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Pelvic organ prolapse is characterized as the descent of the pelvic organs into

the vaginal canal. In the USA, there is a 12% lifetime risk for requiring

surgical intervention. Although vaginal childbirth is a well-established risk

factor for prolapse, the underlying mechanisms are not fully understood.

Decreased smooth muscle organization, composition and maximum

muscle tone are characteristics of prolapsed vaginal tissue. Maximum

muscle tone of the vaginal wall was previously investigated in the circumfer-

ential or axial direction under uniaxial loading; however, the vaginal wall is

subjected to multiaxial loads. Further, the contribution of vaginal smooth

muscle basal (resting) tone to mechanical function remains undetermined.

The objectives of this study were to determine the contribution of smooth

muscle basal and maximum tone to the regional biaxial mechanical

behaviour of the murine vagina. Vaginal tissue from C57BL/6 mice was sub-

jected to extension–inflation protocols (n ¼ 10) with and without basal

smooth muscle tone. Maximum tone was induced with KCl under various

circumferential (n ¼ 5) and axial (n ¼ 5) loading conditions. The microstruc-

ture was visualized with multiphoton microscopy (n ¼ 1), multiaxial

histology (n ¼ 4) and multiaxial immunohistochemistry (n ¼ 4). Smooth

muscle basal tone decreased material stiffness and increased anisotropy.

In addition, maximum vaginal tone was decreased with increasing intra-

luminal pressures. This study demonstrated that vaginal muscle tone

contributed to the biaxial mechanical response of murine vaginal tissue.

This may be important in further elucidating the underlying mechanisms

of prolapse, in order to improve current preventative and treatment

strategies.

1. Introduction
The female pelvic organs (uterus, bladder and rectum) are supported by pelvic

floor muscles and fibromuscular tissues. Weakening of these structures may

lead to the descent of the pelvic organs into the vaginal canal known as

pelvic organ prolapse (POP). In the USA, there is a 12% lifetime risk for

women to undergo pelvic reconstructive surgery restoring the anatomical

position of the pelvic organs to alleviate symptoms (discomfort, defecatory

dysfunction, incomplete bladder emptying, etc.) [1]. Clinical intervention for

POP results in an annual expenditure over $1 billion [2]. Although vaginal

childbirth, ageing and increased abdominal loading are well-established risk

factors [3,4], the underlying mechanisms for POP are not fully understood.
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The levator ani, a group of striated muscles, provides con-

stant tone and structural support to the pelvic organs [5].

Injury during childbirth resulting in reduced muscle tone is

a well-established mechanism for POP [6–8]; however, not

all women with levator tears develop POP [7]. The vagina,

a fibromuscular tissue, is suggested to play a role in provid-

ing pelvic organ support [5,9,10]. Vaginal smooth muscle

(VaSM) organization [11,12], composition [11] and maximum

muscle tone [13] are decreased in prolapsed tissues. Further,

current surgical interventions using meshes to increase pelvic

support negatively affect vaginal muscle tone [14].

Maximum and basal (resting) muscle tone are key

characteristics of both striated and smooth muscle cells. The

dominant clinical metric for assessing levator ani function is

contractile strength or maximum muscle tone [15]. Basal

tone, however, is negatively associated with POP indicating

its importance [16]. Similarly, maximum tone of the vaginal

wall is primarily investigated [13,14,17–21], but VaSM

basal contribution may also be of significance [22–24].

Along the circumferential axis, maximum tone is greater in

the proximal versus the distal region of the vaginal wall

[18]. Regional variation may arise due to different embryolo-

gical origins; the proximal vagina derives from the Müllerian

ducts and the distal from the urogenital sinus [25,26].

Vaginal maximum tone was previously investigated by

isometric contractile testing under a fixed extension on

tissue strips taken along the circumferential [14,18] or

axial direction [13,17,19,20]. The vaginal wall, however, is

subjected to multiaxial loading within the body due to

intra-abdominal pressures. Biaxial contractile testing permits

application of multiaxial loads to better replicate physio-

logical conditions [21,27]. Further, biaxial testing permits

simultaneous quantification of muscle tone along the circum-

ferential and axial axes [21]. Previously, planar biaxial testing

was implemented to investigate smooth muscle maximum

contribution to the mechanical behaviour of the rat vaginal

wall [21]. In addition, extension–inflation protocols were

leveraged to assess the contractile response of the porcine

and murine arteries under isobaric-axially isometric contrac-

tion [27–29]. This methodology permits preservation of

tissue geometry and smooth muscle-matrix interactions.

