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Pelvic organ prolapse is characterized as the descent of the pelvic organs into
the vaginal canal. In the USA, there is a 12% lifetime risk for requiring
surgical intervention. Although vaginal childbirth is a well-established risk
factor for prolapse, the underlying mechanisms are not fully understood.
Decreased smooth muscle organization, composition and maximum
muscle tone are characteristics of prolapsed vaginal tissue. Maximum
muscle tone of the vaginal wall was previously investigated in the circumfer-
ential or axial direction under uniaxial loading; however, the vaginal wall is
subjected to multiaxial loads. Further, the contribution of vaginal smooth
muscle basal (resting) tone to mechanical function remains undetermined.
The objectives of this study were to determine the contribution of smooth
muscle basal and maximum tone to the regional biaxial mechanical
behaviour of the murine vagina. Vaginal tissue from C57BL/6 mice was sub-
jected to extension-inflation protocols (7 =10) with and without basal
smooth muscle tone. Maximum tone was induced with KCI under various
circumferential (n = 5) and axial (n = 5) loading conditions. The microstruc-
ture was visualized with multiphoton microscopy (7 =1), multiaxial
histology (17 =4) and multiaxial immunohistochemistry (1 =4). Smooth
muscle basal tone decreased material stiffness and increased anisotropy.
In addition, maximum vaginal tone was decreased with increasing intra-
luminal pressures. This study demonstrated that vaginal muscle tone
contributed to the biaxial mechanical response of murine vaginal tissue.
This may be important in further elucidating the underlying mechanisms
of prolapse, in order to improve current preventative and treatment
strategies.

1. Introduction

The female pelvic organs (uterus, bladder and rectum) are supported by pelvic
floor muscles and fibromuscular tissues. Weakening of these structures may
lead to the descent of the pelvic organs into the vaginal canal known as
pelvic organ prolapse (POP). In the USA, there is a 12% lifetime risk for
women to undergo pelvic reconstructive surgery restoring the anatomical
position of the pelvic organs to alleviate symptoms (discomfort, defecatory
dysfunction, incomplete bladder emptying, etc.) [1]. Clinical intervention for
POP results in an annual expenditure over $1 billion [2]. Although vaginal
childbirth, ageing and increased abdominal loading are well-established risk
factors [3,4], the underlying mechanisms for POP are not fully understood.

© 2019 The Author(s) Published by the Royal Society. Al rights reserved.
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The levator ani, a group of striated muscles, provides con-
stant tone and structural support to the pelvic organs [5].
Injury during childbirth resulting in reduced muscle tone is
a well-established mechanism for POP [6-8]; however, not
all women with levator tears develop POP [7]. The vagina,
a fibromuscular tissue, is suggested to play a role in provid-
ing pelvic organ support [5,9,10]. Vaginal smooth muscle
(VaSM) organization [11,12], composition [11] and maximum
muscle tone [13] are decreased in prolapsed tissues. Further,
current surgical interventions using meshes to increase pelvic
support negatively affect vaginal muscle tone [14].

Maximum and basal (resting) muscle tone are key
characteristics of both striated and smooth muscle cells. The
dominant clinical metric for assessing levator ani function is
contractile strength or maximum muscle tone [15]. Basal
tone, however, is negatively associated with POP indicating
its importance [16]. Similarly, maximum tone of the vaginal
wall is primarily investigated [13,14,17-21], but VaSM
basal contribution may also be of significance [22-24].
Along the circumferential axis, maximum tone is greater in
the proximal versus the distal region of the vaginal wall
[18]. Regional variation may arise due to different embryolo-
gical origins; the proximal vagina derives from the Miillerian
ducts and the distal from the urogenital sinus [25,26].

Vaginal maximum tone was previously investigated by
isometric contractile testing under a fixed extension on
tissue strips taken along the circumferential [14,18] or
axial direction [13,17,19,20]. The vaginal wall, however, is
subjected to multiaxial loading within the body due to
intra-abdominal pressures. Biaxial contractile testing permits
application of multiaxial loads to better replicate physio-
logical conditions [21,27]. Further, biaxial testing permits
simultaneous quantification of muscle tone along the circum-
ferential and axial axes [21]. Previously, planar biaxial testing
was implemented to investigate smooth muscle maximum
contribution to the mechanical behaviour of the rat vaginal
wall [21]. In addition, extension-inflation protocols were
leveraged to assess the contractile response of the porcine
and murine arteries under isobaric-axially isometric contrac-
tion [27-29]. This methodology permits preservation of
tissue geometry and smooth muscle-matrix interactions.
Extension—inflation protocols have not been performed on
murine vaginal tissue to assess muscle function. Rodent
models are used to investigate biomechanical properties
[30-34] and contractile function [17,18,20,21] of vaginal
tissue. However, not a substitute for human tissue, simi-
larities in the gross connective vaginal tissue anatomy
are reported [32] and may provide insight into structure—
function relationships.

