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ABSTRACT

Illegal vehicle parking is a common urban problem faced by ma-
jor cities in the world, as it incurs traffic jams, which lead to air
pollution and traffic accidents. Traditional approaches to detect il-
legal parking events rely highly on active human efforts. However,
these approaches are extremely ineffective to cover a large city.

The massive and high quality sharing bike trajectories from Mo-
bike offer us with a unique opportunity to design a ubiquitous ille-
gal parking detection system, as most of the illegal parking events
happen at curbsides and have significant impact on the bike users.
Two main components are employed in the proposed illegal park-
ing detection system: 1) trajectory pre-processing, which filters out-
lier GPS points, performs map-matching and builds trajectory in-
dexes; and 2) illegal parking detection, which models the normal tra-
jectories, extracts features from the evaluation trajectories and uti-
lizes a distribution test-based method to discover the illegal park-
ing events. The system is deployed on the cloud, and used by Mo-
bike internally. Finally, extensive experiments and many insightful
case studies are presented.
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(a) Illegal Parkings

(b) Traditional Illegal Parking Detection Methods

Figure 1: Issues with Illegal Parking.
1 INTRODUCTION

Illegal vehicle parking is a common problem in large cities all over
the world. The illegal parking events decrease the transportation
efficiency in a city, and incurs traffic jams [21], which lead to air
pollution [13] and potential accidents (as illustrated in Figure 1a,
bike users have to ride on the vehicle lanes). Effective detection of
illegal vehicle parking events can improve the effectiveness of city
management (e.g., planning more effective police patrol routes)
and urban planning (e.g., building more parking spaces in the il-
legal parking hotspots) for the government.

Traditional approaches to detect illegal vehicle parking events
rely mainly on human efforts, e.g., police patrols, where the ille-
gal parking events are detected only if they are in the sight (e.g.,
Figure 1b). With the advances of video object identification tech-
nologies, different algorithms emerge, e.g., [14, 27], to identify the
illegal parking events based on surveillance cameras (as Figure 1b).
However, all of the existing approaches (police patrols and surveil-
lance cameras) are active detection methods, and can only cover
limited spatial ranges, which makes them highly ineffective and
costly, to achieve a high coverage level in large cities.

To this end, in this paper, we propose a ubiquitous approach
to effectively detect illegal vehicle parking events by mining the
trajectories of sharing bikes. The intuition behind the technique is
that, based on our observation, illegal vehicle parking events usu-
ally take place at curb sides, which block the path of bike users
and significantly affect their trajectories. Therefore, by aggregat-
ing massive bike trajectories on the same road, we are able to iden-
tify the illegal parking events via examining the distinct patterns
of their trajectories. Fortunately, the bike trajectory data provided
by Mobike ! (a station-less sharing bike service provider in China),

!https://en.wikipedia.org/wiki/Mobike
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Figure 2: Opportunity in Mobike Trajectories.

offers us a unique opportunity to tackle the problem with two dis-
tinctive advantages:

e Wide Usage Coverage. Mobike is a very popular bike shar-
ing service, which is frequently used as a daily commute
mode for many people nowadays. According to the recent
report [2], it got more than 200 million registered users and
30 million daily trips. Moreover, Mobike trajectories cover
widely across a city, e.g., Figure 2a visualizes the Mobike us-
ages in the city of Beijing. With the most roads in the urban
area densely covered, it is possible for us to detect illegal
parking events in large cities without any active efforts.
High Data Quality. First of all, Mobike records detailed
GPS trajectories for each trip, as demonstrated in Figure 2b.
Moreover, the granularity of each trajectory is very high,
as shown in Figure 2c: 1) more than 60% of the distances
between two GPS points are less than 6 meters, and 2) over
70% of the time interval between two GPS points are less
than 6 seconds. Therefore, it is possible for us to identify
the subtle travelling behaviour changes, caused by vehicle
illegal parking events.

With the access to the large-scale and high-quality Mobike tra-
jectories, we first conduct a set of experiments to validate the feasi-
bility of our intuition, i.e., whether it is possible to identify illegal
parking events based on sharing bike trajectories. We ride a Mo-
bike on a local road (as shown Figure 3a multiple times, where
the area marked in the white lines is the simulated illegal parking
location), with two settings: 1) with simulated illegal parking ve-
hicles, and 2) without simulated illegal parking vehicles, each for
ten times, i.e., conceptually demonstrated in Figure 3b.

Figure 3c visualizes the experimental trajectories extracted from
Mobike, where the red lines are the trajectories with illegal park-
ing simulation, and the blue lines are the normal trajectories. It is
clear that, especially around the simulated illegal parking location
(marked with the orange circle), comparing to the normal trajecto-
ries, the affected trajectories are more twisted and leaning toward
the opposite side of the curbside. As a result, this set of experiments
confirms our intuition.