Extension–inflation protocols have not been performed on

murine vaginal tissue to assess muscle function. Rodent

models are used to investigate biomechanical properties

[30–34] and contractile function [17,18,20,21] of vaginal

tissue. However, not a substitute for human tissue, simi-

larities in the gross connective vaginal tissue anatomy

are reported [32] and may provide insight into structure–

function relationships.

Currently, it is not understood if VaSM dysfunction

contributes to the pathogenesis of POP [35]. A lack in under-

standing may result from limited investigation of smooth

muscle basal and maximum contribution to the biaxial mech-

anical response of vaginal tissue. Therefore, the objectives for

this study are to (i) determine smooth muscle basal contri-

bution to the biaxial mechanical behaviour of the proximal

and distal vagina, and (ii) assess the regional contractile

response under various circumferential and axial loads. We

hypothesize that basal tone results in a decrease in outer

diameter and material stiffness, further, that the proximal

region is materially stiffer than the distal. As for maximum

contraction, we hypothesize that higher loads (pressure

and length) decrease the contractile response, and that the

proximal region generates a greater contractile response

than the distal.

2. Methods
Non-parous four to six months female C57BL6 J mice (24.4+1.8 g;

mean+s.d.) (Jackson Laboratory, Bar Harbor, ME, USA, and

Charles River, Wilmington, MA, USA) at oestrus were used

throughout this study. Animals were housed under standard

conditions (12 h light/dark cycles) and all procedures were

approved by the Institute Animal Care and Use Committee at

Tulane University. A pilot study (Jackson Lab (n ¼ 3) and

Charles River (n ¼ 3)) revealed no significant differences in the

mechanical properties of vaginal tissue between vendors. For

functional and microstructural assessment, 29 animals were

euthanized by guillotine without anaesthesia or carbon dioxide

(CO2) as outlined in figure 1. Upon sacrifice, the reproductive

system was dissected immediately and placed in cold (48C)

Hank’s Balanced Salt Solution, followed by separation of the

vagina from the cervovaginal complex as illustrated previously

by Robison et al. in figures 1 and 2 [33].

2.1. Biaxial mechanical testing
Extension–inflation testing was used to assess biaxial mechanical

properties (figure 1a; n ¼ 10), which permitted maintenance of

native smooth muscle cell–matrix interactions and tissue geome-

try [33,34,36–38]. Freshly isolated vaginal tissue was mounted

within a pressure-myograph system (Danish MyoTechnologies,

Aarhus, Denmark) onto 3.75 mm diameter cannulas with two

6-0 sutures. The bath was filled with Krebs Ringer buffer (KRB;

120 mM NaCl, 25 mM NaHCO3, 4.7 mM KCl, 2.5 mM CaCl2,

1.2 mM NaH2PO4, 1.2 mM MgCl2, 11 mM glucose) at 378C aera-

ted with 95% O2 and 5% CO2 to maintain pH at 7.4 for smooth

muscle cell viability [27,39]. Custom acrylic housing prevented

aeration interference with force measurements and outer diam-

eter tracking [40]. The transducer-measured force and outer

diameters were recorded via an integrated system of components

(Eclipse TS100 video-microscope, Nikon, Melville, NY, USA) and

software (Myoview Software, Danish MyoTechnologies, Aarhus,

Denmark). The outer diameter for the proximal and distal

regions was tracked 1.5 mm from the suture to minimize exper-

imental variability due to end effects. This value was selected

due to the proximal region ranging from 1.5 to 2.0 mm in length.

The unloaded configuration was defined as when the tissue

was slightly buckled and not collapsed (3 mmHg) [33,34].

Post-explant, the vaginal tissue retracted in length [33,34,38];

therefore, in order to quantify tissue properties under near

physiologically relevant loads, the tissue was axially extended

[33,34,37,38,41] to an estimated physiologic length (1.15 times

the unloaded length) [33,34]. Initial preconditioning was per-

formed to minimize hysteresis with cyclic pressurization from

0 mmHg to the mean measured in vivo pressure (7 mmHg)

over 5 cycles at 1.5 mmHg s21 [33,42]. The mean measured

in vivo pressure was determined by balloon catheterization as

described and reported in electronic supplementary material

figure S1). The physiologic length under basal tone was ident-

ified where the transducer-measured forces held constant over

a range of increasing physiologic pressures [33,34,37,38,41]. Pre-

conditioning with five cycles of pressurization (0–15 mmHg) at

the physiologic length, and axial extension (10 mm s21) from

2% below to 2% above the physiologic length at a constant

pressure (5 mmHg) was performed [33,34]. The tissue equili-

brated for 10 min at the physiologic length under 5 mmHg,

followed by re-establishment of the unloaded configuration [33].