Currently, it is not understood if VaSM dysfunction
contributes to the pathogenesis of POP [35]. A lack in under-
standing may result from limited investigation of smooth
muscle basal and maximum contribution to the biaxial mech-
anical response of vaginal tissue. Therefore, the objectives for
this study are to (i) determine smooth muscle basal contri-
bution to the biaxial mechanical behaviour of the proximal
and distal vagina, and (ii) assess the regional contractile
response under various circumferential and axial loads. We
hypothesize that basal tone results in a decrease in outer
diameter and material stiffness, further, that the proximal
region is materially stiffer than the distal. As for maximum
contraction, we hypothesize that higher loads (pressure
and length) decrease the contractile response, and that the
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proximal region generates a greater contractile response
than the distal.

2. Methods

Non-parous four to six months female C57BL6 ] mice (24.4 + 1.8 g;
mean +s.d.) (Jackson Laboratory, Bar Harbor, ME, USA, and
Charles River, Wilmington, MA, USA) at oestrus were used
throughout this study. Animals were housed under standard
conditions (12 h light/dark cycles) and all procedures were
approved by the Institute Animal Care and Use Committee at
Tulane University. A pilot study (Jackson Lab (n=23) and
Charles River (n = 3)) revealed no significant differences in the
mechanical properties of vaginal tissue between vendors. For
functional and microstructural assessment, 29 animals were
euthanized by guillotine without anaesthesia or carbon dioxide
(COy,) as outlined in figure 1. Upon sacrifice, the reproductive
system was dissected immediately and placed in cold (4°C)
Hank’s Balanced Salt Solution, followed by separation of the
vagina from the cervovaginal complex as illustrated previously
by Robison et al. in figures 1 and 2 [33].

2.1. Biaxial mechanical testing
Extension—inflation testing was used to assess biaxial mechanical
properties (figure 1a; n = 10), which permitted maintenance of
native smooth muscle cell-matrix interactions and tissue geome-
try [33,34,36—-38]. Freshly isolated vaginal tissue was mounted
within a pressure-myograph system (Danish MyoTechnologies,
Aarhus, Denmark) onto 3.75 mm diameter cannulas with two
6-0 sutures. The bath was filled with Krebs Ringer buffer (KRB;
120 mM NaCl, 25 mM NaHCOj3, 4.7 mM KCl, 2.5 mM CaCl,,
1.2 mM NaH,POy, 1.2 mM MgCl,, 11 mM glucose) at 37°C aera-
ted with 95% O, and 5% CO, to maintain pH at 7.4 for smooth
muscle cell viability [27,39]. Custom acrylic housing prevented
aeration interference with force measurements and outer diam-
eter tracking [40]. The transducer-measured force and outer
diameters were recorded via an integrated system of components
(Eclipse TS100 video-microscope, Nikon, Melville, NY, USA) and
software (Myoview Software, Danish MyoTechnologies, Aarhus,
Denmark). The outer diameter for the proximal and distal
regions was tracked 1.5 mm from the suture to minimize exper-
imental variability due to end effects. This value was selected
due to the proximal region ranging from 1.5 to 2.0 mm in length.
The unloaded configuration was defined as when the tissue
was slightly buckled and not collapsed (3 mmHg) [33,34].
Post-explant, the vaginal tissue retracted in length [33,34,38];
therefore, in order to quantify tissue properties under near
physiologically relevant loads, the tissue was axially extended
[33,34,37,38,41] to an estimated physiologic length (1.15 times
the unloaded length) [33,34]. Initial preconditioning was per-
formed to minimize hysteresis with cyclic pressurization from
0mmHg to the mean measured in vivo pressure (7 mmHg)
over 5 cycles at 1.5mmHgs ' [33,42]. The mean measured
in vivo pressure was determined by balloon catheterization as
described and reported in electronic supplementary material
figure S1). The physiologic length under basal tone was ident-
ified where the transducer-measured forces held constant over
a range of increasing physiologic pressures [33,34,37,38,41]. Pre-
conditioning with five cycles of pressurization (0-15 mmHg) at
the physiologic length, and axial extension (10 pms~ ') from
2% below to 2% above the physiologic length at a constant
pressure (5 mmHg) was performed [33,34]. The tissue equili-
brated for 10 min at the physiologic length under 5mmHg,
followed by re-establishment of the unloaded configuration [33].
The vaginal tissue was subjected to pressure—diameter test-
ing (0-15 mmHg) over five cycles at and about (—2%, +2%
and +4%) the physiologic length [33,34,37]. This was followed
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Figure 1. Schematic for functional and microstructural assessment of murine vaginal tissue. Tissues were subjected to extension—inflation protocols (a) for biaxial
mechanical testing. Biaxial contractile testing was executed under various constant pressures (b) and fixed lengths (c). Multiphoton microscopy with SHG was
performed at the averaged physiologic length along the anterior wall at the proximal and distal regions under three constant pressures (d). Histological and immu-
nohistochemical analysis was performed on circumferential sections taken from the proximal and distal regions of the vaginal wall (e); axial sections were taken
along the length of the anterior wall (f). The dashed lines represent the region of interest. (Online version in colour.)

