
CALM: Consistent Adaptive Local Marginal for
Marginal Release under Local Differential Privacy

Zhikun Zhang1,2, Tianhao Wang2, Ninghui Li2, Shibo He3, Jiming Chen1
1State Key Laboratory of Industrial Control Technology & Cyber Security Research Center, Zhejiang University

{zhangzhk,cjm}@zju.edu.cn
2Department of Computer Science, Purdue University

{zhan3072,tianhaowang,ninghui}@purdue.edu
3State Key Laboratory of Industrial Control Technology, Zhejiang University

s18he@zju.edu.cn

ABSTRACT

Marginal tables are the workhorse of capturing the correlations
among a set of attributes. We consider the problem of construct-
ing marginal tables given a set of user’s multi-dimensional data
while satisfying Local Differential Privacy (LDP), a privacy notion
that protects individual user’s privacy without relying on a trusted
third party. Existing works on this problem perform poorly in the
high-dimensional setting; even worse, some incur very expensive
computational overhead. In this paper, we propose CALM, Consis-
tent Adaptive Local Marginal, that takes advantage of the careful
challenge analysis and performs consistently better than existing
methods. More importantly, CALM can scale well with large data
dimensions and marginal sizes. We conduct extensive experiments
on several real world datasets. Experimental results demonstrate
the effectiveness and efficiency of CALM over existing methods.

ACM Reference Format:

Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, Jiming Chen. 2018.

CALM: Consistent Adaptive Local Marginal for Marginal Release under Lo-

cal Differential Privacy. In 2018 ACM SIGSAC Conf. on Computer and Com-

munications Security (CCS’18), October 15ś19, 2018, Toronto, ON, Canada.

ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3243734.3243742

1 INTRODUCTION

In recent years, differential privacy [13, 14] has been increasingly
accepted as the de facto standard for data privacy in the research
community [3, 15, 21, 24, 27]. Most early work on DP are in the
centralized setting, where a trusted data curator obtains data from
all individuals, and processes the data in a way that protects privacy
of individual users. For example, the data curator could publish a
private synopsis of the data, enabling analysis on the data, while
hiding individual information.

Zhikun Zhang’s work on this paper was done while working as a visiting student at
Purdue University. The first two authors are co-first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15ś19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243742

Recently, techniques for satisfying differential privacy (DP) in
the local setting, which we call LDP, have been studied and de-
ployed. In the local setting for DP, there are many users and one
aggregator. Unlike the centralized setting, the aggregator does not
see the actual private data of each individual. Instead, each user
sends randomized information to the aggregator, who attempts
to infer the data distribution based on that. LDP techniques en-
able the gathering of statistics while preserving privacy of every
user, without relying on trust in a single trusted third party. LDP
techniques have been deployed by companies like Google [16, 17],
Apple [1], Microsoft [12] and Samsung [9]. Exemplary use cases
include collecting users’ default browser homepage and search en-
gine, in order to understand the unwanted or malicious hijacking of
user settings; or frequently typed emoji’s and words, to help with
keyboard typing predictions.

Previous works on LDP focus on estimating the frequencies of
frequent values the user possesses [6, 7, 16, 30, 37ś39]. The natural
and more general setting is when each user has multiple attributes,
and the aggregator is interested in the joint distribution of some
of these attributes. That is, the aggregator is interested in mar-
ginal tables over some subsets of attributes. Marginal tables are the
workhorse of capturing the correlations among a set of attributes.
Many analysis tasks require the availability of marginal statistics
on multidimensional datasets. For example, finding correlations or
fitting sophisticated prediction models.

Two recent papers [11, 31] considered the problem of publish-
ing marginals under LDP. Kulkarni [11] et al. proposed to apply
the Fourier Transformation method, which was used in publishing
marginals under the centralized DP setting [5]. Ren et al. [31] pro-
posed to apply the Expectation Maximization methods, originally
developed by Fanti et al. [17] to infer marginals. These methods,
however, performs poorly when the number of attributes is more
than a few.

We propose a new method CALM, Consistent Adaptive Local
Marginal, for computing any k-way marginals under the LDP set-
ting. Our approach is inspired by PriView [29], which was designed
for computing arbitrary k-way marginals under centralized DP for
binary datasets (i.e., each attribute is binary). PriView privately
publishes a synopsis of the dataset, which takes the form of m
marginals each of the size ℓ. Using the synopsis, it can reconstruct
any k-way marginal.

Similar to PriView, in CALM a number of marginal tables are
generated. But there are several challenges when changing from
centralized setting to the local setting. We need to integrate FO

https://doi.org/10.1145/3243734.3243742

protocols to construct marginals, and to extend the methods in
PriView to deal with non-binary attributes. Furthermore, since the
privacy parameter ϵ affects noises differently in the local setting,
the error analysis, which is essential for guiding the choice of key
algorithmic parameters, changes as well. A common challenge for
many works on differential privacy is that there are often critical
algorithmic parameters, the choice of which greatly impact the
performance of the algorithm. However, such parameters are often
chosen in ad hoc ways, or based on performance on the experimen-
tal datasets. Both PriView and CALM have two critical parameters.
In the local setting, an additional source of errors is introduced
and needed to be considered. We carefully analyze how different
errors are affected by different parameters, deriving formulas for
estimating them whenever possible. We then develop an approach
for choosing these parameters in a principled way. Our approach
takes as input one target error threshold, and use an algorithm to
find parameter values, using the formulas for estimating errors.

We have implemented CALM and conducted extensive exper-
imental evaluation to compare CALM with other state of the art
methods. Experimental results show that CALM’s expected value
of the Sum of Squared Errors is often one to two orders of magni-
tude lower than the best current method in [11]. In addition, CALM
scales to settings where existing methods do not. To demonstrate
the importance of the marginal information in practice, we also
evaluate the prediction performance of CALM versus other meth-
ods by training an SVM model on some fixed marginal. In most
cases, we can see CALM can achieve near optimal results, while
other methods are beaten by the naive method that always output
the majority label.

To summarize, the main contributions of this paper are three
folds:

• We introduce CALM for the marginal release problem under
local differential privacy, which also work when there are
non-binary attributes.
• We have conducted careful analysis on errors from three
different sources, and developed an algorithm for choosing
key algorithmic parameters for CALM.
• The performance of the proposed method is extensively eval-
uated on real-world datasets and demonstrated to greatly
outperform state-of-the art approaches.