The vaginal tissue was subjected to pressure–diameter test-

ing (0–15 mmHg) over five cycles at and about (22%, þ2%

and þ4%) the physiologic length [33,34,37]. This was followed
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by force–length testing to confirm the physiologic length

[33,34,37,41]. The tissue was axially extended from 2% below

to 2% above the physiologic length under four constant

pressures: a tare load (P ¼ 2 mmHg), 1/3 maximum pressure

(P ¼ 5 mmHg), 2/3 maximum pressure (P ¼ 10 mmHg) and

maximum pressure (P ¼ 15 mmHg). Smooth muscle tone was

removed by replacing the circulating medium with calcium-free

KRB supplemented with 2 mM of a calcium-chelating agent,

egtazic acid and incubated for 30 min [37,43]. Pressure–diameter

tests were repeated at the relaxed (no tone) state under the same

axial lengths as the basal state. Force–length tests were performed

2% above and below the physiologic length without smooth

muscle tone.

2.2. Biaxial contractile testing
The evaluation of the biaxial contractile response with isobaric-axi-

ally isometric contraction under physiologically relevant loads

(figure 1b,c) was performed with a pressure-myograph system

[27,28,44]. Vaginal tissue was mounted and the unloaded configur-

ation was determined, followed by initial preconditioning and

identification of the physiologic length. For pressure-dependent

contractility (figure 1b; n ¼ 5), the tissue was preconditioned with

five cycles of pressurization (0–15 mmHg), followed by re-estab-

lishing the unloaded configuration [33]. To maintain viability of

the VaSM, preconditioning with maximum contraction was per-

formed by stimulating the vaginal tissue under low loading

conditions [27,28]. The intraluminal pressure was set to 5 mmHg

and the vaginal tissue was axially stretched to a length from

the unloaded length where the transducer-measured force equal-

led zero; followed by stimulation with 40 mM of potassium

chloride (KCl) for 5 min until a steady response was achieved.

This concentration induced maximal changes in force and outer

diameter determined by a pilot study (n ¼ 5). Following stimu-

lation, the tissue was washed twice with KRB in order to return

to basal tone. This was repeated at 9 mmHg, one standard

deviation above the mean measured in vivo pressure [27,28]. The

tissue was returned to its physiologic length for equilibration.

After equilibration, the intraluminal pressure was set to 0 mmHg

and contracted with 40 mM KCl then washed twice to return to

basal tone. This was repeated to assess contraction as a function

of intraluminal pressure at three constant pressures: 5, 10 and

15 mmHg.

To assess contraction as a function of axial length (figure 1c;

n ¼ 5), a separate cohort of animals was used due to the inability

to restore basal outer diameter and force values after being

contracted under higher circumferential and axial loads. It was

imperative to obtain accurate stress values to determine the

relationship between the stress and stretch response. Sample

preparation and experimental set-up were conducted in the

same manner; however, preconditioning was performed with

five cycles of axial extension (10 mm s21) from 4% below to 4%

above the physiologic length under a constant pressure

(5 mmHg). Following smooth muscle preconditioning,

functional assessment

biaxial mechanical testing

biaxial contractility

40 mM KCl

40 mM KCl

n = 10

n = 1

n = 5

n = 5

P = 0–15 mmHg P = 0, 7, 15 mmHg

cervix

introitus
circumferential (n = 4)

axial (n
=

4)

posterior

pr
ox

im
al

di
st

al

anterior

P = 0, 5, 10, 15 mmHg

P = 7 mmHg

Krebs Ringer buffer
aerated: 95% O2 and 5% CO2

lpl = –2% –4%

lpl = –4, –2, 0, 2, 4%

lpl

lpl

Krebs Ringer buffer
aerated: 95% O2 and 5% CO2

Krebs Ringer buffer
aerated: 95% O2 and 5% CO2

multiphoton microscopy
(second harmonic generation)

multiaxial histology and immunohistochemistry

microstructural assessment

(a)

(b)

(c)

(d)

(e) ( f )