by force-length testing to confirm the physiologic length
[33,34,37,41]. The tissue was axially extended from 2% below
to 2% above the physiologic length under four constant
pressures: a tare load (P=2mmHg), 1/3 maximum pressure
(P=5mmHg), 2/3 maximum pressure (P=10mmHg) and
maximum pressure (P =15mmHg). Smooth muscle tone was
removed by replacing the circulating medium with calcium-free
KRB supplemented with 2mM of a calcium-chelating agent,
egtazic acid and incubated for 30 min [37,43]. Pressure—diameter
tests were repeated at the relaxed (no tone) state under the same
axial lengths as the basal state. Force—length tests were performed
2% above and below the physiologic length without smooth
muscle tone.

2.2. Biaxial contractile testing

The evaluation of the biaxial contractile response with isobaric-axi-
ally isometric contraction under physiologically relevant loads
(figure 1b,c) was performed with a pressure-myograph system
[27,28,44]. Vaginal tissue was mounted and the unloaded configur-
ation was determined, followed by initial preconditioning and
identification of the physiologic length. For pressure-dependent
contractility (figure 1b; n = 5), the tissue was preconditioned with
five cycles of pressurization (0—15 mmHg), followed by re-estab-
lishing the unloaded configuration [33]. To maintain viability of
the VaSM, preconditioning with maximum contraction was per-
formed by stimulating the vaginal tissue under low loading
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conditions [27,28]. The intraluminal pressure was set to 5 mmHg
and the vaginal tissue was axially stretched to a length from
the unloaded length where the transducer-measured force equal-
led zero; followed by stimulation with 40 mM of potassium
chloride (KCI) for 5 min until a steady response was achieved.
This concentration induced maximal changes in force and outer
diameter determined by a pilot study (1 = 5). Following stimu-
lation, the tissue was washed twice with KRB in order to return
to basal tone. This was repeated at 9 mmHg, one standard
deviation above the mean measured in vivo pressure [27,28]. The
tissue was returned to its physiologic length for equilibration.
After equilibration, the intraluminal pressure was set to 0 mmHg
and contracted with 40 mM KCI then washed twice to return to
basal tone. This was repeated to assess contraction as a function
of intraluminal pressure at three constant pressures: 5, 10 and
15 mmHg.

To assess contraction as a function of axial length (figure 1c;
n =5), a separate cohort of animals was used due to the inability
to restore basal outer diameter and force values after being
contracted under higher circumferential and axial loads. It was
imperative to obtain accurate stress values to determine the
relationship between the stress and stretch response. Sample
preparation and experimental set-up were conducted in the
same manner; however, preconditioning was performed with
five cycles of axial extension (10 pm s~ 1) from 4% below to 4%
above the physiologic length under a constant pressure
(5 mmHg). smooth  muscle

Following preconditioning,
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Figure 2. Representative ultrasound B-mode images acquired at the proximal (a,c,e) and distal (b,d,f) regions of the vaginal wall. During biaxial mechanical testing
(a—d), images were acquired at the unloaded configuration with (a,b) and without (c,d) basal tone. For biaxial contractile testing (e,f), images were acquired at

the unloaded configuration without muscle tone.

contraction as a function of axial length was assessed. Pressure
was held constant at the mean measured in vivo pressure
(7 mmHg), and the tissue was contracted at 4% and 2% below,
above and at the physiologic length [27,33,34]. After contractile
assessment, the passive state was induced and tissue geometry
and force values were recorded [27,44].

2.3. Ultrasound imaging for vaginal wall thickness
Vaginal wall thickness was determined from ultrasound images
acquired at the unloaded configuration for each state using the
Vevo2100 ultrasound imaging system (FUJIFILM VisualSonics,
Inc., Toronto, ON, Canada) [45]. Short-axis B-mode ultrasound
images were obtained at each region of interest with a 40 MHz
centre frequency transducer (LZ550) under basal tone and at
the relaxed state for biaxial mechanical testing and the relaxed
state for biaxial contractile testing (figure 2). The thickness of
proximal and distal vagina were determined in Image] (NIH,
Bethesda, MD, USA).

2.4. Mechanical testing and contractility data analysis
The unloaded volume was calculated at the proximal and distal
region from the video-microscope unloaded outer radius, R,
ultrasound unloaded thickness, H, and unloaded length, L, with
basal tone and when relaxed. The unloaded regional length for
the proximal and distal region was one-third and two-thirds
of the total length, respectively, due to different embryological
origins [25,26]. Assuming conservation of volume (i.e. incom-
pressibility), the unloaded volume, regional deformed outer
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radius, 7,, and length, I, was used to calculate the deformed
inner radius (r;)

V = m(R% - (R, — H)*)L (2.1)

ri=1\r2 ——. (2.2)

The wall-averaged circumferential (), axial (z) and radial
(r) Cauchy stresses (o) were determined, where P is the
intraluminal pressure and F; is the transducer-measured force
[37,46]

PT,‘

= 2.