Roadmap. In Section 2, we present background knowledge of
LDP and FO. We then go over the problem definition and existing
solutions in Section 3. We present our proposed method in Section 4.
Experimental results are presented in 5. Finally we discuss related
work in Section 6 and provide concluding remarks in Section 7.

2 BACKGROUND

In the local setting for DP, there are many users and one aggregator.
Each user possesses a value v from domain D, and the aggregator
wants to learn the distribution of values among all users, in a way
that protects the privacy of individual users.

2.1 Differential Privacy in the Local Setting

To protect privacy, each user perturbs the input value v using an
algorithm Ψ and sends Ψ(v) to the aggregator. The formal privacy

requirement is that the algorithm Ψ(·) satisfies the following prop-
erty:

Definition 1 (ϵ Local Differential Privacy). An algorithm

Ψ(·) satisfies ϵ-local differential privacy (ϵ-LDP), where ϵ ≥ 0, if and

only if for any input v1,v2 ∈ D, we have

∀T ⊆Range(Ψ) : Pr [Ψ(v1) ∈ T] ≤ eϵ Pr [Ψ(v2) ∈ T] ,

where Range(Ψ) denotes the set of all possible outputs of Ψ.

Since a user never reveals v to the aggregator and reports only
Ψ(v), the user’s privacy is still protected even if the aggregator is
malicious.

2.2 Frequency Oracles

A frequency oracle (FO) protocol enables the estimation of the fre-
quency of any value x ∈ D under LDP, which serves as the building
block of other LDP tasks. It is specified by a pair of algorithms: Ψ
is used by each user to perturb her input value, and Φ is used by
the aggregator.

2.2.1 Generalized Randomized Response (GRR). This FO protocol
generalizes the randomized response technique [40]. Here each user
with private value v ∈ D sends the true value v with probability
p, and with probability 1 − p sends a randomly chosen v ′ ∈ D s.t.
v ′ , v . More formally, the perturbation function is defined as

∀y∈D Pr
[

ΨGRR(ϵ)(v) = y
]

=

{

p = eϵ

eϵ+d−1
, if y = v

q = 1
eϵ+d−1

, if y , v

This satisfies ϵ-LDP since
p
q = eϵ . To estimate the frequency of

v ∈ D (i.e., the ratio of the users who have v as private value to the
total number of users), one counts how many times v is reported,
and denote the count as C(v), and then computes

ΦGRR(ϵ)(v) B
C(v)/n − q

p − q

where n is the total number of users. For example, if 20% of users
have value v , the expected number of v in all randomized reports
is 0.2 ∗n ∗p + 0.8 ∗n ∗q. If the aggregator sees exactly this number
of reports, the estimated value is

(0.2np + 0.8nq)/n − q

p − q
=

0.2p + 0.8q − q

p − q
=

0.2p − 0.2q

p − q
= 0.2

In [37], it is shown that this is an unbiased estimation of the true
count, and the variance for this estimation is

Var[ΦGRR(ϵ)(x)] =
|D | − 2 + eϵ

(eϵ − 1)2 · n
(1)

The accuracy of this protocol deteriorates fast when the domain
size |D | increases. This is reflected in that the variance given in (1)
is linear to |D |.

2.2.2 Optimized Unary Encoding (OUE). The Optimized Unary
Encoding (OUE) [37] avoids having a variance that depends on
|D | by encoding the value into the unary representation. Wlog, let
D = [0..d − 1]; each value v ∈ [0..d − 1] is encoded into a binary
string of length d such that the v-th bit is 1 and all other bits are 0.
The unary encodings of any two different values differ in exactly
two bits. OUE applies GRR to each bit, but transmits 1’s and 0’s
differently. The bit 1 is transmitted as a coin toss, i.e., it is perturbed

to 0 with probability 0.5; this can be viewed as applying GRR with
ϵ = 0. Doing this enables us to transmit each of the many (|D | − 1,
to be precise) 0 bits with the maximum allowed privacy budget ϵ , so
that the number of 1’s resulting from perturbing the 0’s is as small
as possible. Doing this minimizes the estimation variance when |D |
is large [37].

Given reports y j from all users j ∈ [n], to estimate the frequency
of v , the aggregator counts the number of reports with the bit

corresponding to v set to 1, i.e., C(x) = |{j | y jx = 1}|. One then
transforms C(v) to its unbiased estimation

ΦOUE(ϵ)(x) B
C(x)/n − q

1
2 − q

It is proved in [37] that the ΨOUE(·) satisfies LDP, and estimated
frequency is unbiased and has variance

Var[ΦOUE(ϵ)(x)] =
4eϵ

(eϵ − 1)2 · n
(2)

2.2.3 Adaptive FO. Comparing (1) with (2), the factor |D | − 2 + eϵ

is replaced by 4eϵ . This suggests that for smaller |D | (such that
|D | − 2 < 3eϵ), one is better off with GRR; but for large |D |, OUE
is better and has a variance that does not depend on |D |.

For simplicity, we use FO to denote the adaptively chosen proto-
col, i.e., when domain size is less than 3eϵ + 2, GRR is used as FO;
otherwise, OUE is used. It has variance

Var[ΦFO(ϵ)(x)] = min

(

4eϵ

(eϵ − 1)2
,
|D | − 2 + eϵ

(eϵ − 1)2

)

·
1

n
(3)

3 PROBLEM DEFINITION AND EXISTING
SOLUTIONS

We consider the setting where each user has multiple attributes,
and the aggregator is interested in the joint distribution of some
attributes. Such multi-dimension settings occur frequently in the
situation where LDP is applied. In [11, 31], researchers studied the
problem of constructing marginals in the LDP setting.

3.1 Problem Definition: Centralized Setting

We assume that there are d attributes A = {a1,a2, . . . ,ad }. Each
attribute ai has ci possible values. Wlog, we assume that the values
for ai are [ci] B {0, 1, · · · , ci − 1}. Each user has one value for each
attribute. Thus user j’s value is a d-dimensional vector, denoted by

v j = ⟨v
j
1,v

j
2, . . . ,v

j

d
⟩ such thatv ji ∈ [ci] for each i . The full domain

for the users’ values is given by D = [c1]×[c2]× · · ·×[cd], in which
× denotes cartesian product. The domain D has size |D | =

∏d
i=1 ci .

Let us first consider the setting of answering marginal queries
in the centralized setting, where the server has all users’ data. For
a population of n users, the full contingency table gives, for each
value v ∈ D, the fraction of users having the value v . We use F
to denote the full contingency table, and call the fraction for each
value v ∈ D a cell in the full contingency table.

