ON THE ANALYTIC AND CAUCHY CAPACITIES

MALIK YOUNSI

ABSTRACT. We give new sufficient conditions for a compact set £ C C to
satisfy v(E) = vc(F), where + is the analytic capacity and 7. is the Cauchy
capacity. As a consequence, we provide examples of compact plane sets such
that the above equality holds but the Ahlfors function is not the Cauchy
transform of any complex Borel measure supported on the set.

1. INTRODUCTION

Let E be a compact subset of the complex plane C. The analytic capacity of E

is defined by

V(E) :=sup{|f'(c0)| : f € H*(Q),|f] < 1},
where  is the unbounded component of the complement of E in the Riemann
sphere Co,, H*(Q2) is the class of all bounded holomorphic functions on Q and
f(00) i=lim, 00 2(f(2) — f(00)).

Analytic capacity was first introduced by Ahlfors in his celebrated paper [1] for
the study of a problem generally attributed to Painlevé in 1888 asking to find a
geometric characterization of the compact sets that are removable for bounded holo-
morphic functions. It was later observed by Vitushkin [17] that analytic capacity is
a fundamental tool in the theory of uniform rational approximation of holomorphic
functions.

It follows easily from the definition that analytic capacity is monotonic, i.e.
v(E) < ~4(F) whenever E C F, and that analytic capacity is outer regular in
the sense that if F4 O Es D ... is a decreasing sequence of compact sets, then
Y(Ex) = v(N, Ey) as k — oo. Furthermore, it is well-known that for any compact
set E of positive analytic capacity, there exists a unique function f € H* () with
|f] < 1and f'(c0) = v(E), called the Ahlfors function for E or on €. Note that
the extremality of f implies that it must vanish at the point co. By convention,
the Ahlfors function is defined to be identically zero on each bounded component
of C \ E. We also mention that in some particular cases, the properties of the
Ahlfors function are well-known. For instance, if {2 is a nondegenerate m-connected
domain, then the Ahlfors function f is a degree m proper holomorphic map of
onto D. In particular, if £ is connected and contains more than one point, it is
simply the Riemann map, normalized so that f(co) =0 and f/(c0) > 0. For more
information on the elementary properties of analytic capacity and Ahlfors functions,
we refer the reader to [5] and [14].
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Following its emergence in 1947, analytic capacity quickly acquired the repu-
tation to be quite difficult to study and its properties have remained mysterious
for several decades. The main recent advances in the field are due to Tolsa [16],
who proved that analytic capacity is comparable to a quantity which is easier to
comprehend since it is more suitable to real analysis tools. More precisely, define
the capacity v4 of a compact set E by

V+(E) := sup{u(E) : suppu C E,|Cu| <1 on Cx \ E},

the supremum being taken over all positive Radon measures i supported on E such
that the Cauchy transform

Cntz) = [ e du(©

is bounded by one in modulus outside E. Note that for any such measure, Cy is
analytic outside E with Cu'(c0) = —p(E), thus we have 4 (E) < v(F). Tolsa’s
remarkable result states that v(E) < Cv4(F) for some universal constant C. This
theorem has several important consequences. For instance, it gives a complete
solution to Painlevé’s problem for arbitrary compact sets involving the notion of
curvature of a measure introduced by Melnikov [11]. A previous solution for sets of
finite length was obtained earlier by David [3]. Moreover, since v4 was previously
shown by Tolsa to be comparable with a quantity that is subadditive, it follows
that v is semi-additive, meaning that there is a universal constant C’ such that
Y(EUF) <C'(y(E)+~(F)) for all compact sets E, F. This solved a very difficult
problem raised by Vitushkin in 1967. The interested reader may consult [14] for
more details. We mention in passing that it is not known whether analytic capacity
is subadditive; in other words, if C’ can be taken equal to 1. See [18] for more
information on this problem.

