Gap Energy Correlation.

Stable MnO₂ colloids were prepared by reducing 1 mM KMnO₄ with Na₂S₂O₃. ^{72,73} Consistent with previous reports, 77-80 the MnO₂ colloids have broad UV-vis absorption bands between 250 and 700 nm, and a subsidiary peak at 210 nm (Figure 1A). The bands arise from ligand-to-metal charge transfer (LMCT) transitions, with some Mn-3d haracter: Density Functional Theory (DFT) calculations on MnO₂^{81,82} identified spin-dependent mixing between Mn-3d and O-2p states, though the valence band has a dominant O-2p contribution, while Mn-3d states are dominant in the conduction band. 1.1. Preparation of MnO_2 of different sizes. The main absorption band of MnO_2 shifts to higher energy when anionic adsorbents are present during colloid preparation (Figure 1A, and Figures S1 and S2A). MnO₂ has an isoelectric pH of 2.8, 83,84 so its surface charge is negative at near neutral pH. While the oxyanions are also negatively charged, they are capable of adsorbing via H-bonding to surface hydroxyl groups, 85 capping the particle surface and thereby limiting further growth of the nanoparticles.⁸⁶ The magnitude of the energy shift is in the order bicarbonate<phosphate<pyrophosphate. This is the order of expected adsorption strength: bicarbonate is a weaker base than phosphate, which is in turn weaker than pyrophosphate. The extent of shift also increases with increasing adsorbent concentration, consistent with a previous observation of MnO₂ synthesis in the presence of phosphate. 86 As the shift increases, the absorptivity decreases; its value in the absence of capping agents is 10⁴ M⁻¹cm⁻¹ (Table S1 and Figure S3). These spectroscopic changes are as expected from the quantum confinement effect in nanoparticles, 87-92 and have been noted before for various MnO₂ preparations, 77,86,93-95 though without any systematic quantification. In our MnO2 set, particle sizes, estimated by DLS as

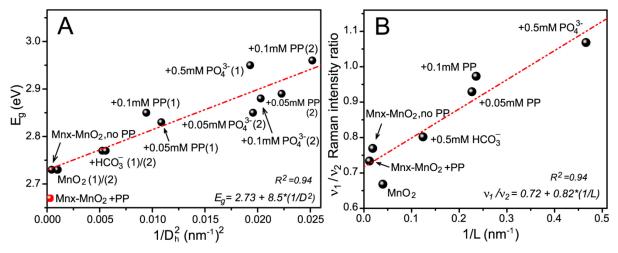
volume profiles of hydrodynamic diameters (Figures 1B and S2B), reveal that the diameters increase with increasing wavelength of the absorption bands (Table S1), consistent with quantum confinement as the determinant of the electronic energy. Because the oxyanion capping agents interact indirectly with MnO₂, via H-bonds, they are unlikely themselves to perturb the electronic energies, and indeed the quantum confinement model adequately describes the size dependence of the spectra (section 1.3).

Figure 1. (A) UV-vis absorption spectra of 1 mM colloidal MnO_2 in water, prepared by reduction of $KMnO_4$ with $Na_2S_2O_3$ at room temperature, with indicated amounts of capping agents: bicarbonate, phosphate, pyrophosphate, or no additive (black line). *Inset*: Estimation of direct band gap energies from Tauc plot analysis for selected colloidal preparations. (B) DLS-measured hydrodynamic diameter of MnO_2 colloids.

1.2. Estimation of MnO_2 band gap energies. The UV-vis absorption spectra were used to estimate optical band gaps, E_g , using Tauc's method, ⁹⁶ in which the absorption coefficient, α , (obtained from $\alpha = 2.3$ A/d, where A is the measured absorbance and d is the path length of the cuvette) is plotted as a function of photon energy, hv, according to:

$$\alpha h v \sim (h v - E_g)^n, \tag{1}$$

where n is the transition coefficient, which takes values $\frac{1}{2}$ or 2, for direct and indirect allowed transitions. Vacancy-free hexagonal birnessite would have an indirect bandgap (the minimum energy of the conduction band and the maximum energy of the valence band occurring at


different values of the electron wavevector).⁸¹ However, defect sites—vacancies and edge sites, which are numerous in all synthetic and natural birnessites investigated experimentally to date—distort the lattice and introduce a direct band gap, leading to more efficient light absorption.^{81,97} Colloids are rich in defects, and the large molar absorptivity ($\sim 10^4$) is consistent with a direct bandgap. We therefore used $n=\frac{1}{2}$ in the Tauc plots. The graph $(\alpha h v)^2$ *versus* the photon energy has a linear region, which can be extrapolated to the abscissa to yield the bandgap energy (Figure 1A, *inset*). (The deviation from linearity at energies below the band gap, termed the "Urbach Tail", is due to localized states from material defects.⁹⁸) The energies obtained this way are collected in Table S1. We also explored simpler ways to derive band gap energies from the UV-vis absorption spectra (Figure S4), and found that the energy at which the absorbance is half the maximum absorbance (λ_{half}) corresponds closely to the Tauc-derived band gap energy (Table S2 and Figure S5).

1.3. Quantum confinement in MnO_2 particles. When examined quantitatively, the band-gap energies were found to increase linearly with $1/D_h^2$, where D_h is the hydrodynamic diameter from DLS (Figure 2A). The inverse square dependence is as predicted for quantum confinement in nanoparticles and observed in many different systems, see including colloidal gold nanoparticles, 99 CdS, 100 Cu₂O, 101 ZnO, 102 and α -FeOOH 103 . Quantum confinement describes the optical band-gap size dependence of MnO₂ even though its light absorption is mainly due to distortions of the sheet structure coming from vacancies and surface sites 81,97 . Following Brus, 104

198
$$E_{\rm g} = E_{\rm g}^{\rm bulk} + \frac{\hbar^2 \pi^2}{2R^2} \left[\frac{1}{m_{\rm e}^*} + \frac{1}{m_{\rm h}^*} \right] - \frac{1.8e^2}{4\pi\varepsilon\varepsilon_0 R}$$
 (2)

 $E_{\rm g}$ is the band-gap energy of a nanoparticle with radius R, $E_{\rm g}^{\rm bulk}$ is the band-gap energy of the bulk semiconductor, $m_{\rm e}^*$ and $m_{\rm h}^*$ are the electron and hole effective masses, ε is the dielectric constant of the semiconductor, and ε_0 is the vacuum permittivity. The + term represents the

quantum confinement energies for the electron-hole pair, while the – term represents the electron-hole Coulomb interaction, which, for small particles, is small relative to the quantum confinement term. From the intercept, $E_{\rm g}^{\rm bulk} = 2.73$ eV, in excellent agreement with the values reported for birnessite-type MnO₂ thin films. ^{105,106} The slope of the $1/D_{\rm h}^2$ plot yields $\mu_{\rm eff}\sim 1.1 {\rm m_o}$, (m_o is the free electron mass) for the reduced effective mass of the exciton in MnO₂. This value is comparable to those reported for other transition metal oxide semiconductors. ^{107,108} With the established linear correlation, the UV-vis absorption spectroscopy provides a convenient way to estimate the size of MnO₂ particles.

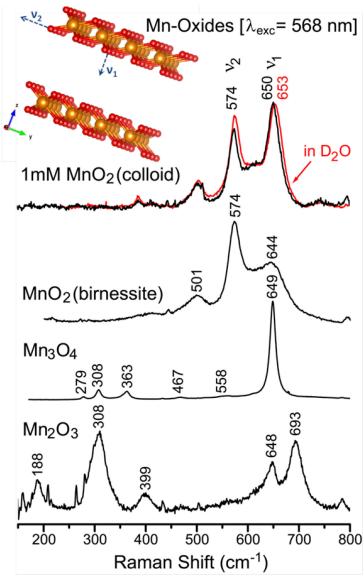


Figure 2. (A) Dependence of the band gap energy of MnO_2 colloids on nanoparticle size in the form of Brus equation (red line is a linear fit; the $Mnx-MnO_2+PP$ point in red was excluded from the fit, *vide infra*). (B) Dependence of the intensity ratios of Mn-O stretching Raman bands, v_1 and v_2 , of colloids of different sizes (from subset (1) in Table S1) on nanoparticle sheet length (red line is a linear fit).

2. Synthetic MnO₂ Nanoparticles: Size-Dependent Raman Spectra.

We investigated Raman spectroscopy as a means of characterizing MnO₂ colloids (Figure S6). A number of Raman spectra have been reported for MnO₂, with somewhat inconsistent results. Solid MnO₂ is a black material that efficiently absorbs light and yields weak Raman signals. Turning up the laser power to overcome this difficulty can lead to photo-reduction to a variety of lower-valent Mn oxides, with different Raman spectra. Using low laser power, we were

able to obtain powder spectra without photoproduct interference (Figure 3), which agree with previously published Raman spectra of layered birnessite-type materials. 114-116 Colloid solutions gave the same spectrum, albeit with altered relative intensities.