However, to realize this idea, there are still many challenges:
1) data errors, caused either by the GPS module or human errors
(e.g., forget to lock and return bike); 2) map-matching, which is a
crucial step to match trajectories to correct road segments. It is
more difficult working with bike trajectories, as bikes can be rid-
den more freely beyond the roads; 3) illegal parking detection, de-
veloping an effective detection model is not trivial, as it is hard
to collect massive labelled data; and 4) system efficiency, with the
massive trajectories in a large city, the system response time needs
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Figure 3: Intuition Validation Experiments.

to be minimized for users (i.e., city managers) to identify all illegal
parking events in a city.

In this paper, we design, implement and deploy an illegal park-
ing detection system based on data mining results from the mas-
sive sharing bikes’ trajectories. The system consists of two main
modules: 1) pre-processing, which filters outlier GPS points, per-
forms map-matching, and builds indexes; and 2) illegal parking de-
tection, which studies a baseline to model the normal trajectories
for each road, extracts the features of evaluation trajectories and
infers the possibility of the presence of illegal parking events. To
improve the system response time and efficiency, the trajectory
data is stored on a distributed storage platform, i.e., MongoDB and
the illegal parking detection system is deployed on Apache Storm.
The main contributions of the paper are summarized as follows:

e We provide the first attempt on detecting illegal parking
events ubiquitously by mining massive bike trajectories.

e We design and implement a comprehensive pre-processing
module to clean bike trajectories, map them to corresponding road
segments and build a set of indexes. We also propose a novel dis-
tribution test-based approach to detect the illegal parking events
on a road segment.

e We collected over 400 illegal parking labels manually to tune
the most effective threshold in the detection model.

e We evaluate the proposed model extensively over six months’
Mobike trajectory data from the City of Beijing. Moreover, on-site
case studies are conducted to validate the effectiveness of our ille-
gal parking detections.

e A system is deployed on the cloud and used internally [1].

The rest of the paper is organized as follows: Section 2 describes
the problem and the system overview. Section 3 presents the pre-
processing module. Illegal parking detection is discussed in Sec-
tion 4. Section 5 presents the interface and deployment. Experi-
ments and case studies are given in Section 6. Related works are
summarized in Section 7. Section 8 introduces the future work. Fi-
nally, Section 9 concludes the paper.

2 OVERVIEW

In this section, we first present the preliminary concepts. After
that, we formulate the illegal parking detection problem. Finally,
an overview of the our proposed system is demonstrated.

2.1 Preliminaries

DEFINITION 1. (Trajectory) A trajectory t can be defined as a
time-ordered sequence T = {p1 — pz — ... = pn}, wherep; =
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Figure 4: Examples of Preliminary Concepts.

(lati, Ing;, t;),1 < i < n, is a GPS record with latitude lat;, longitude
Ing;, and timestamp t;.

The Mobike trajectory starts when the user scans the QR code
to unlock a sharing bike, and ends when the user locks the bike.
The intermediate GPS points are sampled at a constant rate.

DEFINITION 2. (Road Network) A road network RN is a directed
graph G = (V, E), whereV = {v1,v2, ...,um} is a set of intersections,
and E = {e1, ez, ..., en} is a set of road segments (edges).

For each e; € E, it associates with three properties: 1) level, which
indicates the type of road; 2) shape, which is a sequence of location
points, from a FromNode to a ToNode, describing the shape of the
segment; and 2) dir, which indicates its directional information (bidi-
rectional or uni-directional).

Figure 4a gives an example of the concepts. The green dots are
GPS points, and the blue arrows indicate their sequence. On the
other hand, the white dots are the nodes and lines are the edges of
the road network. Figure 4b illustrates the detailed properties of a
road segment, where the red dots are the location points describ-
ing the shape, the white dot and the black dot are the FromNode
and ToNode respectively, the arrow indicates its dir property (uni-
directional in this case), and the colors represent different levels
of roads, e.g., the yellow color represents highways, and the white
color means supplementary roads.

DEFINITION 3. (Illegal Parking Event) An illegal parking event
in this paper refers to obstacles at a road segment e; that affects the
normal behavior of bike trajectories (Tre;) on it, during a temporal
ranget; & tiy1 (e.g., 8:00 AM to 9:00 AM).

2.2 Problem Definition

We now formalize our illegal parking detection problem as follows.
Given a set of trajectories Tr, a road network G = (V,E), and
temporal period t; & tit1, for every road segment (or edge e; € E),
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Figure 5: System Overview.
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Figure 6: Examples of Error Data.

‘we want to infer the possibility of the presence of the illegal parking
events, based on the sharing bikes’ trajectories generated on each road
segmente; from t; & tiy1. The objective is to achieve a high accuracy
of the detection, as well as reduce the system response time.

2.3 System Overview
Figure 5 gives a system overview with two main components:

Pre-Processing. This component takes bike trajectories and road
networks and performs three main tasks: 1) Trajectory Data Clean-
ing, which removes the outlier GPS points; 2) Trajectory Map-
Matching, which projects GPS points onto the corresponding road
segments; and 3) Index Construction, which builds indexes to speed
up the trajectory retrieval process based on road segment IDs and
temporal ranges (detailed in Section 3).