A closely related concept is the so-called Cauchy capacity of E, noted by v.(E)
and defined as

Ye(E) :=sup{|u(E)| : suppp C E,|Cu| <1 on Cy \ E},

where p is a complex Borel measure supported on E. Apparently, the term “Cauchy
capacity” was used for the first time by Havinson in [7]. Clearly, 7.(E) < y(E) <
Cv.(E) for all compact sets E, where C is the comparability constant in Tolsa’s
result. In particular, it follows that v(E) = 0 if and only if 7.(F) = 0, which is
quite nontrivial. Our main motivation for the present paper is the study of the
following open question :

Question 1.1. Is the analytic capacity actually equal to the Cauchy capacity? In
other words, is it true that

(1) V(E) = 7e(E)
for all compact sets E C C?

Apparently Question 1.1 was raised for the first time by Murai (see [12, Section
3]). It was later studied by Havinson in [8] and [9]. See also [15, Section 5].

Equality (1) is known to hold only in some very special cases, such as compact
sets of finite Painlevé length. We say that a compact set E has finite Painlevé length
if there is a number [ such that every open set U with £ C U contains a cycle "
surrounding E that consists of finitely many disjoint analytic Jordan curves and
has length less than /. The infimum of such numbers [ is called the Painlevé length
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of E. The following theorem essentially follows from Cauchy’s integral formula and
a limiting argument.

Theorem 1.2 (Havinson [10]). Suppose that E has finite Painlevé length k. If f
is any bounded holomorphic function on Cs \ E with f(oo) = 0, then there is a
complex measure (1 supported on E such that ||u|| < k|| flleo/27 and

fz)=Cu(z) (2 €Cx\ E).

See also [5, Theorem 3.1, Chapter 2].
In particular, applying the above result to the Ahlfors function for E, we obtain

Corollary 1.3. If E has finite Painlevé length, then
VE) = 7e(E).

A consequence of Corollary 1.3 is that a positive answer to Question 1.1 would
follow if one could prove that the Cauchy capacity 7. is outer regular, because every
compact subset of the plane can be obtained as a decreasing sequence of compact
sets with finite Painlevé length.

In this paper, we prove the following result, which can be viewed as a general-
ization of Corollary 1.3 to sets of o-finite Painlevé length.

Theorem 1.4. Let E C C be compact and suppose that there exists a sequence
(Ex)ken of compact subsets of E with the following properties :
(i) every E) has finite Painlevé length;

(i1) there exists an integer m such that Q and every Qi are nondegenerate m-
connected domains, where Qi and Q@ are the unbounded components of Coo \ Ex,
and Cy \ E respectively;

(i) the sequence of domains (Q)ken converges to § in the sense of Carathéodory.

Then ¥(E) = 7.(E).

Note that in Theorem 1.2, not only the Ahlfors function but every bounded
holomorphic function on C, \ F vanishing at infinity is the Cauchy transform of a
complex measure supported on E. From the point of view of Question 1.1, a more
interesting question is whether the Ahlfors function can always be expressed as the
Cauchy transform of a complex measure. This was answered in the negative by
Samokhin.

Theorem 1.5 (Samokhin [13]). There exists a connected compact set F with con-
nected complement such that the Ahlfors function for F is not the Cauchy transform
of any complex measure supported on F.

In particular, v (F) < v(F) by uniqueness of the Ahlfors function and by the
fact that the capacity v4 of a compact set is always attained by some measure. It
is not clear whether the latter is true if v is replaced by ~..

Question 1.6. Is it true that for every compact set E, there exists a complex Borel
measure p supported on E such that

ICu(z)| <1 (z€Cx \ E)
and u(E) = 7.(E)?

We shall give a negative answer to Question 1.6 by proving the following result.
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Theorem 1.7. There exists a connected compact set E with connected complement
such that v(E) = v.(E) but the Ahlfors function for E is not the Cauchy transform
of any complex Borel measure supported on E.

Using Theorem 1.4, we can also obtain examples for any prescribed number of
connected components.

Theorem 1.8. For any m € N, there exists a compact set E™ with m nondegener-
ate components such that v(E™) = ~v.(E™) but the Ahlfors function for E™ is not
the Cauchy transform of any complexr Borel measure supported on E™.

Our construction is a bit simpler than the one in [13], although the latter can
be generalized to obtain an example of a simply connected domain €2 such that for
fairly general functionals on H* (), no extremal function can be represented as a
Cauchy transform.