Figure 1. Schematic for functional and microstructural assessment of murine vaginal tissue. Tissues were subjected to extension – inflation protocols (a) for biaxial
mechanical testing. Biaxial contractile testing was executed under various constant pressures (b) and fixed lengths (c). Multiphoton microscopy with SHG was
performed at the averaged physiologic length along the anterior wall at the proximal and distal regions under three constant pressures (d ). Histological and immu-
nohistochemical analysis was performed on circumferential sections taken from the proximal and distal regions of the vaginal wall (e); axial sections were taken
along the length of the anterior wall ( f ). The dashed lines represent the region of interest. (Online version in colour.)
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contraction as a function of axial length was assessed. Pressure

was held constant at the mean measured in vivo pressure

(7 mmHg), and the tissue was contracted at 4% and 2% below,

above and at the physiologic length [27,33,34]. After contractile

assessment, the passive state was induced and tissue geometry

and force values were recorded [27,44].

2.3. Ultrasound imaging for vaginal wall thickness
Vaginal wall thickness was determined from ultrasound images

acquired at the unloaded configuration for each state using the

Vevo2100 ultrasound imaging system (FUJIFILM VisualSonics,

Inc., Toronto, ON, Canada) [45]. Short-axis B-mode ultrasound

images were obtained at each region of interest with a 40 MHz

centre frequency transducer (LZ550) under basal tone and at

the relaxed state for biaxial mechanical testing and the relaxed

state for biaxial contractile testing (figure 2). The thickness of

proximal and distal vagina were determined in ImageJ (NIH,

Bethesda, MD, USA).

2.4. Mechanical testing and contractility data analysis
The unloaded volume was calculated at the proximal and distal

region from the video-microscope unloaded outer radius, Ro,

ultrasound unloaded thickness, H, and unloaded length, L, with

basal tone and when relaxed. The unloaded regional length for

the proximal and distal region was one-third and two-thirds

of the total length, respectively, due to different embryological

origins [25,26]. Assuming conservation of volume (i.e. incom-

pressibility), the unloaded volume, regional deformed outer

radius, ro, and length, l, was used to calculate the deformed

inner radius (ri)

�V ¼ pðR2
o � ðRo �HÞ2ÞL ð2:1Þ

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o �
�V
pl

r
: ð2:2Þ

The wall-averaged circumferential (u), axial (z) and radial

(r) Cauchy stresses (s) were determined, where P is the

intraluminal pressure and Ft is the transducer-measured force

[37,46]

su ¼
Pri

ro � ri
, ð2:3Þ

sz ¼
Ft þ pPr2

i

pðr2
o � r2

i Þ
, ð2:4Þ

and sr ¼
Pri

ro þ ri
: ð2:5Þ

The change in stress with contraction (Ds) was calculated

by subtracting the passive stress where the VaSM was relaxed

(srelaxed) from the total stress where the VaSM was maximally

contracted (scontracted) [27,42,47,48]

Dsuu ¼ scontracted
uu � srelaxed

uu þ srelaxed
rr � scontracted

rr ð2:6Þ

and
Dszz ¼ scontracted

zz � srelaxed
zz þ srelaxed

rr � scontracted
rr : ð2:7Þ

Circumferential stretch ratio (lu) was defined by the radius at

the mid-vaginal wall of the deformed state to the undeformed

basal tone
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Figure 2. Representative ultrasound B-mode images acquired at the proximal (a,c,e) and distal (b,d,f ) regions of the vaginal wall. During biaxial mechanical testing
(a – d ), images were acquired at the unloaded configuration with (a,b) and without (c,d ) basal tone. For biaxial contractile testing (e,f ), images were acquired at
the unloaded configuration without muscle tone.
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state [37]. The axial stretch ratio (lz) was calculated as the axial

length with respect to the relaxed unloaded axial length

lu ¼
ri þ ro=2

Ri þ Ro=2
ð2:8Þ

and

lz ¼
l
L
: ð2:9Þ

Compliance and tangent moduli were determined by taking

the slope of the pressure–diameter and stress–strain curve within

the physiologic pressure range (7+2 mmHg; mean+ s.d.) at the

physiologic length [49].

2.5. Multiphoton microscopy
Collagen fibre architecture of the anterior vaginal wall (n ¼ 1)

was visualized via second harmonic generation (SHG) at

the average physiologic length (1.15 times the unloaded) under

varied constant pressures (0, 7, 15 mmHg; figure 1d ). As in

experimental studies, a tare pressure of 3 mmHg was applied.

The tissue was imaged with Zeiss 710 NLO inverted confocal

microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY,

USA) in combination with a mode-locked Ti : Sapphire

Chameleon Ultra laser (Coherent Inc., Santa Clara, CA, USA)

equipped with non-descanned detector. Laser excitation was

generated at 800 nm and backward SHG signal was collected

in the 380–430 nm range with 40� oil immersion objective.