7o To — 1 (2:3)
Ff + 7TP1’12
Al 2.4
7 w(r2 —r2)’ (24)
and oy = i (2.5)
Yo +ti

The change in stress with contraction (Ao) was calculated
by subtracting the passive stress where the VaSM was relaxed
(o™1d) from the total stress where the VaSM was maximally
contracted (o°nt<ted) [27 42 47 48]

___contracted elaxed elaxed ontracted
Aagy = oy T — o (2.6)
and tracted laxed laxed tracted
__ _contracte elaxe elaxe contracte
Ao = Oz - (r;z + Oir Oy . (27)

Circumferential stretch ratio (Ay) was defined by the radius at
the mid-vaginal wall of the deformed state to the undeformed
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state [37]. The axial stretch ratio (\,) was calculated as the axial
length with respect to the relaxed unloaded axial length

o +710/2
MERT Ro/2 28)
and ;
I 2.
=1 29)

Compliance and tangent moduli were determined by taking
the slope of the pressure—diameter and stress—strain curve within
the physiologic pressure range (7 + 2 mmHg; mean + s.d.) at the
physiologic length [49].

2.5. Multiphoton microscopy

Collagen fibre architecture of the anterior vaginal wall (n = 1)
was visualized via second harmonic generation (SHG) at
the average physiologic length (1.15 times the unloaded) under
varied constant pressures (0, 7, 15 mmHg; figure 1d). As in
experimental studies, a tare pressure of 3 mmHg was applied.
The tissue was imaged with Zeiss 710 NLO inverted confocal
microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY,
USA) in combination with a mode-locked Ti:Sapphire
Chameleon Ultra laser (Coherent Inc., Santa Clara, CA, USA)
equipped with non-descanned detector. Laser excitation was
generated at 800 nm and backward SHG signal was collected
in the 380-430 nm range with 40x oil immersion objective.
Images were collected with the ZEN imaging software (Carl
Zeiss Microscopy GmbH) at a resolution of 0.35 x 0.35 wm? per
pixel at 8 bit pixel depth. Under each loading condition at the
proximal and distal regions, three to four images were collected
at a depth ranging between 7 and 10 pm from the adventitia.
Collagen fibre angular distribution and alignment were quantified
with an open source software, CurveAlign (LOCI, Madison, WI,
USA; http://www loci.wisc.edu/software/curvealign).

2.6. Multiaxial histology and immunohistochemistry
Specimens (n=28) were fixed with 10% formalin for 24 h
then paraffin embedded. Circumferential sections of 4 pm
thickness (1 = 4) were taken at the proximal and distal regions
(figure 1le); axial sections of 4 um thickness (n =4) were taken
along the anterior wall (figure 1f). For histological assessment,
sections were stained with Masson’s Trichrome and Hart’s
Elastin stain. Antigen retrieval for immunohistochemical analysis
of a-smooth muscle actin (SMA) (Biocare, Pacheco, CA, USA)
was performed for 15 min (pH = 6.0). Sections were blocked
for 5min in hydrogen peroxide and endogenous mouse IgG
(Biocare, Pacheco, CA, USA) for 10 min. The sections were incu-
bated for 30 min with the primary antibody (1 : 200) and detected
with MACH 4 mouse probe (10 min) and rabbit polymer
(10 min) (Biocare, Pacheco, CA, USA). Colour was developed
by incubating in 3,3 diaminobenzidine substrate for 5 min,
followed by counterstaining with haematoxylin.

Brightfield images were taken using an Olympus BX51
microscope, an Olympus DP27 Digital Camera and cellSens™
software (Olympus Corporation, Center Valley, PA, USA) at 4x
and 20x magnification. Area fraction quantification was per-
formed on 4x images displaying the full cross-section with
Colour Deconvolution, an open source plug-in for Image]J, and a
custom protocol using GNU Image Manipulation Program
as previously described [34,50,51]. The epithelium, which is
suggested to be non-load bearing, was excluded from this
calculation [34,46].

2.7. Statistical analysis
To evaluate smooth muscle basal contribution to structural and
material properties, paired t-tests were conducted on unloaded
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thickness, volume, physiologic length, physiologic outer diameter, “

compliance and tangent modulus comparing basal tone and no
tone at each region. Differences in circumferential and axial tan-
gent modulus were evaluated with paired t-tests. Regional
differences were further evaluated with paired t-tests. For assess-
ment of contractile response with loading, a one-way ANOVA
with Tukey post hoc test was performed. The level for statistical
significance was set at p < 0.05. A two-way ANOVA evaluated
the effects of region and orientation on the change in stress with
contraction and area fraction, followed by post hoc t-test and
Bonferroni correction (p < 0.05/2) when necessary. All statistical
analyses were performed in R (R Statistical Software, Vienna,
Austria). The results are reported as mean + standard error of
the mean (s.e.m.). All experimental data were used in data analysis.