The rest of the paper is organized as follows. In Sect. 2, we give a proof of The-
orem 1.7 based on a convergence lemma for the analytic capacity of two disjoint
closed disks. Section 3 contains the proof of a convergence theorem for Ahlfors
functions based on the Carathéodory kernel convergence theorem for finitely con-
nected domains and on Koebe’s circle domain theorem. This convergence theorem
is then used in Sect. 4 to prove Theorem 1.4. Finally, Section 5 is dedicated to the
construction of the sets E™ of Theorem 1.8.

2. PROOF OF THEOREM 1.7

In this section, we prove Theorem 1.7 by constructing a connected compact set
E with connected complement such that v(F) = 7.(E), but the Ahlfors function is
not the Cauchy transform of any complex Borel measure supported on E.

First, we need some preliminaries on convergence in the sense of Carathéodory.
We shall agssume for the remaining of the section that (€) is a sequence of domains
in the Riemann sphere, each containing the point co.

Definition 2.1. The kernel of the sequence (€) (with respect to the point co)
is defined to be the largest domain 2 containing the point oo such that if K is a
compact subset of 2, then there exists a kg such that K C Qy for all k& > kg, if such
a domain exists. If not, then we say that the kernel of () does not exist.

Furthermore, we say that a sequence ();) converges to € (in the sense of
Carathéodory) if Q is the kernel of every subsequence of (£2;). This is denoted
by Q5 — Q.

Now, for k > 1, let g; be univalent on Qj and normalized at infinity, meaning
that

ai a2
(2) gk(z):z—l—?—l—;—i-...

in a neighborhood of the point oo or, equivalently, that lim, . (gx(2) — z) = 0.
Note that the only Mobius transformation normalized at infinity is the identity.
The following two results can be viewed as generalizations of the fact that the
family of normalized Schlicht functions on the unit disk is normal and of the
Carathéodory kernel convergence theorem for simply connected domains.

Lemma 2.2. Suppose that the kernel of () exists and denote it by Q. Then
there exists a subsequence (gi,)ien such that the kernel of (2,) is Q and (g, )ien
converges locally uniformly to a univalent function g on Q normalized at infinity.
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Theorem 2.3 (Generalized Carathéodory kernel convergence theorem). Suppose
that Q. — Q. Then (g )ken converges locally uniformly on § to a univalent function
g normalized at infinity if and only if (gx(Q)) converges to a domain Q. If this is
the case, then Q = 9(Q) and g ' — g~ locally uniformly on Q.

For a proof of these results, see [2, Section 15.4].

For the rest of the paper, we will be interested in the case where each ) is a
nondegenerate m-connected domain, for some fixed m € N. The following theorem
of Koebe states that every such domain is conformally equivalent to a nondegenerate
m-connected circle domain, that is, a domain whose complement is a union of m
disjoint closed round disks.

Theorem 2.4 (Koebe’s circle domain theorem). Let Q be a nondegenerate finitely
connected domain. Then there exists a conformal map g : Q — Q', where Q' is a
nondegenerate circle domain. Moreover, if g1 is another conformal map of Q0 onto
a nondegenerate circle domain, then g3 = M o g for some Mdbius transformation

M.

It follows that for any nondegenerate finitely connected domain €2, there exists
a unique Koebe map ¢ : © — Q' normalized at infinity. This conformal map ¢ is
called the normalized Koebe map of 2.

We shall also need the following conformal representation result for nondegener-
ate doubly connected circle domains.

Lemma 2.5. Let Q) be a nondegenerate doubly connected circle domain. Assume
moreover that the circles bounding Q' are centered on the real axis. Then there
exists a unique conformal map h : Q' — Q" normalized at infinity, where Q" is the
complement in Co of two disjoint closed intervals contained in the same horizontal
line.

Such a domain € is called a doubly connected horizontal slit domain and the
map h: Q' — Q" is called the normalized slit map of Q.