Illegal Parking Detection. This component calculates a score
for each road segment, indicating the probability of the presence
of illegal parking events, by evaluating the processed trajectories
in a temporal period. Three main tasks are performed: 1) baseline
trajectory modelling, which builds a model for each road segment
to describe the normal trajectories; 2) trajectory feature extraction,
which extracts the features from the evaluation trajectories; and
3) distribution test-based detection, which detects illegal parking
events using distribution tests (detailed in Section 4).

3 TRAJECTORY PRE-PROCESSING

As the data quality of bike trajectories used in our system de-
termines the accuracy of the illegal parking detection, a set of
pre-processing tasks are necessary, before the massive trajectories
from Mobike users can be used: 1) Trajectory Data Cleaning, which
removes the GPS outliers in a trajectory based on the speed and
sampling rates; 2) Trajectory Map-Matching, which segments the
GPS points in the trajectories and maps them onto the correspond-
ing road segments; and 3) Index Construction, which builds the in-
dexes to speed up the trajectory data retrieval process.

3.1 Trajectory Data Cleaning

This module cleans the raw trajectories from Mobike. Essentially
as a type of crowd sensing data, Mobike trajectories are generated
by the GPS modules from mobile phones. As a result, a notice-
able portion of trajectories have different data errors, which sig-
nificantly affect the accuracy of illegal parking detection:
(1) Abnormal Speeds. As most users ride bikes at normal
speeds (e.g., 5 kmph to 20 kmph), there are two types of ab-
normal speeds: 1) abnormal high speed, which is caused by
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Figure 7: Trajectory Map-Matching.

GPS errors, or unusual usage (e.g., demonstrated as the left
portion of Figure 6a, where a user got on a subway without
locking the bike); and 2) abnormal low speed, which is usu-
ally caused by the traffic lights (demonstrated as the right
portion of Figure 6a).

Low Sampling Rates. In some cases, due to the errors
of GPS modules in users’ mobile phones, some of the GPS
points may be missing. Figure 6b shows an example of a bike
trajectory travelling with a normal speed, but with several
jumps (marked in red lines).

@

~

Both of the above data quality issues introduce problems in the
detection model. For example, the trajectory segments with abnor-
mal low speed can be affected by many factors other than illegal
parkings, e.g., pedestrians. Moreover, the trajectory segments with
low sampling rates introduce challenges in map-matching and pro-
vide no information reflecting the conditions of the roads. As a re-
sult, a heuristic based approach [38] is used here to clean the trajec-
tory data: If any portion of the consecutive GPS points fails to meet
the speed or sampling rate thresholds, these disqualified segments
are removed from the original trajectory. In the end, one trajectory
may be segmented into several short qualified sub-trajectories to
preserve more information.

3.2 Trajectory Map-Matching

In this module, we map the GPS points onto the correspond-
ing segments in road networks, which is crucial for the illegal
parking detection. Traditional map-matching algorithms, e.g., [37],
cannot be used directly, because, comparing to vehicle trajectories,
bike trajectories have several unique properties: 1) they have much
lower travelling speeds, 2) they travel at both directions even at a
uni-directional road, 3) they can go to the area without road net-
works; and 4) they have more short trips. To adapt with these prop-
erties, the map-matching module is designed with three steps:
Step 1. Adaptive Map-Matching. This step employs an
interactive-voting based map matching algorithm [37] with three
modifications: 1) high level roads, which can be only used by ve-
hicles (e.g., highways), are removed; 2) the direction information
on road segments is omitted, and all road segments are set as bidi-
rectional; and 3) the speed constraint of each road segment is not
used to adapt the slower speed in bike trajectories.

After the map-matching process, as shown in Figure 7a, each
GPS point is associated with three new properties: 1) RID, which is
the map-matched road segment ID; 2) shift, which is the shortest
distance to the road segment, illustrated as the red dotted lines.
We define the positive shift for the GPS points at the left side of
a road segment (direction is from FromNode to ToNode, as P;&Ps),
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Figure 8: Map-Matching Refinement.

and negative shift at the right side of the road (as P3); and 3) offset,
which is the length between the FromNode and the projection of
the GPS point, as the yellow segment is the offset for P,.

Step 2. Geometric-based Refinement. This step removes the
problematic map-matching results, using geometric filters. Fig-
ure 7b shows two types of problematic map-matching results:
1) distance error, which is caused by the incompleteness of the road
network data. As demonstrated in the left portion of Figure 7b, the
algorithm maps the trajectory inside a residential area onto the
black dotted road segments around it. It is because the road net-
work we used is not detailed enough to reflect these small roads;
and 2) directional error, which is caused by the short trips in the
data set, generated by the users or as the result of the trajectory
data cleaning process. The right portion of Figure 7b shows many
short trips (marked in red), which are mapped onto the black dot-
ted road segment, while it makes more sense to map them onto the
blue segment, as they head similar directions.