The full contingency table gives the joint distribution of all at-
tributes in A. However, when the domain size is very large, e.g.,
when there are many attributes, computing the full contingency
table can be prohibitively expensive. Oftentimes, one is interested
in the joint distribution of some subsets of the attributes. Given
a set of attributes A ⊆ A, we use VA = {⟨v1,v2, . . . ,vd ⟩ : vi ∈

Gender Age

v1 male teenager
v2 female teenager
v3 female adult
v4 female adult
· · · · · · · · ·

vn male elderly

(a) Dataset.

v F(v)

⟨male, teenager⟩ 0.20
⟨male, adult⟩ 0.15
⟨male, elderly⟩ 0.20
⟨female, teenager⟩ 0.15
⟨female, adult⟩ 0.20
⟨female, elderly⟩ 0.10

(b) Full contingency table.

v M{gender}(v)

⟨male,∗⟩ 0.55
⟨female,∗⟩ 0.45

(c) Marginal table for gender.

v M{age}(v)

⟨∗,teenager⟩ 0.35
⟨∗,adult ⟩ 0.35
⟨∗,elderly⟩ 0.30

(d) Marginal table for age.

Figure 1: Example of the dataset, the full contingency table,

and the marginal tables.

[ci] if ai ∈ A, otherwise vi = ∗} to denote the set of all possible
values specified by A.

When given a set A of k attributes, the k-way marginal over A,
denoted byMA, gives the fraction of users having each value inVA.
We call the fraction for each value v ∈ VA a cell of the marginal
table. MA contains fewer cells than the full contingency table F.
Each cell inMA can be computed from summing over the values in
the cells in F that have the same values on the attributes in A.

Figure 1 gives an example where each user has two attributes
gender and age. In the centralized setting, the server has access to
the raw dataset Figure 1(a), from which, it can compute the full con-
tingency table (Figure 1(b)). The two marginal tables (Figure 1(c,d))
can be computed from the contingency table.

3.2 Problem Definition: Local Setting

In the local setting, the aggregator does not have access to the raw
dataset, such as the one shown in Figure 1(a). Instead, each user
possesses one row of the dataset and sends a randomly perturbed
value based on it. Our goal is to have the aggregator to use the
perturbed reports to compute with reasonable accuracy any k-way
marginal. Some methods (such as those proposed in [11]) require
a specification of the maximum k ahead of time. Our proposed
method can support queries of arbitrary k values.

To measure the utility empirically, we use sum of squared er-

ror (SSE), i.e., the square of the L2 distance between the true mar-
ginalMA and the reconstructed TA. When we query many k-way
marginals, we calculate the SSE for each marginal, and use the
average SSE as the indicator of a method’s accuracy.

The reconstructed TA can be viewed as a random variable since
random noises are added in the process to satisfy LDP. When a
method is able to produce an unbiased estimation, the expected
value of TA is the true marginalMA, and the expected value of SSE
is the variance of the random variable TA.

Figure 1 gives an example where each user has two attributes
gender and age. The goal is to construct all the marginal tables. Each
user’s private value corresponds to a row in Figure 1(a). No one has

Symbol Description

n The total number of users
v j Value of user j
d Number of attributes
A The set of all attributes
ai Attribute i
ci Number of possible values for attribute ai
F The full contingency table
A Some set of attributes
MA The marginal table of attribute set A
m Number of marginal tables output by our method
ℓ Size of each marginal table in our method

Table 1: List of Notations

the full view of the whole dataset. To construct the marginal tables
Figure 1(c,d), one can let each user report the two values (using an
FO as described earlier), aggregate the users’ reports to construct
the full contingency table (with some noise), and build the marginal
tables. This method is more formally described in the following.

See Table 1 for the list of notations.

3.3 Full Contingency Table Method (FC)

To estimate M, one straightforward approach is to estimate the
full contingency table F first, and then construct M from F. We
call this approach the Full Contingency (FC) table method. In this
method, each user reports her value v ∈ D using an FO protocol.
The aggregator estimates the frequency of each value in the full
domain. Once having the full contingency table, the aggregator can
compute any k-way marginal.

The main shortcoming of FC is that, since one has to query the
frequency of each value in the full domain of all attributes, the time
complexity and space complexity grows exponentially with the
number of attribute d and can be prohibitively expensive.

Furthermore, even when it is feasible to construct the full con-
tingency table, computing marginals from a noisy full contingency
table can have high variance. For example, suppose we have 32

binary attributes, the domain size is thus 232. When constructing a
4-way marginal, each value in the 4-way marginal is the result of
summing up 228 noisy entries in the full contingency table. Let Var0
be the variance of estimating each single cell in the full contingency
table, the variance of each cell in the reconstructed marginal is then
228 × Var0, and the expected SSE is 24 × 228 × Var0 = 232 × Var0.
In general, the variance of computing k-way marginals from the
noisy full contingency table is

VarFC = 2d · Var0 (4)

3.4 All Marginal Method (AM)

To mitigate the exponential dependency on d , one can construct
all the k-way marginals directly. There are two alternatives, one

is to divide the privacy budget ϵ into
(d
k

)

pieces, and have each

user reports
(d
k

)

times, once for each k-way marginal. The second

is to divide the user population into
(d
k

)

disjoint groups, and have
users in each group report one k-way marginal. Under the LDP

setting, it is generally better to divide the population than dividing
the privacy budget, because reporting under low privacy budget is
very noisy [26, 37, 38].

Under LDP, estimating fraction frequencies is less accurate with
a smaller group than with a larger group, because the noises have
larger impact when the true counts are small. The variance is in-
versely proportional to the group size. Thus dividing the population

into
(d
k

)

groups will add a
(d
k

)

factor to the variance. This factor
results in the following variance.

VarAM = 2k ·

(

d

k

)

· Var0 (5)

When k is relatively small (and hence
(d
k

)

is small), AM performs
better than FC; when k is large, AM could perform worse than FC.
Another limitation of this method is that one has to specify the
value k ahead of time. After the protocol is executed, there is no
way to answer any t-way marginal queries for t > k .

3.5 Fourier Transformation Method (FT)

Fourier Transformation (FT) was used for publishing k-way
marginals in the centralized setting [5]. Kulkarni et al. [11] applied
the technique to the local setting. Effectively, it is an optimization
of the AM method. The motivation underlying FT is that, the calcu-
lation of a k-way marginal requires only a few coefficients in the
Fourier domain. Thus, users can submit noisy Fourier coefficients
that are needed to compute the desired k-way marginals, instead
of values in those marginals.