3. Results

3.1. Basal smooth muscle contribution to vaginal wall
mechanical properties

Ultrasound imaging revealed a significant increase in unloaded
thickness with basal tone compared to no tone for the proxi-
mal (p<0.05) and distal (p <0.001) regions (figure 3a).
In addition, under basal tone unloaded thickness for the distal
region was greater than the proximal (p < 0.05). Although
unloaded volume with basal and no tone was greater at the
distal region compared to the proximal (p < 0.001), significance
was not identified between the two states at either regions
(figure 3b). The physiologic outer diameter that was measured
at the physiologic length and mean pressure (7 mmHg) dis-
played a significant decrease in the proximal region under
basal tone (p < 0.001). Further, the physiologic outer diameter
was significantly smaller for the distal region compared to the
proximal with (p < 0.05) and without (p < 0.001) basal tone.
The physiologic length was significantly shorter (p < 0.001)
for the proximal and distal regions with the presence of basal
tone (figure 3d). Basal tone induced a leftward shift in the
pressure—diameter curve denoting a decrease in outer diameter
compared to no tone (figure 4a). Basal tone induced a right-
ward shift in the stress—stretch curve denoting an increase in
distensibility (figure 4b,c). Without basal tone, the distal region
was more compliant (p < 0.05) than the proximal region
(figure 4d). At the proximal region, basal tone resulted in a sig-
nificant decrease (p < 0.05) in circumferential (figure 4e¢) and
axial (figure 4f) tangent moduli. With basal tone, the circumfer-
ential tangent moduli was significantly larger than the axial for
the proximal and distal regions (p < 0.05).

3.2. Vaginal contractile response to circumferential and
axial loading

Stimulation with 40 mM KCI induced a tonic contraction
resulting in a decrease in outer diameter and increase in
axial force with reference to the relaxed state (figure 5a—d).
The one-way ANOVA identified significant differences in
the change in outer diameter with respect to intraluminal
pressure for the proximal (p <0.05) and distal (p < 0.01)
regions (figure 51). The change in diameter was reduced in
proximal (p < 0.05) and distal (p < 0.01) regions between 0
and 15 mmHg. Further, the change in outer diameter with
contraction was reduced (p <0.05) at the distal region
between 0 and 10 mmHg. The one-way ANOVA did not
identify statistically significant differences in the change in
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Figure 3. Basal tone resulted in a significant increase in the unloaded thickness at the proximal (black) and distal (grey) regions with the distal region being thicker
than the proximal (a). The volume of the vagina was larger for the distal region compared to the proximal, with (open) and without (close) basal tone (b). Basal
tone induced a significant decrease in outer diameter in the proximal region (c). The proximal region presented a larger outer diameter compared to distal, with and
without basal tone. There was a decrease in physiologic length with basal tone for the proximal and distal regions (d). Data are reported as mean =+ s.e.m.
Statistical significance is denoted by state *p << 0.05 and **p < 0.01, as well as location 'p < 0.05 and "p < 0.01.
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Figure 4. Vaginal wall outer diameter for the proximal (black) and distal (grey) regions as a function of increasing intraluminal pressure. Basal tone (open) resulted
in a leftward shift in the pressure—diameter curve with respect to no tone (close) denoting decreased vaginal wall diameter (a). (b) Circumferential and (c) axial
stresses at the physiologic length versus circumferential stretch. The presence of basal tone resulted in a rightward shift denoting an increase in distensibilty. The
absence of basal tone resulted in a more complaint distal region compared to the proximal (d). (e) Basal tone decreased the circumferential and (f) axial tangent
moduli at the proximal region. With basal tone, the circumferential tangent moduli was larger than the axial for both regions. Data are reported as mean + s.e.m.
Statistical significance (p << 0.05) is denoted by state *, location t and orientation ¥.
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Figure 5. Change in outer diameter with contraction under various physiologically relevant pressures at the fixed physiologic length. The magnitude of the change
in diameter with contraction was diminished at 15 mmHg for the proximal (black) and distal (grey) region, and 10 mmHg for the distal region only (a). Change in
outer diameter with contraction at various physiologically relevant lengths under the mean measured in vivo pressure (b). Change in axial force with contraction
under various physiologically relevant pressures at the fixed physiologic length (c). Change in axial force with contraction at various physiologically relevant lengths
under the mean measured in vivo pressure (d). A parabolic function (dashed lines) described the changes in circumferential stress to circumferential stretch (RMSE;
proximal = 0.09 and distal = 0.04) (e) and axial stress to axial stretch (RMSE; proximal = 0.09 and distal = 0.08) () curves. The absolute value of the change in
stress at the physiologic length and pressure. At the distal region, axial stress was greater than circumferential stress (g). Data are reported as mean =+ s.e.m.
Statistical significance denoted by *p << 0.05 and **p < 0.01.

