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A B S T R A C T

A customized bus (CB) system is an emerging public transportation that aims to provide direct
and efficient transit services for groups of commuters with similar travel demands. Existing CB
systems aggregate similar travel demands and plan bus lines manually, which is inefficient and
costly. In this paper, we propose a CB line planning framework called CB-Planner, which is
applicable to multiple travel data sources. A mathematical programming formulation is proposed
to simultaneously optimize bus stop locations, bus routes, timetables and passengers’ prob-
abilities of choosing CB. We then developed a heuristic solution framework that includes a grid-
density based clustering method for discovering potential travel demands efficiently, a bus stop
deployment algorithm to minimize the number of stops and walking distance, and dynamic
programming based routing and timetabling algorithms for maximizing estimated profit. We
conduct an experiment on a small-scale network to verify the performance gap between the
optimal solution and our proposed heuristic solution. A case study is then conducted on one-
month taxi trajectory data in Nanjing, China. The study demonstrates that CB lines generated by
our CB-Planner can achieve higher profit compared with baseline methods, and they also provide
efficient transit services with short walk distances and small departure time adjustments. The
moderate increase in travel time is paid off by the significant savings in travel fare.

1. Introduction

In recent years, a new innovative public transport mode, called Customized Bus (CB) systems (Liu and Ceder, 2015), has been
springing up across China. With the advantages of congestion alleviation, environmental friendliness as well as better travel ex-
perience, CB systems enjoy high popularity in more and more major cities in China since it was first launched in Qingdao in 2013 (Liu
and Ceder, 2015). Nowadays, more than 30 cities in China are operating CB services (Liu and Ceder, 2015; Ministry of transport,
2014).

CB systems aim to serve groups of passengers with similar travel demands with direct and efficient transit services. This requires a
CB system to be able to discover groups of similar travel demands from a set of various demands. The bus lines should have very few
intermediate stops between its origin area and destination area and the timetables should be adaptive to the demands of target
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passengers. These features make CB systems become a more affordable and equally efficient transit choice between large commu-
nities and central business districts, compared with alternatives such as taxis and ride-sharing.

Existing CB systems manually plan CB lines by aggregating travel data collected from on-line surveys (Liu and Ceder, 2015),
which is tedious, inefficient and costly. Compared to the conventional transit network design, designing bus lines for CB systems faces
some new challenges: (i) Discovering the travel demand patterns of their interest efficiently. CB systems should allocate their transit
resources to the massive travel demands with nearby origins and destinations and similar departure times in order to be profitable.
(ii) A well designed CB line should consider the trade-off between two conflicting goals: providing efficient transit services vs.
maximizing ride-sharing to earn more profit.

In this paper, we investigate how to systematically plan bus lines for CB systems and propose a new bus line planning framework
CB-Planner that discovers groups of target passengers with similar travel demands, deploys bus stops for the discovered travel
demands and plans bus lines that can maximize the estimated daily profit. It is worth to mention that CB-Planner is not limited to
satisfy the actual travel demands submitted by CB passengers; it can also mine potential travel demands from other real travel data
sources, such as taxi GPS trajectories and public transport transaction records which provide real travel demands citywide. It thereby
has two advantages. (i) CB-Planner can be used at the initial stage of building a CB system in a new city, i.e., setting up initial CB lines
for passengers to reserve based on the discovered travel patterns. (ii) By utilizing these readily available travel data sets regularly, it is
possible for CB-Planner to detect any significant change in travel patterns, thus allowing any necessary adjustment to existing CB
services. Any discrepancy observed after full operation of the planned CB lines can easily be fed back to the system for tuning the
models for service adjustment and future planning. The main contributions of this study are as follows.

• A mathematical programming formulation is proposed to simultaneously optimize bus stop locations, bus routes, timetables and
passengers’ probabilities of choosing CB buses.
• We developed a heuristic solution framework that includes a grid-density based clustering method for discovering potential travel
demands efficiently, a bus stop deployment algorithm to minimize number of stops and walking distance, and dynamic pro-
gramming based routing and timetabling algorithms for maximizing estimated profit.
• We conducted a numerical experiment on a small-scale network to verify the optimal gap between the optimal solution and our
proposed heuristic solution. CB-Planner was then evaluated in a realistic situation using one-month taxi trajectory data in Nanjing,
China. The results show that our framework can generate CB lines with higher profit, compared with baseline methods, and they
can provide efficient transit services in terms of short walk distances, small departure time adjustment, low travel fare and short
detour time.

The rest of this paper is organized as follows. Section 2 highlights the background of CB and related work. Section 3 proposes the
mathematical formulation of CB line planning. Section 4 provides the heuristic solution framework with details. Section 5 presents
the numerical experiment and the case study for evaluating the performance of CB-Planner. Finally, we conclude this paper and
discuss future work in Section 6.

2. Background and related work

In this section, we briefly introduce CB systems and present related work.

2.1. Background of CB systems

A CB system aims to provide demand-oriented, express, and efficient transit services. It has been vigorously promoted by gov-
ernments (Ministry of transport, 2014; Chinadaily, 2014; Xinhuanet, 2013), due to the advantages of congestion alleviation, en-
vironmental friendliness as well as better user experience. Liu and Ceder (2015) first presented a detailed and comprehensive analysis
on CB systems in 2015. It elaborates the background of CB systems and analyzes their operation-planning processes, including on-line
demand collection, route network and timetable development. CB systems are significantly different from traditional bus transports
(Liu and Ceder, 2015) in terms of operating procedures, service features and bus lines as discussed below:

Operating procedures. Existing CB systems usually have the following operating procedures: (1) Passengers submit their re-
quests including their origins, destinations and departure times via on-line platforms such as web sites and smart phone apps. (2)
Each submitted request is matched with the existing CB lines. If there exists any CB line that satisfies a request thoroughly, the system
will suggest the most suitable schedule to the passenger. Then the passenger can purchase a seat on-line in advance if there are
available seats. (3) The unsatisfied requests will be collected for further improving the CB system. (4) The system periodically plans
new CB lines or re-plans existing CB lines based on the recent unsatisfied requests. The updated CB lines are then published for
passengers to reserve.

Service features. CB services differ from traditional bus services in two folds: First, CB services aim to serve groups of similar
travel demands that appear at a certain period of time everyday (or every weekday/weekend), in order to have sustainable profit. The
CB lines, including stops, routes and timetables, are fixed for a period of time (e.g., a month), and they will be updated on a monthly
basis to capture demand changes. Second, most of the existing CB systems require pre-pay for booking a seat, in oder to guarantee
that the profitability is less likely affected by “no-show” passengers. The travel fare is usually in proportion to the travel distance.

Bus lines. A typical CB route, as illustrated in Fig. 1, has the following features (Liu and Ceder, 2015). (1) Multiple bus stops are
set up in the origin area and destination area, this would help passengers access CB services within a short walk distance. (2) No
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interchanges or transfers, this would offer passengers direct express transit services. (3) Only a few or no intermediate stops are
arranged along a CB route, and thus traveling by a CB bus would be more efficient and direct than a traditional bus. Note that
intermediate stops are not indispensable to a CB route, they are plotted with dash lines in Fig. 1.

2.2. Related work

2.2.1. Customized bus network design
Despite the very new concept of CB, the idea of vehicle sharing is not new. Similar public transport services, such as subscription

bus (Chang and Schonfeld, 1991; Chang and Yu, 1996; Chien et al., 2001), Com-Bus (McCall, 1977) and Flexi (Bastani et al., 2011),
have been proposed, and some of them have successfully operated in various major cities (Chien et al., 2001; McCall, 1977). These
transit systems have the common feature that their services are demand oriented. The success of these transit systems indicates the
promising future of CB systems.

Although CB systems enjoyed a great popularity in recent years, only a few studies have focused on design and optimization for
CB systems. Cao and Wang (2017) investigated the passenger assignment problem for CB systems, given the fixed CB lines and travel
demands. Chuanyu et al. (2017) studied CB bus dispatching problem and proposed a detouring strategy and a vehicle replacement
strategy to avoid traffic congestions. Ma et al. (2017) proposed a model for stop planning and timetables for CB systems with an
immune genetic algorithm. Unlike CB-Planner, neither of these studies provided a holistic solution for CB line planning.

The customized bus service design is systematically explored in Tong et al. (2017). The authors designed shuttle services that
optimize stops, routes and timetables with a multi-commodity network flow-based (MCNF) model. The differences between MCNF
and our CB-Planner are twofold. (1) MCNF optimizes existing CB services. It takes the actual travel requests submitted to a CB system
as the input, and aims to minimize the number of unserved requests as well as the routing cost. So it is unable to set up initial CB lines
at the initial stage of building a CB system in a new city when very few or no requests are submitted. In contrast, CB-Planner can
leverage the readily available data sources such as taxi trips and public transit records to discover potential customers. The initial CB
lines can be set up based on the discovered travel patterns. These CB lines strike the best balance between profit and attracting more
passengers with high service quality. (2) MCNF utilizes the current bus stops of existing traditional bus system. However, these stops
may not have good accessibility in the area where public transit systems are not well developed. CB-Planner deploys stops based on
demand data, so the deployed stops could provide better accessibility for CB customers.

Another CB line planning framework is proposed in Ma et al. (2017). This study proposes an area clustering algorithm on travel
demands for allocating CB resources. The CB lines are planned by pairing OD areas and selecting the OD pairs that maximize social
benefits and minimize operating cost. CB-Planner differs from this study in two aspects. Firstly, CB-Planner provides more detailed
solutions including deploying stops and scheduling timetables. Secondly, Ma et al. (2017) clusters origin locations and destination
locations separately. It fails to capture the OD connections of each travel demand, and hence is unable to accurately discover travel
patterns from the travel demand data. In contrast, CB-Planner clusters similar travel demands based on their origins, destinations and
departure times. Each demand cluster will have a high chance to be served by a sequence of bus trips along a CB line. In other words,
building a CB line for such a demand cluster is likely to be profitable.

2.2.2. Traditional transit network design
Transit network design (TND) (Guihaire and Hao, 2008; Ibarra-Rojas et al., 2015) determines the bus route layouts and the

associated attributes such as bus frequencies, timetables and space between stops, by optimizing specific objective functions such as
maximum service coverage and minimum passenger discomfort. In the following, we present a literature review on TND and
highlight the difference between the existing studies and our CB-Planner.