Proof. First note that Q' NH is a Jordan domain, where H is the upper half-plane.
Let ¢ : @’ NH — H be a homeomorphism conformal on Q' N H with ¢(cc0) = oo.
By the Schwarz reflection principle, the map ¢ can be extended to a conformal
map 1 : ' — D, where D is the complement of two disjoint closed intervals in
the real axis. Note that the limit lim,_,, ¥(2)/z is positive, since ¢ must preserve
the orientation of the boundary. Composing ¥ with an appropriate linear function
yields a conformal map h : Q' — Q" normalized at infinity, where Q” is a doubly
connected horizontal slit domain.

Finally, the uniqueness of the normalized slit map h is well-known, see e.g. [6,
Section 2, Chapter 5].

O

We can now prove the following convergence lemma for the analytic capacity of
two disjoint closed disks.

Lemma 2.6. For k € N, let Fy, be a union of two disjoint closed disks. Suppose
that the centers and radii of the disks converge to c1,c2 and ry,ro respectively, where
the closed disks D(c1,71) and D(c2,72) intersect at exactly one point. Then

V(Ex) = (F),
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where F := D(cy,71) UD(ca,72).

Proof. Translating and rotating if necessary, we can assume that the disks are
centered on the real axis. Then each domain Q;C := Cx \ Fy is symmetric with
respect to the real axis. For k € N, let hy, : Q) — Q) be the normalized slit map
of Q.. We shall prove that y(Fj) — v(F) by showing that every subsequence of
(7(Fx))ken has a subsequence that converges to v(F).

Indeed, first note that Q) — ', where ' := Co \ F. Let (7(F%))res be a sub-
sequence. Then by Lemma 2.2, the corresponding sequence of normalized slit maps
(hk)res has a subsequence (hg)res: that converges locally uniformly to a univalent
function h on Q' normalized at infinity. By Theorem 2.3, the corresponding sub-
sequence of doubly connected horizontal slit domains () )reg converges to h(€2)
in the sense of Carathéodory. Now, the sequences of centers and diameters of the
intervals bounding Q) for £ € S’ must be bounded, otherwise the kernel of (}/)res:
would not contain a neighborhood of infinity. Thus, passing to a subsequence if
necessary, we can assume that the intervals bounding Qf for k € S’ converge to
two closed intervals I, I belonging to the same horizontal line, as k — oo in 5.

Now, it is easy to see that £(€') must be the domain bounded by the two intervals
I and I,. Since ' is simply connected and h is univalent, h(2") must also be simply
connected and so the only possibility is that the two intervals intersect at exactly
one point. By a result of Pommerenke, the analytic capacity of a linear compact
set is equal to a quarter of its length (see e.g. [5, Theorem 6.2, Chapter 1]). Since
the lengths of the intervals bounding Q] for k € S’ converge to the lengths of I
and I, it follows that

V(Coo \ Q) = ¥(I1 U L2) = ¥(Coo \ (),
as k — oo in S’. Finally, a simple change of variable argument shows that
V(Coo \ ) = 7(Coo \ hie(%)) = (Coo \ ) = 7(F)
and
V(Cos \ h(Q)) = 7(Coo \ ') = ~(F),
so that v(Fy) — v(F) as k = oo in ',
This completes the proof of the lemma. ([

We can now prove Theorem 1.7. More precisely, let us construct a connected
compact set F with connected complement such that v(E) = ~.(FE), but the Ahlfors
function is not the Cauchy transform of any complex Borel measure supported on
E.

Proof. Let E be the union of the nonrectifiable curve
I':={z+izsin(l/x): z € (0,1/7]}

with the line segment [—i,i]. Then FE is a connected compact set and Q := Co \ E
is connected. Let f be the Ahlfors function on .
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NN~

FIGURE 1. The compact set E.

First, we show that f is not the Cauchy transform of any complex Borel measure
supported on E. The proof of this is similar to the one in [13]. Suppose, in order
to obtain a contradiction, that f = Cu for such a measure p. Let Q4 and Q_
denote the upper and lower parts respectively of the complement of I" in the strip
{z:0< Rez < 1/w}. For k € N, let Ry, be the open rectangle

1
Rk::{ZZ:E—l—iy:m<x<1/2,—1<y<1}.

|

F1GURE 2. The rectangle Ry.