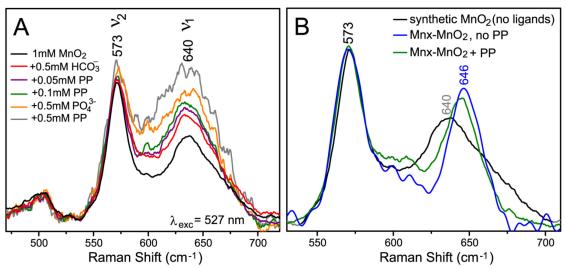


Figure 3. 568 nm-excited Raman spectra of solid-phase layered birnessite MnO_2 , and Mn_3O_4 and Mn_2O_3 oxides, possible decomposition products of layered MnO_2 under the laser light. Top lines are Raman spectra of colloidal MnO_2 samples at 1 mM concentrations in H_2O (black) and D_2O (red). *Inset* shows two MnO_6 octahedral sheets, with ν_1 and ν_2 vibration stretching frequencies of layered-type hexagonal birnessite. The birnessite structure was visualized with VESTA 3, using synthetic potassium birnessite crystal structure from Gaillot et al. 118

Julien et al. 114 assigned the pair of strong bands at 575 and 650 cm⁻¹ to Mn–O stretching vibrations within sheets of the MnO₆ octahedra (v_2), and perpendicular to the sheets, along the

interlayer direction (v_1) (Figure 3, *inset*); v_1 can also be described as the totally symmetric stretch of the linked MnO₆ octahedra.¹¹⁵ The frequency of the v_1 band is sensitive to the interlayer distance, resulting from hydrated cation substitutions between the layers.^{114,115} The position of the v_2 band was also found to be sensitive to the size of interlayer cation, shifting to the opposite direction relative to the v_1 band.^{114,115} We observed a 3 cm⁻¹ downshift of v_1 , while the v_2 band remained unchanged, when the colloid was prepared in D₂O (Figure 3), an effect we attribute to H/D substitution at protonated O atoms bound terminally at sheet edges (see below).

When we recorded the spectra of MnO₂ colloids with different capping agents (Figure 4A), a systematic variation in the relative intensities of v_1 and v_2 became apparent. The v_1/v_2 intensity ratio increased for stronger capping agents, correlating with smaller particle size.

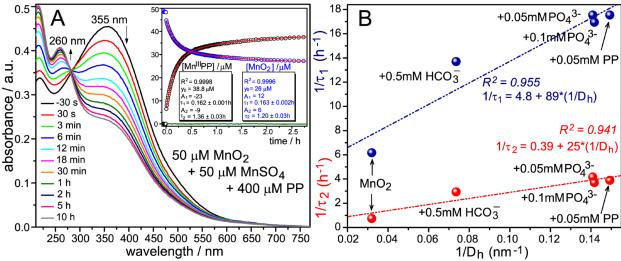
Figure 4. (A) Raman spectra of the synthetic MnO_2 colloids measured at 527 nm with 20 mW laser power at the sample and averaged for 20 min. The raw spectra were v_2 -normalized and smoothed (11 points). (B) v_2 -normalized Raman spectra of synthetic colloidal MnO_2 in water prepared without capping ligand (black line; the same as in (A)) and colloidal bio- MnO_2 produced by 50 nM Mnx in the assay without capping ligand (blue line) and in the presence of pyrophosphate (green line).

Since MnO₂ particles have sheet geometries, ^{119,120} the DLS-derived hydrodynamic diameter is approximated as the diameter of a hypothetical sphere represented by the nanosheets. Lotya et al. ¹²¹ demonstrated that the mean sheet length for such particles is given by:

$$L = (0.07 \pm 0.03) D_I^{(1.5 \pm 0.15)} \tag{3}$$

where D_I is the DLS-measured peak position of intensity size distribution (Table S1). Intriguingly, the v_1/v_2 intensity ratio correlates linearly with 1/L (Figure 2B). A particle size dependence is unexpected for assignment to vibrational modes intrinsic to the MnO₂ sheets.¹¹⁴ Moreover, the D₂O/H₂O shift observed for the v_1 band requires exchangeable protons, which occur on the terminal OH groups of edge sites. We propose that the Mn–OH stretching mode associated with edge sites happens to be coincident with the out-of-plane sheet mode, v_1 , whose apparent relative intensity therefore increases with decreasing particle size.

A 1/L dependence is expected for the particle edge-to-volume ratio. For a stack of c square sheets of length L, there are 4 edges per sheet, of total extent 4Lc, while the volume is L^2c . The ratio is then 4/L. If " v_1 " is a composite band, the Raman intensity should be the sum of the superposed edge mode, v_e , and the out-of-plane sheet mode, v_1 . The former should be proportional to the number of edge Mn atoms, e, while the latter, being intrinsic to the bulk of the particle, should be proportional to the total number of Mn atoms, e. For the in-plane sheet mode, v_2 , the intensity should also be proportional to e. The intensity ratio should then be:


267
$$I_1/I_2 = (j_1n + j_ee)/j_2n = j_1/j_2 + (j_e/j_2)(e/n); (e/n) = 4/L$$
 (4)

where the j_1, j_2 , and j_e are molar scattering factors for v_1 , v_2 , and v_e . The 1/L plot (Figure 2B) gives j_1/j_2 as the intercept (0.72), and $4j_e/j_2$ as the slope (0.82). If the sheets are indeed square, then $j_e/j_2 = 0.2$, a plausible value. All the modes involve Mn–O bond stretching and should have comparable polarizabilities, with allowance for some cancellation or reinforcement, depending on the eigenvectors of the modes. Thus, the Raman intensity ratio of the two prominent Mn–O stretching bands varies with particle size in a manner consistent with a superposition of internal sheet and edge site scattering. We note that a similar trend in the two main Raman band

intensities was observed as a function of size of a cation incorporated between the layers under low potential in thin-film MnO_2 electrodes in different electrolytes.¹¹⁵

3. Size-Dependent Reactivity of Synthetic MnO₂ Nanoparticles.

We assessed the size-dependent reactivity of the synthetic MnO₂ colloids with Mn(II), which reduces Mn(IV) to Mn(III). A1,73,122,123 In the presence of PP as a trapping agent for Mn(III), the reaction can be monitored via the decrease in MnO₂ absorbance, and the concomitant rise of the 260 nm band due to Mn(III)PP (Figure 5A and Figure S7). Colloidal MnO₂ does not precipitate during the reaction: no visible precipitates and no significant absorbance increase above 700 nm from nanoparticle scattering could be seen.

Figure 5. (A) Evolution of the UV-vis absorption spectra after addition of 50 μM MnSO₄ to ~50 μM synthetic MnO₂ colloids (λ_{max} = 355 nm) in 10 mM NaPi buffer, pH 7.8, in the presence of 400 μM PP, added to trap Mn(III) product (260 nm band). *Inset* shows concentration time profiles for Mn(III)PP (black points) and MnO₂ (blue points), obtained after absorption spectral data were converted to concentrations (see Method and *SI* for details), and fitted to a double-exponential function (red lines). The optimized parameters from the fit are indicated, together with the residual from the fit (green line). (B) $1/D_h$ dependence of τ_1 (blue points) and τ_2 (red points) obtained from fitting the MnO₂ reactivity data with a double-exponential function in Figure 5A and Figures S8 and expressed as rates.

The clear isosbestic point, maintained during the reaction, reveals a simple two-component mixture. Despite this evidence for a clean conversion of the reactants, Mn(II) and MnO₂, to the product, Mn(III)PP (Figure 5A), the kinetics are unexpectedly complex, with a fast phase, <30 s

(the mixing time), followed by two slower phases, ~ 0.1 h, ~ 0.5 h, and a substantial amount of unreactive phase (~50% of the initial MnO₂). Adsorption of Mn(II) on MnO₂ is rapid at pH 5 (<1 sec). 125 and would be even faster at pH 7.8 because a proton is released in the process. (Although the capping agents could in principle retard Mn(II) adsorption, displacement of these ionically held oxyanions should be rapid, and, in any event, they were largely removed by washing and centrifugation, prior to the reactivity measurements.) Thus, Mn(II) adsorption is not rate-limiting on our time scale. After the initial phase, the time course of MnO₂ reduction, and of Mn(III)PP growth, can be fit to two successive exponentials (Figure 5A, *inset*). However, even at 2.5 h, about half of the MnO₂ remains unreacted, indicating a large refractory fraction. Reaction rates were determined for the colloids prepared with capping agents (Figure S8), and also for different concentrations of Mn(II) and of MnO₂ (Figure S9). The obtained rates show a clear correlation with MnO₂ particle size (Figure 5B) for both of the measured phases, following a 1/D_h dependence. Thus, reactivity is dependent on the surface/volume ratio. Recent studies of metal ion adsorption on birnessite have demonstrated the dominance of surface (edge) sites, 67,126-129 and previous dissolution kinetics of manganese oxides indicated largely oxide surface processes. 130 Nevertheless, the intercepts (rates for infinite size) are non-zero, suggesting that interlayer sites also contribute to reactivity. No doubt the change in bandgap with particle size also contributes to reactivity, since the Mn(IV) reduction potential should increase with increasing band gap. This effect would contribute to the slope of the 1/D_h dependence.

