COMPUTING POLYNOMIAL CONFORMAL MODELS FOR
LOW-DEGREE BLASCHKE PRODUCTS

TREVOR RICHARDS AND MALIK YOUNSI

ABSTRACT. For any finite Blaschke product B, there is an injective analytic
map ¢ : D — C and a polynomial p of the same degree as B such that B = poyp
on D. Several proofs of this result have been given over the past several years,
using fundamentally different methods. However, even for low-degree Blaschke
products, no method has hitherto been developed to explicitly compute the
polynomial p or the associated conformal map ¢. In this paper, we show how
these functions may be computed for a Blaschke product of degree at most
three, as well as for Blaschke products of arbitrary degree whose zeros are
equally spaced on a circle centered at the origin.

1. INTRODUCTION

For domains D, E C C and analytic functions f : D — C, g : E — C, we say
that g on E is a conformal model for f on D if there is some analytic bijection
¢ : D — E such that f = goy on D. By precomposing both sides of this equation
by ¢! : E — D, it follows immediately that f on D is a conformal model for g on
E. In this case, we say that the pairs (f, D) and (g, E) are conformally equivalent,
and it is easy to see that this defines an equivalence relation on the set of pairs of
the form (f, D).

There has been significant interest in recent years in the “Polynomial Conformal
Modeling Question” (PCMQ), which asks whether a given pair (f, D) has any
conformal model (g, E') for which the function g is a polynomial. A positive answer
is known for the PCMQ when the domain D is the unit disk D and the function
f is a finite Blaschke product. In this case, the polynomial conformal model may
be assumed to have the same degree as f. In the following, we use the notation
D, = {z € C: |p(z)| < 1} for any polynomial p € Clz].

Theorem 1. For any finite Blaschke product B, there is a polynomial p of the
same degree as B such that p on D, is a conformal model for B on D.

Theorem 1 has seen several proofs in recent years using a variety of approaches.
We mention

e the characterization of fingerprints of polynomial lemniscates obtained by
Ebenfelt et. al. [2] in view of applications to computer vision, which has
Theorem 1 as a corollary;

e the proof of the first author [5] using critical level curve configurations;

e the proof of the second author [9] using conformal welding.
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Theorem 1 was further generalized in [6] to arbitrary functions analytic on the
closed unit disk. As far as we know, the most general version is a solution on
the online mathematics forum math.stackexchange.com by Lowther and Speyer [3,
8] showing that the PCMQ has a positive answer as long as the domain D is
bounded and the function f is analytic on the closure of D. This solution relies
on approximation by polynomials interpolating certain derivative data, and can
readily be generalized to meromorphic functions f, in which case polynomials need
to be replaced by rational maps. Also of interest on this topic is the paper of the
authors [7] which again brings the tools of conformal welding to bear on the PCMQ),
also addressing the question of the degree of the polynomial conformal model in
more detail.

Conspicuously absent in the aforementioned proofs of Theorem 1 is anything of
a constructive nature. In this paper, we present a method for computing a polyno-
mial conformal model as well as obtaining an algebraic formula for its associated
conformal map in two cases : first for finite Blaschke products of degree at most
three, in Section 2, and then for finite Blaschke products of arbitrary degree whose
zeros are equally spaced on a circle centered at the origin, in Section 3.

The work in Sections 2 and 3 requires several lemmas, which are proved in
Section 4.

2. THE PoLYNOMIAL CONFORMAL MODEL FOR A FINITE BLASCHKE PRODUCT
OF DEGREE AT MOST THREE

First, observe that if B is a degree one finite Blaschke product, then B itself
is injective on D), so that we may write B as B = p o ¢, where the polynomial is
p(z) = z and the conformal map is p(z) = B(z).

If B has degree two, then by precomposing B with a disk automorphism sending
0 to the critical point of B, we may assume without loss of generality that the two
zeros of B are symmetric with respect to the origin (this follows from Lemma 3).
In other words, we may assume that B falls in the case treated in Section 3.