Most of existing TND solutions optimize the route layouts based on a given infrastructure of road network. These studies either
assumed that the bus stops have been well located on the road network (Nikolić and Teodorović, 2013; Cancela et al., 2015; Nayeem
et al., 2014; Michaelis and Schöbel, 2009), or generated bus routes as sequences of adjacent nodes of road network, without con-
sidering stop deployment (Cipriani et al., 2012; Mauttone and Urquhart, 2009). For example, Cancela et al. (2015) searched the
optimal bus routes on a given infrastructure of streets and stops. Nayeem et al. (2014) proposed genetic algorithms to plan the bus
routes on an existing road network, with predefined locations of bus stops. Cipriani et al. (2012) determined the optimal transit
network configuration in terms of bus routes represented by sequences of adjacent nodes and service frequencies. A few studies
simultaneously optimize the locations of bus stops and the routes (Perugia et al., 2011; Szeto and Jiang, 2014). In these studies, a set
of candidate stops are assumed to be known, so the stop location choice problem is easily integrated into routing decisions. For
example, Perugia et al. (2011) selected the optimal stop locations during the process of route design for home-to-work transit
services. Szeto and Jiang (2014) integrated stop location choice, route design and frequency setting into a bi-level programming
model. The above mentioned studies, however, fail to provide a concrete solution for stop deployment. As bus stops are the key component of

Fig. 1. Illustration of a typical customized bus route.
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CB systems, our CB-Planner proposes a stop deployment method that minimizes the total walk distance of all the passengers as well as the
number of stops, such that passengers can access the CB stops with a short walk distance and they can have fewer intermediate stops and
thereby shorter travel time.

Only a handful of research papers studied bus stop deployment for TND problems. Most of them modeled stop deployment as the
stop-spacing problem, i.e., determining bus stop spacing along an existing route (Saka, 2001; Ceder et al., 2015). Obviously, these
works are not suitable for CB systems, as CB routes should have very few or no intermediate stops in order to provide direct and efficient
services. In contrast, CB-Planner deploys stops at the origin and destination regions of demand clusters by balancing the stop accessibility with
travel time. A notable study (Bagloee and Ceder, 2011) provided a solution of generating candidate stop location before the process of
laying down the routes and the frequency setting. This work, however, cannot be directly applied to CB systems either. This is because CB
systems need to discover potential groups of commuters with similar demands and design CB lines for them. In contrast, our CB-Planner
provides an efficient grid-density based clustering algorithm to find potential demands for CB systems.

2.2.3. Understanding transportation with travel data
Many researchers have foreseen the opportunity to obtain high-quality travel information at a low cost from various data sources,

such as taxi trajectories (Zheng et al., 2010) and transit smart card transactions (Pelletier et al., 2011). Existing works have utilized
taxi trajectories to discover vehicle travel patterns and improve transit services. For instance, taxi trajectories were used for planning
night bus routes (Chen et al., 2014) and exploring new public transit modes (Bastani et al., 2011) by discovering hot pick-up/drop-off
areas and hot traffic lines. Trajectory data flows of taxis can provide real-time traffic information and were utilized to recommend
mobile users the most suitable transportation choice (Wu et al., 2012). The trajectories of electric vehicles (EV) were leveraged for
deploying charging stations and charging points (Li et al., 2015). Smart card transactions record the public transit histories of
individual commuters and have been utilized to discover urban commuting patterns. For instance, the origin-destination matrix was
estimated from smart card data for a multi-modal public transport system (Munizaga and Palma, 2012). An efficient and effective
data-mining procedure (Ma et al., 2013) was proposed to explore the travel patterns of individual commuters from transit smart card
data. By integrating taxi trajectory data and public transaction records, (Liu et al., 2014) identifies and optimizes the flawed bus
routes.

3. System model and problem formulation

In this section, we first present a mode-choice model for estimating the probability of a passenger choosing CB over a set of
alternative transport modes, and then formulate the CB line planning problem by simultaneously optimizing bus stop locations, bus
routes, timetables and the probabilities of passengers choosing CB.

3.1. Estimate probability of choosing CB

As a new transport mode, a CB system usually aims to shift commuters from existing transport modes such as taxis to itself. Hence,
modeling the elasticity of travel demand is indispensable. We adopt a multinomial Logit (MNL) model (McFadden, 1973) to estimate
the probability of a passenger choosing a CB bus over a set of alternative modes such as traditional bus, metro, and taxi.

LetC be the set of transport mode choices including CB, CCB . MNL model estimates the probability of a passenger n choosing
CB as follows

C

=p n µ n
µ n c

( , CB) exp( ( , CB))
exp( ( , ))

,
c (1)

where µ n c( , ) is the utility function of passenger n choosing mode c. Specifically, we incorporate the following four factors into the
utility function: (i) WalkDist: walk distance; (ii) TimeAdj: departure time adjustment, i.e., time difference between the planned
departure time and the actual departure time1; (iii) TravTime: travel time; and (iv) Fare: travel fare. The utility function of mode c is
defined as

= + + + +µ n c( , ) WalkDist TimeAdj TravTime Fare,c c c c c0, 1, 2, 3, 4, (2)

where c1, to c4, are coefficients of the four factors w.r.t. mode c, and c0, is constant coefficient to capture the mean influence of
variables which is not being explained by the four factors. In the practical implementation of CB-Planner, this model can be refined by
considering more subjective or psychological factors, such as comfort and personal travel habit, and conducting more comprehensive
surveys. CB-Planner is still applicable with a more comprehensive MNL model that considers subjective and psychological factors.
However, the study on these factors is out of the scope of this paper.

It is noteworthy that the probability of choosing CB over alternative modes is determined by the service quality of CB, i.e., the four
factors in the utility function. Given a certain CB bus m and a set of alternative transport modes, the probability of passenger n

1 For a transport mode with a frequent timetable, such as metro, the time adjustment will be considered as the waiting time at a stop. For a mode
with a less frequent timetable, such as CB, we assume a passenger would adjust her depart time earlier/later to catch a ride. For example, a
passenger plans to depart at 8:00 am from a CB stop, but the nearest departure time of a bus is around 7:50 am. So the passenger needs to adjust her
departure time 10min earlier to catch the bus, namely, the time adjustment is 10min.
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choosing m, denoted by p n m( , ), can be calculated by Eq. (1) directly.

3.2. Problem formulation

Given a set of travel demands, we aim to find a set of locations to deploy bus stops, and generate a set of bus routes together with
the timetable along each route. The objective is to maximize the total estimated profit of all the bus lines. Specifically, we consider
the following inputs:

• a set of potential passengers =N n{ }, in which, each passenger indicates a travel demand with an origin location o, a destination
location d, planned departure time to and her potential travel experiences (i.e., walk distance, time adjustment, travel time and
fare) by other transport modes;
• a set of available CB buses =M m{ }.

To integrate bus stop deployment, route planning and timetable scheduling into a unified optimization framework, we adopt a
space-time network =G V A( , ) that combines the physical transportation network with travel time information (Tong et al., 2017;
Tong et al., 2015). Each vertex i s V( , ) represents both location i and time s, (here, location i is a node of the physical transportation
network); each arc i j s t A( , , , ) indicates a directed path from location i departing at time s to location j at time t. Based on G, we
define the decision variables to determine the bus network including locations of bus stops, bus routes and their timetables as well as
passenger-to-bus assignment:

• x {0, 1}i j s t
m
, , , , where =x 1i j s t

m
, , , if bus m travels through the arc i j s t( , , , ), i.e., passes through location i at time s and travels directly

to location j at time t, and =x 0i j s t
m
, , , otherwise.

• a {0, 1}i j s t
m n
, , ,

, , where =a 1i j s t
m n
, , ,

, if passenger n travels through the arc i j s t( , , , ) by bus m and =a 0i j s t
m n
, , ,

, otherwise.

Objective function. The objective function is to maximize the total estimated total profit of all the buses. The profit can be
calculated by subtracting the operational cost from the fare revenue, i.e.,

p n m a len i j x len i jmaximize ( , ) ( , ) ( , )
m M n N i j s t A

i j s t
m n

m M i j s t A
i j s t
m

( , , , )
, , ,

,

( , , , )
, , ,

(3)

where is the ticket price per kilometer, is the operational cost per kilometer of a bus, len i j( , ) is the road network distance from i to
j, and p n m( , ) is the probability of passenger n choosing bus m over the set of alternative transport modes.

p n m( , ) can be inferred from the mode choice model (Eq. (1)) and the passenger-to-bus assignment matrix a[ ]i j s t
m n
, , ,

, . Specifically, if
passenger n is assigned to bus m, i.e., =a 1i j s t

m n
, , ,

, , the passenger’s WalkDist, TimeAdj, TravTime and Fare by bus m can be calculated as
follows. We introduce the following two binary variables to indicate the passenger’s locations and times of getting on and getting off
bus m:

• O {0, 1}i s
m n
,

, , where =O 1i s
m n
,

, if passenger n gets on bus m at vertex i s( , ), and =O 0i s
m n
,

, otherwise;
• D {0, 1}i s

m n
,

, , where =D 1i s
m n
,

, if passenger n gets off bus m at vertex i s( , ), and =D 0i s
m n
,

, otherwise.

The average walk distance of passenger n for taking bus m is

= +O len o i D len i dWalkDist 1
2

( ( , ) ( , )),
i s V

i s
m n

i s V
i s
m n

( , )
,

,

( , )
,

,

(4)

where o and d are the passenger’s origin and destination locations, respectively. The passenger’s time adjustment for bus m is

= +O s t tTimeAdj | ( )|,
i s V

i s
m n

o walk
( , )

,
,

(5)

where to is the planned departure time at origin location o, and twalk is the walking time. The passenger’s actual travel time on bus m is
the summation of travel time along each arc:

= a t sTravTime ( ).
i j s t A

i j s t
m n

( , , , )
, , ,

,

(6)

And the passenger’s actual travel fare on bus m is

= a len i jFare ( , ).
i j s t A

i j s t
m n

( , , , )
, , ,

,

(7)

Based on these four factor values by bus m p n m, ( , ) can be calculated by the mode choice model (Eqs. (1) and (2)) and the factor
values of the passenger’s alternative transport modes.