It is easy to see that the restriction of f to Ry \ T is the Cauchy transform of a
measure i defined by (1/27%) f(¢)d¢ on the linear pieces of the boundary and by
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(1/278)(f+(¢) — f=({))d¢ on T' N Ry, where fy and f_ are the boundary values of
f from inside €24 and €)_ respectively, i.e.

f+(Q = lim _ f(z)

2,260,

and

f-(Q) = lim = f(2).

z2—(,z€Q_
It follows that on Ry \ T', we have
Clp— ) =Cp—Cux = f— f=0.
Since 'y, := I'N Ry, has area zero, we obtain from [5, Corollary 1.3, Chapter 2] that
= pui on I'g, ie.
du(¢) = (1/2mi)(f+(C) = f-())d¢
on I'y. This holds for all k£ € N, and therefore

dpu(¢) = (1/2mi)(f+(¢) — f-(¢))d¢

onI'.

Now, recall from the introduction that since E is connected, the Ahlfors function
f is the Riemann map of © onto D normalized by f(c0) = 0 and f’(c0) > 0. Note
that the point 0 € E defines two different accessible boundary points, and thus it
follows from the correspondence of boundaries under Riemann maps (see e.g. [6,
Section 3, Chapter 2]) that fi(¢) — f-(¢) — € — ¢ as ¢ — 0 on I, for some
distinct points €1, "2 on T. Hence, if k is sufficiently large, then

[f+(Q) = f-(Ol = e —e®]/2 (CeT\Tw)
and so
Il 2 5 [ 1@ = fe@ac = g =,
- 271' F\Fk - 47T F\Fk
because I is nonrectifiable whereas I'y, is. This contradiction shows that the Ahlfors
function f is not the Cauchy transform of any complex Borel measure supported
on F.
To complete the proof, it remains to show that v(E) = v.(E).

For k € N, let Ej, be the union of I' N R), with the line segment [—i, i].
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AA/\/

FIGURE 3. The compact set E.

Then (Ej)ren is an increasing sequence of compact subsets of E. We claim that
v(Ex) = v(E) as k — oo. By monotonicity of analytic capacity, it suffices to prove
that there is a subsequence converging to y(F). Let Qj := Co \ Ej, so that Qy is
a nondegenerate doubly connected domain. Then it is easy to see that Q — Q.
For k € N, let g : Q; — ), be the normalized Koebe map of . By Lemma 2.2,
the sequence (gx)ren has a subsequence converging locally uniformly to a univalent
function g on . By Theorem 2.3, the corresponding subsequence of circle domains
(€},) converges to g(£2) in the sense of Carathéodory. Note then that the sequences
of centers and radii of the circles bounding the domains ) must be bounded,
otherwise the kernel of the subsequence (£2},) would not contain a neighborhood of
infinity. Therefore, passing to a subsequence if necessary, we can assume that the
circles and radii of the circles bounding the domains ), converge to c¢1,ce and 71,72
respectively. Then it is easy to see that g(2) must be the domain bounded by the
circles centered at c1,co of radius 71,72 respectively. Now, since g is univalent on
Q, the image ¢(2) must be a nondegenerate simply connected domain and thus it
follows that these circles must intersect at exactly one point. Hence by Lemma 2.6,
we get that

V(Coo \ ) = ¥(Cos \ 9(9))
along the subsequence. Again, a simple change of variable argument shows that
Y(Coo \ %) = ¥(Coo \ 9(%)) = ¥(Coo \ Q) = v(Ey)
and
V(Coe \ 9(2)) = 7(Coo \ ) = y(E).
This proves that v(Ex) — v(E).
Finally, since every Ej has finite Painlevé length, we obtain

Ye(E) <y(E) = lim y(Ey) = lim 7.(Ex) < 7.(E),
k—oo k—oo

where we used Corollary 1.3 and the monotonicity of v.. This completes the proof
of the theorem.
O

As a consequence, we obtain a negative answer to Question 1.6.
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Corollary 2.7. Let E be as in Theorem 1.7. Then there is no complex Borel
measure p supported on E such that

Cu(z) <1 (2 €Cx\ E)
and p(E) = ve(E).