We use a geometric-based refinement to remove these errors,

with the consideration of random shifts incurred by the GPS sen-
sors. First of all, the distance errors are removed, if the average
shift a sub-trajectory is greater than a threshold (e.g., 20 meters in
our implementation). To remove the directional errors, a deviation
angle is calculated between the directions of the overall trajectory
and the road, as demonstrated in Figure 8. The overall trajectory
direction is calculated by connecting the centroid points (i.e., the
red dots) between the first and second portion of the sub-trajectory
(i.e., circled by the dotted ovals). The trajectory is removed, if the
deviation angle § is greater than %.
Step 3. Reverse Trajectory Removal. This step removes the tra-
jectories travelling at the reverse direction of the uni-directional
roads. As all the roads are considered as bidirectional in the map-
matching step, for a uni-directional road, there are a small number
of reverse travelling trajectories by the users disobeying the traf-
fic rules. Although the number of reverse travelling trajectories is
limited, they usually have higher shift values, as they are much
likely to encounter obstacles other than illegal parking events, e.g.,
bikes travelling at the normal direction. Therefore, the reverse tra-
jectories affect the accuracy in our illegal parking detection model
(experiments are provided).

To identify the reverse travelling behaviours, we calculate the
overall direction of a trajectory by comparing the average offset be-
tween the two halves of the trajectories. On a uni-direction road,
if the average offset of the first half is less than it is in the sec-
ond half, the trajectory travels reversely on the road segment. Fig-
ure 9 shows the distribution of normal and reversed trajectories
we identified on a uni-direction road, i.e., Zhongguancun Road and
a bi-directional road, i.e., Maizidian Street. The reverse trajectory
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identification result is consistent with our intuition, where much
less numbers of reverse trajectories (less than 10%) appear in a
uni-direction road. On the other hand, the distribution is more bal-
anced (i.e., 50% for each direction) on the bidirectional road. Finally,
all the reverse trajectories are removed.

43,305 [@ Normal 13,965
14,025
-y

B Normal
O_ Reversed 3,012

(a) Zhongguancun Road (b) Maizidian Street

Figure 9: Results of Reverse Trajectory Identification.

3.3 Index Construction

In this module, the system builds an inverted indexbased on each di-
rectional road segment (i.e., two entries are built for a bidirectional
road segment), where each entry associated with the trajectories
are mapped to it. Moreover, a temporal index is built based on the
time stamp when the trajectory enters the road segment, as most of
the latter trajectory retrieval tasks are based on the road segment
ID and a temporal range. In our implementation, all trajectories
and indexes are maintained in a MongoDB.

4 ILLEGAL PARKING DETECTION

4.1 Overview

Challenges. With the massive, high quality, and pre-processed
bike trajectories, detecting illegal parking events on a road seg-
ment is still a very hard problem:

(1) No labelled data. We do not have large scale labels for ille-
gal parking events, which makes it hard to apply the con-
ventional classification models directly.

(2) Complex illegal parking events. The scenarios of illegal park-
ing events are various, even on the same road, as they ap-
pear with different numbers and in different positions.

(3) Variant individual behaviours. Users have different riding
preferences and behaviours, which makes it unstable to in-
fer illegal parking events with an individual trajectory.

(4) GPS inaccuracy. The accuracy of GPS readings is limited,
and there can be some minor random shifts.

Intuitions. To overcome these challenges, four corresponsive in-
tuitions are employed: 1) it is hard for us to collect a large scale
dataset with illegal parking events, but it is relatively easier to iden-
tify negative labels from the dataset (i.e., the normal trajectories)
with some heuristics. 2) comparing to the complicated trajectory
characteristics with illegal parking events, the trajectory charac-
teristics without illegal parking events are more stable and easier
to indentify; 3) Instead of testing a trajectory individually to see if
it is impacted by an illegal parking event, we aggregate all of the
trajectories in a time period (i.e., one hour), and extract the over-
all features; and 4) as the GPS accuracy is highly related with the
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Figure 10: Main Ideas of Illegal Parking Detection.

build-up proximity [22], we build the baseline models to describe
the normal trajectory features on each individual road segment.
Main Ideas. With the above intuitions, the shift distribution of
the aggregated trajectories is used as the feature to evaluate the
existence of illegal parking events on a road segment, as it is a
direct result and significantly obvious from our intuition validation
experiments in Figure 3.

To calculate the difference of shift distributions between the ag-
gregated normal trajectories (or the baseline model) and the eval-
uation trajectories at the same road segment (i.e., demonstrated in
Figure 10a and 10b), the Kolmogorov-Smirnov test (or KS test) is
used [8]. Figure 10c illustrates the semantic meaning of KS test sta-
tistics, where the shift distributions are more similar if there is no
illegal parking events on the evaluation trajectories. Then, we set
one threshold to determine if the two sets of trajectories are from
the same distribution (i.e., evaluation trajectories are in the same
scenario as the normal condition) to infer if there are illegal park-
ing events. One threshold is used here, as the impact of trajectory
shift from illegal parking events is the same across the whole city
(i.e., around the width of a vehicle). Finally, we evaluate the test
results of different threshold values to determine the most effec-
tive threshold based on the labelled illegal parking events that we
collected.