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

The unreactive phase is likely due to some Mn(III) escaping the PP trapping agent and remaining in the particles. It might migrate to vacancy sites and transform the lattice to a less reactive structure, like the hexagonal-orthogonal transformation observed by Zhao et al. 131 for δ -MnO₂ upon reaction with Mn(II). Lowered MnO₂ reactivity was also noted during continued

oxidation of fulvic acid as the accumulating Mn(III) entered interlayer and vacancy sites. 132 Alternatively, the Mn(III) might form a surface precipitate of MnOOH or Mn₃O₄, inhibiting further reaction, similar to the FeOOH and MnFe₂O₄ phases formed during reaction of MnO₂ with Fe(II) that also slows with time, ¹³³ or to the Zn(II)-Mn(III) phases when Zn(II) sorption on birnessite was investigated in the presence of Mn(II). 134 Likewise Wang et al. 128 observed a loss in reactivity with time of δ-MnO₂ samples toward Co(II) oxidation, perhaps due to Co(III) and Mn(III) oxides. MnO₂ surface passivation due to formed Mn(II)/Mn(III) phases was also invoked to account for loss in MnO₂ reactivity during arsenic oxidation. ^{135,136} Surface passivation seems the likelier explanation for our results, since the fraction of Mn(III) remaining in the particles must be small, in view of the nearly stoichiometric ratio of Mn(III)PP accumulating in solution to the MnO₂ consumed. Even though the detailed mechanism of the reaction and the nature of the unreactive phase warrant further investigation (see SI for further elaboration on the mechanism), the findings clearly demonstrate that while particle size determines reactivity, a substantial fraction of the MnO₂ becomes unreactive as Mn(III) accumulates. 4. Characterization of Enzymatically Produced MnO₂. In the environment, manganese oxides are thought to be primarily derived through microbial processes. These biogenic Mn oxides are mainly nanocrystalline phyllomanganates with hexagonal sheet symmetry, similar to synthetic δ -MnO₂ or hexagonal birnessite, with an Mn oxidation state between 3.7 and 4.0. ^{17,20,38-42,137} Thus, the established correlation for synthetic MnO₂ particles might be used to characterize the enzymatically produced MnO₂ particles. 4.1 Band gap energy and Raman spectra of Mnx-produced MnO₂. In our previous studies during Mn(II) oxidation by the bacterial enzyme complex Mnx to form MnO₂ nanoparticles, ³⁶

we found that as the MnO₂ absorption band grows, it shifts steadily to longer wavelengths (red-

320

321

322

323

324

325

326

327

328

329

330

331

332

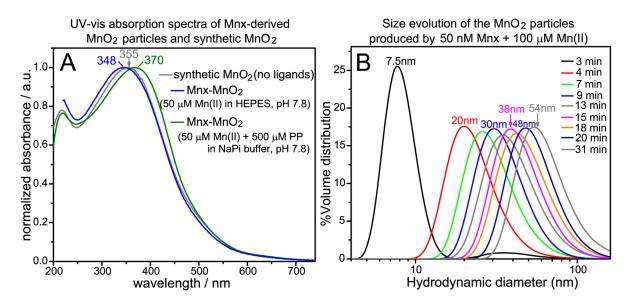
333

334

335

336

337


338

339

340

341

shift), consistent with increasing nanoparticle size as well as particle concentration. At the end of the enzymatic reaction, the MnO₂ band position was essentially the same as that of synthetic colloid prepared without a capping agent (Figure 6A).

Figure 6. (A) Normalized UV-vis absorption spectra of synthetic colloidal MnO_2 in water prepared without capping ligand (gray line) and colloidal bio- MnO_2 produced by 50 nM Mnx in the assay without (blue line) and in the presence of pyrophosphate (green line). (B) Evolution of MnO_2 nanoparticle sizes formed during oxidation of $100~\mu M~MnSO_4$ catalyzed by 50 nM Mnx in HEPES buffer (pH=7.8) as measured by DLS at specified times.

DLS profiles, taken as a function of time during Mnx-catalyzed oxidation of Mn(II), capture the continuous growth of the MnO₂ particles (Figure 6B). This growth coincides with MnO₂ accumulation³⁶ (Figure 7), confirming that the nanoparticles increase in size as well as number as the reaction proceeds. At the end of the reaction, the Mnx-produced colloids had a 50% larger average diameter than the uncapped synthetic one (~54 nm *vs* 32 nm), despite having nearly the same band gap (Table S1 and Figure S11).

When pyrophosphate is present in the Mnx assay (to trap Mn(III) intermediate in the enzymatic studies³⁷), the resulting MnO₂ has a red-shifted absorption maximum (370 nm, Figure 6A) and a still larger average diameter (~60 nm) with a broadened distribution—an effect that was also observed when birnessite-like material was obtained via photochemically assisted

superoxide oxidation of Mn(II) in the presence of increasing amount of PP.⁹⁵ The band-gap energy is anomalously low for the biogenic MnO₂ when PP is present, falling off the quantum confinement plot in Figure 2A. We speculate that the biogenic colloid has a higher defect density than the synthetic colloids, the resulting sheet distortion lowering the excitation energy.

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

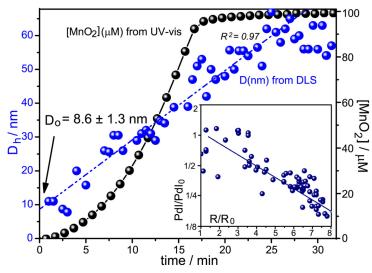
379

380

381

382

383


384

Raman spectra of Mnx-produced MnO₂ have bands similar to those of birnessite and synthetic MnO₂, confirming earlier findings that Mnx produces birnessite-like layered MnO₂ minerals (Figure 4B). The v₂ band due to Mn-O vibrations along the chains of the MnO₆ octahedra is the same as in the synthetic colloids. However, the biogenic colloids show narrowed v₁ peaks, which have higher wavenumber than the synthetic colloids (646 cm⁻¹ vs 640 cm⁻¹). Because the final particles are large, 50-60 nm, the 640 cm⁻¹ edge mode, v_e, is expected to be relatively weak, and we infer that the out-of-plane sheet mode, v₁, is shifted away from it, narrowing as a result. Nevertheless, the v_1/v_2 intensity ratios fall on the size correlation determined for the synthetic colloids (Figure 2B and Table S1). 4.2. Particle growth of Mnx-produced MnO₂. The evolution of the MnO₂ absorption band during Mnx-catalyzed Mn(II) oxidation has been deconvoluted via multivariate analysis into enzyme reaction and nanoparticle production time courses.³⁶ The latter showed a sigmoidal increase in MnO₂ concentration, characteristic of nanoparticle nucleation followed by growth. The present DLS measurements show that the average size of the particle grows linearly, slowing down as the reaction nears completion (Figure 7). (Though a more complex growth mechanism for these platy minerals is envisioned, its resolution by the time-resolved imaging techniques being awaited). The linear increase in D_h is consistent with the sigmoidal increase in MnO₂ concentration, if we consider that the volume of the particles is proportional to

concentration and also to the cube of the diameter. The sigmoidal growth curve in fact yields a

straight line over most of the time course when the cube root of the concentration is plotted against time (Figure S12).

The DLS measurements also yield a polydispersity index, PdI, a dimensionless measure of the breadth of the size distribution. The PdI values can range from 0 (monodisperse) to 1 (all sizes). Usually samples have PdI between 0.1 and 0.7. The PdI parameter of the Mnx-produced particle steadily decreased as the average size increased (Figure S12, *inset*), consistent with a nucleation/growth model (and inconsistent with Ostwald ripening, ^{138,139} which *increases* polydispersity with time ¹⁴⁰⁻¹⁴²). Following Clark, ¹⁴¹ we plot $\log(\text{PdI/PdI_0})$ -*versus*-R/R₀ (Figure 7, *inset*), where R₀ is the zero-time extrapolated value of D_h/2, 4.3 nm, and PdI₀ ~0.425 is the zero-time polydispersity index. The plot approaches the optimal limit for size focusing (PdI/PdI₀ \rightarrow 1/8 at R/R₀ \rightarrow 8), indicating that the growth of Mnx-produced MnO₂ is controlled by the continuous enzymatic supply of pre-nucleus particles on the time scale of nanoparticle growth, leading to narrowing of the size distribution.

Figure 7. Time course of MnO₂ concentration increase (black points) from the UV-vis experiment obtained during oxidation of 100 μM MnSO₄ catalyzed by 50 nM Mnx in HEPES buffer (pH=7.8), with the superimposed time evolution of the hydrodynamic diameter of the MnO₂ particles (blue points) from the DLS measurements. The blue dotted line is a linear fit of the nanoparticle diameter increase, which could be extrapolated to time zero to give the diameter of nucleus of 8.6 nm. *Inset*: MnO₂ size-focusing plot obtained during Mnx-catalyzed oxidation of Mn(II), as measured by DLS. $R=D_h/2$ and R_0

corresponds to the zero-time radius (4.3 nm) of the particles, and PdI is the polydispersity index, whose zero time value (PdI₀) was estimated to be 0.425 (see Figure S12, *inset*).