Images were collected with the ZEN imaging software (Carl

Zeiss Microscopy GmbH) at a resolution of 0.35 � 0.35 mm2 per

pixel at 8 bit pixel depth. Under each loading condition at the

proximal and distal regions, three to four images were collected

at a depth ranging between 7 and 10 mm from the adventitia.

Collagen fibre angular distribution and alignment were quantified

with an open source software, CurveAlign (LOCI, Madison, WI,

USA; http://www.loci.wisc.edu/software/curvealign).

2.6. Multiaxial histology and immunohistochemistry
Specimens (n ¼ 8) were fixed with 10% formalin for 24 h

then paraffin embedded. Circumferential sections of 4 mm

thickness (n ¼ 4) were taken at the proximal and distal regions

(figure 1e); axial sections of 4 mm thickness (n ¼ 4) were taken

along the anterior wall (figure 1f ). For histological assessment,

sections were stained with Masson’s Trichrome and Hart’s

Elastin stain. Antigen retrieval for immunohistochemical analysis

of a-smooth muscle actin (SMA) (Biocare, Pacheco, CA, USA)

was performed for 15 min (pH ¼ 6.0). Sections were blocked

for 5 min in hydrogen peroxide and endogenous mouse IgG

(Biocare, Pacheco, CA, USA) for 10 min. The sections were incu-

bated for 30 min with the primary antibody (1 : 200) and detected

with MACH 4 mouse probe (10 min) and rabbit polymer

(10 min) (Biocare, Pacheco, CA, USA). Colour was developed

by incubating in 3,30 diaminobenzidine substrate for 5 min,

followed by counterstaining with haematoxylin.

Brightfield images were taken using an Olympus BX51

microscope, an Olympus DP27 Digital Camera and cellSensTM

software (Olympus Corporation, Center Valley, PA, USA) at 4�
and 20� magnification. Area fraction quantification was per-

formed on 4� images displaying the full cross-section with

Colour Deconvolution, an open source plug-in for ImageJ, and a

custom protocol using GNU Image Manipulation Program

as previously described [34,50,51]. The epithelium, which is

suggested to be non-load bearing, was excluded from this

calculation [34,46].

2.7. Statistical analysis
To evaluate smooth muscle basal contribution to structural and

material properties, paired t-tests were conducted on unloaded

thickness, volume, physiologic length, physiologic outer diameter,

compliance and tangent modulus comparing basal tone and no

tone at each region. Differences in circumferential and axial tan-

gent modulus were evaluated with paired t-tests. Regional

differences were further evaluated with paired t-tests. For assess-

ment of contractile response with loading, a one-way ANOVA

with Tukey post hoc test was performed. The level for statistical

significance was set at p � 0.05. A two-way ANOVA evaluated

the effects of region and orientation on the change in stress with

contraction and area fraction, followed by post hoc t-test and

Bonferroni correction ( p , 0.05/2) when necessary. All statistical

analyses were performed in R (R Statistical Software, Vienna,

Austria). The results are reported as mean+ standard error of

the mean (s.e.m.). All experimental data were used in data analysis.

3. Results
3.1. Basal smooth muscle contribution to vaginal wall

mechanical properties
Ultrasound imaging revealed a significant increase in unloaded

thickness with basal tone compared to no tone for the proxi-

mal ( p , 0.05) and distal ( p , 0.001) regions (figure 3a).

In addition, under basal tone unloaded thickness for the distal

region was greater than the proximal ( p , 0.05). Although

unloaded volume with basal and no tone was greater at the

distal region compared to the proximal ( p , 0.001), significance

was not identified between the two states at either regions

(figure 3b). The physiologic outer diameter that was measured

at the physiologic length and mean pressure (7 mmHg) dis-

played a significant decrease in the proximal region under

basal tone ( p , 0.001). Further, the physiologic outer diameter

was significantly smaller for the distal region compared to the

proximal with ( p , 0.05) and without ( p , 0.001) basal tone.

The physiologic length was significantly shorter ( p , 0.001)

for the proximal and distal regions with the presence of basal

tone (figure 3d). Basal tone induced a leftward shift in the

pressure–diameter curve denoting a decrease in outer diameter

compared to no tone (figure 4a). Basal tone induced a right-

ward shift in the stress–stretch curve denoting an increase in

distensibility (figure 4b,c). Without basal tone, the distal region

was more compliant ( p , 0.05) than the proximal region

(figure 4d). At the proximal region, basal tone resulted in a sig-

nificant decrease ( p , 0.05) in circumferential (figure 4e) and

axial (figure 4f ) tangent moduli. With basal tone, the circumfer-

ential tangent moduli was significantly larger than the axial for

the proximal and distal regions ( p , 0.05).