Flow balance constraints. To make sure that each bus m can find a feasible route in G, xi j s t
m
, , , should satisfy the flow balance

constraint:
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=
= =
= =x x

i b s T
i b s T

1, ,
1, ,

0, otherwisej t V
i j s t
m

j t V
j i t s
m

max
( , )

, , ,
( , )

, , ,

0 0

0

(8)

where b0 is a depot of bus m T, 0 and Tmax are the earliest departure time and the latest arrival time at depot b0, respectively. There
could be a waiting arc if the actual departure time tm at the depot is later than T0, i.e., =x 1b b T t, , , m0 0 0 . Similarly, there is also a waiting
arc if the actual arrival time is earlier than Tmax . In addition, bus m, if used, can only visit a vertex at most once, i.e.,

x i s V1, ( , ) .
j t V

i j s t
m

( , )
, , ,

(9)

Passenger-to-bus assignment constraints. Passengers can only be assigned to valid buses and each passenger can take at most
one bus, i.e.,

a x i j s t A, ( , , , ) ,i j s t
m n

i j s t
m

, , ,
,

, , , (10)

a i j s t A1, ( , , , ) .
m M

i j s t
m n
, , ,

,

(11)

A passenger’s trip on bus should also satisfy the flow balance constraint, i.e.,

=a a O D i s V, ( , ) .
j t V

i j s t
m n

j t V
j i t s
m n

i s
m n

i s
m n

( , )
, , ,

,

( , )
, , ,

,
,

,
,

,

(12)

where Oi s
m n
,
, and Di s

m n
,
, should satisfy that passenger n, if chooses bus m, can get on and get off bus at only one vertex separately,

namely,

O 1,
i s V

i s
m n

( , )
,

,

(13)

D 1,
i s V

i s
m n

( , )
,

,

(14)

=O D .
i s V

i s
m n

i s V
i s
m n

( , )
,

,

( , )
,

,

(15)

Capacity constraints. The total number of served passengers cannot exceed the capacity of bus m, i.e.,

a x i j s t A, ( , , , ) ,
n N

i j s t
m n

i j s t
m

, , ,
,

, , ,
(16)

where is capacity of bus m.
In summary, we aim to maximize the estimated total profit (Eq. (3)) under the constraints (8)–(16). Compared with existing

transit network design models, our proposed formulation has the following innovative features. First, we use a multinomial Logit
model to estimate the probability of a passenger choosing CB over a set of alternative transport mode choices. This allows CB-Planner
to consider potential demands from other transport modes such as taxis and traditional buses. Second, we integrate the Logit model
into the optimization formulation to capture the interaction between passengers’ transport mode choices and the design of bus lines.
Namely, the design of CB lines affect passengers’ choices, which in turn affect the estimated profit. This formulation thereby achieves
a trade-off between two conflicting goals: providing efficient transit services vs. maximizing ride-sharing to earn more profit. Third,
this formulation jointly models the high-level bus stop deployment, routing and timetabling problems and the low-level passenger-to-
bus assignment problem.

4. Solution algorithms

The above proposed mixed-integer non-linear problem formulation is NP-hard and cannot be solved in polynomial time.
Moreover, for the real travel data sources, such as taxi trajectories and public transport transaction records, the computational load
could be huge because these real data sets usually contains billions of travel records citywide. Therefore, we develop a heuristic
sequential solution to achieve the objective phase by phase. Fig. 2 depicts the CB-Planner framework with three phases:

Phase 1 (Travel demand clustering): In this phase, we first discover travel patterns by clustering travel demands with nearby origin
and destination locations and similar departure times. The discovered demand clusters are the potential customers for CB systems.

Phase 2 (CB stop deployment): In each demand cluster, CB stops are deployed at the origin area and destination area with a
heuristic stop deployment algorithm (CBDeploying), by minimizing number of stops and the total walk distance. This actually maximizes
the probability of passengers taking CB buses in terms of walk distance and travel time (the fewer stops, the shorter the travel time).

Phase 3 (CB line planning): For each cluster with deployed CB stops, a CB line that achieves the maximum estimated profit is
generated using a routing algorithm (CBRouting) and a timetabling algorithm (CBTimetabling). Finally, the CB lines that overlap in
route segments and working hours are merged with a merging scheme (CBMerging), to further maximize the total estimated profit of
all CB lines.
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4.1. Travel demands clustering

CB buses aim to serve groups of passengers who have similar travel demands. Such travel patterns can be discovered by clustering
travel demands with nearby origin and destination locations and similar departure times. And the travel demands within a cluster
indicate a group of potential customers of the CB system.

We present a travel demand with a five-dimensional vector, stLat stLng edLat edLng stTime( , , , , ), which denotes the origin latitude,
origin longitude, destination latitude, destination longitude, and departure timestamp, respectively. In order to cluster demands with
the five dimensions, we employ a grid-density based clustering method. The computation complexity of grid-density based clustering
methods has been proved to beO n( ) (Aggarwal and Reddy, 2013), where n is the number of grids in the data space. Since the number
of grids is significantly smaller than the number of data points in most applications, grid-density based clustering methods are usually
more efficient than other clustering approaches (Aggarwal and Reddy, 2013). They are also flexible in dealing with multidimensional
data sets (Agrawal et al., 1998), and there is no need to measure the distance between data objects. A travel demand has spatial
features (e.g., stLat stLng, ), and the temporal feature (i.e., stTime), it is difficult to measure the distance between the demands
spatially and temporally. Therefore, the grid-density based clustering methods are suitable for clustering travel demands. We im-
plement the grid-density based clustering method with the following steps:

Space partitioning. We focus on the five-dimensional space × × × ×stLat stLng edLat edLng stTime, where the spatial di-
mensions stLat stLng( , ) and edLat edLng( , ) are bounded by the boundaries of the city, and the temporal dimension stTime is
bounded by the time of a day, i.e., 0:00 am to 12:00 pm. This five-dimensional space is then partitioned into non-overlapping units.
All units are obtained by partitioning every dimension into intervals of equal length, i.e., each unit is the intersection of one interval
from each dimension. Specifically, let ui denote the ui-th interval in i-th dimension, i1 5. A unit, denoted as U, is presented as

= …U u u u( , , , )1 2 5 .
Map travel demands into units. We map a travel demand stLat stLng edLat edLng stTime( , , , , ) into a unit if each attribute value of

this demand falls into the interval of the corresponding dimension of the unit. After mapping all the demands into units, the density of
a unit can be calculated as the average daily number of travel demands. We call a unit dense if the density of this unit is larger than a
density threshold, which is an input parameter.

Merge all dense units into clusters. A demand cluster can be discovered among a set of dense units that are adjacent with each
other. Two units, denoted by = …U u u u( , , , )1 1

1
2
1

5
1 and = …U u u u( , , , )2 1

2
2
2

5
2 , are adjacent if there exists k-th dimension, k1 5, such

that 1) =u u| | 1k k
1 2 , and 2) =u u i k i, , 1 5i i

1 2 .
To find sets of dense units that are adjacent with each other, we first form a graph, in which each node represents a dense unit,

and there is an edge between two nodes if the two units are adjacent. Then sets of adjacent dense units can be extracted as the
connected components from the graph by a depth-first or breadth-first traversal. Travel demands in each set of adjacent dense units
form a cluster.

4.2. CB stop deployment

In this section, we deploy CB stops for the potential passengers from each demand cluster. Although not all the potential pas-
sengers from a cluster will take CB buses, the origin and destination locations of a demand cluster can indicate the most popular
locations of these passengers would like to start and end their trips. Therefore, we deploy stops to cover these origin locations and
destination locations for each demand cluster.

In order to attract more passengers choosing CB services, the CB stops should have very good accessibility, i.e., the walk distance
between an origin/destination location to the nearest stop should be as short as possible. This thereby requires more stops to be
deployed. However, too many stops will increase the travel time, which will in turn degrade the service quality and hence reduce the
probability of passengers taking CB buses. Therefore, how to balance the walk distance with the number of CB stops is the key issue in
CB stop deployment.

To address this issue, we first employ two parameters, service coverage radius of a stop, denoted as CovRad, and service coverage
percentage, denoted as CovPct. The stop deployment problem is formulated as follows: We aim to find the minimum number of stops
and their optimal locations, such that these stops can cover at least CovPct percentage of passengers within the radius of CovRad, and
the total walk distance of all the passengers to these stops is minimized.

Fig. 2. Framework of CB-Planner.
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Specifically, given a set of origin/destination locations, denoted as pt{ }i , we aim to deploy a set of CB stops, denoted as =B b{ }j , so
as to the number of stops, B| |, is minimized, under the constraints of:

• Coverage constraint: At least CovPct percentage of pt{ }i whose distances to their nearest stops in B cannot exceed CovRad.
• Distance constraint: The total walk distance of pt{ }i to their nearest stops in B is minimized.

This problem is a typical facility location problem, which is NP-hard and cannot be solved optimally in polynomial time (Farahani
and Hekmatfar, 2009). Many heuristic methods have been proposed based on the clustering models, such as k-medoids (Jain and
Vazirani, 2001; Park and Jun, 2009). The classical k-medoids is used to assign data points into different groups by minimizing the
distance between data points (i.e., locations) labeled to be in a group and a point designated as the center of that group (i.e., bus
stops). However, the number of groups k needs to be determined in advance, and the initial locations of the k group centers are picked
randomly, which greatly affects the performance of this method. To address these two issues, namely NP-hardness and indeterminate
value of k, we propose a heuristic method, called CBDeploying, that adapts the k-medoids by incrementally deploying k CB stops from
=k 1 until the k stops satisfy the coverage and distance constraints. The initial locations of the k stops are determined by the optimal

locations of the k 1 stops from the previous step.
For =k 1, the optimal location of this stop is the location that achieves the minimum total walk distance to all other locations in

pt{ }i . Then we calculate the coverage percentage of this stop. As long as the coverage percentage is less than CovPct, more stops are
needed in order to meet the coverage constraint.

When deploying k stops for >k 1, the locations of the k stops should satisfy the distance constraint, i.e., the total distance of all
locations in pt{ }i to their nearest stops is minimized. To initialize the locations of the k stops, we first utilize the optimal locations of
the k 1 stops from the previous step as the k 1 initial locations. For the k-th initial location, we first find the set of locations that
are not covered by the previous k 1 stops, i.e., the distances from these locations to their nearest stops are larger than CovRad. The
centroid of these locations is set as the k-th initial location. The rationale behind this initialization process is that the k 1 stops
deployed at the previous step are already well distributed and the primary purpose of the additional stop is to increase the coverage
percentage (Likas et al., 2003). To obtain the optimal locations of the k stops, we repeatedly shift the k stops to the centroid of groups
of locations that are assigned to the stop, until the total distance does not decrease.