The early product of the enzyme reaction³⁶ has an absorption maximum at ~280 nm, suggestive of a 7.5 ± 0.7 nm nanoparticle (see Figure S11). This is close to the extrapolated D_h at zero time (8.6 nm, Figure 7) and is likely the size of the nucleus from which the nanoparticle then grows. The enzyme mechanism, inferred from kinetic analysis, suggests a dinuclear [Mn(IV)O]₂ complex as the initial product of Mn(II) oxidation.³⁷ A large number of these would be required to assemble the nucleus (the number is hard to estimate because of uncertainty in the size of the hydration layer, which can extend up to 5 nm for metal oxides¹⁴³). Subsequently, growth would occur by accretion of the product complexes, likely via oriented attachment.¹⁴⁴⁻¹⁴⁷

5. Environmental Implications. Characterizing the nanoparticulate nature of MnO₂ deposits or preparations is of fundamental importance to predicting their reactivity. This work demonstrates direct correlations among MnO₂ particle size, edge site populations, and reactivity, which are conveniently monitored by UV-vis absorption and Raman spectroscopies and DLS.

The reactivity time course is complex for MnO₂ nanoparticles, and a substantial fraction can remain unreacted, likely due to surface passivation by accumulating Mn(III). This phenomenon is a constraint on evaluating the role of MnO₂ in environmental oxidation and sequestration processes. For example, arsenic in ground water is a serious health problem of global proportions, ^{148,149} and there is great interest in the potential of MnO₂ to remediate arsenic *in situ*, or in drinking water filters. ¹⁵⁰⁻¹⁵² Arsenate (As^V) is strongly adsorbed on MnO₂, as well as Fe oxides surfaces, and arsenite (As^{III}) can be oxidized by MnO₂. ^{151,153-155} This is important as As^{III} is the more toxic form of arsenic, and is also more mobile. ^{156,157} Thus, MnO₂ oxidation of As^{III} to the strongly adsorbed As^V is an important determinant of groundwater arsenic

contamination, and of remediation strategies. Surface passivation limits the oxidation capacity, ^{135,136,158} and further mechanistic studies may open routes to circumventing passivation.

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Biogenic MnO₂ nanoparticles are of particular interest because their smaller size and high density of reactive sites increase their reactivity toward organic substrates and metal sequestration. This work elucidates the formation of MnO₂ nanoparticles from the Mnx MCO complex. This enzyme is produced by several Mn-oxidizing Bacillus sp., and is found in the exosporium—a complex structure of carbohydrates and proteins that surrounds the spore coats of some bacterial spores. No doubt these organic molecules interact with the bio-MnO₂ nanoparticles, en route to the particles' deposition around the spores. For example, an early Xray study of Mn(II) oxidation by exosporium¹⁵⁹ found evidence for locally abundant Mn(III) within the spore clumps, probably formed as a result of spore-mediated chelation of Mn(III) intermediates. Abundance of organic Mn(III) chelators in the exosporium may also trigger radical reactions with ultimate production of peroxide species, capable of additional oxidation of Mn(II) to form MnO₂, thereby modifying the pure enzymatic MnO₂ product. Moreover, cell surfaces can template emerging MnO₂, resulting in uni-directional nanoparticle growth. To delineate these processes and evaluate modifications of the nanoparticles produced by whole bacterial cells, an unobstructed view of enzymatic MnO₂ production, in the absence of additional organic matter, is needed. Since MCOs are implicated in phylogenetically diverse groups of Mnoxidizing bacteria, studies with the purified Mnx protein provide a foundation for understanding manganese mineralization across the microbial world.

The Mnx product itself may provide guidance toward improving the preparation of MnO₂ nanoparticles for potential uses. For example, our finding indicates that the nanoparticulate nature of biogenic MnO₂ results from efficient enzymatic Mn(II) oxidation, which exceeds the

Ostwald ripening rate, leading to a narrow nanoparticle distribution. It is thus possible to influence the MnO₂ enzymatic production rate to control the final MnO₂ particle size distribution and optimize reactivity for technological applications.

ASSOCIATED CONTENT

Supporting Information: The Supporting Information is available free of charge on the ACS Publications website.

UV-vis absorption and DLS data for two sets of synthetic MnO₂ colloids; dependence of extinction coefficient of the MnO₂ colloids on the band gap energy; alternative ways to estimate band gap energies from the UV-vis spectra; characterization of solid-phase birnessite by UV-vis and Raman spectroscopies; additional results of the reactivity measurements; UV-vis absorption spectra of early and aged MnO₂ products from the Mnx-catalyzed Mn(II) oxidation reaction; time evolution of the Mnx-catalyzed MnO₂ formation as measured by UV-vis and DLS.

AUTHOR INFORMATION

- [^]Present Address: Molecular and Analytical Development, Bristol-Myers Squibb, 311
- Pennington Rocky Hill Road, Pennington, New Jersey 08534, United States
- [#]Present Address: Chevron Phillips Chemical, 1862 Kingwood Drive, Kingwood, TX 77339,
- 468 United States

454

455

456

457

458

459

460

461

462

463

464

471

473

- 469 ¹Present Address: Chemical Engineering & Applied Chemistry, University of Toronto, 200
- 470 College Street, Toronto, Ontario M5S 3E5, Canada

Corresponding Author*:

472 Telephone: 206-685-4964. E-mail:spiro@chem.washington.edu

ACKNOWLEDGMENT

- This work was supported by the National Science Foundation: award numbers CHE-1410353
- and CHE-1807222 to TGS, CHE-1410688 and CHE-1807158 to BMT, and an NSF Postdoctoral
- 476 Research Fellowship in Biology Award ID: DBI-1202859 to CAR. Sincere thanks are expressed
- 477 to Dr. Andy Kim for help with the DLS measurements, performed at the Department of

- 478 Chemical Engineering, University of Washington, and to Dr. George Blouin for help with
- 479 Raman measurements.

480 **REFERENCES**

- 481 1. Morgan, J. J., Manganese in natural waters and Earth's crust: Its availability to organisms. In
- 482 Metal ions in biological systems: Manganese and its role in biological processes, Sigel, A.;
- 483 Sigel, H., Eds. Marcel Dekker: New York, 2000; Vol. 37, pp 1–34.
- 484 2. Post, J. E., Manganese oxide minerals: Crystal structures and economic and environmental
- 485 significance. *Proc. Natl. Acad. Sci. U.S.A.* **1999,** *96*, 3447–3454.
- 486 3. Myers, C. R.; Nealson, K. H., Bacterial manganese reduction and growth with manganese
- 487 oxide as the sole electron-acceptor. *Science* **1988,** *240*, 1319–1321.
- 488 4. Lovley, D. R., Dissimilatory Fe(III) and Mn(IV) reduction. *Microbiol. Rev.* 1991, 55, 259-
- 489 287.
- 490 5. Lin, H.; Szeinbaum, N. H.; DiChristina, T. J.; Taillefert, M., Microbial Mn(IV) reduction
- 491 requires an initial one-electron reductive solubilization step. Geochim. Cosmochim. Acta 2012,
- 492 99, 179–192.
- 6. Fischer, T. B.; Heaney, P. J.; Jang, J.-H.; Ross, D. E.; Brantley, S. L.; Post, J. E.; Tien, M.,
- 494 Continuous time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxide. Am.
- 495 *Mineral.* **2008,** *93*, 1929–1932.
- 7. Johnson, J. E.; Savalia, P.; Davis, R.; Kocar, B. D.; Webb, S. M.; Nealson, K. H.; Fischer, W.
- 497 W., Real-time manganese phase dynamics during biological and abiotic manganese oxide
- 498 reduction. *Environ. Sci. Technol.* **2016,** *50*, 4248–4258.
- 8. Jackson, D. D., The precipitation of iron, manganese, and aluminium by bacterial action. J.
- 500 Soc. Chem. Ind. **1901**, 21, 681–684.
- 9. Hastings, D.; Emerson, S., Oxidation of manganese by spores of a marine *Bacillus*: kinetic and
- thermodynamic considerations. *Geochim. Cosmochim. Acta* **1986,** *50*, 1819–1824.
- 503 10. Nealson, K. H.; Tebo, B. M.; Rosson, R. A., Occurrence and mechanisms of microbial
- oxidation of manganese. Adv. Appl. Microbiol. 1988, 33, 279–318.
- 505 11. Emerson, D., Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. In
- 506 Environmental Microbe-Metal Interactions, Lovley, D. R., Ed. American Society for
- 507 Microbiology: Washington, DC, 2000.
- 508 12. Brouwers, G.-J.; Vijgenboom, E.; Corstjens, P. L. A. M.; de Vrind, J. P. M.; de Vrind-de
- Jong, E. W., Bacterial Mn²⁺ oxidizing systems and multicopper oxidases: an overview of
- mechanisms and functions. *Geomicrobiol. J.* **2000,** *17*, 1–24.
- 511 13. Tebo, B. M.; Bargar, J. R.; Clement, B.; Dick, G.; Murray, K. J.; Parker, D.; Verity, R.;
- Webb, S. M., Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev.
- 513 *Earth Planet. Sci.* **2004,** *32*, 287–328.
- 14. Tebo, B. M.; Johnson, H. A.; McCarthy, J. K.; Templeton, A. S., Geomicrobiology of
- manganese(II) oxidation. Trends Microbiol. 2005, 13, 421–428.
- 516 15. Miyata, N.; Tani, Y.; Sakata, M.; Iwahori, K., Microbial manganese oxide formation and
- interaction with toxic metal ions. J. Biosci. Bioengin. 2007, 104, 1–8.
- 518 16. Santelli, C. M.; Pfister, D.; Lazarus, D.; Sun, L.; Burgos, W. D.; Hansel, C. M., Diverse
- 519 fungal and bacterial communities promote Mn(II)-oxidation and remediation of coal mine
- drainage in passive treatment systems *Appl. Environ. Microbiol.* **2010,** *76*, 4871–4875.