Proof. Suppose that such a measure p exists. Then C(—p) is a function holomorphic
on Co \ E with |C(—u)] <1 and

C(=p)'(00) = p(E) = 1e(E) = v(E).
By uniqueness of the Ahlfors function f, it follows that f = C(—u) on Cy \ E,

which contradicts Theorem 1.7.
O

3. A CONVERGENCE THEOREM FOR AHLFORS FUNCTIONS

In this section, we state and prove a convergence theorem for Ahlfors functions
on which relies Theorem 1.4. The arguments below are similar to the ones used in
a paper of Fortier Bourque and the author [4] for the proof of a theorem on rational
Ahlfors functions.

First, we need a convergence lemma for normalized Koebe maps.

Lemma 3.1. Let () be a sequence of nondegenerate m-connected domains, each
containing the point 0o, such that Q — Q, where  is a nondegenerate m-connected
domain. For each k, let g : Qp — U}, be the normalized Koebe map of Q.

Then (gx)ken converges locally uniformly on Q to the normalized Koebe map
g:Q — Q. In particular, the nondegenerate circle domains Q). converge to ' in
the sense of Carathéodory.

Proof. By Lemma 2.2, every subsequence of (gr)ren has a subsequence that con-
verges locally uniformly to a univalent function on €.

Let h be a locally uniform limit of a subsequence (gx)ges. Then h is normalized
at infinity. Furthermore, by Theorem 2.3, the corresponding subsequence of circle
domains (9}, )kes converge to h(£2) in the sense of Carathéodory.

We claim that h(Q2) is a nondegenerate circle domain, so that h = g by unique-
ness of the normalized Koebe map. Indeed, first note that h(€2) is a nondegenerate
m-~connected domain since h is univalent on 2. Moreover, the sequences of cen-
ters and radii of the circles bounding ) for k& € S must be bounded, otherwise
the kernel of (2}, )res would not contain a neighborhood of co. Passing to a subse-
quence if necessary, we can therefore assume that the centers of the circles bounding
(Q))kes converge to ci,...,cn € C and that the corresponding radii converge to
r1,...,"m € R. Since Q) — k() as k — oo in S, clearly h(Q) is the domain
bounded by the circles centered at c1, ..., ¢, and of corresponding radii r1, ..., 7.
But A(2) is a nondegenerate m-connected domain, so these circles must be disjoint
and nondegenerate. In other words, h(2) is a nondegenerate circle domain, from
which it follows that h = g¢.

This shows that every subsequence of (gx)ren has a subsequence that converges
to g, which of course implies that g — g.

Finally, the fact that ) — ' is a consequence of Theorem 2.3. O

Remark. A similar argument shows that if Dy, D are nondegenerate m-connected
circle domains, then Dy — D if and only if the sequences of centers and radii of
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the circles bounding the domains D), converge to the centers and radii of the circles
bounding D.

Remark. Lemma 3.1 is false without the assumption that the connectivity of
and of the Qs is the same. Indeed, consider a sequence () of doubly connected
domains bounded by two circles of radius one that get arbitrarily close to each
other, so that the limit domain € is the complement of two closed disks of radius
one intersecting at exactly one point. Then the normalized Koebe maps gi’s are
the identity maps, which clearly don’t converge to the normalized Koebe map of €.

The following convergence theorem for Ahlfors functions is the main result of
this section.

Theorem 3.2. Let () be a sequence of nondegenerate m-connected domains,

each containing the point oo, such that Qp — Q, where Q is a nondegenerate m-

connected domain. Let fi, f be the Ahlfors functions on Qy, and § respectively.
Then fi — f locally uniformly on .

Proof. Let g : Qx — Qf, g : @ — Q' be the normalized Koebe maps of  and
(2 respectively. By Lemma 3.1, g — g locally uniformly on Q and Q) — Q. Let
¢, ® be the Ahlfors functions on ), and ' respectively. We claim that ¢, — ¢
locally uniformly on €. Let us prove this by showing that every subsequence of
(oK )ken has a subsequence that converges to ¢.