As depicted in Algorithm 1, CBDeploying first deploys one CB stop at the location which achieves the minimum total walk
distance to all locations in pt{ }i , (Lines 5–6), and then checks whether the stop satisfies the coverage constraint (Line 7). If the
coverage constraint cannot get satisfied, the algorithm incrementally deploys one more stop at the uncovered location which achieves
the minimum total walk distance to all the uncovered locations (i.e., unCovPts). Then it adjusts locations of the k deployed stops using
k-medoids to minimize the total walk distance from all the locations to their nearest stops (Lines 8–13). The algorithm terminates
until the k stops satisfy the coverage and distance constraints. Note that our algorithm calls the k-medoids function k 1 times for
adjusting the locations of k stops iteratively. The complexity of each iteration in k-medoids (Lines 17–19) is O nk( ) (Park and Jun,
2009), where n is the number of origin/destination locations in a demand cluster.

Algorithm 1. CB stop deployment (CBDeploying)

Input: (1) A set of origin/destination locations of a cluster pt{ }i , (2) service coverage radius of CB stops CovRad, (3) coverage percentage of CB stops CovPct, (4)
road network.

Output: A set of CB stops =B b{ }j .
1: Calculate the pairwise road network distance of pt{ }i
2: Set =B , and the number of stops =k 1
3: Find the location pt that has the minimum total distance to other locations
4: Set the first CB stop as =b pt B b*,1 1
5: Let pct be the percentage of locations that their walk distances to their nearest stops in B are no larger than CovRad
6: Let unCovPts be the set of locations that their walk distances to their nearest stops in B are larger than CovRad
7: while <pct CovPct do
8: Increase k by 1
9: Find the location pt that has the minimum total walk distance to locations in unCovPts
10: Set =b pt B b*,k k
11: Adjust locations of k stops B with K-MEDOIDS (B pt, { }i )
12: Renew unCovPts and pct
13: endwhile
14: Get the set of CB stops =B b j k{ }, 1j

15: function K-MEDOIDS (B pt, { }i )
16: repeat
17: Assign each location to its nearest stop in B
18: For each stop b b B j k, , 1j j , reset its location at the location that has the minimum total distance to the other locations that assigned to bj
19: Calculate the sum of distances from all the locations to their nearest stops
20: until The sum of distances does not decrease
21: return B
22: end function
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4.3. CB line planning

In CB systems, a CB line will be set for a certain travel pattern (i.e., a demand cluster or several demand clusters that overlap in
route segments and departure times). So the CB line planning problem can be simplified by planning a CB line for each cluster first
and then maximizing the total profit by merging the lines that overlap in route segments and working hours. In this section, we first
propose a routing algorithm to plan a CB route for a demand cluster and a timetabling algorithm to schedule the timetable for a CB
route. Then a CB merging scheme is proposed to merge CB lines to further maximize the total estimated profit of all the CB lines.

4.3.1. Routing
To reduce the operational cost per bus trip, a CB route should be able to satisfy a travel demand cluster with the shortest travel

distance. As we have deployed multiple CB stops in the origin region and destination region of the demand cluster separately, the CB
routing problem can be formulated as a traveling salesman problem (TSP) (Malandraki and Dial, 1996; Mingozzi et al., 1997), i.e.,
find the shortest route that visits each stop in origin region and destination region. The key issue is that, unlike the classical TSP, the
pick-up stops should be visited before their corresponding drop-off stops along the route. To address this issue, we develop a dynamic
programming algorithm, called CBRouting, that generates the shortest route to transit passengers from their pick-up stops to drop-off
stops for a demand cluster.

Let B be the set of deployed CB stops from a cluster. We employ a dummy stop b0, that has the following properties: 1) no
passengers come from or to this stop, and 2) the distance between b0 and any other stops is 0. We set b0 as the origin stop for all
routes. For a subset of stops S b B{ , }0 and b b S, j0 , let S b( , )j be the set of possible paths that start at b0, visit each node in S exactly
once, and finish in bj. S b( , )j can only be valid if it satisfies the precedent constraint, i.e.,

• Precedent constraint: if bj is a drop-off stop, then all its corresponding pick-up stops should be in S; if bj is a pick-up stop, then any
of its drop-off stops cannot be in S.

For a valid set S b( , )j , let R S b( , )j be the shortest route, and Len S b( , )j be the length of R S b( , )j . We obtain the shortest route
R S b( , )j by picking the best second-to-last stop bi, such that the route length from b0 to bi, (i.e., Len S b b( { }, )j i ), plus the length of the
final route segment len b b( , )i j , is minimized:

= +Len S b Len S b b len b b( , ) min ( { }, ) ( , ).j
b S i j

j i i j
: ,i (17)

We denote bi as the best second-to-last stop, then

=R S b R S b b b( , ) ( ( { }, ), ).j j i j (18)

Note that S b b( { }, )j i should satisfy the precedent constraint, we prune the invalid sets for each iteration of Eqs. (17) and (18). By
iteratively searching the shortest route for each subset S B and checking the precedent constraint, the CB route R B( ) can be
generated after the set B is searched, i.e.,

= =R B R B b b Len B b( ) ( , ), argmin ( , ).j j b B jj (19)

As depicted in Algorithm 2, our CBRouting starts searching the subset S B from the size of =S| | 1 to B| | (Line 2). For each subset, it first
checks the validity of S b b S( , ),j j by the precedent constraint (Line 6). If S b( , )j satisfies the precedent constraint, the shortest route
R S b( , )j and its length Len S b( , )j are obtained by Eqs. (17) and (18) (Lines 7–9). The algorithm terminates until B is searched and the CB
route R B( ) can be obtained by Eq. (19) (Line 13). Since our algorithm searches every subset of B, there are at most n2 ·n possible states
S b( , )j , and each one takes linear time to get the shortest route =R S b n B( , ), | |j . So the total running time isO n( 2 )n2 . Note that in reality,
the number of stops deployed for a trajectory cluster is usually not very large. (As shown in Fig. 8, the case study show that the number of
deployed CB stops for each cluster is smaller than 6, i.e., <n 6.) Therefore, the CB route can be obtained in a relatively short time.

Algorithm 2. CB routing (CBRouting)

Input: (1) A set of CB stops of a cluster =B b{ }i , ( i B1 | |), (2) len b b b b B( , ), ( , )i j i j .

Output: Optimal CB route R B( ).
1: Set the dummy stop b0 and let =Len b b({ }, ) 00 0
2: for s = 1 to B| | do
3: for all subsets S of size s S B, do
4: = =S S b Len S b{ , }, ( , )0 0
5: forb Sj do
6: Check the validity of S b( , )j by precedent constraint
7: if S b( , )j is valid then
8: Obtain the shortest route length Len S b( , )j and the route R S b( , )j by Eqs. (17) and (18)
9: end if
10: end for
11: end for
12: end for
13: = =R B R B b b Len B b( ) ( , ), argmin ( , )j j bj B j
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4.3.2. Timetabling
For each demand cluster and its CB route, we schedule an optimal timetable t , i.e., the sequence of start time of each trip along

the route in a day, with a dynamic programming algorithm, called CBTimetabling, in order to maximize the total estimated profit of
all the trips.

Let tf and tl be the departure time of the first and last travel demand in this cluster in a day respectively. Then we only need to
search the timetable within the time interval of t t[ , ]f l .

Suppose from time tf to <t t t t, f l, we have set a certain number of trips between tf to t, and t is the start time of the last trip.
Let tt( ) be the optimal timetable whose last trip starts at t, and totalP t( ) be the maximum total profit of the trips with tt( ). We denote
profit t( ) as the profit of the last trip, and preP t( ) be the profit earned before the last trip, i.e., = +totalP t preP t profit t( ) ( ) ( ). preP t( )
can be obtained by picking the best start time of the second-to-last trip t , such that the total profit of the trips before t , plus
the profit of the last two trips, i.e., profit t( ) and profit t( ), is maximized:

= + +preP t preP t profit t profit t profit t( ) max ( ( ) ( ) ( )) ( ).
t t1 f (20)

where profit t( ) can be calculated by counting the passengers that are not served by the previous buses and computing their prob-
ability of choosing the trip that starts at t. Let m denote the bus serving the trip at time t N t, ( ) denote the set of passengers that are not
served by the previous buses before t. The profit of bus m is

=profit t m n p n m Len R( ) Fare( )· ( , ) · ( ),
n N t( ) (21)

where ActFare(n) is the actual travel fare of passenger n along the route R, and Len R( ) is the length of route R. p n m( , ) is the probability
of passenger n choosingm, and it can be calculated using Eqs. (1) and (2). We assume that passenger n chooses the closest stops to get on
and get off the bus. Note that the number of passengers on board could exceed the bus capacity, not all the passengers in N t( ) will be
considered into profit t( ). Instead, at each origin stop, the passengers are sorted according to their time adjustment from the shortest to
the longest. Those passengers who ranked behind will be excluded if the bus becomes fully occupied at some stops. In the case that
profit t( ) could be below 0, i.e., a trip starts at t could lose money, we consider this trip as a dummy trip with profit of 0.

We denote t as the start time of the best second-to-last trip, then tt( ) can be obtained by iteratively recording the profit-
making trips, i.e.,

=
>

t
t t profit t

t
t

t
t

( )
( ( ), ) if ( ) 0,
( ) otherwise. (22)

By searching t from tf to tl with Eqs. (20) and (22), the optimal timetable is recorded in tt( )l , and the maximum profit would be
+preP t profit t( ) ( )l l .

As depicted in Algorithm 3, CBTimetabling first calculates the profit of the trip that starts at tf , and initializes the total profit of
previous trips preP t( )f as 0 (Lines 1–3). It then incrementally obtains the optimal timetable tt( ) from = +t t 1f to tl, by searching the
best second-to-last trip such that the total profit from tf to t is maximized (Lines 4–8). The algorithm terminates until tt( )l is searched
(Line 9). Since our algorithm traverses the optimal timetables from =t tf to tl and each timetable takes linear time, the time com-
plexity is O n( )2 , where n is the number of time slots from tf to tl.