This method results in slightly lower variance than AM. How-
ever, in order to reconstruct all k-way marginals, a large number
of coefficients need to be estimated; thus this method would still
perform poorly when k is large. Furthermore, the method is de-
signed to deal with the binary attributes. Therefore, the non-binary
attributes must be pre-processed to binary attributes, resulting in
more dimensions. For example, an attribute with c values has to be
transformed into ⌈log2 c⌉ binary attributes.

The details of FT are presented in Appendix A.1. Here, we briefly

analyze its variance. Specifically, there are
∑k
s=0

(d
s

)

coefficients to
be estimated. Estimating TA(v) requires information for a selected
set of 2k coefficients, eachmultiplied by 2−k . Therefore, this method
has variance

VarFT =

k
∑

s=0

(

d

s

)

· Var0 (6)

3.6 Expectation Maximization Method (EM)

This method allows each user to upload the value for each attribute
separately with split privacy budget. The aggregator then conducts
Expectation Maximization (EM) algorithm to reconstruct the mar-
ginal tables. This approach is first introduced by Fanti et al. [17] for
estimating joint distribution for two attributes, and then generalized
by Ren et al. [31] to handle multiple attributes.

Specifically, denote y j = ⟨y j1,y
j
2, . . . ,y

j

d
⟩ as the report from user

j. The algorithm attempts to guess the private value distribution
TA, for any A, by maximizing the probability y j are reported from
user j.

The original EM algorithm runs slowly. Therefore, we use the
algorithm proposed in the appendix of [38] to help compute TA.
In most cases, if the initial values are set using the result returned
by this algorithm, the EM algorithm finishes quickly. Specifically,
this algorithm first estimates the value distribution for any single
attribute, and then uses that estimation to estimate distribution for
any pair of attributes, and so on. The method is proven to produce
unbiased estimation.

The detailed protocol of EM is given in Appendix A.2. Overall,
the EM method has the advantage of being able to compute t-way
marginals for any t . But since ϵ is split into each attribute, this
method has large variance.

4 CALM: CONSISTENT ADAPTIVE LOCAL
MARGINAL

In this section, we describe our proposed method CALM (Consis-
tent Adaptive Local Marginal) for publishing k-way marginal via
LDP. Our method is inspired by the PriView method for publish-
ing marginal under the centralized DP setting [29], so we describe
PriView first.

4.1 An Overview of PriView

The PriView method was designed for privately computing arbi-
trary k-way marginals for a dataset with d binary attributes in the
centralized setting. PriView privately publishes a synopsis of the
dataset. Using the synopsis, it can reconstruct any k-way marginal.
The synopsis takes the form ofm size-ℓ marginals that are called
views. Below we give an overview of the PriView method, using an
example where there are d = 8 attributes {a1,a2, · · · ,a8}, and we
aim to answer all 3-way marginals. PriView has the following four
steps. (See [29] for complete specification of PriView.)

Choose the Set of Views. The first step is to choose which
marginals to include in the private synopsis as views. That is, one
needs to choosem sets of attributes. PriView chooses these sets so
that each size-2 (or size-3) marginal is covered by some view. For
example, if aiming to cover all 2-way marginals, then one could
choose the followingm = 6 sets of attributes to construct views:

{a1,a2,a3,a4} {a1,a5,a6,a7} {a2,a3,a5,a8}

{a4,a6,a7,a8} {a2,a3,a6,a7} {a1,a4,a5,a8}

Observe that any pair of two attributes are included in at least one
set.

Generate Noisy Views. In this step, for each of them attribute
sets, PriView constructs a noisy marginal over the attributes in the
set, by adding Laplace noise Lap

(m
ϵ

)

to each cell in the marginal
table. This is the only step that needs direct access to the dataset.
After this step, the dataset is no longer accessed.

Consistency Step. Given these noisy marginals/views, some 3-
way marginals can be directly computed. For example, to obtain
the 3-way marginal for {a1,a2,a3}, we can start from the view
for {a1,a2,a3,a4} and marginalizes out a4. However, many 3-way
marginal are not covered by any of the 6 views. For example, if
we want to compute the marginal for {a1,a3,a5}, we have to rely
on partial information provided by the 6 views. We can compute

the marginals for {a1,a3}, {a1,a5}, and {a3,a5}, and then combine
them to construct an estimation for {a1,a3,a5}.

Observe that {a1,a5} can be computed both by using the view for
{a1,a5,a6,a7} and by using the view for {a1,a4,a5,a8}. Since in-
dependent noises are added to the two marginals, the two different
ways to compute marginal for {a1,a5} most likely have different re-
sults. In addition, the noisy marginals may contain negative values.
PriView performs constrained inference on the noisy marginals
to ensure that the marginals in the synopsis are all non-negative
and mutually consistent. (For self-containment, we included the
description of the consistency step in Appendix A.3.)

Generating k-way Marginals. From them consistent views, one
can reconstruct any k-way marginals. When given a set of k at-
tributes, if all k attributes are included in one view, then we can
compute the k-way marginal directly. When no view includes all
k attributes, PriView uses Maximum Entropy estimation to com-
pute the k-way marginal. For example, when given the marginals
for {a1,a3}, {a1,a5}, and {a3,a5}, Maximum Entropy estimation
finds among all possibles marginals for {a1,a3,a5} that are consis-
tent with the three known marginals, the one with the maximum
entropy. Note that while the marginal for {a1,a3,a5} have 7 un-
knowns (the 8 cells must sum up to 1), and each marginal over
{a1,a3}, {a1,a5}, and {a3,a5} gives 3 equations, these equations
are not independent. In this case, the three 2-way marginals to-
gether give 6 independent linear constraints on the 7 unknowns,
leaving one degree of freedom.

Discussions. Using the PriView method, one could answer k-way
marginals for arbitrary k values. For a k-way marginal computed
by PriView, there are two sources of errors. Noise Errors are due
to the Laplacian noises added to satisfy DP. Reconstruction Errors

are due to the fact that one has to estimate a k-way marginal from
partial information.