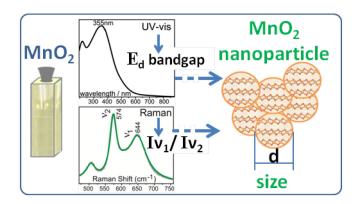
- 521 17. Santelli, C. M.; Webb, S. M.; Dohnalkova, A. C.; Hansel, C. M., Diversity of Mn oxides
- produced by Mn(II)-oxidizing fungi. *Geochim. Cosmochim. Acta* **2011,** 75, 2762–2776.
- 523 18. Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S. M., Mn(II) oxidation by an
- 524 Ascomycete fungus is linked to superoxide production during asexual reproduction. Proc. Natl.
- 525 Acad. Sci. U.S.A. **2012**, 109, 12621–12625.
- 526 19. Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M., Formation of
- manganese oxides by bacterially generated superoxide. *Nat. Geosci.* **2011,** *4*, 95–98.
- 528 20. Learman, D. R.; Wankel, S. D.; Webb, S. M.; Martinez, N.; Madden, A. S.; Hansel, C. M.,
- 529 Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution
- of biogenic Mn oxides. *Geochim. Cosmochim. Acta* **2011,** 75, 6048–6063.
- 21. Learman, D. R.; Voelker, B. M.; Madden, A. S.; Hansel, C. M., Constraints on superoxide
- mediated formation of manganese oxides. Front. Microbiol. 2013, 4, 262.
- 533 22. Andeer, P. F.; Learman, D. R.; McIlvin, M.; Dunn, J. A.; Hansel, C. M., Extracellular haem
- peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide
- 535 production. *Environ. Microbiol.* **2015,** *17*, 3925–3936.
- 536 23. Anderson, C. R.; Johnson, H. A.; Caputo, N.; Davis, R. E.; Torpey, J. W.; Tebo, B. M.,
- 537 Mn(II) oxidation is catalyzed by heme peroxidases in "Aurantimonas manganoxydans" strain
- 538 SI85-9A1 and *Erythrobacter* sp. strain SD-21. *Appl. Environ. Microbiol.* **2009**, *75*, 4130–4138.
- 539 24. Geszvain, K.; Smesrud, L.; Tebo, B. M., Identification of a third Mn(II) oxidase enzyme in
- 540 *Pseudomonas putida* GB-1. *Appl. Environ. Microbiol.* **2016**, *82*, 3774–3782.
- 541 25. Corstjens, P. L. A. M.; de Vrind, J. P. M.; Goosen, T.; de Vrind-de Jong, E. W.,
- 542 Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene a gene
- putatively encoding a manganese-oxidizing protein with copper domains. *Geomicrobiol. J.* **1997**,
- 544 *14*, 91–108.
- 545 26. Geszvain, K.; McCarthy, J. K.; Tebo, B. M., Elimination of manganese(II,III) oxidation in
- 546 Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes.
- 547 Appl. Environ. Microbiol. **2013**, 79, 357–366.
- 548 27. Brouwers, G.-J.; de Vrind, J. P. M.; Corstjens, P. L. A. M.; Cornelis, P.; Baysse, C.; de
- Vrind-de Jong, E. W., CumA, a gene encoding a multicopper oxidase, is involved in Mn²⁺-
- oxidation in *Pseudomonas putida* GB-1. *Appl. Environ. Microbiol.* **1999,** 65, 1762–1768.
- 28. van Waasbergen, L. G.; Hildebrand, M.; Tebo, B. M., Identification and characterization of a
- gene cluster involved in manganese oxidation by spores of the marine *Bacillus* sp. strain SG-1. *J*.
- 553 *Bacteriology* **1996,** *178*, 3517–3530.
- 29. Dick, G. J.; Podell, S.; Johnson, H. A.; Rivera-Espinoza, Y.; Bernier-Latmani, R.; McCarthy,
- J. K.; Torpey, J. W.; Clement, B. G.; Gaasterland, T.; Tebo, B. M., Genomic insights into Mn(II)
- oxidation by the marine alphaproteobacterium *Aurantimonas* sp. strain SI85-9A1. *Appl. Environ*.
- 557 *Microbiol.* **2008,** *74*, 2646–2658.
- 30. Dick, G. J.; Torpey, J. W.; Beveridge, T. J.; Tebo, B. M., Direct identification of a bacterial
- manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine
- 560 *Bacillus* species. *Appl. Environ. Microbiol.* **2008,** 74, 1527–1534.
- 31. Francis, C. A.; Casciotti, K. L.; Tebo, B. M., Localization of Mn(II)-oxidizing activity and
- the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-
- 563 1. Arch. Microbiol. **2002**, 178, 450–456.
- 32. Larsen, E. I.; Sly, L. I.; McEwan, A. G., Manganese(II) adsorption and oxidation by whole
- cells and a membrane fraction of *Pedomicrobium* sp. ACM 3067. Arch. Microbiol. 1999, 171,
- 566 257–264.

- 33. Ridge, J. P.; Lin, M.; Larsen, E. I.; Fegan, M.; McEwan, A. G.; Sly, L. I., A multicopper
- oxidase is essential for manganese oxidation and laccase-like activity in *Pedomicrobium* sp.
- 569 ACM 3067. Environ. Microbiol. **2007**, *9*, 944–953.
- 570 34. Butterfield, C. N.; Soldatova, A. V.; Lee, S.-W.; Spiro, T. G.; Tebo, B. M., Mn(II,III)
- oxidation and MnO₂ mineralization by an expressed bacterial multicopper oxidase. *Proc. Natl.*
- 572 *Acad. Sci. U.S.A.* **2013,** *110*, 11731–11735.
- 573 35. Romano, C. A.; Zhou, M.; Song, Y.; Wysocki, V. H.; Dohnalkova, A. C.; Kovarik, L.; Paša-
- Tolić, L.; Tebo, B. M., Biogenic manganese oxide nanoparticle formation by a multimeric
- 575 multicopper oxidase Mnx. *Nat. Commun.* **2017,** *8*, 746.
- 36. Soldatova, A. V.; Tao, L.; Romano, C.; Stich, T. A.; Casey, W. H.; Britt, R. D.; Tebo, B. M.;
- 577 Spiro, T. G., Mn(II) oxidation by the multicopper oxidase complex Mnx: A binuclear activation
- 578 mechanism. J. Am. Chem. Soc. **2017**, 139, 11369–11380.
- 579 37. Soldatova, A. V.; Romano, C.; Tao, L.; Stich, T. A.; Casey, W. H.; Britt, R. D.; Tebo, B. M.;
- 580 Spiro, T. G., Mn(II) oxidation by the multicopper oxidase complex Mnx: A coordinated two-
- stage MnII/MnIII and MnIII/MnIV mechanism. *J. Am. Chem. Soc.* **2017**, *139*, 11381–11391.
- 582 38. Bargar, J. R.; Tebo, B. M.; Villinski, J. E., In situ characterization of Mn(II) oxidation by
- spores of the marine *Bacillus* sp. strain SG-1. *Geochim. Cosmochim. Acta* **2000,** *64*, 2775–2778.
- 39. Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G., Characterization of the manganese oxide
- produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta 2003, 67, 2649–
- 586 2662.
- 587 40. Miyata, N.; Tani, Y.; Iwahori, K.; Soma, M., Enzymatic formation of manganese oxides by
- an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol. Ecol. 2004, 47,
- 589 101–109.
- 41. Bargar, J. R.; Tebo, B. M.; Bergmann, U.; Webb, S. M.; Glatzel, P.; Chiu, V. Q.; Villalobos,
- M., Biotic and abiotic products of Mn(II) oxidation by spores of the marine *Bacillus* sp. strain
- 592 SG-1. Am. Mineral. **2005**, 90, 143–154.
- 593 42. Webb, S. M.; Tebo, B. M.; Bargar, J. R., Structural characterization of biogenic manganese
- oxides produced in sea water by the marine *Bacillus* sp. strain SG-1. *Am. Mineral.* **2005**, *90*,
- 595 1342–1357.
- 596 43. Zhu, M.; Ginder-Vogel, M.; Parikh, S. J.; Feng, X.-H.; Sparks, D. L., Cation effects on the
- layer structure of biogenic Mn-oxides. *Environ. Sci. Technol.* **2010,** *44*, 4465–4471.
- 598 44. Saratovsky, I.; Wightman, P. G.; Pasten, P. A.; Gaillard, J.-F.; Poeppelmeier, K. R.,
- Manganese oxides: Parallels between abiotic and biotic structures. J. Am. Chem. Soc. 2006, 128,
- 600 11188–11198.
- 45. Webb, S. M.; Fuller, C. C.; Tebo, B. M.; Bargar, J. R., Determination of uranyl incorporation
- 602 into biogenic manganese oxides using x-ray absorption spectroscopy and scattering. *Environ*.
- 603 *Sci. Technol.* **2006,** *40*, 771–777.
- 46. Feng, X. H.; Zhu, M.; Ginder-Vogel, M.; Ni, C.; Parikh, S. J.; Sparks, D. L., Formation of
- 605 nano-crystalline todorokite from biogenic Mn oxides. Geochim. Cosmochim. Acta 2010, 74,
- 606 3232–3245.
- 47. Tang, Y.; Webb, S. M.; Estes, E. R.; Hansel, C. M., Chromium(iii) oxidation by biogenic
- 608 manganese oxides with varying structural ripening. Environ. Sci. Process. Impact 2014, 16,
- 609 2127-2136.
- 48. Spiro, T. G.; Bargar, J. R.; Sposito, G.; Tebo, B. M., Bacteriogenic manganese oxides. Acc.
- 611 *Chem. Res.* **2010,** *43*, 2–9.