Algorithm 3. CB timetabling (CBTimetabling)

Input: A travel demand cluster with its CB route
Output: Optimal timetable t , and the maximum total estimated profit totalP .
1: Calculate profit t( )f with timetable = tt f by Eq. (21)
2: If >profit t( ) 0f , set =t tt( )f f , otherwise, set =tt( )f

3: Set =preP t( ) 0f
4: for = +t t 1f to tl do
5: Calculate preP t( ) by Eq. (20)
6: Let be the parameter that achieves the maximum in Eq. (20), and get the previous timetable tt( )
7: Obtain tt( ) by Eq. (22)
8: end for
9: = tt t( )l , and = +totalP preP t profit t( ) ( )l l

4.3.3. CB line merging
Given the set of demand clusters, we have planned a CB line that achieves the maximum estimated profit for each cluster. Despite

the fact that CB lines from different clusters differ from origin locations, destination locations and departure times, some of them may
overlap with each other in terms of route segments, and working hours, (i.e., the time interval between the start times of the first and
the last trips). For example, in Fig. 3, the lines 1, 2 and 3 overlap in some route segments, as well as the working hours, and the same
holds for lines 3 and 4. If we merge the overlapped CB lines into one line, this new line could be more profitable than the total profit
of each single line, with the fact that one bus ride along the new line can serve more passengers. However, not all overlapped CB lines
can be merged into a more profitable line. This is because the merging may lead to more intermediate stops or longer detour distance
for the merged line, and thus a longer travel time, resulting in a loss of passengers. In order to further maximize the total profit of CB

Y. Lyu, et al. Transportation Research Part C 101 (2019) 233–253

242



lines, we explore which CB lines could be merged together, and how to achieve the maximum total estimated profit by merging CB
lines.

Algorithm 4. CB line merging (CBMerging)

Input: A set of CB linesL = L{ }i from each cluster
Output: A set of CB linesL = L{ }k
1:L L

2: repeat
3: For each pair of CB lines inL , select the pairs that satisfy the merging criteria
4: For each of the selected pairs, merge the two CB lines by re-planning a route and a timetable with Algorithms 2 and 3 separately, and get the estimated

profit growth of the merged CB line
5: Select the merged line, denoted as Lij , that achieves the maximum profit growth; let L L( , )i j be the pair of lines that form Lij

6: Remove L L( , )i j fromL , andL Lij
7: until The total profit stops increasing by merging

Merging criteria. Two CB lines need to be merged if they (1) share some route segments, and (2) overlap in working hours.
Merging scheme. It is challenging to find the optimal merging scheme that achieves the maximum total profit. The main reasons

are: (1) The profit of a CB line is determined by how well the CB route and timetable satisfy the travel demands of passengers.
Whether a new merged CB line can be more profitable is unknown before its route and timetable being planned. (2) For a set of n CB
lines in which any two lines satisfy the merging criteria, the number of possible combinations for merging can be counted by Bell
numbers B n( ) (Rota, 1964), whose upper bound is +( )n

n
n0.792

ln( 1) (Berend and Tassa, 2010). Calculating the profit for all the possibilities
is not efficient. To this end, we propose a greedy merging scheme, called CBMerging, by iteratively merging the pair of CB lines that
achieves the maximum profit growth.

As depicted in Algorithm 4, given a set of CB lines, we first merge each pair of CB lines that satisfies the merging criteria, and
calculate the profit of each merged line with Algorithms 2 and 3. Then the pair that achieves the maximum profit growth is replaced
by the corresponding merged CB line. We repeat the previous steps until the total profit of all the CB lines stops increasing by
merging. For a set of n CB lines in which any two lines satisfy the merging criteria, in the worst case, our merging scheme greedily
checks the profit forO n( )2 possible merging combinations, which is much smaller than the exhaustive search. Our case study (Section
5.2.5) also shows that our merging scheme greatly improves the total profit.

5. Experiment

This section first provides a numerical experiment on a small-scale network to study the optimality gap of the proposed heuristic
solution. A case study is then conducted on a city-scale network using a real taxi trajectory dataset as the travel demand data source.

5.1. Numerical experiment on Sioux Falls network

We test the proposed model and algorithms using a simplified Sioux Falls network2 (Tong et al., 2017; LeBlanc, 1988). As shown
in Fig. 4, the network consists of 24 nodes which can be regarded as candidate stop locations and 38 bidirectional transportation
links. Each link is labeled with the travel time in minutes. We randomly generate travel demands from the north part of the network
to the south. Each demand is associated a randomly generated departure time within a 20-min time window. We also assume that
each passenger has another mode choice, taxi, which provides the shortest travel time in the network. The taxi fare is in proportion to
the travel time. Table 1 lists a group of 20 travel demands, together with their travel time and fare if they travel by taxi. These
passengers’ origin nodes and destination nodes are marked in blue and yellow in Fig. 4 separately. Given choices of a certain CB bus

Fig. 3. Example of overlapped CB lines.

2 https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls.
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and a taxi, the probability of each passenger choosing the CB bus can be estimated by MNL model (Eqs. (1) and (2)). Here we use the
set of parameters obtained by a stated-preference survey, which will be detailed in Section 5.2.2. We assume there are at most two
buses, i.e., =M| | 2. Each bus has the capacity of 10 passengers and the operational cost is 2.5 RMB/km. The ticket price is 3 RMB/km.

To obtain the optimal solution of the proposed model, we adopt a brute force method to enumerate all possible solutions. Given
the above network and travel demands, there are 121,735 possible routes starting from one of the origin nodes and ending at one of
those destination nodes. These routes further generate a number of ×121, 735 20 of vertex sequences, i.e., location time( , ) sequences,
because each route can have 20 possible timetables in the time window of 20min. For each vertex sequence, we calculate the
probability of each passenger taking this vertex sequence and further compute the profit. For each pairwise combination of vertex
sequences, where two buses are used, we assign each passenger to the sequence that can bring higher expected ticket revenue and
then compute the total profit. This method can find the optimal assignment in a shorter time comparing to the method of enumerating
all the possible assignments of 20 passengers to the two sequences. The two optimal routes with timetables, i.e., two (location, time)
sequences, passengers who have larger than 10% probability of choosing each CB route, and the maximum profit are listed in
Table 2(a). We also implement our proposed heuristic algorithms to this network and the 20 travel demands. Firstly, two groups of
passengers with similar demands are discovered by our clustering method, i.e., passengers (2, 15, 18, 19, 20) and passengers (8, 10,
16, 17). Then we apply the stop deployment, routing, and timetabling methods on each group and obtain two bus lines. Finally, we

Fig. 4. Sioux Falls network.

Table 1
Passenger demands.

PSGR ID Origin Node Dest. Node Dep. Time TravTime (taxi) Fare (taxi)

1 11 24 3 10 20
2 9 20 11 14 28
3 16 24 3 15 30
4 16 21 6 12 24
5 16 23 10 14 28
6 7 22 12 11 22
7 4 21 8 17 34
8 4 23 12 14 28
9 6 20 7 11 22
10 4 22 12 18 36
11 9 21 8 14 28
12 16 22 13 10 20
13 16 22 12 10 20
14 8 20 6 9 18
15 10 20 10 11 22
16 11 22 13 12 24
17 11 22 15 12 24
18 10 20 14 11 22
19 10 20 9 11 22
20 10 20 10 11 22
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check whether the two bus lines can be merged. The heuristic results are listed in Table 2(b). From Table 2(a) and (b), we can observe
that the bus lines generated by our heuristic algorithms are similar to the optimal bus lines: our heuristic bus line fail to serve
passenger 7 and hence has an optimality gap of 3.36%.

We further randomly generate 20 travel demands 20 times to verify the optimality loss and computational efficiency improve-
ment of our heuristic solution. Table 3 lists the profits and CPU times of the optimal solution and the heuristic solution. The mean
optimality gap between the optimal solution and our heuristic methods is 17.55% and the standard deviation is 0.0986. The heuristic
solution is 8285 times faster than the optimal solutions on average. It is worth to mention that although the brute force method for
searching the optimal results takes around 160 s in this experiment, applying this brute force method to a city-scale network with
millions of nodes cannot obtain the optimal result within a reasonable time. Take a network with v nodes as an instance, suppose
there are P| | possible paths between any two nodes. Given a time window T and a budget of M| | buses, there are P T| || | possible vertex
(i.e., (location, time)) sequences, the searching space for the optimal combination of vertex sequences is = ( )m

M P T
m1

| | | || | , which could
be huge because the number of simple paths P| | in a graph can be very large, e.g. O v( !) in the complete graph of order v.

5.2. Case study on the city-scale network

Taxi trajectory data is a reliable data source for estimating travel demands for CB systems, as it provides comprehensive and
detailed travel information of taxi passengers and reveals the actual taxi demands citywide. A part of taxi passengers choose taxis
because they prefer direct, speedy and cozy transit services, while CB systems can also provide such comparable services with the
extra advantage of lower fare. Hence, these passengers have high potential to be CB customers. Note that the demands of CB systems
could also come from other sources such as passengers using public transit services. In practice, our CB-Planner can be implemented
with proper travel demand estimation from multiple data sources (Liu et al., 2014). This case study on the taxi trajectory data set is to
demonstrate the effectiveness of our CB-Planner, i.e., CB-Planner can plan profitable bus lines given an input of city-wide travel
demands, and these CB lines can provide efficient transit services with lower fare.

In this case study, each passenger trajectory is regarded as a travel demand, and each demand can be served by one of the two
modes, i.e., CB or taxi. Namely, the pick-up point, drop-off point and pick-up timestamp of a trajectory are regarded as the origin,
destination and departure time of the travel demand, respectively. The travel time and fare of the trajectory are taken as TravTime
and Fare in utility function (Eq. (2)) of taxi mode. In the following, we first describe the data set, experimental settings and baseline
algorithms, and present experimental results.

5.2.1. Taxi trajectory data set
The taxi trajectory data set was collected from Nanjing, China from June 1st to 29th, 2010. There are 7476 taxis with total

540,577,652 GPS records. The average frequency of a GPS record of a taxi is about 32 s. Each record contains the taxi ID, timestamp,
latitude, longitude, and working status of the taxi. We extract passenger trajectories from each taxi trajectory, by detecting the pick-

Table 2
Comparison of optimal and heuristic bus lines.

Bus ID Route i t{( , )} Passenger ID (Prob. Choosing CB) Profit

(a) Optimal Bus Lines
1 (9,7) (10,9) (16,13) (18,16) (20,20) 2 (54.6%), 15 (68.8%), 18 (55.8%), 19 (65.7%), 20 (68.8%) 49.00
2 (4,9) (11,17) (14,21) (23,26) (22,31) (21,33) 7 (20.7%), 8 (58.1%), 10 (56.5%), 16 (62.2%), 17 (68.5%) 42.91

(b) Heuristic Bus Lines
1 (9,7) (10,9) (16,13) (18,16) (20,20) 2 (54.6%), 15 (68.8%), 18 (55.8%), 19 (65.7%), 20 (68.8%) 49.00
2 (4,10) (11,18) (14,22) (23,27) (22,32) 8 (67.8%), 10 (66.4%), 16 (51.9%), 17 (58.8%) 39.82

Table 3
Optimality gaps of 20 groups of travel demand samples.
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up activities and drop-off activities. After removing those noise trajectories with less than three minutes, we extract 5,456,051
passenger trajectories. Due to the different travel patterns in weekdays and weekends & holidays, we split the one-month data into
two subsets, namely, trajectories in the 20 weekdays and trajectories in the 9 weekends and holidays, and conduct experiments on the
two data sets, separately.