First note that by Montel’s theorem, every subsequence of (¢ )ren has a locally
uniformly convergent subsequence. Let 5 be the limit of a subsequence. Then 5 is
holomorphic on €' and satisfies |¢| < 1, so we have 0 < ¢/(c0) < ¢/(c0).

Now, by the Schwarz reflection principle, the function ¢ extends analytically
to a neighborhood of € (recall that the Ahlfors function on a finitely connected
domain is a proper map). Let U be an open set containing €’ on which ¢ is
bounded. By the remark following Lemma 3.1, we have that € is contained in
U for all k sufficiently large, so that ¢ is defined and holomorphic on Q) for these
k’s. Let My := sup{|¢(2)| : z € },}. Then clearly My — 1 as k — co. Moreover,
the function M, '¢ is holomorphic on ) and satisfies |M, '¢| < 1, so we have
M ¢/ (00) < ¢, (00). Therefore,

¢/(c0) < liminf ¢}, (00) < ¢/(c0)

and so ¢ (00) = ¢'(00), which implies that ¢ = ¢ by uniqueness of the Ahlfors
function.

This shows that ¢ — ¢ locally uniformly on €'

Finally, a simple change of variable argument shows that f = ¢og and fr = ¢rogx
for all k. Since g, — ¢ locally uniformly on  and ¢y — ¢ locally uniformly on €/,
it follows that fx — f locally uniformly on €.

O

Remark. Theorem 3.2 is false without any assumption on the connectivity of the
domains €, even if the limit domain ) is assumed to be bounded by analytic
curves. Indeed, consider a sequence (zx) dense in the unit disk D and for k € N,
let 2 be the complement in the Riemann sphere of disjoint closed disks centered
at z1,...,2, contained in D and of radii sufficiently small so that the analytic
capacity of Cy \ Q is less than 1/2. Such a sequence exists by the outer regularity
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of analytic capacity and by the fact that the analytic capacity of a finite set is zero.
Then it is easy to see that Q — Co \ D as k — oo, but the corresponding Ahlfors
functions do not converge locally uniformly to the Ahlfors function on Cs \ D,

because otherwise we would have 7(Co \ Q) — (D) = 1. This example was
mentioned to the author by Maxime Fortier Bourque.

4. PROOF OF THEOREM 1.4
We can now proceed with the proof of Theorem 1.4.

Proof. Let E C C be compact and suppose that there exists a sequence (Ej)gen of
compact subsets of E with the following properties :

(i) every Ej has finite Painlevé length;

(ii) there exists an integer m such that ©Q and every {; are nondegenerate m-
connected domains, where Q0 and Q are the unbounded components of C \ Ej
and Cy \ E respectively;

(iii) the sequence of domains (Q)ken converges to €2 in the sense of Carathéodory.

We have to show that v(E) = ~.(E).
Let fi, f be the Ahlfors functions on 2 and 2 respectively. By Theorem 3.2,
fr — f locally uniformly on £, so in particular f;(c0) — f’(c0). Thus, we obtain

Ye(E) < v(E) = f(00) = lim fi(00) = lim 5(Ey) = lim 7(Ex) < 7e(E),

where we used Corollary 1.3 and the monotonicity of .. This completes the proof

of the theorem.
O

5. PROOF OF THEOREM 1.8

In this section, we describe the construction of the compact sets of Theorem 1.8.

More precisely, for every m € N, we shall construct a compact set E™ with m
nondegenerate components such that v(E™) = .(E™) but the Ahlfors function is
not the Cauchy transform of any complex Borel measure supported on E™. The
construction is similar to the one in Sect. 2.

Proof. Consider first the case m = 1. Let E! be the union of the curve
I':={z+izsin(l/z):z € (0,1/7]}

with the line segments [—i,0], [~i,1/7 —i] and [1/m —i,1/x]. Then E' is compact

and connected. Let f be the Ahlfors function for E'. Recall that f is assumed to

be identically zero in the bounded component of Co, \ E*.
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FIGURE 4. The compact set E'.