- 49. Remucal, C. K.; Ginder-Vogel, M., A critical review of the reactivity of manganese oxides
- with organic contaminants. *Environ. Sci. Process. Impacts* **2014,** *16*, 1247–1266.
- 50. Liu, W.; Sutton, N. B.; Rijnaarts, H. H. M.; Langenhoff, A. A. M., Pharmaceutical removal
- from water with iron- or manganese-based technologies: A review. Crit. Rev. Environ. Sci.
- 616 *Technol.* **2016,** 46, 1584–1621.
- 51. Sunda, W. G.; Kieber, D. J., Oxidation of humic substances by manganese oxides yields low-
- 618 molecular-weight organic substrates. *Nature* **1994,** *367*, 62–64.
- 619 52. Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.;
- 620 Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C., Photochemical water oxidation by
- 621 crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem.
- 622 *Soc.* **2013,** *135*, 3494–3501.
- 623 53. Wiechen, M.; Spiccia, L., Manganese oxides as efficient water oxidation catalysts.
- 624 *ChemCatChem* **2014**, *6*, 439–441.
- 625 54. Hocking, R. K.; Brimblecombe, R.; Chang, L.-Y.; Singh, A.; Cheah, M. H.; Glover, C.;
- 626 Casey, W. H.; Spiccia, L., Water-oxidation catalysis by manganese in a geochemical-like cycle.
- 627 *Nat. Chem.* **2011,** *3*, 461–466.
- 628 55. Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G., Nature of activated manganese oxide
- 629 for oxygen evolution. J. Am. Chem. Soc. **2015**, 137, 14887–14904.
- 630 56. Frey, C. E.; Wiechen, M.; Kurz, P., Water-oxidation catalysis by synthetic manganese oxides
- systematic variations of the calcium birnessite theme. *Dalton Trans.* **2014**, *43*, 4370–4379.
- 632 57. Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S. L., Structurproperty
- relationship of bifunctional MnO₂ nanostructures: highly efficient, ultra-stable electrochemical
- water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am.
- 635 Chem. Soc. **2014**, 136, 11452–11464.
- 58. McKendry, I. G.; Thenuwara, A. C.; Shumlas, S. L.; Peng, H.; Aulin, Y. V.; Rao Chinnam,
- P.; Borguet, E.; Strongin, D. R.; Zdilla, M. J., Systematic doping of cobalt into layered
- manganese oxide sheets substantially enhances water oxidation catalysis. *Inorg. Chem.* **2018,** *57*,
- 639 557-564.
- 640 59. Lucht, K. P.; Mendoza-Cortes, J. L., Birnessite: A layered manganese oxide to capture
- sunlight for water-splitting catalysis. J. Phys. Chem. C 2015, 119, 2838–22846.
- 642 60. Le Goff, P.; Baffier, N.; Bach, S.; Pereira-Ramos, J.-P., Structural and electrochemical
- properties of layered manganese dioxides in relation to their synthesis: Classical and sol-gel
- 644 routes. J. Mater. Chem. **1994**, 4, 875–881.
- 645 61. Devaraj, S.; Munichandraiah, N., Effect of crystallographic structure of MnO₂ on its
- electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406–4417.
- 62. Sassin, M. B.; Chervin, C. N.; Rolison, D. R.; Long, J. W., Redox deposition of nanoscale
- metal oxides on carbon for next-generation electrochemical capacitors. Acc. Chem. Res. 2013,
- 649 *46*, 1062–1074.
- 650 63. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G., Manganese oxide-based materials as
- electrochemical supercapacitor electrodes. *Chem. Soc. Rev.* **2011,** *40*, 1697–1721.
- 652 64. Gao, P.; Metz, P.; Hey, T.; Gong, Y.; Liu, D.; Edwards, D. D.; Howe, J. Y.; Huang, R.;
- Misture, S. T., The critical role of point defects in improving the specific capacitance of d-MnO₂
- 654 nanosheets. *Nat. Commun.* **2017**, *8*, 14559.
- 655 65. El-Kady, M. F.; Ihns, M.; Li, M.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.;
- Kaner, R. B., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors

- 657 for high-performance integrated energy storage. Proc. Natl. Acad. Sci. U.S.A. 2015, 112,
- 658 4233-4238.
- 659 66. Khojasteh, M.; Haghighat, S.; Dawlaty, J. M.; Kresin, V. V., Controlled deposition of size-
- selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential
- with particle size. *Nanotechnology* **2018**, *29*, 215603.
- 662 67. Villalobos, M.; Bargar, J.; Sposito, G., Mechanisms of Pb(II) sorption on a biogenic
- 663 manganese oxide. *Environ. Sci. Technol.* **2005**, *39*, 569–576.
- 68. Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water
- splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.
- 666 69. Marafatto, F. F.; Lanson, B.; Peña, J., Crystal growth and aggregation in suspensions of -
- MnO₂ nanoparticles: implications for surface reactivity. *Environ. Sci. Nano* **2018**, *5*, 497–508.
- 70. Wigginton, N. S.; Haus, K. L.; Hochella Jr, M. F., Aquatic environmental nanoparticles. J.
- 669 Environ. Monit. **2007**, *9*, 1306–1316.
- 71. McKenzie, R. M., The synthesis of birnessite, cryptomelane, and some other oxides and
- 671 hydroxides of manganese. *Mineral. Mag.* **1971,** *38*, 493–502.
- 72. Perez-Benito, J.; Brillas, E.; Pouplana, R., Identification of a soluble form of colloidal
- 673 manganese(IV). *Inorg. Chem.* **1989**, *28*, 390–392.
- 73. Perez-Benito, J. F., Reduction of colloidal manganese dioxide by manganese(II). J. Colloid
- 675 *Interface Sci.* **2002,** *248*, 130–135.
- 74. Butterfield, C. N.; Tebo, B. M., Substrate specificity and copper loading of the manganese-
- oxidizing multicopper oxidase Mnx from *Bacillus* sp. PL-12. *Metallomics* **2017**, *9*, 183–191.
- 678 75. Malvern Instruments. (2007). Sample dispersion and refractive index guide. Mastersizer
- 679 2000 reference manual. Worcestershire, U.K.
- 680 76. Gillespie, J. B.; Lindberg, J. D., Ultraviolet and visible imaginary refractive index of strongly
- absorbing atmospheric particulate matter. *Appl. Opt.* **1992,** *31*, 2112–2115.
- 77. Lume-Pereira, C.; Baral, S.; Henglein, A.; Janata, E., Chemistry of colloidal manganese
- dioxide. 1. Mechanism of reduction by an organic radical (a radiation chemical study). J. Phys.
- 684 *Chem.* **1985,** 89, 5772–5718.
- 78. Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T., Photocurrent generation from semiconducting
- manganese oxide nanosheets in response to visible light. J. Phys. Chem. B 2005, 109, 9651-
- 687 9655.
- 79. Huangfu, X.; Jiang, J.; Ma, J.; Liu, Y.; Yang, J., Aggregation kinetics of manganese dioxide
- 689 colloids in aqueous solution: Influence of humic substances and biomacromolecules. *Environ*.
- 690 Sci. Technol. **2013**, 47, 10285–10292.
- 80. Siebecker, M.; Madison, A. S.; Luther III, G. W., Reduction kinetics of polymeric (soluble)
- manganese (IV) oxide (MnO₂) by ferrous iron (Fe²⁺). Aquat. Geochem. **2015**, 21, 143–158.
- 81. Kwon, K. D.; Refson, K.; Sposito, G., On the role of Mn(IV) vacancies in the photoreductive
- dissolution of hexagonal birnessite. *Geochim. Cosmochim. Acta* **2009**, 73, 4142–4150.
- 82. Sherman, D. M., Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals:
- Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim.
- 697 *Cosmochim. Acta* **2005,** *69*, 3249–3255.
- 83. Murray, J. W., The surface chemistry of hydrous manganese dioxide. *J. Colloid Interface Sci.*
- **1974,** *46*, 357–371.
- 700 84. Perez-Benito, J.; Arias, C.; Amat, E., A kinetic study of the reduction of colloidal manganese
- dioxide by oxalic acid. J. Colloid Interface Sci. 1996, 177, 288–297.