Two important algorithmic parameters affect the magnitude
of these two kinds of errors. They are the number m of
marginals/views in the synopsis, and the size ℓ (i.e., number of
attributes) of these views. With a larger ℓ, the views cover more
combinations of attributes, reducing Reconstruction Errors. How-
ever, one would be summing over more noisy entries to compute
any marginal, increasing the Noise Errors. Similarly, a larger m
means more marginals and better coverage of combinations of at-
tributes, which reduces Reconstruction Errors. However, a largerm
also means less privacy budget for each marginal and higher Noise
Errors. Consider the running example with 8 attributes, by using
14 (instead of 6) size-4 marginals, one can ensure that any set of 3
attributes is covered by at least one of the marginals, eliminating
Reconstruction Errors. However, this is done at the cost of adding

noises sampled from Lap
(

14
ϵ

)

instead of Lap
(

6
ϵ

)

to each cell. Note

that even if any set of 3 attributes is covered, answering 4-way
marginals will still have Reconstruction Errors.

Analysis in [29] shows that the choice of optimal ℓ (size of each
marginal) is independent from parameters such as dataset size n,
privacy parameter ϵ , and dimensionality d . In particular, setting
ℓ to be around 8 works well. The optimal choice of m (number
of marginals), however, depends on n, ϵ,d , and the nature of the

average of these estimates are therefore

NE(n,d, ϵ, ℓ) =
Var1
m ·ℓ
d

=min

(

4eϵ

(eϵ − 1)2
,
L − 2 + eϵ

(eϵ − 1)2

)

·
m

n
· L ·

d

m · ℓ

=min

(

4eϵ

(eϵ − 1)2
,
L − 2 + eϵ

(eϵ − 1)2

)

·
L

ℓ
·
d

n
(7)

The key observation here is that the magnitude of Noise Errors
does not depend on m, which is different from PriView. It does
depend on ℓ and ϵ , where ϵ affects the first term, which is the
variance of the FO protocol. The parameter ℓ affects both the term
L
ℓ
and the variance for the FO protocol.
Also note that when we estimate k-way marginals based on the

estimation of marginals of the k attributes, the estimation is affected
by the errors for each of the k attributes, we thus use k ·NE(n,d, ϵ, ℓ)
as the Noise Errors when we optimize for a particular k value.

Reconstruction Errors. Reconstruction Errors occur when a k-
way marginal is not covered by any of the chosen marginal. The
magnitude of Reconstruction Errors depends on to what extent
attributes are correlated. If all attributes are mutually independent,
then Reconstruction Errors do not exist. When attributes are de-
pendent, the general trend is that largerm and larger ℓ will cover
more combination of attributes, reducing reconstruction errors. The
reduction effect of Reconstruction Errors diminishes asm increases.
For example, if all k-ways marginals are already fully covered, Re-
construction Errors are already 0 and cannot be further decreased.
Even if not all k-ways marginals are fully covered, increasingm
beyond some reasonably large number will only cause diminishing
return. Since Reconstruction Errors are dataset dependent, there is
no formula for estimating them.

Sampling Errors. Sampling Errors occur when a marginal in a
group of users deviates from the marginal in the whole population.
The parameter ℓ has no impact on Sampling Errors. However, in-
creasingm would cause each group size n

m to be smaller, raising
Sampling Errors. When computing a marginal from a group of
s = n/m users, each cell in the marginal can be viewed as the sum
of s independent Bernoulli random variables, divided by s . In other
words, each cell is a binomial random variable divided by s . Thus

each cell has variance MA(v)(1−MA(v))
s , whereMA(v) is the fraction

of users with valuev in the whole population. The Sampling Errors
for an ℓ-way marginal A are thus

∑

v ∈VA

MA(v)(1 −MA(v))

s
=

m ×
∑

c ∈VA MA(v)(1 −MA(v))

n

Since
∑

v ∈VA MA(v) = 1, we have
∑

v ∈VA MA(v)(1 − MA(v)) <
∑

v ∈VA MA(v)·1 = 1. Thus the Sampling Errors are simply bounded
by

SE(n,m) =
m

n
(8)

Choosing m and ℓ. Both m and ℓ affect Reconstruction Errors.
In addition,m affects Sampling Errors, and ℓ affects Noise Errors.
Intuitively, we want to choosem and ℓ to minimize the maximum
of the three kinds of Errors, since the maximum would dominate

the overall errors. However, we do not have a formula to estimate
Reconstruction Errors, which is dataset dependent.

We propose to choose a target error threshold θ , which serves
as a rough estimation of Reconstruction Errors when they are not
zero, and choosem and ℓ as follows:

• Compute the largest marginal size ℓu , such that k · NE < θ .
• When ℓu < k , one chooses ℓu and the largestm such that
SE < θ .
• Otherwise, one chooses m and ℓt ∈ [k, ℓu] such that the
maximum of NE and SE is minimized.

While θ intends to be a rough estimation of Reconstruction
Errors, it does not need to be chosen based on one particular dataset.
One can run experiments with a public dataset of similar nature
under different parameters, the best level of SSE that can be achieved
is usually a good indicator of the magnitude of Reconstruction
Errors. When a public dataset is unavailable, one can generate
a synthetic dataset under some correlation assumption and run
experiments. In experiments conducted for this paper, we choose
θ = 0.001, and use it for all datasets and settings.

Algorithm 1 Pseudocode to determinem and ℓ

Require: Dataset parameters n,d, ϵ,k , error threshold θ .
Ensure: m and ℓ.
1: procedure Inference(n,d, ϵ, θ)
2: Assignmu ← θ · n, ℓu ← 2
3: while k · NE(n,d, ϵ, ℓu + 1) ≤ θ do

4: Increment ℓu ← ℓu + 1

5: if ℓu < k then

6: return min(mu ,
(d
ℓu

)

), ℓu

7: Assign ℓb ← ℓu
8: while ℓb > k and CoverDesign(d,k, ℓb − 1) ≤ mu do

9: Decrement ℓb ← ℓb − 1

10: if ℓb == ℓu then

11: return min(mu ,
(d
ℓu

)

), ℓu

12: Assign E← 1,m ←mu , ℓ ← ℓu
13: for ℓt in [ℓb , ℓu] do
14: Assignmt ← CoverDesign(d,k, ℓt)
15: if max(SE(n,mt),k · NE(n,d, ϵ, ℓt)) < E then

16: Update E← max(SE(n,mt),k · NE(n,d, ϵ, ℓt))

17: Updatem ←mt , ℓ ← ℓt

18: returnm, ℓ

Algorithm 1 gives the pesudocode for determiningm and ℓ. The
algorithm uses the formula to calculate Noise Errors NE from (7),
and Sampling Errors SE as in (8). CoverDesign is an external pro-
cedure to calculate the number of ℓ-way marginals that can fully
include all k-way marginals. Note that NE is for a single attribute;
one can multiply NE by k to approximate the Noise Errors for the
k-way marginals.