First, we claim that f is not the Cauchy transform of any complex Borel measure
supported on E!'. Indeed, suppose that f = Cp for such a u. Let Q4 and Q_
denote the upper and lower parts respectively of the complement of I" in the strip
{z:0<Rez < 1/n}. For k € N, let Rj be the open rectangle

1
Ry = {zzw—i—iy:m<x<1/7r,—1/2<y<1/2}.

FI1GURE 5. The rectangle Ry.

Clearly, the restriction of f to Ry N4 is the Cauchy transform of a measure uy
defined by 1/(274) f+(¢)d¢ on I'N Ry, and 1/(27i) f({)d¢ on the linear parts of the
boundary.



14 M. YOUNSI

It follows that on Rx N4, we have
Compe =Cpu = Cpp = [ = =0.
On the other hand, on R, N§2_, Cy,, = 0 by Cauchy’s theorem and Cpu = f =0, so
that
Cr—pe = Cu = Cpp = 0.

Since I'N Ry, has area zero, it follows from [5, Corollary 1.3, Chapter 2] that p = py,
on I'N Ry, i.e.

dp(C) = (1/2mi) f1(C)d¢

on I' N Ri. This holds for all k¥ € N, and so du(¢) = (1/27) f+(¢)d¢ on T'. This
gives a contradiction, since

Il = [ 1au©) = 5= [ 17+(©ldcl = 5= [ 1aci = o,

because I is nonrectifiable and | f| = 1 on E*, by properness of the Ahlfors function.

Let us prove now that y(E') = 4.(E'). For k € N, let E} be the union of the
portion of I' inside Ry, with the line segments [—3,0], [—i,1/7 —4] and [1 /7 —1,1/7].
Then E} is a connected compact subset of E*.

FIGURE 6. The compact set E}.

Furthermore, since E} has finite length, it has finite Painlevé length. Also, it
is easy to see that Qi — €0, where Qj and € are the unbounded components of
Cw \ E} and C \ E' respectively. By Theorem 1.4, v.(E') = v(E').

Finally, if m > 1, let E™ be the union of E' with disjoint nondegenerate con-
nected full compact sets Fi,..., F,,—1 of finite Painlevé length contained in the
unbounded component of Co, \ E'. A simple modification of the above argument
(with the sets E{ replaced by E} U F; U---U F,,_1) shows that v(E™) = v.(E™)
and that the Ahlfors function for E™ is not the Cauchy transform of any measure
supported on E™. (I
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Remark. We were not able to find examples of such compact sets that are discon-
nected and have connected complement. A natural idea is to replace the set E!
in the above proof by the compact set E of Theorem 1.7, but then the difficulty
is in showing that the analytic capacity and the cauchy capacity of the resulting
compact set are equal. In order to prove this, one would need a generalization of
Lemma 2.6 for the convergence of the analytic capacities of m disjoint closed disks
where one pair of disks intersect at one point in the limit. This seems to be true
but we are not able to prove it.

Remark. For the compact set E™ as above, there are other functions in H>®(Cy \
E™) bounded by one in modulus whose derivatives at infinity are equal to v(E™); it
suffices to consider any function equal to the Ahlfors function f in the unbounded
component of Cy, \ E™ and equal to an arbitrary holomorphic function g with
lg| <1 in the bounded component of Co, \ E™. The above proof shows that if g
is identically zero, then the resulting function is not the Cauchy transform of any
measure supported on E™. Xavier Tolsa raised the question of whether this is true
for any choice of g. A simple modification of the above proof shows that the answer
is positive provided that the integral

/F|f+(C) —g_(O)lld¢]

diverges. This holds for instance if g stays at a positive distance from f(0) near
the point 0.

Remark. The arguments used in this paper could be considerably simplified if one
could prove that analytic capacity is inner regular, in the sense that if £; C FEy C
. is an increasing sequence of compact sets and if F := Uy E}) is compact, then

Y(Ex) — v(E)

This seems to be a open problem. It is closely related to the so-called capacitability
of analytic capacity.

Acknowledgments. The author thanks Xavier Tolsa for helpful discussions.
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