5.2.2. Experiment settings
Parameter setting for travel demand clustering. In partitioning the travel demand space into units for clustering, the unit size

should be properly set. The clustering quality will be deteriorated with too large size or too small size (Nagesh et al., 2001). We
partition each spatial dimension of travel demand space, (i.e., stLat stLng edLat, , and edLng), into intervals of 500 meters, based
on the service radius of CB stops, which is also set as 500 meters (Daniels and Mulley, 2013). The temporal dimension, (i.e., stTime),
is partitioned into intervals of 30min.

To explore density threshold, we first calculate the density for each unit, i.e., the average daily number of travel demands in each
unit. Then, all the units are sorted by their density. Fig. 5 plots the density of top 10% units for the weekday data set. We observe most
of the units have the density varies in a small range between 0 and 1.6, and the top units have the density that varies from 1.6 to 12.4.
Therefore, we define a unit as the dense unit when its density is above 1.6, i.e., the density threshold is set to 1.6. We also get the
same density threshold for the weekend & holiday data set.

Parameter estimation for the Multinomial Logit model. We employed the Multinomial Logit (MNL) model to estimate the
probability of a passenger choosing CB over a set of alternative transport modes as described in Section 3.1. In this case study, as we
are estimating the probabilities of taxi passengers shifting to CB buses, this MNL model is simplified into two mode choices, i.e., CB
and taxi.

We conduct a small-scale Stated-Preference (SP) survey (Shiftan et al., 2006), which has been widely used for assessing the
potential demands for a new transportation service. It presents hypothetical situations to the respondents, who are then asked to
choose the preferred alternative (i.e., CB or taxis) based on the given attributes, without necessarily experiencing them in real
situations (Hanley et al., 2001). In this survey, we consider the following six attributes, i.e., travel time by taxi (TravTimetaxi), travel
cost by taxi (Faretaxi), travel time by CB (TravTimeCB), travel cost by CB (FareCB), walk distance to the nearest CB stop (WalkDistCB),
and time adjustment to catch a CB bus (TimeAdjCB). Hypothetical attribute values are generated based on the real taxi trips from the
trajectory data. For example, the travel time by taxi are set from 5min to 50min because more than 90% of taxi trips are within this
range in the real data set. The travel times by CB are generated accordingly by setting different ratios comparing to taxi travel time.
The combinations of the values of each attribute are generated for SP choice scenarios using fractional factorial designs (Box et al.,
2005). Table 4 illustrates one of the SP choice scenarios. There are a total of 56 respondents, and each respondent was required to
choose preferred travel mode (CB or taxis) for 30 SP scenarios. And thus we collected 1680 observations in total.

We implement the maximum likelihood estimation on the survey data, and present the results in Table 5. ASCCB and ASCtaxi are
the two constant coefficients, i.e., c0, in the utility function (Eq. (2)). As we set taxi as the reference, ASCtaxi is fixed to zero. The
coefficients of WalkDistCB and TimeAdjCB are negative and significant, showing that with the shorter walk distance and time ad-
justment of CB, the more likely people choosing CB services. The coefficients of TravTime and Fare of both CB and Taxi are negative
and significant, this is means that, given fixed TravTimetaxi and Faretaxi, the shorter CB travel time and fare, the higher probability of
choosing CB, similarly, given fixed TravTimeCB and FareCB, reducing taxi travel time and fare will increase the probability of choosing
taxi.

Other parameter settings. The default values of the rest parameters are listed in Table 6. In addition, we focus on demand
clusters in which the average daily number of travel demands is more than 40.

5.2.3. Baseline algorithms
We develop baseline algorithms to evaluate the performance of CB-Planner. The main reasons are: (1) CB-Planner is the first

framework that designs bus lines for CB systems. (2) Existing traditional bus route planning methods cannot be used for comparison
either, due to the different transit service objectives. To demonstrate the effectiveness of CB-Planner, we propose the following
baselines.
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Baseline for CB stop deployment. We compare our CB stop deployment (CBDeploying) with the baseline method k-medoids.
The classical k-medoids is unable to find the minimum number of stops k because it takes value of k as an input. Hence in this
baseline, we iteratively implement k-medoids to deploy k stops from =k 1 to a number that CovPct percentage of origin/destination
locations from a cluster are covered by the k stops within walk distance of CovRad. Different from our CBDeploying, this baseline
initiates the locations of the k stops randomly at each iteration.

Baselines for CB line planning. Given the deployed CB stops, we have the following two baselines to plan CB lines.

(1) One cluster one route(1C1R): This baseline does not employ our CBMerging, and only plans a CB line with our CBRouting and
CBTimetabling for each demand cluster.

(2) Fixed Time Interval (FTI): This baseline algorithm adopts a timetable with a equal headway for a route. We set the headway as
30min, i.e., the time interval between every two successive bus trips along the route is 30min. With this timetable, the departure
time adjustment of a passenger would be no longer than 15min.

5.2.4. Evaluation on CB stop deployment
Effectiveness of clustering. Tables 7 and 8 summarize the 9 clusters in weekdays and 16 clusters in weekends & holidays

discovered by CB-Planner. These clusters reveal the similar travel demands of taxi passengers, i.e., close origin locations, destination
locations and departure times, which motivates us to build CB lines for these passengers. For example, in weekdays (Table 7), Cluster
1 appears from 7:00 to 20:00 each day, during which, about 197.8 passengers travel from the origin area within 0.5 km× 1 km, to the
destination area within 0.5 km× 0.5 km. The average time gap between two successive passengers is about 2.9min, which means
every 2.9min, there is a passenger traveling from the origin area to the destination area.

The number of demand clusters (i.e., travel patterns) discovered in weekends & holidays (Table 8) is more than that in weekdays
(Table 7). This reveals the actual travel pattern in a city: in weekdays, commuters share a few travel patterns, such as commuting
between residential areas and working areas, while they have more diverse travel patterns in weekends & holidays, such as traveling
between various entertainment or business districts.

Fig. 6 shows the standard deviation of the number of travel demands in each cluster in different days of the two data sets. We
observe that the number of demands fluctuates around the average within a small range, demonstrating the repeatability of these
clusters and indicating that building CB lines for these clusters could have sustainable profit.

Fig. 7 shows the distribution of departure time gap between each two successive demands using boxplot (Frigge et al., 1989) for
each cluster. The band inside each box is the median value of departure time gap, and each box shows the interquartile range (IQR) of
the gaps, i.e., the bottom and top of the box are the 25th and 75th percentiles. The small interquartile ranges in Figs. 7(a) and (b)
demonstrate the high temporal densities of demand clusters, i.e., the departure time gaps between most of two successive passengers
are within 10min.

Effectiveness of stop deployment. Fig. 8 shows the number of CB stops deployed by our CBDeploying and the baseline k-

Table 4
An example of an SP choice scenario.

Mode WalkDist TimeAdj TravTime Fare Preferred mode

Taxi – – 35min 40 RMB
CB 100m 5min 45.5min 24 RMB

Table 5
Results of mode choice model estimation.

Attributes ASCCB ASCtaxi WalkDistCB TimeAdjCB TravTimeCB FareCB TravTimetaxi Faretaxi

Coefficients ( ) 0.969 0 −0.007 −0.140 −0.241 −0.196 −0.327 −0.145
stderr 0.140 – 0.000 0.007 0.008 0.007 0.011 0.006
p-values 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000

Table 6
Default parameter setting.

Parameter Value

Coverage radius of a CB stop CovRad 500m
Coverage percentage of CB stops CovPct 95%
Capacity of a CB bus 40
Ticket price for each passenger 3 RMB/km
Operational cost of a bus 9 RMB/km
Dwell time at a CB stop 1min
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medoids with =CovPct 95% and =CovRad 500, (i.e., 95% passengers in each cluster can access to the nearest CB stops within 500 m).
Fig. 9 plots the walk distance distribution of passengers to the nearest CB stops deployed by CB-Planner. We observe that (1) our
CBDeploying deploys a smaller number of CB stops than k-medoids, and (2) more than 75% passengers only need to walk to the
nearest stops within 300m for both weekdays and weekends & holidays data sets. Actually, the average walk distance is 108m and
130m in both data sets, respectively. Both Figs. 8 and 9 demonstrate our CB-Planner can deploy a smaller number of CB stops than k-
medoids, and these stops can be accessed by the most passengers with short walk distances.

5.2.5. Evaluation on CB line planning
Profit evaluation. We measure the effectiveness of the CB line planning of CB-Planner using the estimated profit of planned CB

lines. We compare the CB-Planner with the baseline 1C1R and FTI to study the effectiveness of CBMerging and CBTimetabling in our
CB-Planner framework, respectively. As presented in Fig. 10(a) and (b), CB-Planner and FTI generate 5 CB lines from the 9 trajectory
clusters discovered in weekdays, and 11 CB lines from the 16 clusters in weekends & holidays, with the merge scheme CBMerging,
while 1C1R generates one CB line from each demand cluster without the merging scheme.

Table 7
Clusters in weekdays.

Cluster ID Duration Avg. no. traj. Avg. time gap Origin area (km× km) Destination area (km× km)

1 07:00–20:00 197.8 2.9 ×0.5 1 ×0.5 0.5
2 07:30–09:30 41.2 2.5 ×1.5 1 ×0.5 0.5
3 08:30–20:30 189.2 3.3 ×0.5 0.5 ×0.5 0.5
4 09:00–17:00 65.3 6.9 ×0.5 0.5 ×0.5 0.5
5 09:30–17:30 157.0 3.2 ×1 1.5 ×0.5 0.5
6 09:30–17:30 93.0 5.1 ×0.5 1 ×0.5 0.5
7 10:30–17:00 87.7 3.4 ×1.5 1.5 ×0.5 0.5
8 11:30–16:30 44.8 6.7 ×0.5 0.5 ×0.5 0.5
9 21:00–24:00 101.5 1.7 ×2 1.5 ×0.5 1

Table 8
Clusters in weekends and holidays.