The following sections describe the details on: 1) building a base-
line trajectory distribution model for each road segment; 2) extract-
ing features from evaluation trajectories; and 3) performing the dis-
tribution test-based evaluation and selecting the threshold to make
the detection.

4.2 Baseline Trajectory Modelling

A baseline trajectory model is built at each road segment to cap-
ture the shift distribution for trajectories at the normal scenario
(i.e., without illegal parking events). Two heuristics are used:
Naive Baseline Model. A naive baseline uses the shape of a road
directly. The assumption of this approach is that if the trajectories
travel without the impact of illegal parking events, they should
travel perfectly along the shape of the road segment. We use zero
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mean Gaussian distribution to simulate the trajectory shifts in nor-
mal scenarios.

Night Time Baseline Model. This baseline assumes the bike tra-
jectories at night (e.g., 11:00 PM to 7:00 AM, in our implemen-
tation), in the most cases, travel without the impact from illegal
parking events. To overcome the challenges that 1) it is possible
to have occasional overnight illegal parking events on the street,
and 2) there are very limited number of trajectories travelling dur-
ing that time period (less than 5% in the dataset), we aggregated
shifts of trajectories on each road segment for a very long time pe-
riod (i.e., over six months), when constructing baseline models, to
minimize the impacts from the above challenges.

We noted that it is still possible to have “regular” illegal park-
ing events during the night time at some road segments, e.g., near
a dense residential area. However, we consider them as common
knowledge that can be discovered easily, and are not the focus in
our technique.

4.3 Evaluation Trajectory Feature Extraction

This step extracts the features from a set of evaluation trajecto-
ries, aggregately, as the individual trajectory is relatively unstable.
To ensure a fair sampling from the each trajectory in the trajec-
tory set, two tasks are performs: 1) the trajectories on the road
are further segmented (as 50 meters) based on their GPS offsets, to
minimize the case that the shift distribution incurred by an illegal
parking event is neutralized by the no-illegal parking portion in
a very long road segment; 2) GPS shifts are re-sampled uniformly
(e.g., one GPS point every 5 meters) to avoid the case that the shift
distribution is dominated by a few highly sampled or very slow
trajectories, as there are significant difference between users’ be-
haviors and devices. Then, two methods are proposed to extract
the features from evaluation trajectories.

Average Shift Extraction. This method calculates one average
shift value based on the all the GPS points within the 5-meters’
range of their offsets. As in Figure 11b, the black dots are the orig-
inal GPS points, and the red dots in each offset range (marked by
the dotted vertical lines) are the calculated average shift values. Fi-
nally, all calculated shifts are returned as the features.

Top Shift Extraction. This method extracts the top shift values
for each trajectory, where the top-10 samples are extracted for each
50-meter road segment in our implementation, as illustrated in Fig-
ure 10c. The intuition here is to avoid missing any large shifts
caused by a potential illegal parking event. As demonstrated in
Figure 11, average shift extraction doesn’t include the highest shift
values, which potentially are the results of illegal parking events.
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4.4 Distribution Test-based Detection

We use Kolmogorov-Smirnov test (or KS test) statistic on the

shift samples from evaluation trajectories and the baseline trajec-
tories to determine if the two samples are drawn from the same
distribution. The intuition is that, if the two shift samples are sim-
ilar enough, then they belong to the same scenario (i.e., without
illegal parking events on the road). Otherwise, we consider them
as affected by the illegal parking events.
KS-Test Statistic Calculation. KS statistic essentially calculates
the maximum deviation between two empirical cumulative distri-
bution functions, as demonstrated as the Dygrmal and Dafrected i
Figure 10c:

1)

where Dy, i, is the KS statistic, Fy,, and Fz, ,, are the empirical cu-
mulative shift distributions of the baseline model and the features
of the evaluation trajectories, m and n are the number of shift sam-
ples, and sup is the supremum function.

Dn,m = sup |Fi n(x) — F2, m(x)|
x

Threshold Selection. We reject the assumption that the two sam-
ples are from the same distribution (i.e., essentially no illegal park-
ing event) based on the following equation:

Dam > )| & ela) = 1/—%14%)

where « is the probability reflecting if two samples are from the
same distribution in KS test. « also is used as the threshold used to
reject the assumption that the two samples are from the same dis-
tribution (or essentially deciding if the road is with illegal parking
events). Instead of using the standard probability threshold, e.g.,
a = 0.05, we test a series of different a values based on an illegal
parking data set that we collected to select the most effective one.
The details of the threshold selection are in Section 6.2.

@)

5 SYSTEM DEPLOYMENT

In this section, we first describe the system interface. After that,
we present the detailed deployment on the cloud.

5.1 System Interface

Figure 12 shows the interface of our system [1], with three views:
Parameter View. The user first selects an area for detection (in
this demo, we have Chaoyang District and Haidian District). After
that, the user selects a date and time periods for illegal parking
events detection.

Result View. This view shows a list of road segments with possi-
ble illegal parking events, ordered by their KS statistics.