3.2. Vaginal contractile response to circumferential and
axial loading

Stimulation with 40 mM KCl induced a tonic contraction

resulting in a decrease in outer diameter and increase in

axial force with reference to the relaxed state (figure 5a–d).

The one-way ANOVA identified significant differences in

the change in outer diameter with respect to intraluminal

pressure for the proximal ( p , 0.05) and distal ( p , 0.01)

regions (figure 5a). The change in diameter was reduced in

proximal ( p , 0.05) and distal ( p , 0.01) regions between 0

and 15 mmHg. Further, the change in outer diameter with

contraction was reduced ( p , 0.05) at the distal region

between 0 and 10 mmHg. The one-way ANOVA did not

identify statistically significant differences in the change in
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outer diameter as a function of change in axial length

(figure 5b), nor the change in axial force as a function

of pressure or axial length (figure 5c,d ). Contraction

resulted in a decrease in circumferential stress and increase

in axial stress (figure 5e,f ). A parabolic relationship (Ds ¼

a(l 2 h)2 þ k) was observed for the change in circumferential
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stress to circumferential stretch (RMSE; proximal ¼ 0.09 and

distal ¼ 0.04; figure 5e) and axial stress to axial stretch

(RMSE; proximal ¼ 0.09 and distal ¼ 0.08; figure 5f ). The

two-way ANOVA identified statistically significant differ-

ences ( p , 0.001) with respect to orientation of the change

in stress with contraction (figure 5g). At the distal region,

the absolute value of axial stress was significantly higher

( p , 0.001) than circumferential stress. As for the proximal

region, a non-significant increase in axial stress ( p , 0.1)

was observed compared to circumferential.

3.3. Collagen fibre architecture under loading
Imaging of the collagen fibre architecture qualitatively and

quantitatively demonstrated that at 0 and 7 mmHg, the

proximal and distal regions exhibited marked differences in

collagen fibre dispersion (figure 6a–h). At the distal region

under 0 and 7 mmHg, collagen fibres displayed greater align-

ment towards the circumferential axis (+908; figure 6b,c,f,g).

The proximal region under 0 mmHg exhibited collagen

fibres oriented towards the diagonal axis (308; figure 6a,c);

however, under 7 mmHg, fibres reoriented towards the

circumferential axis (+908; figure 6e,g). The proximal and

distal regions were more aligned near the diagonal axis

(+308) towards the axial direction under 15 mmHg

(figure 6i–k). The distal region presented a larger alignment

coefficient, denoting that the distal region was more

uniformly aligned towards a preferred direction compared

to the proximal (figure 6d,h).

3.4. Regional multiaxial histological and
immunohistochemical analysis

The two-way ANOVA identified statistically significant

differences ( p , 0.01) with respect to orientation in elastin

area fraction. At the distal region, elastin area fraction was

greater ( p , 0.01) for axial sections (5.6+ 0.6%) compared

to circumferential (3.3+ 0.6%) (figure 7n). The effect of

region and orientation, however, were not found to be signifi-

cant for collagen and a-SMA (figure 7m,o).

3.5. Contractility following elastase digestion
This study demonstrated that under maximum contraction,

the distal region axial stress was greater than circumferential

stress (figure 5g). Additionally, elastin area fraction was

greater along the axial axis compared to circumferential

(figure 7n). Prior work shows a decrease in elastin reduces

the contractile response [27]. Therefore, a pilot study (n ¼ 5)

was conducted to investigate maximum contraction of the

vaginal wall following elastase digestion. Experimental

methods were performed as described in §2.4. Maximum

contraction was performed at the physiologic length and

mean pressure (7 mmHg), pre- and post-elastase digestion.
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The vaginal tissue was treated with 15 U of elastase for 45 min

as described previously [34]. Elastase digestion significantly

decreased ( p , 0.05) the change in axial force with contraction

(electronic supplementary material, figure S2B).