For example, Figure 3 gives the Noise Errors times k (i.e., k · NE)
for n = 216,d = 8, and k = 3 when ϵ ranges from 0.2 to 2.0. If
we fix θ = 10−3, we can read from the figure that when ϵ ≤ 1.4,
only ℓ = 2 can be used. Because larger ℓ will make NE even larger;
and we choose to allow some RE to exist. When ϵ is larger, e.g.,

5.1 Experimental Setup

Our experimental setup is largely influenced by that in [11], which
introduced the Fourier Transformation method and ran extensive
comparisons of several methods for this problem.

Environment. All algorithms are implemented in Python 3.5 and
all the experiments are conducted on a PC with Intel Core i7-4790
3.60GHz and 16GB memory.

Datasets. We run experiments on the following four datasets.

• POS [43]: A dataset containing merchant transactions of half
a million users.
• Kosarak [2]: A dataset of click streams on a Hungarian web-
site that contains around one million users.
• Adult [4]: A dataset from the UCI machine learning repos-
itory. After removing missing values, the dataset contains
around 50 thousands records. The numerical attributes are
bucketized into categorical attributes.
• US [32]: A dataset from the Integrated Public Use Microdata

Series (IPUMS). It has around 40k records of the United States
census in 2010.

The first two are transactional datasets where each record con-
tains some items. We treat each item as a binary attribute. Thus
these two datasets are binary. When running experiments with k

binary attributes, we pre-process a dataset to include only the top
d most frequent items. The later two are non-binary datasets, i.e.,
each attribute contains more than two categories.

Evaluation Methodology. To evaluate the performance of dif-
ferent methods, the Sum of Squared Error (SSE) of the marginals
is reported. That is, we compute the ground truth and calculate
the sum of squared difference in each cell. For each dataset and
each method, we choose 50 random k-way marginal queries and
measure their SSE. This procedure is repeated 20 times, with result
mean and standard deviation reported.

Competitors. The FC, AM, and EM methods can be directly ap-
plied. For a fair comparison, the FO used in those methods are also
chosen adaptively.

The FT method is unable to deal with the non-binary attributes.
Therefore, we implement the non-binary version of FT by encoding
each non-binary attribute into several binary attributes.

As a baseline comparison, we also plot the SSE of the Uniform
method (Uni in the figures), which always returns a uniform dis-
tribution for any marginal tables. Clearly, if the performance of
one method is worse than the Uniform method, the marginal con-
structed from that method is meaningless.

Experimental Settings. Different methods scale differently with
respect to d , the number of attributes, and k , the size of marginals.
Also, the error depends on n, the size of the dataset. We use three
values of d : 8, 16, and 32. We consider k = 3 for all three settings
of d . We consider k = 6 only for d ∈ {16, 32}, and k = 8 only for
d = 32. This is because a larger k value makes more sense with a
larger d value.

We consider two dataset sizes n = 216 and n = 218, which were
used in [11]. Since all methods benefit similarly when n increases,
the comparison results remain valid for other n sizes.

The settings form and ℓ are given in Table 2 in the appendix.

5.2 SSE on Binary Datasets

Figure 4 illustrates the results for comparingCALM against existing
methods we discussed in Section 3 on two binary datasets Kosarak
and POS.

In all settings, CALM significantly outperforms all existing algo-
rithms, and the advantage ofCALM increases for largerd and larger
k values, and for smaller ϵ values. For most settings, the difference
between CALM and FT, the closest competitor, is between one and
two orders of magnitude. When ϵ is small, e.g., when ϵ = 0.2, all
existing algorithms perform close to the Uniform baseline, meaning
they can provide very little information when the privacy budget is
small. Whereas CALM can still provide enough information even
for very small ϵ . Furthermore, many methods simply do not scale
to the case of d = 32.

EM performs poorly, in fact it is often worse than the Uniform
baseline. This is because EM requires each user to report informa-
tion on all d attributes, in order to perform inference. This means
dividing the privacy budget by d , which results in large pertur-
bation. The other methods can split the population into groups,
instead of splitting privacy budget, thus performing better. Also,
when k is larger than 5, the computation time for EM method is
too long to run efficiently (about 20 minutes each query). We thus
do not plot EM for the k = 6, 8 cases.

Among the competitors, FT performs the best.Whend = 8,k = 3,
we can compute the variance for FC, AM and FT using Formulas (4),
(5), and (6). The results are 256 · Var0 for FC, 448 · Var0 for AM,
and 93 · Var0 for FT. From Figures 4a and 4g, we can see that the
experimental results match the analytical comparison.

For d = 16, CALM’s performance is similar to the case of d =
8. Other methods, however, have significantly larger error. For
example, in Figure 4b, when ϵ = 0.2, the squared error of CALM is
0.0055, which is 41 times better than the state-of-the-art method,
i.e., FT with squared error of 0.2266.

The performance of FC does not depends on k , since it constructs
a full contingency table.

When d = 32, most of the existing methods are unable to scale,
especially when k = 8. For the AM method, the number of possible
marginals are

(32
8

)

= 10518300. As a result, the average number
of users that contribute information to each marginal is less than
one when we choose n = 216 and 218. Similarly, the number of
Fourier coefficients required to reconstruct 8-way marginals are
∑8
s=1

(32
s

)

= 15033173, resulting less than one user contributes to
each coefficient.

5.3 SSE on Non-binary Datasets

The experimental results for non-binary datasets, i.e., Adult and
US, are shown in Figure 5. To reduce computational complexity, we
pre-process all attributes to contain at most 3 categories.

The experimental results show the superiority of CALM, which
achieves around 1 to 2 orders magnitude of improvement over
existing methods.

By comparing the d = 8 and k = 3 setting in Figure 4 with
Figure 5, we observe that FT performs better than FC and AM in
the binary datasets, whereas performs worse in the non-binary
datasets. The bad performance in the non-binary datasets is due
to the binary encoding process, which dramatically increases the

[23] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Traces and emergence
of nonlinear programming, pages 247ś258. Springer, 2014.

[24] N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory to Practice.
Synthesis Lectures on Information Security, Privacy, and Trust. Morgan Claypool,
2016.

[25] N. Mishra and M. Sandler. Privacy via pseudorandom sketches. In Proceedings of
PODS, pages 143ś152. ACM, 2006.