resulted in a decrease in circumferential stress and increase
in axial stress (figure 5e¢,f). A parabolic relationship (Ao =
a(A — h)* + k) was observed for the change in circumferential

outer diameter as a function of change in axial length
(figure 5b), nor the change in axial force as a function
of pressure or axial length (figure 5c,d). Contraction
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Figure 6. Multiphoton microscopy with SHG of collagen fibre architecture at the proximal (a,e,i) and distal (b,f;) regions of the anterior vaginal wall under 0 (a,b),
7 (e,f) and 15 (ij) mmHg at the average physiologic length. The frequency of the number of individual fibre segments with its respective orientation is reported
with 0° denoting the axial axis and =+ 90° denoting the circumferential (c,g,k) at increments of 5°. At 0 and 7 mmHg, collagen fibres are oriented towards the
circumferential axis at the distal region. At the proximal region, fibres are oriented towards the circumferential and diagonal axis (c,g). Under 15 mmHg, at the
proximal and distal regions, the fibres are oriented towards the axial direction (k). The alignment coefficient describes collagen fibre orientation towards a preferred
direction, with 1 being highly aligned (d,h,/). The alignment coefficient was larger for the distal region compared to the proximal at 0 and 7 mmHg. Data were
averaged over several images and are reported as mean + s.e.m. Imaging depth was 7—10 m from the adventitial layer or outer wall. (Online version in colour.)

stress to circumferential stretch (RMSE; proximal = 0.09 and
distal = 0.04; figure 5¢) and axial stress to axial stretch
(RMSE; proximal =0.09 and distal = 0.08; figure 5f). The
two-way ANOVA identified statistically significant differ-
ences (p < 0.001) with respect to orientation of the change
in stress with contraction (figure 5g). At the distal region,
the absolute value of axial stress was significantly higher
(p <0.001) than circumferential stress. As for the proximal
region, a non-significant increase in axial stress (p <0.1)
was observed compared to circumferential.

3.3. Collagen fibre architecture under loading

Imaging of the collagen fibre architecture qualitatively and
quantitatively demonstrated that at 0 and 7 mmHg, the
proximal and distal regions exhibited marked differences in
collagen fibre dispersion (figure 6a—h). At the distal region
under 0 and 7 mmHg, collagen fibres displayed greater align-
ment towards the circumferential axis (+90°; figure 6b,c,f,g).
The proximal region under 0 mmHg exhibited collagen
fibres oriented towards the diagonal axis (30°; figure 6a,c);
however, under 7 mmHg, fibres reoriented towards the
circumferential axis (+90°; figure 6e,g). The proximal and
distal regions were more aligned near the diagonal axis
(£30°) towards the axial 15 mmHg
(figure 6i—k). The distal region presented a larger alignment
coefficient, denoting that the distal region was more

direction under
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uniformly aligned towards a preferred direction compared
to the proximal (figure 6d,h).

3.4. Regional multiaxial histological and

immunohistochemical analysis

The two-way ANOVA identified statistically significant
differences (p < 0.01) with respect to orientation in elastin
area fraction. At the distal region, elastin area fraction was
greater (p < 0.01) for axial sections (5.6 + 0.6%) compared
to circumferential (3.3 + 0.6%) (figure 7n). The effect of
region and orientation, however, were not found to be signifi-
cant for collagen and a-SMA (figure 7m,0).

3.5. Contractility following elastase digestion

This study demonstrated that under maximum contraction,
the distal region axial stress was greater than circumferential
stress (figure 59). Additionally, elastin area fraction was
greater along the axial axis compared to circumferential
(figure 7n). Prior work shows a decrease in elastin reduces
the contractile response [27]. Therefore, a pilot study (n = 5)
was conducted to investigate maximum contraction of the
vaginal wall following elastase digestion. Experimental
methods were performed as described in §2.4. Maximum
contraction was performed at the physiologic length and
mean pressure (7 mmHg), pre- and post-elastase digestion.
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Figure 7. Representative histological images were acquired at 20 magpnification. Proximal (prox; a—¢, g—i) and distal (dist; d—f, j—/), circumferential (circ; a—f)
and axial (ax; g—/) sections stained with Masson’s Trichrome (MTC; a,d,g,j), Hart's Elastin (b,e,h,k) and o-SMA (cfii/). Layers of the vaginal wall are denoted:
epithelium (e), subepithelium (s), muscularis (m) and adventitia (a). Area fraction (AF) for collagen (M), elastin (N) and «-SMA (0) are reported for the proximal
(black) and distal (grey) regions along the circumferential (close) and axial (open) sections. At the distal region, elastin area fraction was greater for the axial section
compared to the circumferential. Data are reported as mean =+ s.e.m. Statistical significance is denoted by *p << 0.05/2. Scale, 100 p.m. (Online version in colour.)