Consequently, it only remains to treat the case of a finite Blaschke product B
with deg(B) = 3. In this case, the derivative of B is a rational function with at
most four zeros, two of which lie in . The critical points of B may hence be
computed by means of the quartic formula (see for example [4]).

Let z; and z be the two critical points of B in D, and set k&1 = B(z1) and
ko = B(z2). Note that if p on D, is a conformal model for B on D, then p must
have k1 and ko as critical values as well. The converse also holds, as shown in the
following lemma.

Lemma 2. Let B be a degree three Blaschke product whose critical points in D are
z1 and zo. If p € C[z] is any degree three polynomial whose critical values are B(z1)
and B(z2), then p on D, is a conformal model for B on D.

Proof. By Theorem 1, there is a degree three polynomial p such that p on Dj is a
conformal model for B on D. As previously mentioned, it follows that the critical
values of p are precisely B(z1) and B(zz2). On the other hand, there is exactly one
degree three polynomial with any two given critical values, modulo precomposi-
tion with a linear map (see [1]). Since p and p have the same critical values, it
immediately follows that (p,DD,) is conformally equivalent to (p,D5). Finally, by
the transitivity of conformal equivalence, we conclude that p on D, is a conformal
model for B on D.
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Having proved Lemma 2, it remains to show how to compute a degree three
polynomial with two prescribed critical values.

If p is the desired polynomial, then for any «, f € C with « # 0, the polynomial
p(z) = p(az 4+ B) has the same critical values as p.

Note that p on Dy is a conformal model for p on D, hence is also a conformal
model for B on D, again by transitivity. Moreover, one can easily check that by
making an appropriate choice of o and 3, we may choose p to be of the form

plz)=224cz+d

for some ¢, d € C. Let us simply replace p with this new conformal model, using the
letter p to denote p. We now wish to compute ¢ and d from the prescribed critical
values of p, namely k; and k.

o . —c
The critical points of p are the two square roots of —. Let 42; denote these

two roots. If +21 = —21, then ¢ = 0, in which case p(z) = 23 +d. The derivative of
such a polynomial has a zero of order two, so the same must be true for B as well.
By precomposing B with the appropriate disk automorphism, we may assume that
the double critical point of B is at the origin, so that by Lemma 3, the zeros of
B are equally spaced on a circle centered at the origin. This case being treated in
Section 3, we shall henceforth assume that +z; # —z;.

Substituting these roots back into p and setting the result equal to k; and ko
respectively, we obtain the equations

ki = 21> +czp +dand ky = (—21)° + ¢(—21) + d.

The solutions ¢ and d to this system of equations are easily found to be

ko — ky \ 23 ky+ k
c:—3(24 1) and d = 1; 2,

for any choice of the third root in the equation for c¢. In order to simplify the
notation, we leave this as simply ¢ and d in what follows, keeping in mind that
these quantities are computed in terms of k1 and ko. With these values of ¢ and d,
the polynomial p(z) = 2z + cz + d has critical values k1 and ks and therefore is a
conformal model for B on D, by Lemma 2

Having found the polynomial conformal model p, we can now obtain a formula
for the corresponding conformal map ¢ : D — D, satisfying B = po ¢. In order to
do so, we treat the equation B = p o ¢ as a polynomial equation in the variable ¢,
with coefficients in the ring of rational functions in z. In other words, the function
 we are looking for is a solution to the equation

0=¢*+cp+(d—B).

The cubic formula (see again [4]) now implies that ¢ has the form

p=U+V,

sl i-B  [(d-B? & s/ i-B  [d-B? &
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In the above formulas, the same choice must be made for the square roots in U and
in V, while the cubic roots must and can be chosen to ensure that UV = —C.

These constraints still leave three possible solutions ¢, corresponding to the three
possible choices for the cubic roots in the expressions for U and V. Each of these
solutions satisfies the equation B = p o ¢ in D, although in general only one is
analytic in the disk. Indeed, in order to see this, suppose that the two critical
points of B are distinct, which is the case of interest, and let ¢1,p2 : D — C be
two analytic maps satisfying B = po ¢; = po ¢s. According to Lemma 4, both ¢y
and 9 are injective on D, and ¢1 (D) = p2(D) = D,,.