Map View. Users can see the road segments in the result view with
different colors indicating the severity of illegal parking events
(e.g., the black and purple colors mean severe, and the green color
is light). The marker on the map shows the selected road segment.

5.2 Cloud Deployment

To improve the response time for detecting the illegal parking
events based on massive trajectories over the whole city, the
system is deployed based on a parallel computing platform, ie.,



Applied Data Science Track Paper

Place

Ranking

et

Time Feange: [I4:04-12:00)

e @
Aol 1D Lan-Lny Seere Aetion
whaoy 34 i o m
Parameter View mry GEENSE s fdda .+ [ Result View

Figure 12: System Interface.

Apache Storm. Figure 13 gives an overview of our system deploy-
ment on the cloud, with two phases:

Warm Up. In this phase, the command spout sends out a set of road
segment IDs to the worker nodes using ShuffleGrouping method
(i.e., random distribution). For each worker node, they will load the
baseline models of the assigned road segments from our trajectory
data storage (i.e., MongoDB cluster). After all the baseline models
are loaded, the worker node notifies the report bolt. When all the
worker bolts are ready, the warm up phase ends. In this work, the
bike trajectories in MongoDB are map-matched offline based on a
trajectory preprocessing framework [26] for mining the historical
illegal parking hotspots. Later, by adopting the streaming based
map-mathcing system, e.g., [4], the system can be easily extended
to support real-time map-matching and detection in a city.

Servicing. In this phase, a user can input a request to the com-
mand spout to evaluate a set of trajectories in a given temporal
range (e.g., the last hour). The temporal range is sent to the worker
bolts with A11Grouping method (i.e., broadcast). For each worker
bolt, it queries the trajectory storage (i.e., MongoDB cluster) to re-
trieve the trajectories passed during the given temporal range of its
preloaded road segment. Then, it performs a KS-test to determine
if the road segment has illegal parking event. Finally, the detection
results of all the road segments are sent to report bolt to provide an
overall ranking of illegal parking impact at the given time period.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our system. We first describe
the real dataset used in the paper. Then, we give experiment re-
sults to select the proper threshold o used in the KS-test. Then, ef-
fectiveness comparisons between different baseline solutions are

‘Warm Up:
ShuffleGrouping
Servicing:
AllGrouping
Command

Spout

AllGrouping

Request|

Warm Up:

‘@ Baseline Model
STORM ey ;
MongoDB Cluster Datalsorase

H Servicing:
Y Evaluation Trajectories
. Trajectories

Figure 13: Cloud-based Deployment.
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provided. After that, we test the efficiency performance of our sys-
tem based on different sizes of Storm clusters. Finally, a set of real
case studies are presented to demonstrate the effectiveness of our
solution.

6.1 Datasets

Road Networks. Road network of Beijing, China is from Open
Street Map 2 with 377, 559 nodes and 501, 462 edges.

Mobike Trajectories. Each Mobike trajectory contains a bike ID,
a user ID, a temporal range of the trajectory, a pair of start/end
locations, and a sequence of intermediate GPS points.

The dataset used in the paper is the full Mobike trajectory data
in the City of Beijing, with the time span of 08/01/2017 - 2/08/2018,
the spatial distribution is shown in Figure 2a 3.
Ground Truth Labels. We collected a set of ground truth labels
for illegal parking events in both Chaoyang and Haidian District,
in Beijing. Each record contains a road ID, a timestamp, a photo,
and a label to indicate the presence of illegal parking events.

The dataset covers 32 roads, and spans over 18 days (12/26/2017
- 12/30/2017 in Haidian, and 01/12/2018 - 02/09/2018 in Chaoyang).
Overall, the 454 ground truth labels are collected, with 159 records
labelled as positive (i.e., with illegal parking events).

6.2 Effectiveness Evaluation

In this subsection, we evaluate the effectiveness of the proposed
detection model. We first introduce the process to select the most
effective threshold for KS-test. Then, we compare our algorithm
with three baseline methods. Finally, we study the effectiveness of
detection model with different numbers of trajectories.
Threshold Selection. In our implementation, we tried all possible
threshold probability  in our KS-test from 0 to 1 with the step size
of 0.01. To determine the most effective threshold, we test the de-
tection result with the ground truth labels. A F1 score is calculated
to reflect the effectiveness of different threshold values. In detail,
we count the numbers of True Positives N7p (i.e., correct identifi-
cation of positive labels), False Positives Ngp (i.e., incorrect identi-
fication of positive labels), and False Negatives Nrn (i.e., incorrect
identification of negative labels) to calculate F1-score:

P = Nrp/(NTp + NFp),
R = Nrp/(NTp + NFN),
Fi = 2PR/(P + R).