- 702 85. Yao, W.; Millero, F. J., Adsorption of phosphate on manganese dioxide in seawater. *Environ*.
- 703 *Sci. Technol.* **1996,** *30*, 536–541.
- 86. Wang, Q.; Liao, X.; Xu, W.; Ren, Y.; Livi, K. J.; Zhu, M., Synthesis of birnessite in the
- presence of phosphate, silicate, or sulfate. *Inorg. Chem.* **2016,** *55*, 10248–10258.
- 706 87. Grassian, V. H., When size really matters: Size-dependent properties and surface chemistry
- of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C
- 708 **2008,** *112*, 18303–18313.
- 709 88. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of
- 710 nanocrystals of different shapes. *Chem. Rev.* **2005**, *105*, 1025–1102.
- 711 89. Sun, J.; Goldys, E. M., Linear absorption and molar extinction coefficients in direct
- 712 semiconductor quantum dots. *J. Phys. Chem. C* **2008**, *112*, 9261–9266.
- 713 90. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with
- 714 different sizes and different capping ligands. *Colloids Surf. B* **2007**, *58*, 3–7.
- 715 91. Yu, W. W.; Qu, L.; Guo, W.; Peng, X., Experimental determination of the extinction
- coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.
- 92. Roduner, E., Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–
- 718 592.
- 719 93. Brock, S. L.; Sanabria, M.; Suib, S. L.; Urban, V.; Thiyagarajan, P.; Potter, D. I., Particle size
- 720 control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J.
- 721 *Phys. Chem. B* **1999**, *103*, 7416–7428.
- 94. Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P., Microstructures and
- 523 spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J. Phys. Chem. C
- **2008,** *112*, 13134–13140.
- 725 95. Jung, H.; Chadha, T. S.; Min, Y.; Biswas, P.; Jun, Y.-S., Photochemically-assisted synthesis
- of birnessite nanosheets and their structural alteration in the presence of pyrophosphate. ACS
- 727 Sustain. Chem. Eng. **2017**, *5*, 10624–10632.
- 728 96. Tauc, J.; Grigorovici, R.; Vancu, A., Optical properties and electronic structure of amorphous
- 729 germanium. *Phys. Stat. Sol.* **1966**, *15*, 627–637.
- 730 97. Kwon, K. D.; Refson, K.; Sposito, G., Defect-induced photoconductivity in layered
- manganese oxides: A Density Functional Theory study. *Phys. Rev. Lett.* **2008**, *100*, 146601.
- 98. Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie III, D. P., Evaluation of the Tauc method for
- optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B
- **2015,** *252*, 1700–1710.
- 735 99. Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of
- 736 colloidal gold nanoparticles. *J. Phys. Chem. B* **1999**, *103*, 4212–4217.
- 737 100. Mullaugh, K. M.; Luther III, G. W., Spectroscopic determination of the size of cadmium
- sulfide nanoparticles formed under environmentally relevant conditions. J. Environ. Monit. 2010,
- 739 *12*, 890–897.
- 740 101. Borgohain, K.; Murase, N.; Mahamunia, S., Synthesis and properties of Cu₂O quantum
- 741 particles. J. Appl. Phys. **2002**, 92, 1292–1297.
- 742 102. Pesika, N. S.; Stebe, K. J.; Searson, P. C., Relationship between absorbance spectra and
- particle size distributions for quantum-sized nanocrystals. J. Phys. Chem. B 2003, 107, 10412–
- 744 10415.
- 745 103. Zhang, H.; Bayne, M.; Fernando, S.; Legg, B.; Zhu, M.; Penn, R. L.; Banfield, J. F., Size-
- 746 dependent bandgap of nanogoethite. *J. Phys. Chem. C* **2011**, *115*, 17704–17710.


- 747 104. Brus, L. E., Electron-electron and electron-hole interactions in small semiconductor
- 748 crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80,
- 749 4403–4409.
- 750 105. Pinaud, B. A.; Chen, Z.; Abram, D. N.; Jaramillo, T. F., Thin films of sodium birnessite-
- 751 type MnO₂: optical properties, electronic band structure, and solar photoelectrochemistry. J.
- 752 *Phys. Chem. C* **2011,** *115*, 11830–11838.
- 753 106. Zhou, F.; McDonnell-Worth, C.; Li, H.; Li, J.; Spiccia, L.; Macfarlane, D. R., Enhanced
- photo-electrochemical water oxidation on MnO_x in buffered organic/inorganic electrolytes. J.
- 755 *Mater. Chem. A* **2015,** *3*, 16642–16652.
- 756 107. Lany, S., Semiconducting transition metal oxides. J. Phys. Condens. Matter 2015, 27,
- 757 283203.
- 758 108. Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V., Photoinduced electron transfer from
- 759 semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2011,
- 760 *108*, 29–34.
- 761 109. The 0.5 mM PP point was not plotted because the DLS-measured size of the particles fell
- off the trend. We inferred that the DLS technique, which measures hydrodynamic diameter of a
- 763 particle that includes salvation shell and adsorbates that move along with the particle,
- overestimated the nanoparticle size because of higher association of strongly adsorbing PP at 0.5
- 765 mM PP concentration. Nevertheless, the band gap energy of 0.5 mM PP colloid, which correlates
- with the intrinsic MnO₂ properties, follows the expected trend (Table S1).
- 767 110. Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T., Vibrational spectroscopy of bulk and
- supported manganese oxides. *Phys. Chem. Chem. Phys.* **1999**, *1*, 185–190.
- 769 111. Julien, C. M.; Massot, M.; Poinsignon, C., Lattice vibrations of manganese oxides Part 1.
- Periodic structures. *Spectrochim. Acta A* **2004**, *60*, 689–700.
- 771 112. Kim, H.-S.; Stair, P. C., Bacterially produced manganese oxide and todorokite: UV Raman
- 772 spectroscopic comparison. J. Phys. Chem. B **2004**, 108, 17019–17026.
- 773 113. Gao, T.; Fjellvag, H.; Norby, P., Structural and morphological evolution of β-MnO₂
- nanorods during hydrothermal synthesis. *Nanotechnology* **2009**, *20*, 055610.
- 114. Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P.,
- Raman spectra of birnessite manganese dioxides. *Solid State Ion.* **2003,** *159* 345–356.
- 115. Chen, D.; Ding, D.; Li, X.; Waller, G. H.; Xiong, X.; El-Sayed, M. A.; Liu, M., Probing the
- 778 charge storage mechanism of a pseudocapacitive MnO₂ electrode using *in operando* Raman
- 779 spectroscopy. *Chem. Mater.* **2015,** *27*, 6608–6619.
- 780 116. Morgan Chan, Z.; Kitchaev, D. A.; Nelson Weker, J.; Schnedermann, C.; Lim, K.; Ceder,
- 781 G.; Tumas, W.; Toney, M. F.; Nocera, D. G., Electrochemical trapping of metastable Mn³⁺ ions
- for activation of MnO₂ oxygen evolution catalysts. *Proc. Natl. Acad. Sci. U.S.A.* **2018,** 115,
- 783 E5261–E5268.
- 784 117. Momma, K.; Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric
- and morphology data. *J. Appl. Crystallogr.* **2011,** *44*, 1272–1276.
- 786 118. Gaillot, A.-C.; Flot, D.; Drits, V. A.; Manceau, A.; Burghammer, M.; Lanson, B., Structure
- of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO₄. I. Two-
- 788 layer polytype from 800 °C experiment. *Chem. Mater.* **2003,** *15*, 4666–4678.
- 789 119. Zhu, M.; Farrow, C. L.; Post, J. E.; Livi, K. J. T.; Billinge, S. J. L.; Ginder-Vogel, M.;
- 790 Sparks, D. L., Structural study of biotic and abiotic poorly-crystalline manganese oxides using
- atomic pair distribution function analysis. *Geochim. Cosmochim. Acta* **2012,** *81*, 39–55.