[26] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. Collecting and analyz-
ing data from smart device users with local differential privacy. arXiv:1606.05053,
2016.

[27] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. Semi-
supervised knowledge transfer for deep learning from private training data.
arXiv:1610.05755, 2016.

[28] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson.
Scalable private learning with pate. In ICLR, 2018.

[29] W. Qardaji, W. Yang, and N. Li. Priview: practical differentially private release of
marginal contingency tables. In Proceedings of SIGMOD, pages 1435ś1446. ACM,
2014.

[30] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation
over set-valued data with local differential privacy. In Proceedings of CCS, pages
192ś203. ACM, 2016.

[31] X. Ren, C.-M. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and S. Y. Philip. Lopub:
High-dimensional crowdsourced data publication with local differential privacy.
IEEE Transactions on Information Forensics and Security, 13(9):2151ś2166, 2018.

[32] S. Ruggles, J. T. Alexander, K. Genadek, R. Goeken, M. B. Schroeder, and M. Sobek.
Integrated public use microdata series: Version 5.0 [machine-readable database],
2010.

[33] A. Smith, A. Thakurta, and J. Upadhyay. Is interaction necessary for distributed
private learning? In Proceedings of Symposium on Security and Privacy (SP), pages
58ś77. IEEE, 2017.

[34] A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan, G. Kapoor, J. Freudiger, V. R.
Sridhar, and D. Davidson. Learning new words, Mar. 14 2017. US Patent 9,594,741.

[35] S. Vadhan. The complexity of differential privacy. In Tutorials on the Foundations
of Cryptography, pages 347ś450. Springer, 2017.

[36] D. Wang, M. Gaboardi, and J. Xu. Efficient empirical risk minimiza-
tion with smooth loss functions in non-interactive local differential privacy.
arXiv:1802.04085, 2018.

[37] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for
frequency estimation. In Proceedings of USENIX. USENIX Association, 2017.

[38] T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter identification.
arXiv:1708.06674, 2017.

[39] T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset mining.
In Proceedings of the Symposium on Security and Privacy,, page 578ś594. IEEE,
2018.

[40] S. L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63ś69, 1965.

[41] C. Xu, J. Ren, Y. Zhang, Z. Qin, and K. Ren. Dppro: Differentially private high-
dimensional data release via random projection. IEEE Transactions on Information
Forensics and Security, 12(12):3081ś3093, 2017.

[42] K. Zheng, W. Mou, and L. Wang. Collect at once, use effectively: Making non-
interactive locally private learning possible. arXiv:1706.03316, 2017.

[43] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In Proceedings of SIGKDD, pages 401ś406. ACM, 2001.

A SUPPLEMENTARY METHOD
DESCRIPTIONS

A.1 Details of FT

Define b(·) as the function that transforms a d-dimensional value v
into an integer, where b(v) =

∑d
i=1 2

d−i ·vai . The Fourier transfor-
mation aims to project eb(v), the standard basis of b(v), onto the

Fourier basis. Specifically, denote all the Fourier basis as a 2d × 2d

matrix Ω = {ωi j }, where ωi j = 2−d/2(−1)⟨i |j ⟩ , and ⟨i |j⟩ is the
inner product of i and j in their binary representations. Each user
j reports one bit of the local coefficient (Ωeb(v j)) at location i , us-
ing randomized response. By aggregating all users’ reports into the
noisy Fourier coefficients θ , the aggregator in fact is estimation
Ω · F, where F is the full contingency table. The marginal tables can

then be calculated from θ :

TA(v) =
∑

α ∈V[d],α[d]\A=0

θb(α) ·

(

∑

η∈V[d],ηA=vA

ωb(α),b(η)

)

(9)

Note that in the formula above, fixing α , for any η, ωb(α),b(η) is the
same. This is because α fixes the bits in positions not contained in
A to be all zeros, while η enumerates all of these bits. As a result,
to calculate Equation (9), one only needs to enumerate all α ’s.

The advantages of this method lies in that it only needs to access
∑k
j=0

(d
j

)

Fourier coefficients. For variance, each coefficient is mul-

tiplied by 2−d/2 · 2d/2−k . Moreover, each TA(v) is the summation
of 2k coefficients.

A.2 Details of EM

For any k-way marginal Ai , it can be estimated via the following
formula:

TAi (v) =
C(v) −

∑

A⊂Ai

[

TA(v)q
|Ai |− |A |(p − q) |A |

]

(p − q) |Ai |

whereC(v) denotes the fraction of users that has valuev , i.e.,C(v) =
j :y

j

Ai
=vAi
n . Note that to calculate TAi , one should get TA for all

A ⊂ Ai first. The base case is T∅ = 1. The results are then used as
the initial values of the EM algorithm, i.e., Pr [v]0 = TAi (v).

The EM algorithm has two parts, the E step and the M step. In
the E step, the likelihood is computed as

Pr
[

v |y j
]

t
=

Pr [v]t · Pr
[

y j |v
]

∑

v Pr [v]t · Pr
[

y j |v
] ,

where Pr [v]t denote the probability for v in round t , and Pr [v]0 is
initialized to 1

|VA |
. Then Pr [v]t is updated in the M step,

Pr [v]t+1 =
1

n

n
∑

j=1

Pr
[

v |y j
]

t

until maxv |Pr [v]t+1−Pr [v]t | ≤ δ for some δ > 0. This procedure
eventually converges to the local maximum of the log-likelihood
function.

A.3 Other Details of PriView

We provide the remaining consistency and reconstruction steps for
the PriView method. Note that these steps are also used in CALM.

Overall Consistency. We can conduct the following procedure
to achieve overall consistency. First, enumerate all the subsets of
A. These subsets form a partial order under the subset relation,
which can be organized as a topological graph. This topological
graph starts from the empty set. Then, for each subset of A in the
topological order, we ensure the consistency among the marginals
that include this subset. It is shown in [29] that following the topo-
logical order, a later consistency step will not invalidate consistency
established in previous steps.