Cluster ID Duration Avg. no. traj. Avg. time gap Origin area (km× km) Destination area (km× km)

1 06:30–18:30 231.7 2.7 ×0.5 1 ×0.5 0.5
2 07:30–17:30 69.7 4.6 ×0.5 0.5 ×0.5 0.5
3 08:30–17:30 158.8 3.3 ×1 1.5 ×0.5 0.5
4 08:30–21:00 205.2 3.1 ×1 0.5 ×0.5 0.5
5 09:30–16:30 69.9 4.8 ×0.5 0.5 ×0.5 0.5
6 09:30–18:00 118.1 4.1 ×0.5 1 ×0.5 0.5
7 10:00–17:00 100.7 3.5 ×1.5 1.5 ×0.5 0.5
8 10:30–17:30 88.3 3.7 ×1.5 2 ×0.5 0.5
9 12:00–17:30 58.8 4.6 ×1 0.5 ×0.5 0.5
10 12:00–18:30 131.4 2.7 ×1 2 ×1 1
11 13:30–17:00 40.4 4.5 ×1 1 ×0.5 0.5
12 13:30–17:30 48.9 3.7 ×1 1.5 ×1 1
13 19:00–22:00 66.6 2.4 ×1 1.5 ×1 1
14 20:30–24:00 97.0 2.0 ×1 1.5 ×0.5 1
15 21:00–23:30 41.9 3.8 ×1 1.5 ×0.5 0.5
16 01:00–04:00 49.1 3.8 ×0.5 0.5 ×1 2
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Fig. 6. Number of trajectories per day in each cluster.
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To demonstrate the effectiveness of CBMerging, we compare the profit of the merged CB lines (Lines 4 and 5 in Fig. 10(a) and
Lines 10 and 11 in Fig. 10(b)) with the total profit of the corresponding unmerged CB lines (as presented with the stacked bars of
1C1R). We can observe that the merged CB lines generated by CB-Planner achieve higher profit than the total profit from the
unmerged lines planned by 1C1R. Note that after merging CB lines with CBMerging, some passengers would spend more travel time
along a merged CB line, due to more intermediate stops, so the probabilities for them to take the CB line will be lower. However,
when the benefit earned by ride-sharing from the rest passengers are greater than the loss of passengers, the merged CB line can still
be more profitable than the unmerged ones. This explains why the merged CB lines earn more profit than the lines planned by 1C1R.

To demonstrate the effectiveness of CBTimetabling, we compare CB lines generated by CB-Planner with the lines generated by
FTI. We can observe that each CB line generated by CB-Planner earns more profit than the line generated by FTI. This is because FTI
assigns a timetable with equal headways for each CB line, while our CB-Planner generates the optimal timetable for each CB line by
maximizing its profit. In addition, the optimal timetables generated by CBTimetabling in weekdays and weekends & holidays are
presented in Tables 9 and 10, respectively. We observe that the timetable of each CB line are unevenly distributed due to the profit
maximization.

Travel experience validation. To validate the travel experience of the CB lines generated by CB-Planner, we first compare travel
time and fare by CB buses with the travel time and fare by taxis, respectively, and then display the time adjustment of passengers to
the optimal timetable of each CB line. Note that we have estimated the probability of a passenger choosing CB buses by Eq. (1).
Without loss of generality, we validate the travel experience of the passengers who have more than 50% probability taking a CB bus.

Fig. 11 shows the increase in travel time and saving in fare of CB buses when comparing with those by taxis. We observe that the
percentage of travel fare saving is larger than the percentage of extra travel time for each CB line in both the weekdays and weekends
& holidays data sets. For example, in Fig. 11(a), passengers who choose CB line 2 would spend 17% longer travel time than by taxis,
but spend 45% less money. This demonstrates that even though those passengers would sacrifice in travel time when choosing CB
buses, they still benefit more in travel fare.

Fig. 12 plots the departure time adjustment of passengers to the optimal timetable of each CB line for both the weekdays and
weekends & holidays data sets. We observe that more than half passengers only need to adjust their departure time within 10min,
and more than 75% passengers only need to adjust their departure time within 15min for both data sets. The average departure time
adjustments in both data sets are 8.0min and 8.3min, respectively.

Impact of ticket price setting. The ticket price of CB bus affects the number of passengers choosing CB buses and thus affects the
profit. To study the impact of price setting, we compare the total numbers of passengers taking CB buses and the total profit under
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Fig. 7. Departure time gap between two successive travel demands in each cluster. (A boxplot showing the minimum, 25th percentile, median, 75th
percentile, and maximum value of time gap.)
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Fig. 8. Number of CB stops deployed in each cluster.
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Fig. 9. Walk distances to the nearest CB stops in each cluster. (A boxplot showing the minimum, 25th percentile, median, 75th percentile, and
maximum value of walk distance.)
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Fig. 10. Estimated profit of planned CB lines.

Table 9
Timetable in weekdays.

Line 1 Line 2 Line 3 Line 4 Line 5

08:05 11:25 21:50 08:50 14:00 08:15 14:05
08:50 12:30 22:35 09:35 14:40 09:20 14:50
09:30 13:30 23:15 10:15 15:25 10:10 15:30
– 14:25 24:00 10:55 16:05 11:00 16:15
– 15:15 – 11:40 16:50 11:50 17:05
– 16:35 – 12:25 17:45 12:35 17:55
– – – 13:10 – 13:20 –

Table 10
Timetable in weekends & holidays.

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 Line 11

10:50 13:55 12:40 13:10 14:05 20:00 21:15 21:50 01:05 07:05 13:55 08:55 15:35
12:00 15:15 14:05 14:10 15:30 20:50 22:05 22:55 02:10 07:55 14:40 09:50 16:30
13:00 17:00 15:20 15:00 16:25 21:50 23:00 23:55 03:00 08:45 15:25 10:35 17:25
14:15 – 16:20 15:55 – – 24:00 – 03:50 09:30 16:25 11:20 18:20
15:05 – 17:20 17:00 – – – – – 10:25 17:10 12:10 19:15
16:00 – 18:25 – – – – – – 11:15 18:00 12:55 20:40
17:00 – – – – – – – – 12:10 19:05 13:50 –
– – – – – – – – – 13:05 – 14:40 –
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different ticket prices.
Fig. 13(a) plots total numbers of passengers taking CB buses under different ticket prices. Generally, the number of CB passengers

decreases as the price increases. However, when the price is set to 1 RMB/km, the passengers are fewer than those when the price is
2 RMB/km. This is because when the price is too low, building CB lines for some demand clusters cannot make any profit, even
though these demands may have high probabilities choosing CB services due to the low price. We can observe that the number of
passengers taking CB buses is maximized when the price is 2 RMB/km.

Fig. 13(b) plots total profit under different ticket prices. When the price increases from 1 to 3 RMB/km, the profit first increases as
a higher price leads to more revenue. The profit then decreases when the price exceeds 3 RMB/km. This is because a higher price also
causes the loss of passengers, resulting in less profit. As we can observe, the profit is maximized when the price is set to 3 RMB/km.

6. Conclusion and future work

In this paper, we proposed CB-Planner: a holistic framework which aims to strategically plan bus lines for customized bus (CB)
systems. To plan bus lines that can balance service quality with profit, we proposed a mathematical programming formulation to
simultaneously optimize bus stop locations, bus routes, timetables and passengers’ probabilities of choosing CB. We then developed a
heuristic solution framework that includes a grid-density based clustering method for discovering potential travel demands effi-
ciently, a bus stop deployment algorithm to minimize the number of stops and walking distance, and dynamic programming based
routing and timetabling algorithms for maximizing estimated profit. We conducted an experiment on a small-scale network to verify
the performance gap between the optimal solution and the heuristic solution, and the results show that the mean of the gap is 17.55%
with s.d. of 0.0986. CB-Planner was then evaluated in a realistic situation using one-month taxi trajectory data in Nanjing, China. The
results show that our framework can generate CB lines with higher profit, compared with baseline methods. And these CB lines can
provide efficient transit services with short walk distances and small departure time adjustments. The moderate increase in travel
time is paid off by the significant savings in travel fare.

In future, we have two research directions: (1) Study how to develop efficient solutions to jointly optimize the CB stop locations,
CB routes and their timetables, so as to capture the interactions and feedbacks between stop deployment, routing, timetabling and
passengers’ choices on CB buses. (2) Study on the subjective factors that affect passengers’ choice on CB services, such as comfort and
personal travel habit, and incorporate them for better demand estimation for CB systems.
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Fig. 11. Percentage of extra travel time and travel fare saving of CB buses compared with taxi.
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Fig. 12. Departure time adjustment to the optimal timetable in each line. (A boxplot showing the minimum, 25th percentile, median, 75th per-
centile, and maximum value of departure time adjustment.)

Y. Lyu, et al. Transportation Research Part C 101 (2019) 233–253

251



Acknowledgements

Chi-Yin Chow was supported in part by the City University of Hong Kong under Grant 7004890. Yanhua Li was supported in part
by Nissan Science Foundation grants CNS-1657350 and CMMI-1831140, and a research grant from DiDi Chuxing Inc.