- 792 120. Ling, F. T.; Heaney, P. J.; Post, J. E.; Gao, X., Transformations from triclinic to hexagonal
- birnessite at circumneutral pH induced through pH control by common biological buffers. *Chem.*
- 794 *Geol.* **2015,** *416*, 1–10.
- 795 121. Lotya, M.; Rakovich, A.; Donegan, J. F.; Coleman, J. N., Measuring the lateral size of
- 796 liquid-exfoliated nanosheets with dynamic light scattering. *Nanotechnology* **2013**, *24*, 265703.
- 797 122. Elzinga, E. J., Reductive transformation of birnessite by aqueous Mn(II). *Environ. Sci.*
- 798 *Technol.* **2011,** *45*, 6366–6372.
- 799 123. Lefkowitz, J. P.; Rouff, A. A.; Elzinga, E. J., Influence of pH on the reductive
- transformation of birnessite by aqueous Mn(II). *Environ. Sci. Technol.* **2013**, *47*, 10364–10371.
- 801 124. Klewicki, J. K.; Morgan, J. J., Kinetic behavior of Mn(III) complexes of pyrophosphate,
- 802 EDTA, and citrate. *Environ. Sci. Technol.* **1998,** *32*, 2916–2922.
- 803 125. Fendorf, S. E.; Sparks, D. L.; Franz, J. A.; Camaioni, D. M., Electron Paramagnetic
- 804 Resonance stopped-flow kinetic study of manganese (II) sorption-desorption on birnessite. Soil
- 805 Sci. Soc. Am. J. 1993, 57, 57–62.
- 806 126. Simanova, A. A.; Peña, J., Time-resolved investigation of cobalt oxidation by Mn(III)-rich
- 807 δ-MnO₂ using quick X-ray absorption spectroscopy. Environ. Sci. Technol. 2015, 49,
- 808 10867-10876.
- 809 127. Peña, J.; Bargar, J. R.; Sposito, G., Copper sorption by the edge surfaces of synthetic
- 810 birnessite nanoparticles. *Chem. Geol.* **2015**, *396*, 196–207.
- 811 128. Wang, Y.; Benkaddour, S.; Marafatto, F. F.; Peña, J., Diffusion- and pH-dependent
- reactivity of layer-type MnO₂: Reactions at particle edges versus vacancy sites. *Environ. Sci.*
- 813 *Technol.* **2018,** *52*, 3476–3485.
- 129. Simanova, A. A.; Kwon, K. D.; Bone, S. E.; Bargar, J. R.; Refson, K.; Sposito, G.; Peña, J.,
- Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II).
- 816 *Geochim. Cosmochim. Acta* **2015,** *164*, 191–204.
- 817 130. Stone, A. T.; Morgan, J. J., Reduction and dissolution of manganese(III) and
- manganese(IV) oxides by organics. 1. Reaction with hydroquinone. Environ. Sci. Technol. 1984,
- 819 *18*, 450–456.
- 820 131. Zhao, H.; Zhu, M.; Li, W.; Elzinga, E. J.; Villalobos, M.; Liu, F.; Zhang, J.; Feng, X.;
- 821 Sparks, D. L., Redox reactions between Mn(II) and hexagonal birnessite change its layer
- 822 symmetry. *Environ. Sci. Technol.* **2016,** *50*, 1750–1758.
- 823 132. Wang, Q.; Yang, P.; Zhu, M., Structural transformation of birnessite by fulvic acid under
- anoxic conditions. *Environ. Sci. Technol.* **2018**, *52*, 1844–1853.
- 825 133. Villinski, J. E.; O'Day, P. A.; Corley, T. L.; Conklin, M. H., In situ spectroscopic and
- solution analyses of the reductive dissolution of MnO₂ by Fe(II). Environ. Sci. Technol. 2001,
- 827 *35*, 1157–1163.
- 828 134. Lefkowitz, J. P.; Elzinga, E. J., Impacts of aqueous Mn(II) on the sorption of Zn(II) by
- 829 hexagonal birnessite. *Environ. Sci. Technol.* **2015,** *49*, 4886–4893.
- 830 135. Lafferty, B. J.; Ginder-Vogel, M.; Zhu, M.; Livi, K. J. T.; Sparks, D. L., Arsenite oxidation
- by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-
- 832 ray diffraction. *Environ. Sci. Technol.* **2010,** *44*, 8467–8472.
- 833 136. Feng, X.; Wang, P.; Shi, Z.; Kwon, K. D.; Zhao, H.; Yin, H.; Lin, Z.; Zhu, M.; Liang, X.;
- 834 Liu, F.; Sparks, D. L., A quantitative model for the coupled kinetics of arsenic
- adsorption/desorption and oxidation on manganese oxides. Environ. Sci. Technol. Lett. 2018, 5,
- 836 175–180.

- 137. Miyata, N.; Maruo, K.; Tani, Y.; Tsuno, H.; Seyama, H.; Soma, M.; Iwahori, K., Production
- of biogenic manganese oxides by anamorhic ascomycete fungi isolated from streambed pebbles.
- 839 *Geomicrobiol. J.* **2006,** *23*, 63–73.
- 840 138. Özkar, S.; Finke, R. G., Palladium(0) nanoparticle formation, stabilization, and mechanistic
- studies: Pd(acac)₂ as a preferred precursor, [Bu₄N]₂HPO₄ stabilizer, plus the stoichiometry,
- 842 kinetics, and minimal, four-step mechanism of the palladium nanoparticle formation and
- subsequent agglomeration reactions. *Langmuir* **2016**, *32*, 3699–3716.
- 844 139. Peng, X.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V colloidal
- semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998,
- 846 *120*, 5343–5344.
- 140. Jiang, F.; Muscat, A. J., Ligand-controlled growth of ZnSe quantum dots in water during
- 848 Ostwald ripening. *Langmuir* **2012**, *28*, 12931–12940.
- 849 141. Clark, M. D., Growth laws for surfactant-coated nanocrystals: Ostwald ripening and size
- 850 focusing. J. Nanopart. Res. **2014**, 16, 2264–2264.
- 851 142. Wang, F.; Richards, V. N.; Shields, S. P.; Buhro, W. E., Kinetics and mechanisms of
- aggregative nanocrystal growth. *Chem. Mater.* **2014,** *26*, 5–21.
- 853 143. Bunker, B. C.; Casey, W. H., *The aqueous chemistry of oxides*. Oxford University Press:
- 854 New York, 2016.
- 855 144. Huang, F.; Zhang, H.; Banfield, J. F., Two-stage crystal-growth kinetics observed during
- hydrothermal coarsening of nanocrystalline ZnS. *Nano Lett.* **2003**, *3*, 373–378.
- 857 145. Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M. P.; Waychunas, G. A.; Banfield, J. F.,
- Special phase transformation and crystal growth pathways observed in nanoparticles. *Geochem*.
- 859 *Trans.* **2003,** *4*, 20–27.
- 860 146. Zhang, J.; Huang, F.; Lin, Z., Progress of nanocrystalline growth kinetics based on oriented
- 861 attachment. *Nanoscale* **2010,** *2*, 18–34.
- 862 147. Liang, X.; Zhao, Z.; Zhu, M.; Liu, F.; Wang, L.; Yin, H. Q., G.; Cao, F.; Liu, X.; Feng, X.,
- 863 Self-assembly of birnessite nanoflowers by staged three-dimensional oriented attachment.
- 864 Environ. Sci. Nano **2017**, 4, 1656–1669.
- 148. Hopenhayn, C., Arsenic in drinking water: impact on human health. *Elements* **2006**, *2*, 103–
- 866 107.
- 867 149. Yogarajah, N.; Tsai, S. S. H., Detection of trace arsenic in drinking water: challenges and
- opportunities for microfluidics. *Environ. Sci. Water Res. Technol.* **2015,** *1*, 426–447.
- 869 150. Mohanty, D., Conventional as well as emerging arsenic removal technologies—a critical
- 870 review. Water Air Soil Pollut. 2017, 228, 381.
- 871 151. Schacht, L.; Ginder-Vogel, M., Arsenite depletion by manganese oxides: A case study on
- the limitations of observed first order rate constants. *Soil Syst.* **2018**, *2*, 39.
- 873 152. Lafferty, B. J.; Ginder-Vogel, M.; Sparks, D. L., Arsenite oxidation by a poorly crystalline
- manganese-oxide 1. Stirred-flow experiments. *Environ. Sci. Technol.* **2010**, *44*, 8460–8466.
- 875 153. Manning, B. A.; Fendorf, S. E.; Bostick, B.; Suarez, D. L., Arsenic(III) oxidation and
- arsenic(V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 2002, 36,
- 877 976–981.
- 878 154. Villalobos, M.; Escobar-Quiroz, I. N.; Salazar-Camacho, C., The influence of particle size
- and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and
- 880 oxidation of As(III). *Geochim. Cosmochim. Acta* **2014**, *125*, 564–581.

- 881 155. Oscarson, D. W.; Huang, P. M.; Defosse, C.; Herbillon, A., Oxidative power of Mn(IV) and
- Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. *Nature* **1981**, *291*,
- 883 50–51.
- 156. Coddington, K., A review of arsenicals in biology. Toxicol. Environ. Chem. 1986, 11, 281-
- 885 290.
- 886 157. Shen, S.; Li, X.-F.; Cullen, W. R.; Weinfeld, M.; Le, X. C., Arsenic binding to proteins.
- 887 *Chem. Rev.* **2013,** *113*, 7769–7792.
- 888 158. Wang, Z.; Lee, S.-W.; Kapoor, P.; Tebo, B. M.; Giammar, D. E., Uraninite oxidation and
- 889 dissolution induced by manganese oxide: A redox reaction between two insoluble minerals.
- 890 *Geochim. Cosmochim. Acta* **2013,** *100*, 24–40.
- 891 159. Webb, S. M.; Dick, G. J.; Bargar, J. R.; Tebo, B. M., Evidence for the presence of Mn(III)
- intermediates in the bacterial oxidation of Mn(II). Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5558–
- 893 5563.

896 TABLE OF CONTENTS FIGURE