Now, we have B o ;™! = Bo ;! on D, which implies that ¢ = @571 0 ¢y is
a disk automorphism satisfying B = B o1 on D. But then ¢ must be the identity,
in view of Lemma 6, so that ¢; = ¢ on D. We conclude that at most one of the
three solutions to the equation

0=+ cp+(d— B)

will be analytic.

In practice, determining which of the three choices of ¢ is analytic may be
quite difficult, mostly due to the complicated nature of the formulas involved. We
illustrate this by the following example.

1.0 05 00 05 10 -1.0 05 0.0 05 10

F1GURE 1. The crit- FI1GURE 2. The crit-
ical level curves of B. ical level curves of p.

Example. Consider the finite Blaschke product

(z—3/4)(z— (1/4+ 7i/8))
(1 (3/4)2)(1 — (1/4—17i/8)z)’
which has zeros at 0,1/2 and 1/44-7i/8. The derivative of B is a degree four rational
function, whose zeros can in principle be computed using the quartic formula. The
closed forms for these critical points are too involved to display here, so we simply
mention that those in the disk are approximately z; = 0.2014 4 0.6494: and z, =

0.4599+0.0103¢. The critical level curves of B are displayed in Figure 1. The outer
boundary of the shaded region is the unit circle.

B(z) ==z
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The corresponding critical values are k1 = B(z1) and ks = B(z2). Recall that by
Lemma 2, there is a unique conformal equivalence class of degree three polynomials
with two prescribed critical values, and any degree three polynomial p having kq
and ks as critical values is a polynomial conformal model on D, for B on D.

The previous work shows that the polynomial p(z) = 2® + cz + d (where ¢ =

-3 (%)2/3 and d = ’“7'2““2) has critical values ki and k3, so that p on D, is a
conformal model for B on D. Furthermore, as discussed above, the conformal map
¢ : D — D, satisfying the equation B = poy is defined by one of the three algebraic
formulas obtained by applying the cubic formulas to the equation B = poy written
in the form

¢’ +cp+(d—B) =0

(again viewed as an equation in the unknown ¢, with coefficients in the ring of
rational functions in z). The complexity of these formulas makes it difficult to
determine precisely which of the three solutions is conformal on the unit disk (and
therefore is truly the one we are looking for).

For comparison sake, we also display the critical level curves of the polynomial
conformal model p in Figure 2. The outer boundary of the shaded region is the
set {z : |p(z)| = 1}. The function ¢ maps the lightest regions in Figure 1 to the
corresponding lightest regions in Figure 2, and so forth.

3. THE PoLYNOMIAL CONFORMAL MODEL FOR A FINITE BLASCHKE PRODUCT
WITH EQUALLY SPACED ZEROS

Let B denote a degree n > 2 Blaschke product whose zeros are equally spaced

on a circle centered at 0, i.e.
SN et
1—¢cnzn

B(z) =X

for some A € C with |A\| =1 and some ¢ € D.
1'7r/nZ

Nigron

D. A straightforward calculation shows that for z € D,
B(p(z)) = A (|e]*™ — 1) 2" — Ac™.

Define ¢(z) = . By Lemma 5, the map ¢ is analytic and injective on

It follows that the polynomial p(z) = A(|c[>" — 1)z" — Ac™ on the set (D) is a
polynomial conformal model for B on D.

4. PROOFS OF THE LEMMAS

Lemma 3. If the critical points of a finite Blaschke product B of degree n > 2 are
all at the origin, then the zeros of B are equally spaced on a circle centered at the
origin.

Proof. Let E(z) = 2", Then B and B have the same critical points in D, so there
exists a disk automorphism 7 : D — D such that B = 7o B (see e.g. [10]). This
implies that B(z) = 0 if and only if 2™ = 771(0), so that the zeros of B are indeed

equally spaced on a circle centered at 0.
O
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Lemma 4. Let B be a finite Blaschke product and let p be a polynomial with critical
values all in D. If deg(B) = deg(p), then any analytic function ¢ : D — C such
that B =po ¢ on D is injective on D and satisfies (D) = D,,.