®)

Figure 14a presents the F1 scores with the corresponding pre-
cision P and recall R with respect of different threshold values a:
1) when « is close to zero, all the test data are labelled as negative,
so both precision and recall are 0; 2) with the increase of @, more
and more instances are labeled as positive, and we identify that
a = 0.71 is the best selection as F1-score reaches the maximum of
0.73. As a result, we use a = 0.71 as the threshold in our system.

thtps://Www.openstreetmap.org/
3The detailed statistics of the trajectory dataset are not disclosed in the paper, due to
the request from Mobike.
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Figure 14: Effectiveness & Efficiency Experiments.
Compare with Baselines. To achieve a comprehensive compar-
ison with different baseline approaches, we plot the Receiver op-
erating characteristic (ROC curves) for each method. ROC curve
illustrates the diagnostic ability of a binary classifier, which plots
the true positive rate TPrate = Nrp/(N7p + Npn) and the false
positive rate FPrate = Npp/(Npp + N7N) of a model with differ-
ent parameter settings (i.e., threshold @). A method is better, if its

AUC (Area Under Curve) is larger.

In this experiment, we compare our deployed solution (ie.,
Nt+Dir+T) with three baseline methods:

e Naive. It uses the shape of the road segment directly as base-
line model, i.e., the shift distribution is set as a Gaussian Distribu-
tion with zero mean and 2o value is set as 10 meters. Average shift
extraction is used for processing the evaluation trajectories.

o Nt. It uses the aggregated night time trajectories to build the
baseline model. The features are extracted based on average shift
extraction method.

o Nt+Dir. In addition to use the night time trajectories as the
baseline mode, it also filters the reversed trajectories in each road
segment. The trajectory features are extracted based on average
shift extraction method.

o Nt+Dir+T. It uses the same baseline model as Nt.+Dir, while
top shift extraction method is employed to extract the features of
evaluation trajectories.

Figure 14b presents the ROC curves of the 4 baseline methods by
varying the threshold o of KS-test. In the measurement of AUC, our
deployed method, i.e., Nt+Dir+T outperforms other three methods
significantly, since it considers both directional information and
top shift features. The method considering the directional informa-
tion and removing all the reverse trajectories is much better than
the others, which demonstrates the necessity of reverse trajectory
removal in the pre-processing component. Also in the Naive, the TP
rate is always smaller than FP rate, which implies the inaccuracy
of GPS position cannot be neglected.

Different Trajectory Numbers. We study the influence of the de-
tection effectiveness with different numbers of trajectories in the
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evaluation trajectory feature extraction step. In this experiment,
we only choose a portion of labelled road segments with the num-
ber of trajectories over 50 in one hour time range, and down sam-
ples the dataset randomly to mimic the road with different num-
bers of trajectories from 10 to 50.

Figure 14c illustrates the ROC curves of our deployed method
with different numbers of trajectories used for detection. From the
figure we can see that the detection performance increases, when
more trajectories can be used. Moreover, when the number of tra-
jectories can be used for detection is less than 20, the detection
accuracy is unstable. It confirms the necessity of using the crowd-
wisdom to overcome the impacts from skewed individual riding
behaviors and the limited GPS accuracy. Finally, the performance
of detection model increases slightly when the number of trajecto-
ries is over 30. It shows that as long as it has enough number of
trajectories (e.g., 30) in an hour on a road segment, our method can
provide a relatively accurate detection result.

6.3 Efficiency Evaluation

The system response time is also tested to show the efficiency of
our cloud-based deployment. The experiments are performed in
Haidian District, which contains 10% of the total trajectories in
Beijing. We tested the different numbers of requests (i.e., to eval-
uate 1, 2, 4, and 8 hours of trajectories in the area, the evaluation
requests with more than one hour perform the one-hour detection
multiple times) with different numbers of worker nodes in Storm.

Figure 14d gives the results of system response time with differ-
ent settings. We have the following two observations: 1) the exe-
cution time decreases significantly by nearly 50% when adding the
number of workers from 1 to 2 and 2 to 4, since the detection tasks
are distributed among the worker nodes; and 2) when the number
of workers increases further to 16, the performance gain is much
less. This is due to the communication overhead of worker nodes.
In terms of different sizes of trajectory data, the response time dif-
ference is relatively minor, as the MongoDB cluster provides an
efficient trajectory data retrieval interface.

6.4 Case Studies

We conduct real world case studies to validate the effectiveness of
our detection model. Moreover, we get some interesting observa-
tions by exploring the temporal variance of KS statistics.

Overall Rankings. To reflect the severity of the illegal parking
events on the roads, we rank them based on the daily average hours
with illegal parking events. To validate the correctness of our re-
sult, we conduct an on-site case study in the area of Figure 15).
The area marked with the red dotted lines suffers from sever ille-
gal parking events, based on our calculations. The reason becomes
clear, when we got there. It is a very crowded area, with a lot of
foreign embassies and high-end restaurants, but with very limited
parking spaces. As a result, many people have to leave their cars
in the bike lanes or on the pedestrian crossing (as demonstrated in
the left portion of the figure). On the other side, at the east side of
the East 3rd ring road, the overall rankings of the green road seg-
ments are very low. It is because the POI distribution there is very
sparse, with only two large hotels, and the Agriculture Exhibition
Center. All of these places are facilitated with very large parking
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Figure 15: Case Study of Overall Ranking,.

lots. As a result, as shown in the right portion of the figure, the
road are clear without any illegal parking events.