The vaginal tissue was treated with 15 U of elastase for 45 min
as described previously [34]. Elastase digestion significantly
decreased (p < 0.05) the change in axial force with contraction
(electronic supplementary material, figure S2B).

4. Discussion

This study presented the contribution of smooth muscle to
the biaxial mechanical behaviour of the murine vaginal

rsfs20190025—8/5/19—22:07-Copy Edited by: Not Mentioned

wall. The vaginal wall contains smooth muscle cells oriented
primarily along the circumferential and axial axes. Further,
the vaginal wall is subjected to multiaxial loading within
the body. Therefore, within this study, extension—inflation
protocols were used to assess basal smooth muscle tone
contribution to the mechanical function of the vagina as
well as to investigate maximum tone under various circum-
ferential and axial loads. This permitted simultaneous
characterization of smooth muscle contribution along the
circumferential and axial axes. Smooth muscle basal and

gzooaoz ‘SIDO_;] ‘a)n‘yalluj ‘ éjsj/|eujh6[/616'EU[q§!|qnd/(ié!)b§|é/(6j H



568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

maximum tone significantly contributed to the biaxial mech-
anical behaviour of the murine vaginal wall.

Smooth muscle basal tone significantly decreased vaginal
length and outer diameter (figure 3c,d). These results
coincide with changes in vaginal wall geometry induced by
smooth muscle for sexual function [52,53]. An early physio-
logical event of sexual arousal is characterized by pelvic
nerve stimulation followed by smooth muscle relaxation.
This induces an increase in vaginal length and diameter
to permit penetration [52,53]. Further, basal tone significantly
decreased material stiffness in the proximal region of
the vagina (figure 4ef). Material stiffness decreased with
increased muscle tone (basal and maximum) in the rabbit
basilar artery [23]. Kelly & Chowienczyk hypothesized that
a decrease in muscle tone transfers loads to other components
in the arterial wall, such as collagen fibres, increasing stiffness
of the tissue [54]. This transfer of load may result in a
decrease in collagen fibre undulation, thus increasing
material stiffness. Therefore, we hypothesize that basal tone
induces a transfer of load from collagen and elastic fibres to
the smooth muscle cells increasing collagen fibre undulation
thereby decreasing material stiffness of the vaginal wall.

Anisotropy, directional-dependent mechanical properties,
of vaginal tissue was investigated by comparing the circum-
ferential and axial tangent moduli. This study demonstrated
that with basal tone, the circumferential direction was
materially stiffer than the axial. Within this and a prior
study, statistically significant differences in passive (no
muscle tone) material stiffness between the circumferential
and axial direction were not detected near the physiologically
relevant configuration (length/axial stretch and pressure)
[33]. In the previous study, anisotropy of the passive
vagina was dependent on loading protocol [33]. This
study, however, demonstrates that smooth muscle tone
significantly contributes to the directional-dependent proper-
ties near physiologically relevant conditions. Investigation of
anisotropy is useful for understanding disease progression.
For example, the development of abdominal aortic aneur-
ysms results in an increase in anisotropy, with a preference
of material stiffening in the circumferential direction [55].
Understanding the vaginal wall, directional-dependent
mechanical response may be useful for better understanding
the development of POP.

In addition to smooth muscle basal contribution,
maximum contribution was investigated as a function of
mechanical loading. Maximum tone in the circumferential
direction significantly decreased with increased intraluminal
pressure (figure 5a). This response indicates that VaSM are
sensitive to mechanical loading by pressure. This may be
supported by prior observations that increased pressure
results in arterial wall adaption mediated by smooth
muscle cells in order to maintain a preferred homeostatic
stress and restore material properties [22,56,57]. Perturbations
to the mechanical environment and effect on vaginal
function, however, are not defined. The vagina spends a
majority of the time working within a mechanical environ-
ment under non-pregnant conditions. During pregnancy
which is a brief period of time over a women’s lifespan, the
vaginal canal is subjected to extreme mechanical conditions
that requires vaginal remodelling to permit passage of the
foetus [17,58—-60]. Although the vagina is able to withstand
instantaneous changes in pressure outside of pregnancy
[61], increased mechanical loading due to increased intra-
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abdominal pressure (i.e. chronic cough, constipation, m

repeated heavy lifting) is a risk factor for POP [62]. Therefore,
the effect of sustained increased mechanical pressure on
smooth muscle regulated mechano-mediated adaption
merits further investigation in vaginal tissue.

For the murine vagina, a parabolic function described the
regional stress—stretch curve behaviour under maximum
contraction reasonably well (figure 5¢,f). A parabolic relation-
ship between active stress and stretch under isometric
contraction is reasonable for vasculature [42,47,48] and the
rat vaginal [21]. It was reported that the deformed state of
the arterial wall alters the configuration of contractile proteins
inside the smooth muscle cell dictating the active response
[63]. Therefore, in addition to mechanical load, the change
in stress with contraction depends on deformation (stretch).