Proof. First note that since all the critical values of p lie in D, the set D, is connected
(see e.g. [2, Proposition 2.1].) Also, we have p o (D) = B(D) C D, from which
we deduce that (D) C D,. In order to show that ¢(D) = D,, it suffices to prove
that (D) is both open and closed in D, by connectedness. Clearly ¢(ID) is open
in D,, by the open mapping theorem. Now, suppose that {w,} C (D) is such
that w, - w € D,. Then |p(w)| < 1, so |p(wn)| # 1, by continuity. For each n,
let z, € D be chosen such that w,, = ¢(z,). Passing to a subsequence if necessary,
assume that z, — z € D. Note that

[B(2)| = lim_[B(zn)[ = lim |p(p(2,))| = lim [p(wn)] <1,

which shows that |B(z)| < 1 and thus |z| < 1. By continuity, we get w = ¢(z), so
that w € ¢(D). This shows that ¢(D) is closed in D), so that (D) =D,.

Suppose now that ¢ fails to be injective. Then for some distinct points zg, 21 € D,
©(z0) = ¢(21). Let w € D denote the image under p of this common value, so that
w = p(e(z0)) = p(p(21)). Let (1,¢s, ...,k denote the preimages of w under p,
ordered so that p(z1) = (1. Since (D) = D,, for each 2 < j < k, there exists
zj € D such that ¢(z;) = (;. Note that then B(z;) = p(¢(2;)) = p(¢;) = w for
each 0 < j < k.

For any function f which is analytic at a point £ € C, we denote by mult (&)
the multiplicity of &y as a solution to the equation f(z) = f(£o) (note of course that
mult (o) > 1). We shall use the well-known fact that multiplicity is multiplicative
. if f is analytic at &y, and g is analytic at f(§o), then multyo (&) = mult(&o) -
multy(f(&o)). In particular, if h = g o f, then mult,(§) > multy(f(&)).

k
Now, note that deg(B) = Z multp(z) > ZmultB(zj). Writing B = poyp

z€B~1(w) j=0
therefore yields
k k k
deg(B) > Zmultpw(zj) = Zmult¢(zj) mult, (p(z;)) > Zmultp(gj) = deg(p).
Jj=0 j=0 j=1

This contradicts the assumption that deg(p) = deg(B). It follows that ¢ is injective,
which completes the proof of the lemma.
([l

z
Lemma 5. For any ¢ € D, the map ¢(z) = T is an injective analytic
— "z
map on D.
Proof. Clearly, the function ¢ is analytic on the unit disk, since 1 — ¢"2" is non-
vanishing there.
Now suppose that z,w € D are such that ¢(z) = p(w). Then we have

so that 2" = w", and thus z = e2™**/" for some k € {0,1,...,n—1}. Substituting
back into the equation ¢(z) = ¢(w) yields e?™*/"w = w, so that either w = 0, in

which case z = 0, or e2™k/n

injective.

= 1. In both cases, we get z = w. It follows that ¢ is
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Lemma 6. If B is a degree three Blaschke product whose two critical points in D
are distinct, and if ¢ : D — D is a disk automorphism satisfying

(1) Boy =B
on D, then v is the identity map.

Proof. Tt easily follows from Schwarz’s lemma that an analytic function from D into
D with two distinct fixed points is the identity. It thus suffices to find two distinct
points in D which are fixed by ).

Let z1,zo € D denote the two distinct critical points of B. We claim that
B(z1) # B(22). Indeed, if not, then the rational function B(z) — B(z1) would have
zeros of order at least two at both z1 and 25, which is impossible since B(z) — B(z1)
is a degree three rational function.

Now, Equation (1) combined with the chain rule implies that v preserves the set
of critical points of B. If ¢(z1) = 29, then again by Equation (1) we would have
B(z1) = B(¢(z1)) = B(z2), a contradiction. It follows that 1 fixes the distinct
points z; and z3, as required.

O
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