References

Aggarwal, C.C., Reddy, C.K., 2013. Data Clustering: Algorithms and Applications. CRC Press.
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of

ACM SIGMOD.
Bagloee, S.A., Ceder, A.A., 2011. Transit-network design methodology for actual-size road networks. Transport. Res. Part B: Methodol. 45 (10), 1787–1804.
Bastani, F., Huang, Y., Xie, X., Powell, J.W., 2011. A greener transportation mode: flexible routes discovery from gps trajectory data. In: Proceedings of ACM

SIGSPATIAL.
Berend, D., Tassa, T., 2010. Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30 (2), 185–205.
Box, G.E., Hunter, J.S., Hunter, W.G., 2005. Statistics for Experimenters: Design, Innovation, and Discovery. Wiley-Interscience, New York.
Cancela, H., Mauttone, A., Urquhart, M.E., 2015. Mathematical programming formulations for transit network design. Transport. Res. Part B: Methodol. 77, 17–37.
Cao, Yang, Wang, Jian, 2017. An optimization method of passenger assignment for customized bus. Math. Problems Eng. 2017 Hindawi.
Ceder, A.A., Butcher, M., Wang, L., 2015. Optimization of bus stop placement for routes on uneven topography. Transport. Res. Part B: Methodol. 74, 40–61.
Chang, S.K., Schonfeld, P.M., 1991. Optimization models for comparing conventional and subscription bus feeder services. Transport. Sci. 25 (4), 281–298.
Chang, S.K., Yu, W.-J., 1996. Comparison of subsidized fixed-and flexible-route bus systems. Transport. Res. Rec.: J. Transport. Res. Board 1557 (1), 15–20.
Chen, C., Zhang, D., Li, N., Zhou, Z.H., 2014. B-planner: Planning bidirectional night bus routes using large-scale taxi gps traces. IEEE Trans. Intell. Transport. Syst. 15

(4), 1451–1465.
Chien, S.I., Spasovic, L.N., Elefsiniotis, S.S., Chhonkar, R.S., 2001. Evaluation of feeder bus systems with probabilistic time-varying demands and nonadditive time

costs. Transport. Res. Rec.: J. Transport. Res. Board 1760 (1), 47–55.
Chinadaily, 2014. Zhangjiagang Opens Customized Tour Bus Lines. http://www.chinadaily.com.cn/m/jiangsu/zhangjiagang/2014-04/01/content_17397887.htm

Accessed: 2015-06.
Chuanyu, Z., Wei, G., Jie, X., Shixiong, J., 2017. A study on dynamic dispatching strategy of customized bus. In: 2017 3rd IEEE International Conference on Control

Science and Systems Engineering (ICCSSE). IEEE, pp. 751–755.
Cipriani, E., Gori, S., Petrelli, M., 2012. Transit network design: a procedure and an application to a large urban area. Transport. Res. Part C: Emerg. Technol. 20 (1),

3–14.
Daniels, R., Mulley, C., 2013. Explaining walking distance to public transport: the dominance of public transport supply. J. Transport Land Use 6 (2), 5–20.
Farahani, R.Z., Hekmatfar, M., 2009. Facility Location: Concepts, Models, Algorithms and Case Studies. Springer.
Frigge, M., Hoaglin, D.C., Iglewicz, B., 1989. Some implementations of the boxplot. Am. Stat. 43 (1), 50–54.
Guihaire, V., Hao, J.-K., 2008. Transit network design and scheduling: a global review. Transport. Res. Part A: Policy Pract. 42 (10), 1251–1273.
Hanley, N., Mourato, S., Wright, R.E., 2001. Choice modelling approaches: a superior alternative for environmental valuatioin? J. Econ. Surveys 15 (3), 435–462.
Ibarra-Rojas, O., Delgado, F., Giesen, R., Muñoz, J., 2015. Planning, operation, and control of bus transport systems: a literature review. Transport. Res. Part B:

Methodol. 77, 38–75.
Jain, K., Vazirani, V.V., 2001. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J.

ACM (JACM) 48 (2), 274–296.
LeBlanc, L.J., 1988. Transit system network design. Transport. Res. Part B: Methodol. 22 (5), 383–390.
Li, Y., Luo, J., Chow, C.-Y., Chan, K.-L., Ding, Y., Zhang, F., 2015. Growing the charging station network for electric vehicles with trajectory data analytics. In:

Proceedings of ICDE.
Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recogn. 36 (2), 451–461.
Liu, T., Ceder, A.A., 2015. Analysis of a new public transport service concept: customized bus in china. Transport Policy 39 (0), 63–76.
Liu, Y., Liu, C., Yuan, N.J., Duan, L., Fu, Y., Xiong, H., Xu, S., Wu, J., 2014. Exploiting heterogeneous human mobility patterns for intelligent bus routing. In:

Proceedings of IEEE ICDM. pp. 360–369.
Ma, X., Wu, Y.-J., Wang, Y., Chen, F., Liu, J., 2013. Mining smart card data for transit riders’ travel patterns. Transport. Res. Part C: Emerg. Technol. 36, 1–12.
Ma, J., Zhao, Y., Yang, Y., Liu, T., Guan, W., Wang, J., Song, C., 2017. A model for the stop planning and timetables of customized buses. PloS One 12 (1), e0168762.
Ma, J., Yang, Y., Guan, W., Wang, F., Liu, T., Tu, W., Song, C., 2017. Large-scale demand driven design of a customized bus network: a methodological framework and

beijing case study. J. Adv. Transport.
Malandraki, C., Dial, R.B., 1996. A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem. Euro. J. Oper. Res. 90 (1),

45–55.
Mauttone, A., Urquhart, M.E., 2009. A route set construction algorithm for the transit network design problem. Comput. Oper. Res. 36 (8), 2440–2449.
McCall, C., 1977. Com-bus: A Southern California Subscription Bus Service. Tech. Rep. DOT-TSC-UMTA-77-13 Final Rpt., CACI, Incorporated, Transportation Systems

Center and Urban Mass Transportation Administration.
McFadden, D., 1973. Conditional logit analysis of qualitative choice behaviour. In: Zarembka, P. (Ed.), Frontiers in Econometrics. Academic Press, New York, NY, USA,

2 4 6 8 10
Travel Fare (RMB/km)

0

500

1000

1500

2000

N
um

be
r 

of
 P

as
se

ng
er

s Weekdays
Weekends & Holidays

(a) Total estimated number of passengers

2 4 6 8 10
Travel Fare (RMB/km)

0

2000

4000

6000

8000

T
ot

al
 P

ro
fit

 (
R

M
B

)

Weekdays
Weekends & Holidays

(b) Total estimated profit

Fig. 13. Impact of different prices on number of passengers and profit.

Y. Lyu, et al. Transportation Research Part C 101 (2019) 233–253

252

http://refhub.elsevier.com/S0968-090X(18)30512-6/h0005
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0015
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0025
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0030
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0035
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0040
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0045
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0050
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0055
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0060
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0060
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0065
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0065
http://www.chinadaily.com.cn/m/jiangsu/zhangjiagang/2014-04/01/content_17397887.htm
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0070
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0070
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0075
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0075
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0085
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0090
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0095
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0100
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0105
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0110
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0110
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0115
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0115
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0120
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0130
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0135
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0145
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0150
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0155
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0155
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0160
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0160
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0165
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0175


pp. 105–142.
Michaelis, M., Schöbel, A., 2009. Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic. Public Transport 1 (3), 211.
Mingozzi, A., Bianco, L., Ricciardelli, S., 1997. Dynamic programming strategies for the traveling salesman problem with time window and precedence constraints.

Oper. Res. 45 (3), 365–377.
Ministry of transport, 2014. Ministry of transport of the people's republic of China. http://www.moc.gov.cn/zhuantizhuanlan/gonglujiaotong/gongjiaods/jingyanjl/

201403/t20140324_1595555.html Accessed: 2015-06.
Munizaga, M.A., Palma, C., 2012. Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from santiago, chile.

Transport. Res. Part C: Emerg. Technol. 24, 9–18.
Nagesh, H.S., Goil, S., Choudhary, A.N., 2001. Adaptive grids for clustering massive data sets. In: Proceedings of SDM.
Nayeem, M.A., Rahman, M.K., Rahman, M.S., 2014. Transit network design by genetic algorithm with elitism. Transport. Res. Part C: Emerg. Technol. 46, 30–45.
Nikolić, M., Teodorović, D., 2013. Transit network design by bee colony optimization. Exp. Syst. Appl. 40 (15), 5945–5955.
Park, H.-S., Jun, C.-H., 2009. A simple and fast algorithm for k-medoids clustering. Exp. Syst. Appl. 36 (2), 3336–3341.
Pelletier, M.-P., Trépanier, M., Morency, C., 2011. Smart card data use in public transit: a literature review. Transport. Res. Part C: Emerg. Technol. 19 (4), 557–568.
Perugia, A., Moccia, L., Cordeau, J.-F., Laporte, G., 2011. Designing a home-to-work bus service in a metropolitan area. Transport. Res. Part B: Methodol. 45 (10),

1710–1726.
Rota, G.-C., 1964. The number of partitions of a set. Am. Math. Monthly 71 (5), 498–504.
Saka, A.A., 2001. Model for determining optimum bus-stop spacingin urban areas. J. Transport. Eng. 127 (3), 195–199.
Shiftan, Y., Vary, D., Geyer, D., 2006. Demand for park shuttle services – a stated-preference approach. J. Transport Geogr. 14 (1), 52–59.
Szeto, W., Jiang, Y., 2014. Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach. Transport. Res. Part B: Methodol.

67, 235–263.
Tong, L., Zhou, X., Miller, H.J., 2015. Transportation network design for maximizing space–time accessibility. Transport. Res. Part B: Methodol. 81, 555–576.
Tong, L.C., Zhou, L., Liu, J., Zhou, X., 2017. Customized bus service design for jointly optimizing passenger-to-vehicle assignment and vehicle routing. Transport. Res.

Part C: Emerg. Technol. 85, 451–475.
W. Wu, W.S. Ng, S. Krishnaswamy, A. Sinha, To taxi or not to taxi? Enabling personalised and real-time transportation decisions for mobile users. In: Proceedings of

MDM, 2012.
Xinhuanet, 2013. Customized Bus Service Offered for City Dwellers in Beijing. http://news.xinhuanet.com/english/photo/2013-09/09/c_132705811_2.htm Accessed:

2015-06.
Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y., 2010. Understanding transportation modes based on gps data for web applications. ACM Trans. Web 4 (1), 1:1–1:36.

Y. Lyu, et al. Transportation Research Part C 101 (2019) 233–253

253

http://refhub.elsevier.com/S0968-090X(18)30512-6/h0175
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0180
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0185
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0185
http://www.moc.gov.cn/zhuantizhuanlan/gonglujiaotong/gongjiaods/jingyanjl/201403/t20140324_1595555.html
http://www.moc.gov.cn/zhuantizhuanlan/gonglujiaotong/gongjiaods/jingyanjl/201403/t20140324_1595555.html
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0195
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0195
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0205
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0210
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0215
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0220
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0225
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0225
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0230
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0235
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0240
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0245
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0245
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0250
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0255
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0255
http://news.xinhuanet.com/english/photo/2013-09/09/c_132705811_2.htm
http://refhub.elsevier.com/S0968-090X(18)30512-6/h0270

	CB-Planner: A bus line planning framework for customized bus systems
	Introduction
	Background and related work
	Background of CB systems
	Related work
	Customized bus network design
	Traditional transit network design
	Understanding transportation with travel data


	System model and problem formulation
	Estimate probability of choosing CB
	Problem formulation

	Solution algorithms
	Travel demands clustering
	CB stop deployment
	CB line planning
	Routing
	Timetabling
	CB line merging


	Experiment
	Numerical experiment on Sioux Falls network
	Case study on the city-scale network
	Taxi trajectory data set
	Experiment settings
	Baseline algorithms
	Evaluation on CB stop deployment
	Evaluation on CB line planning


	Conclusion and future work
	Acknowledgements
	References