4. Discussion
This study presented the contribution of smooth muscle to

the biaxial mechanical behaviour of the murine vaginal

wall. The vaginal wall contains smooth muscle cells oriented

primarily along the circumferential and axial axes. Further,

the vaginal wall is subjected to multiaxial loading within

the body. Therefore, within this study, extension–inflation

protocols were used to assess basal smooth muscle tone

contribution to the mechanical function of the vagina as

well as to investigate maximum tone under various circum-

ferential and axial loads. This permitted simultaneous

characterization of smooth muscle contribution along the

circumferential and axial axes. Smooth muscle basal and
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maximum tone significantly contributed to the biaxial mech-

anical behaviour of the murine vaginal wall.

Smooth muscle basal tone significantly decreased vaginal

length and outer diameter (figure 3c,d ). These results

coincide with changes in vaginal wall geometry induced by

smooth muscle for sexual function [52,53]. An early physio-

logical event of sexual arousal is characterized by pelvic

nerve stimulation followed by smooth muscle relaxation.

This induces an increase in vaginal length and diameter

to permit penetration [52,53]. Further, basal tone significantly

decreased material stiffness in the proximal region of

the vagina (figure 4e,f ). Material stiffness decreased with

increased muscle tone (basal and maximum) in the rabbit

basilar artery [23]. Kelly & Chowienczyk hypothesized that

a decrease in muscle tone transfers loads to other components

in the arterial wall, such as collagen fibres, increasing stiffness

of the tissue [54]. This transfer of load may result in a

decrease in collagen fibre undulation, thus increasing

material stiffness. Therefore, we hypothesize that basal tone

induces a transfer of load from collagen and elastic fibres to

the smooth muscle cells increasing collagen fibre undulation

thereby decreasing material stiffness of the vaginal wall.

Anisotropy, directional-dependent mechanical properties,

of vaginal tissue was investigated by comparing the circum-

ferential and axial tangent moduli. This study demonstrated

that with basal tone, the circumferential direction was

materially stiffer than the axial. Within this and a prior

study, statistically significant differences in passive (no

muscle tone) material stiffness between the circumferential

and axial direction were not detected near the physiologically

relevant configuration (length/axial stretch and pressure)

[33]. In the previous study, anisotropy of the passive

vagina was dependent on loading protocol [33]. This

study, however, demonstrates that smooth muscle tone

significantly contributes to the directional-dependent proper-

ties near physiologically relevant conditions. Investigation of

anisotropy is useful for understanding disease progression.

For example, the development of abdominal aortic aneur-

ysms results in an increase in anisotropy, with a preference

of material stiffening in the circumferential direction [55].

Understanding the vaginal wall, directional-dependent

mechanical response may be useful for better understanding

the development of POP.

In addition to smooth muscle basal contribution,

maximum contribution was investigated as a function of

mechanical loading. Maximum tone in the circumferential

direction significantly decreased with increased intraluminal

pressure (figure 5a). This response indicates that VaSM are

sensitive to mechanical loading by pressure. This may be

supported by prior observations that increased pressure

results in arterial wall adaption mediated by smooth

muscle cells in order to maintain a preferred homeostatic

stress and restore material properties [22,56,57]. Perturbations

to the mechanical environment and effect on vaginal

function, however, are not defined. The vagina spends a

majority of the time working within a mechanical environ-

ment under non-pregnant conditions. During pregnancy

which is a brief period of time over a women’s lifespan, the

vaginal canal is subjected to extreme mechanical conditions

that requires vaginal remodelling to permit passage of the

foetus [17,58–60]. Although the vagina is able to withstand

instantaneous changes in pressure outside of pregnancy

[61], increased mechanical loading due to increased intra-

abdominal pressure (i.e. chronic cough, constipation,

repeated heavy lifting) is a risk factor for POP [62]. Therefore,

the effect of sustained increased mechanical pressure on

smooth muscle regulated mechano-mediated adaption

merits further investigation in vaginal tissue.

For the murine vagina, a parabolic function described the

regional stress–stretch curve behaviour under maximum

contraction reasonably well (figure 5e,f ). A parabolic relation-

ship between active stress and stretch under isometric

contraction is reasonable for vasculature [42,47,48] and the

rat vaginal [21]. It was reported that the deformed state of

the arterial wall alters the configuration of contractile proteins

inside the smooth muscle cell dictating the active response

[63]. Therefore, in addition to mechanical load, the change

in stress with contraction depends on deformation (stretch).