The change in circumferential stress with contraction was
not significantly different between the proximal and distal
regions (figure 5¢). This finding corresponds to rat vaginal
tissue, wherein regional differences in maximum contraction
along the circumferential axis were not detected in response
to KCl [18]. The absolute value of the change in axial stress
was significantly higher than circumferential stress at the
distal region (figure 5¢). This result is similar to the biaxial
behaviour of the rat vagina. Stimulation with KCI induced
a greater contractile response in the axial direction compared
to the circumferential, by generating a higher active stress
[21]. For the murine vagina, this result may be described by
VaSM interaction with elastic fibres. At the distal region, elas-
tin area fraction was greater on the axial axis compared to the
circumferential axis (figure 7n). The pilot study (n=>5)
demonstrated that removal of elastin significantly decreased
axial force with contraction (electronic supplementary
material, figure S2B). This corresponds to vasculature where
the contractile response of the aorta from elastoplastic mice
is decreased [27]. Therefore, the larger elastin area fraction
along the axial axis of the murine vagina may result in a
greater contractile response in the axial direction compared
to the circumferential.

Additional microstructural analysis corresponded with
mechanical findings. Regional differences in mechanical
properties (figure 4) as well as collagen and elastic fibre
area fraction were not identified (figure 7m,n). In addition
to the composition of collagen and elastin [34,64-66], the
organization of the fibres may dictate the mechanical
response [67-69]. Although collagen fibres in the distal
region were initially more highly aligned towards the circum-
ferential axis (figure 6a-h), the tissue was not materially
stiffer than the proximal region. This may result from ima-
ging being performed between the
muscularis; however, collagen density is greater in the sube-
pithelial layer (figure 7a,d,g,j). Additional analysis is needed
throughout the thickness of the vaginal wall. Nevertheless,
this study provides initial data on collagen fibre organization

adventitia and

in the murine vagina, which is currently unknown. Lastly,
regional differences in a-SMA were not detected. This corre-
sponded to not observing regional differences in maximum
contraction in response to KCL. Directional differences in
maximum contraction were detected; however, differences
in a-smooth actin were not identified. In addition to elastic
fibres, other smooth muscle contractile proteins may be of
significance [70,71].

This study is not without limitations. First, the vaginal
wall was assumed to be incompressible. Although volume
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change between the basal and passive state was not statisti-
cally significant, further investigation of isochoric motion is
needed [27]. This study provides relevant data demonstrating
smooth muscle contribution to the biaxial mechanical
behaviour of murine vaginal tissue. Further, end effects
(Saint-Venant’s principle) were assumed to be negligible,
although the aspect ratio of the murine vagina is nearly 1:
1. Regardless, this study provides information on the regional
behaviour where the proximal region is comparable to the
distal. Experimental variability between the regions due to
end effects were minimized by tracking the same distance
away from the cannula. Alternatively, the cervovaginal
complex could remain intact increasing the aspect ratio to
minimize end effects. This, however, may induce additional
artefacts to the force and diameter measurements due to
murine cervical smooth muscle consisting of brief periods
of both relaxation and contraction [39]. Therefore, coupling
the cervix phasic behaviour to reduce end effects will lead
to difficulty in independently evaluating vaginal wall basal
and maximum tone.

5. Conclusion

Prior work focused on characterizing the passive uniaxial
properties of vagina tissue [72-76]. Although this has pro-
vided initial valuable information to the field, it does not
recapitulate the multiaxial loading the tissue experiences
in vivo. Further, it does not account for the directional-
dependent mechanical behaviour. In addition, the passive
behaviour does not consider active smooth muscle interaction
with the extracellular matrix and contribution to the mechan-
Recent work, however, highlights the
significance of the biaxial properties and smooth muscle con-
tribution to vaginal function [21,33,34]. This study investigated
smooth muscle basal and maximum contribution to the prox-
imal and distal region of the murine vaginal wall. Basal

ical properties.
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smooth muscle tone significantly contributed to the biaxial
mechanical properties of the murine vagina. Further, the mag-
nitude of circumferential contraction was significantly
decreased with increased pressure and greater in the axial
direction. The present findings suggest that vaginal active
smooth muscle significantly interact with collagen and elastin
contributing to the biaxial mechanical behaviour. Therefore,
smooth muscle tone along the circumferential and axial axes
should be evaluated when characterizing the mechanical prop-
erties of vaginal tissue. In addition to changes in collagen [77]
and elastin [78] with prolapse, changes in smooth muscle
composition and phenotype [11-13] may occur altering the
mechanical behaviour of the tissue. Accounting for smooth
muscle tone may aid in better understanding the functional
changes that occurs with prolapse progression. Ultimately,
this may assist in further elucidating the underlying mechan-
isms for prolapse, in order to improve current preventative
and treatment strategies.
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