Impact of Rush Hours. The KS statistic varies differently at dif-
ferent times on a road segment, which indicates the the temporal
differences of illegal parking events. We studied a road segment
near Liangmagiao Subway station, whose KS statistic is signifi-
cantly higher during the rush hour, as shown in Figure 16a. We
visit the area multiple times and notice that, during the evening
rush hours, we notice much more illegal parking events: either
from some uber/didi drivers waiting for their customers from the
subway station, or some people who visit the nearby restaurants
and didn’t find a parking space.

Impact of Holiday Events. It is also interesting to observe that
a local park (Wanghe Park) near Wangjing area, is significantly
impacted by different days. We notice that the road in Figure 16b
has significantly different KS statistics at the same time between
weekdays and weekends. After we got there, we notice that the
park is holding a snow festival. A lot of children practice skiing
there, as the PyeongChang Winter Olympic Games is approaching.
As a result, there are much more illegal curbside vehicle parking
events during the weekends, as some of the parents can not find a
parking space nearby.

7 RELATED WORK

We summarize the related works in three main areas: 1) urban
computing, 2) trajectory data mining, and 3) urban crowd sourcing.
Urban Computing. Urban computing [39] aims to address differ-
ent problems in the city. For example, [7, 28, 35] predict the taxi
demand to enable smart scheduling, and reduce energy wasting.
[5, 31, 36, 40] try to understand human mobility patterns from
check-ins. Illegal parking detection is also an important issue in
the urban computing, where the most of the existing methods are
based on video surveillance [12, 14], with limited coverage in a city.
However, the system we proposed utilizes an ubiquitous approach.
Trajectory Data and Mining. Our technique is highly related
with the trajectory data mining. Based on the massive bike
trips, [3] provides bike lane planning recommendations to the gov-
erment. And the frequent route mining [6, 17, 20, 23] is benefi-
cial to city planners and provides a guidance for congestion analy-
sis. In addition, [18] finds top-k influential locations that cover as
much trajectories. In addition, to improve person’s travel experi-
ence, trajectory based solutions for travel time estimation [19, 29]

No Illegal Parking near

No Illegal Parking near
Changcheng Hotel
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(b) Impacts of Events/Holidays

Figure 16: Observations with Temporal Differences.

and reachability query [30, 32] are proposed. The closest projects
to us are the trajectory anomaly detection, which aims to find tra-
jectory that is dissimilar to the majority of the others. [16, 34] are
based on classification model, while others [10, 15] compare tra-
jectory similarity with history. However, the existing trajectory
anomaly detection methods only focus on the high-level route-
based difference, while in our problem settings, the difference be-
tween trajectories is more subtle at the same road segment.

Urban Crowd Sourcing. Essentially, we take the advantage of
the massive Mobike users in a city to perform the detection task,
which makes us very related to the crowd sourcing techniques. For
example, [33] quantifies the fragility of cities through detecting the
delay in commuting activities using GPS data collected from smart-
phones. [24, 25] infer noise levels for locations by smartphone
users. [9, 11] identify potholes or classify road quality from vehi-
cle’s accelerometer data. Different from the above works, we focus
on the problem of illegal parking detection.

8 FUTURE WORK

In this paper, we focus on the illegal parkings happening at curb-
sides, and propose a data-driven illegal parking detection frame-
work based on the data mining results from massive sharing bike
trajectories. However, just using the bike trajectories is not the sil-
ver bullet to solve the illegal parking detection. In the future, we
plan to extend the work to address the following two problems:
1) distinguishing illegal parkings from other events that influence
the bike trajectories. Figure 17a gives an example of road main-
taining, where the riders are forced to vehicle lanes, which leads

Wy

(a) Road Maintenance (b) Parking on Vehicle Lanes

Figure 17: Future Work.
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the changes in trajectory patterns. Also, some of the curbsides can
provide legal parking space; and 2) detecting the illegal parkings
out of curbsides. As is shown in Figure 17b, the parked cars blocks
the partial of the vehicle lanes. However, they do not affect to the
passing-by bike trajectories, which may lead to false negative re-
sult in our settings.

9 CONCLUSION

We propose a novel and ubiquitous approach to detect illegal
parking events with massive and fine-grained sharing bikes’ tra-
jectories. Based on the unique properties of the bike trajectories,
we design a comprehensive pre-processing component to overcome
numerous challenges in data cleaning, map-matching and index-
ing. In the illegal parking detection component, we employ a dis-
tribution test-based method to determine if the set of evaluation
trajectories have the same aggregated shift distribution with the
baseline models (i.e., without illegal parking events). The system is
deployed on the cloud and used internally. Extensive experiments
are performed on a large scale Mobike data. Based on over 400
ground truth labels, our model achieves an F1 score of 0.73, which
outperforms all the other baseline approaches. Finally, real world
case studies are conducted, which provides us with many insights.
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