The change in circumferential stress with contraction was

not significantly different between the proximal and distal

regions (figure 5g). This finding corresponds to rat vaginal

tissue, wherein regional differences in maximum contraction

along the circumferential axis were not detected in response

to KCl [18]. The absolute value of the change in axial stress

was significantly higher than circumferential stress at the

distal region (figure 5g). This result is similar to the biaxial

behaviour of the rat vagina. Stimulation with KCl induced

a greater contractile response in the axial direction compared

to the circumferential, by generating a higher active stress

[21]. For the murine vagina, this result may be described by

VaSM interaction with elastic fibres. At the distal region, elas-

tin area fraction was greater on the axial axis compared to the

circumferential axis (figure 7n). The pilot study (n ¼ 5)

demonstrated that removal of elastin significantly decreased

axial force with contraction (electronic supplementary

material, figure S2B). This corresponds to vasculature where

the contractile response of the aorta from elastoplastic mice

is decreased [27]. Therefore, the larger elastin area fraction

along the axial axis of the murine vagina may result in a

greater contractile response in the axial direction compared

to the circumferential.

Additional microstructural analysis corresponded with

mechanical findings. Regional differences in mechanical

properties (figure 4) as well as collagen and elastic fibre

area fraction were not identified (figure 7m,n). In addition

to the composition of collagen and elastin [34,64–66], the

organization of the fibres may dictate the mechanical

response [67–69]. Although collagen fibres in the distal

region were initially more highly aligned towards the circum-

ferential axis (figure 6a–h), the tissue was not materially

stiffer than the proximal region. This may result from ima-

ging being performed between the adventitia and

muscularis; however, collagen density is greater in the sube-

pithelial layer (figure 7a,d,g,j ). Additional analysis is needed

throughout the thickness of the vaginal wall. Nevertheless,

this study provides initial data on collagen fibre organization

in the murine vagina, which is currently unknown. Lastly,

regional differences in a-SMA were not detected. This corre-

sponded to not observing regional differences in maximum

contraction in response to KCL. Directional differences in

maximum contraction were detected; however, differences

in a-smooth actin were not identified. In addition to elastic

fibres, other smooth muscle contractile proteins may be of

significance [70,71].

This study is not without limitations. First, the vaginal

wall was assumed to be incompressible. Although volume
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change between the basal and passive state was not statisti-

cally significant, further investigation of isochoric motion is

needed [27]. This study provides relevant data demonstrating

smooth muscle contribution to the biaxial mechanical

behaviour of murine vaginal tissue. Further, end effects

(Saint-Venant’s principle) were assumed to be negligible,

although the aspect ratio of the murine vagina is nearly 1 :

1. Regardless, this study provides information on the regional

behaviour where the proximal region is comparable to the

distal. Experimental variability between the regions due to

end effects were minimized by tracking the same distance

away from the cannula. Alternatively, the cervovaginal

complex could remain intact increasing the aspect ratio to

minimize end effects. This, however, may induce additional

artefacts to the force and diameter measurements due to

murine cervical smooth muscle consisting of brief periods

of both relaxation and contraction [39]. Therefore, coupling

the cervix phasic behaviour to reduce end effects will lead

to difficulty in independently evaluating vaginal wall basal

and maximum tone.

5. Conclusion
Prior work focused on characterizing the passive uniaxial

properties of vagina tissue [72–76]. Although this has pro-

vided initial valuable information to the field, it does not

recapitulate the multiaxial loading the tissue experiences

in vivo. Further, it does not account for the directional-

dependent mechanical behaviour. In addition, the passive

behaviour does not consider active smooth muscle interaction

with the extracellular matrix and contribution to the mechan-

ical properties. Recent work, however, highlights the

significance of the biaxial properties and smooth muscle con-

tribution to vaginal function [21,33,34]. This study investigated

smooth muscle basal and maximum contribution to the prox-

imal and distal region of the murine vaginal wall. Basal

smooth muscle tone significantly contributed to the biaxial

mechanical properties of the murine vagina. Further, the mag-

nitude of circumferential contraction was significantly

decreased with increased pressure and greater in the axial

direction. The present findings suggest that vaginal active

smooth muscle significantly interact with collagen and elastin

contributing to the biaxial mechanical behaviour. Therefore,

smooth muscle tone along the circumferential and axial axes

should be evaluated when characterizing the mechanical prop-

erties of vaginal tissue. In addition to changes in collagen [77]

and elastin [78] with prolapse, changes in smooth muscle

composition and phenotype [11–13] may occur altering the

mechanical behaviour of the tissue. Accounting for smooth

muscle tone may aid in better understanding the functional

changes that occurs with prolapse progression. Ultimately,

this may assist in further elucidating the underlying mechan-

isms for prolapse, in order to improve current preventative

and treatment strategies.
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