Non-Negativity through Ripple. We propose to adopt the fol-
lowing łRipplež non-negativity method, which turns negative

d,k,n

ϵ
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

8, 3, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 4, 14
8, 4, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 3, 56
8, 5, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56
8, 6, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56
8, 7, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56
8, 8, 216 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56
16, 3, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 3, 65 3, 65
16, 4, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 3, 65
16, 5, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
16, 6, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
16, 7, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
16, 8, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 3, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 4, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 5, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 6, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 7, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
32, 8, 216 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65 2, 65
8, 3, 218 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 3, 56 3, 56 3, 56 4, 14
8, 4, 218 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 4, 70 4, 70 4, 70 4, 70
8, 5, 218 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 4, 70 5, 56 5, 56
8, 6, 218 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 4, 70 4, 70 5, 56
8, 7, 218 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 3, 56 4, 70 5, 56
8, 8, 218 2, 28 2, 28 2, 28 2, 28 2, 28 2, 28 3, 56 3, 56 4, 70 4, 70
16, 3, 218 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 4, 140 4, 140 4, 140
16, 4, 218 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 4, 262 4, 262
16, 5, 218 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 4, 262 4, 262
16, 6, 218 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 4, 262
16, 7, 218 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 4, 262
16, 8, 218 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 2, 120 3, 262 3, 262 3, 262
32, 3, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262 3, 262 4, 262
32, 4, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262 3, 262 3, 262
32, 5, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262 3, 262
32, 6, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262 3, 262
32, 7, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262
32, 8, 218 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 2, 262 3, 262

Table 2: The setting of ℓ and m in the runtime, calculated by Algorithm 1. Each cell is of the format (ℓ,m), and each row

represents the values for the same d,k , and n setting.

counts into 0 while decreasing the counts for its neighbors to main-
tain the overall count constant. Specifically, given an k-way mar-
ginal table TA, for any v ∈ VA with TA(v) < −θ , we set the entry
to 0 and subtract |c |/h from each of its h neighboring cells, defined
as the cells obtained by changing one of the attributes’ category to
other categories, and h is determined by the number of categories
of each attribute inA. However, this procedure may make the count
of other cells to be c < −θ , the procedure iterates until no cell has
count c < −θ . As each iteration distributes a negative count into h
neighbors, it is guaranteed to terminate quickly.

Applying the ripple non-negativity step to the marginals, how-
ever, may make them inconsistent. To resolve this problem, we run
the consistency step after the non-negativity step several times.

Reconstructing k-way Marginals After the consisting phase,
when all the attributes in A are łcoveredž by at least one marginal
Ai , i.e.A ⊆ Ai , this step is trivial. We can construct TA by summing
over corresponding entries in TAi .

If A is not fully covered by any marginal Ai , we compute the
k-way marginal table as the following optimization problem:

maximize −
∑

v ∈VA TA(v) · log (TA(v))
subject to ∀

v ∈VA
TA(v) ≥ 0

∀
Ai
∀

v ∈VAi∩A
TAi (v) = TA(v)

Since all marginals are consistent, the value should be the same
for all Ai . The above optimization problem can be solved by an
off-the-shelf convex optimization tool.

A.4 Complexity Analysis

We give the time complexity, space complexity, and communica-
tion cost of different methods in Table 3. For ease of exposition,
we assume all attributes are binary. Note that this can be easily
converted to non-binary cases.

Time Space Comm

CALM Θ

(

n · 2ℓ
)

or Θ
(

n +m · 2ℓ
)

Θ

(

m · 2ℓ
)

Θ

(

2ℓ
)

FC Θ

(

n · 2d
)

or Θ
(

n + 2d
)

Θ

(

2d
)

Θ

(

2d
)

AM Θ

(

n · 2k
)

or Θ
(

n +
(d
k

)

· 2k
)

Θ

(

2k
)

Θ

(

2k
)

FT Θ

(

n +
(d
k

)

· 22k
)

Θ

(

∑k
s=0

(d
s

)

)

Θ (d)

EM Θ

(

n ·
∑k
s=0

(d
s

)

2s
)

Θ

(

∑k
s=0

(d
s

)

2s
)

Θ (d)

Table 3: Comparison of complexity for different methods.

Server-side computation, server-side storage, and client-

server communication are listed. All attributes are assumed

to be binary.

Time Complexity: CALM is dominated by processing users’ re-

ports, which takes Θ
(

2ℓ
)

for each user, and Θ
(

n · 2ℓ
)

in total. The

similar arguments also hold for FC and AM methods, where user

reports are basically vectors of size Θ
(

2d
)

and Θ
(

2k
)

, respectively.

Note that when ϵ is small and GRR is used in the above three meth-
ods, each user’s report is one value (instead of a vector); thus one
only needs to aggregate the reports, making the running time to

Θ

(

n +m · 2ℓ
)

,Θ

(

n + 2d
)

, andΘ
(

n +
(d
k

)

· 2k
)

forCALM, FC, and

AM, respectively. For FT, since GRR is always used, the processing
time is in the order of n. But the calculation of Equation (9) takes

Θ

(

2k
)

(for enumerating α). Therefore, to build
(n
k

)

marginal tables,

each with 2k values, the total computation takes Θ
(

n + 22k ·
(d
k

)

)

.

For EM, the running time is dominated by the counting operation.
Specifically, the method first counts the number of users that re-
ports a particular value for any single attribute, and then for any
combination of values for any pair of attributes, and so on. There

are
∑k
s=0

(d
s

)

2s possible values that are needed to be counted; and
one should count all of them for each user, making the resulting

running time Θ
(

∑k
s=0

(d
s

)

2s
)

.

Space Complexity: We measure the memory needed assuming
that all inputs and outputs are discarded. If the user reports and

answers are to be stored, the same amount of space should be
allocated for each method.

For the memory consumption, the CALMmethod needs to main-
tain them ℓ-way marginal tables. For FC, the full contingency table
is maintained for counting reports for each possible value, requiring

Θ

(

2d
)

storage. Note that one can sacrifice computation for storage

by scanning through each user’s report multiple times and directly
construct the k-way marginal tables. But this will make the compu-
tation even more overwhelming. For FT, one can maintain do the

similar: either maintain all the 2k ·
(d
k

)

coefficients or calculate the
∑k
s=0

(d
s

)

marginals on time. Finally, for EM, a storage to count all
possible intermediate results are needed.

Communication Overhead: The communication from each user
to the server is the same as the report size. Note that since both
FT and EM uses GRR as FO. The report in FT is only one bit, plus
the index, which can be represented by d bits; and the report for
EM is one bit for each of the d dimensions. Note that one can
use OLH, presented in [37], instead of OUE. The OLH protocol is
equivalent to OUE, with the communication overhead reduced to
almost constant. But the disadvantage is that the server needs to
do extra computation (i.e., evaluate hash functions) to retrieve the
full report.

